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For certain classes of Priifer domains A4, we study the completion A7 of A with
respect to the supremum topology & = sup{Z, lw € Q}, where £ is the family of
nontrivial valuations on the quotient field which are nonnegative on 4 and 7, is a
topology induced by a valuation w € Q. It is shown that the concepts “SFT Priifer
domain” and “generalized Dedekind domain” are the same. We show that if E is
the ring of entire functions, then £-7 is a Bezout ring which is not a F-Priifer ring,
and if A is an SFT Priifer domain, then A7 is a Priifer ring under a certain
cgndition. We also show that under the same conditions as above, A7 is a
Z-Priifer ring if and only if the number of independent valuation overrings of A is
finite. In particular, if A is a Dedekind domain (resp., A-local Priifer domain), then
A7 is a S-Priifer ring if and only if A has only finitely many prime ideals (resp.,
maximal ideals). These provide an answer to Mockor’s question.  © 1999 Academic

Press

1. INTRODUCTION

Let A be an integral domain with quotient field K and let ) be the
family of nontrivial valuations on K which are nonnegative on A. A
valuation w € () with the value group G, induces a topology 9, on K
with the sets U, , = {x eKlw(x) > o}, a € G, ={B€G,[B=0},asa
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base of zero neighborhoods in K. It is well known that the completlon
K2 of K with respect to the topology 7, is a field and the extension w of
w on K% is a valuation on K7 [Bo2]. Let R, be the valuation ring of
w, ie., R, = {x € Klw(x) > 0}, and let Rwy denote the completion of
R, with respect to the subspace topology induced by .7,. Bourbaki also
showed that f?:’yw = R, the valuation ring of w, and G, = G, the value
group of w.

In this paper we consider a more general situation. Let 7 = sup{7, |
w e 1}, ie., I is the topology with the set {U JveEQ, ae G} as a
subbase of zero neighborhoods in K. Let 4'7 be the closure of 4 in K7,
the completion of K with respect to the 7 topology. In view of [Bol, IL3. 4
Proposition 8], 4’7 = = A7, which is the completion of 4 with respect to
the subspace topology on A In [Mo], Mockor studied the ring A -7 for a
Priifer domain 4. He presented some sufficient conditions for A7 tobe a
Priifer ring, and equivalent conditions for A7 to be a F-Priifer ring (see
Section 8). However he left it an open questlon if there exists a Priifer
domain A such that A 7 is not a S-Priifer ring or such that A7 is a
Priifer ring but not a -Priifer ring.

The purpose of this paper is to construct examples of Mockor’s question
by studying certain classes of Priifer domains such as A-local Priifer
domains, the ring of entire functions, and SFT Priifer domains (Sections 5,
6, and 7). In particular, in dealing with an SFT Priifer domain, we will use
the following results [KP1, Theorem 15 and Corollary 17] (although it is
stated for finite-dimensional A, its proof is also valid for the infinite-di-
mensional case). If 4 is an SFT Priifer domain and I is a proper ideal of
A, then the I-adic completlon A" is an SFT Priifer ring and, moreover, if
‘/T is a prime ideal, then A" is an SFT Priifer domain and Spec( A7) =
{(0)} U {O""|0 € Spec(A4) and Q > I}, where 0! is the I-adic completion
of Q.

Section 2: In the literature there are two important classes of Priifer
domains: one is the class of SFT Priifer domains introduced by Arnold in
1972 [Arl1] and the other is the class of generalized Dedekind domains
introduced by Popescu in 1984 [Po]. Each of them has a good book that
deals with it [Br, FHP]. We show that an integral domain is an SFT Priifer
domain if and only if it is a generalized Dedekind domain. We believe that
this result will facilitate the research on SFT Priifer domains or general-
ized Dedekind domains. So far only a few examples of SFT Priifer domains
have been given. Facchini’s existence theorem [Fa, Theorem 5.3] for
generalized Dedekind domains thus provides many examples of SFT Priifer
domains.

Section 3: Let & be the set of all maximal chains of nonzero prime
ideals of an integral domain A4 and let C, € . We introduce the C,
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topology and the % topology, which is the supremum of the C, topologies.
We consider three kinds of topologies on an integral domain A, namely,
the 9" topology, the ideal-adic topology, and the % topology. We investi-
gate the relation between these topologies on an SFT Priifer domain. In a
particular situation, one topology is more useful than the others in study-
ing the completion of a Priifer domain.

In Section 4, we study the completions of a Priifer domain A with
respect to the J topology and the € topology, and show that A7 =
I, cq, A7 and AF = =TT, . o A€, where Q, is a family of independent
valuations that are positive on A4 and whose equivalence classes constitute
the set of all equivalence classes of Q, and {C,},., is a representing
family of the independent maximal chains in Spec(A4)*.

In Section 5, we give a short survey on the completion of an A-local
Priifer domain.

In Section 6, we show that the ring E of entire functions has the
completion E7, which is a Bezout ring but not a -Priifer ring. We show
that for a Prufer domain A, A« = lim PECA

Section 7: For C, € &, we introduce the Tacobson radical J(C,) of C,.
It is shown that 4 €. is an SFT Priifer domain for an SFT Priifer domaln
A and a maximal chain C, with nonzero Jacobson radical. In this case,
Spec(A€) = {(0)} U (Py*|P, € Spec(A4)* and P, contains some
PeC,l
If in addition J(C,) # {0} for all C, € &, then A7 is a Priifer ring.

It is well known that for a Noetherian domain A4 and a,,...,q, € A4,
A@o-ad = AT X, ..., X,]/(X, —ay,..., X, — a,). We show that it also
holds for an SFT Priifer domain A. As a corollary we obtain that
(X, — ay,..., X, — a,) is a radical ideal of A[X,,..., X,] and that (X, —
a,..., X, —a,) is a prime ideal of A[X,,..., X, ] < /(a,,...,a,) isa
prime ideal of A4 < A is analytically irreducible with respect to (a,, ..., a,).
An interesting result is that for an SFT Priifer domain A, a prime ideal P
of A, and aj,...,a, €4, we have A[X,,..., X, 1p,(x, . . x,/(Xi—ay;

—a,) = Ap[X,,.. ., X1/ (X, —ay,..., X, — a,).

In Sectlon 8, constructmg examples, we give answers to Mockor’s ques-
tion. Namely, we show that (1) the completion A7 of an h- local Priifer
domain is a F-Priifer ring < Max(A)| < =, (2) the completion E7 of the
ring E of entire functions is not a F-Priifer ring, (3) the completion D7 of
a Dedekind domain is a F-Priifer ring < |[Spec(D)| < », and (4) the
completion 47 of an SFT Priifer domain with J(C,) # {0} for all maximal
chains C, is a F-Priifer ring < there exist only finitely many mdepen-
dent valuation overrings of A. In the cases (1), (3), and (4), every nonmini-
mal prime ideal of A7 is of the form P-7, where P is a nonzero prime
ideal of A.

.....
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Throughout this paper 4 will be a Priifer domain with quotient field K
unless otherwise specified. For undefined terms and notation the reader is
referred to [Bol, Gi, Mo]. We would like to mention that to make this
paper self-contained and for the sake of easy reference, we will sometimes
paraphrase known results.

2. SFT PRUFER DOMAINS AND GENERALIZED
DEDEKIND DOMAINS

Let A be a commutative ring with identity and let I be an ideal of A.
The ideal I will be called an SFT ideal (an ideal of strong finite type)
provided there exist a finitely generated ideal J C I and a positive integer
k such that a* € J for each a € I. If each ideal of A4 is an SFT ideal, then
we say that A is an SFT ring. This concept was introduced by Arnold in
1972 [Arl]. It plays an important role in dealing with the formal power
series ring. For example, Arnold has shown [Arl, Ar4] that if A4 is not an
SFT ring, then dim A[ X] = o, and if A is a finite-dimensional SFT Priifer
domain, then dim A[X,..., X,] = ndim A + 1. For other results on SFT
Priifer domains, see [AKP, Ar2, Ar3, Ar5, Br, KP1, KP2, Ol].

Since in this paper we are primarily concerned with an SFT Priifer
domain, we list here some properties of an SFT ring.

PROPOSITION 2.1 [Arl, Proposition 2.2 and 2.5, Corollary 2.7]. Let A be
a commutative ring with identity.

(1) A is an SFT ring if and only if each prime ideal is an SFT ideal.

(2) An SFT ring A has a Noetherian prime spectrum. In particular,
each ideal of A has only finitely many minimal prime divisors.

(3) If P is a nonzero SFT prime ideal of an integral domain, then
P+ P2

An integral domain is called a valuation domain if for each nonzero
element g and b, a divides b or b divides a. An integral domain A is
called a Priiffer domain if for each maximal ideal M of A4, A, is a
valuation domain.

PROPOSITION 2.2 [Ar2, Proposition 3.11.  For the Priifer domain A to be
an SFT ring, it is necessary and sufficient that for each nonzero prime ideal P
of A, there exists a finitely generated ideal I such that P> ¢ I C P.

In 1984, 12 years after Arnold had invented the concept “SFT Priifer
domain,” Popescu [Po] introduced the concept of a generalized Dedekind
domain. He defined a generalized Dedekind domain to be a Priifer domain
A on which for every two distinct localizing systems F; and F,, Ay # Ap,.
Then he obtained the following result.
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ProposITION 2.3 [Po, Theorem 2.5]. Let A be a Priifer domain. The
following assertions are equivalent.

(1) A is a generalized Dedekind domain.

(2) If P is a nonzero prime ideal of A, then P # P* and P is the radical
of a finitely generated ideal.

Apparently these two concepts were not realized to be the same. We
prove that they are in fact the same.

THEOREM 2.4. The concepts “SFT Priifer domain” and “generalized
Dedekind domain” are the same.

Proof. 1t is clear that every SFT Priifer domain is a generalized
Dedekind domain (Proposition 2.1(3), 2.2, and 2.3). Conversely let A be a
generalized Dedekind domain and let P be a nonzero prime ideal of A.
Then P # P? and P = yI for some finitely generated ideal I. Choose
a € P\ P% Put J=(1,a). Then J is finitely generated, P = V7, and
J ¢ P2 Since for each maximal ideal M of A, A, is a valuation domain
and P? is a P-primary ideal, P?4,, CJA, < PA,,. Thus P2cJCP
locally and hence globally. Thus these two concepts are the same. [

So we can use Fontana, Huckaba, Popescu, and Facchini’s results on the
generalized Dedekind domains in dealing with the SFT Priifer domains. In
particular, using the following existence theorem due to Facchini, we can
obtain a lot of examples of SFT Priifer domains with the prime spectrum
satisfying suitable conditions which we want.

Recall that a tree is a partially ordered set (X, <) with the property that
for every x € X the set B, ={y € X|y <x} is a chain (i.e., a totally
ordered set); it is Noetherian if every ascending chain x; <x, < --- of
elements of X is stationary.

THEOREM 2.5 [Fa, Theorem 5.3]. Let X be a partially ordered set. The
following statements are equivalent:

(1) X is a Noetherian tree with a least element.

(2) There exists a generalized Dedekind domain A whose prime spec-
trum (Spec A, C) is order isomorphic to X.

3. TOPOLOGIES

Let A be a Priifer domain with quotient field K. There are several kinds
of topologies which make A a topological ring. The I-adic topology, where
I is a proper ideal of A, is the topology with the set {I"|n = 1,2,...} asa
base of zero neighborhoods in 4. The A topology is the topology with the
ideals a4, a € A* (= A\ {0}), as a base of zero neighborhoods in A. Let
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Q(A) be the family of nontrivial valuations on K which are nonnegative
on A. A valuation w € Q(A) with the value group G, induces the
topology .9, on K with the sets U, , ={x € Klw(x) > a}, a € G} =
{B € G,|B = 0}, as a base of zero neighborhoods in K. We can give A4 the
subspace topology of K. We shall call this topology the .7, topology on A.
We denote by P(w) the center of the valuation ring R, of w on A.

LeMMA 3.1. Let w € Q(A) be a valuation with valuation ring R,,. Then
for each a € G, there exists a € A* such that a = w(a), and hence
U, . = aP(W)Ap,

Proof. Since A is a Priifer domain, R, = 4 Pw)s and so this is clear. |}

Now let F(A) = suplZ, |lw € Q(A4)}, i.e., I(A) is the topology on K
with the set {U, ,lw € Q(A), @ € G/} as a subbase of zero neighbor-
hoods in K. We' shall call the subspace topology on A induced by this
topology the F{A4) topology on A. If there is no ambiguity, we will use Q
and J instead of Q(A) and F(A).

Let Spec{4)* denote the set of all nonzero prime ideals of 4. Then
(Spec(A)*, ©) is a partially ordered set. Let C, be a chain in Spec( A)*.
We define the C, topology to be the topology on A with the ideals P”,
PeC,,n=12,..., as a base of zero neighborhoods in A.

We want to compare these topologies with each other.

Recall that an integral domain A is said to be k-local if every nonzero
element of A4 is contained in only finitely many maximal ideals and if
every nonzero prime ideal of A is contained in only one maximal ideal.
Using Lemma 3.1, we give an easy proof that the 9 topology and the A
topology are the same in an #-local Prifer domain A.

LEMMA 3.2 [Mo, Lemma 13]. Let A be an h-local Priifer domain. Then
the F topology on A is the same as the A topology.

Proof. Letw; € Q and o, € G;. Then there exists a; € A* such that
Uw o = @, P(w, )AP(W) Now le o Ny, , NA=aPw)Ap,,
N--Na P(w )AP(W yNA2a - a, A Conversely, let a € A*. Then
since A4 is h-local, there exists only a finite number of maximal ideals
M,,...,M, of A such that a € M;. Let w; be the valuation corresponding
to the Valuatlon domain Ay, i =1,2,...,n Then ad = Ny ¢ maxca)4u

= N (a4, NA) 2 N} l(aMAM nA) UppwiN NG, ayNA.

Let P be a prime ideal of A. We denote by ht P the height of P, i.e.,
the supremum of the length of chains of prime ideals contained in P.

LeMMA 3.3. Let A be a Priifer domain such that no minimal prime ideal
is idempotent if there is any. Then the 9 topology on A is the same as the &

topology.
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Proof. Let w; € ) and a E G, . Then there exists a; € A* such that
U, o = a; Py )A Py b ,n.If a, & P(w), then a,P(w, YApg,) =
P(w, )AP(W) Assume that a; < P(w) Then ‘/a Apyy = 0O AP(w,) for some
nonzero prlme ideal Q; contained in P(w,). If ht Q; > 1, then choose a
nonzero prime ideal Q) properly contained in Q Then by [Gi, Theorem
(17.1X5)], there exists k; € N such that Q) Apw) CaAP(W) Hence
Q”‘”APW Ca, P(w)AP(W) If ht Q; = 1, then Q, # Q7. By [Gi, Theorem
(17.3)}, there exists k; € N such that QFd,,  ca,.A pevy Hence
Of*'Ap,, S a;P(W)Ap,, Thus in either case, there exist Q, €
Spec(A)* contained in P(w,) and k, € N such that U, -NnU,
NADQH N - N Qkn Conversely, suppose Q,; € Spec(A)* k; € N
Choose a € Q{‘l NN Qn \ {0}. Let w; be the valuation correspondmg
to Ag. Then Qfin - N Qf = Q{‘IAQ1 NN QkA, NADaQ Ay
Nn--nNaQ,Ad, NA= U iy NN, L DA

Let E be the ring of entire functions. It is well known that E is a
Bezout domain, i.e., every finitely generated ideal of E is principal.
Henriksen [He] has shown that if M is a maximal fixed ideal, then M is
principal and ht M = 1 and if M is a maximal free ideal, then ht M = .
In fact, if P is an any prime free ideal of E, then ht P = o, Thus since E
satisfies the conditions in Lemma 3.3, the 9 topology on E is the same as
the & topology.

LEMMA 3.4. Let A be an SFT Priifer domain. Then the 7 topology on A,
the A topology, and the % topology coincide.

Proof. Letw; € and o; € G,. Then there exists a, € A* such that
= a,P(w, )AP(W) Thus U,.. Ny, , NA= alP(wl)AP(w)
“Na,P(w )AP(W yNA2a - a A Now Iét 'a € A*. Since A is an
SFT Prufer domain, by Proposmon 2 1(2), (@) has only finitely many
minimal prime divisors, say, P, ..., P,. Thus we have \/(L) =P N
P, =P, --- P,. By Proposition 2.2, there exists kK € N such that (a) 2
(P, - P)*=Pfn - N P Finally, given P, € Spec(4)* and k; € N,
choose a € Pk n - N P" \ {0}. Let w; be the valuation corresponding
to Ap. Then Pfin - Pl = P"lAP “NPfAp NADaP Ap,
N--Nab,Ap NA = le,wl(a) NN Uw woa NA- Thus these three
topologies coincide.

g,

wla

4., COMPLETIONS

Let X be a topological ring. X is said to be complete if every Cauchy
filter converges. For details, see [Bo1].
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DEFINITION 4.1. A completion of X is a pair (X, f), where Xisa
Hausdorff complete topological ring and f: X — X is a continuous homo-
morphism satisfying the following conditions:

(a) Ker f = {0}, the closure of {0} in X.

(b) The quotient topology of f(X) coincides with the topology
induced by X

(©) f(X)is dense in X.

It is well known that a completion exists and is unique in the following
sense. Let (X, f) and (Y g) be two completlons of X. Then there is a
unique isomorphism ¢: X - Y which is also a homeomorphlsm such that
@ ° f = g [Bol]. Henceforth, we shall say that X is the completion of X
and f is the canonical mapping of X into its completion.

Now we wish to consider the completions of a Priifer domain A with
respect to the topologies defined in Section 3.

Recall that for v,w € Q, v and w (or R, and R,) are said to be
independent if there exists no nontrivial valuation overring containing both
R, and R,. Otherwise, v and w are said to be dependent. We say that a
subset )’ of (1 is independent if every two elements of €}’ are indepen-
dent. We have the following approximation theorem for independent
valuations. To make this paper self-contained, we state and prove the
following well-known result.

PROPOSITION 4.2 [Gr, Proposition 24]. Let A be a Priifer domain. Let
Wy,Wy, ..., W, € ) be independent valuations with the value groups
G,.,G,,.. Gw , respectively. Given B, € G, ,..., B, € G, and t;,...,¢t,
eA there exzststEAsuch thatw(t —t)=B,i=12,...,n

Proof. Let I, = {x € Alw(x) > B;}. Then I, is a nonzero proper ideal
of A such that I; = I;Ap,,, N A. Since AP(W) is a valuation domain,
VEiApan = QAP(W) for some nonzero prime ideal ; contained in
P(w,)). So I, = VEApwy NA = /I, Ap,,, NA =0, Since wy,...,w,
are independent, I,..., I, are relatively prime. Suppose not. Then there
exist i # j and a maxxmal 1dea1 M of A such that [; + [; C M. It follows
that /7, + \/— CM,ie, Q;+Q; CM. Since A is a Priifer domain, Q,
and Q; are comparable Assume that Q; € ;. Then A, is a nontrivial
valuatlon overring containing both A, , and A P(w) A contradiction.
Applying the Chinese remainder theorem we can find y € A such that
y—t,€l,ie,wly—t)>pB,i nSlnceﬁeG+ and R,
Apg,, there exist x; € 4 such that w(x) B, i=12...,n Applymg
the Chinese remamder theorem again, we can find d € A such that
d—x,el,ie,w{d—x)> B,i=1,2,...,n Note that w(d) = w(x, +
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d-xD=p,i=12...,nPut t =d +y €A Then wit - 1) =wid
+(y_ti))=Bi’i=]-’2:"'9n' I

Define an equivalence relation ~ on the family Q by v ~ w if and
only if v and w are dependent. Let (), be a family of representatives of
the equivalence classes.

LEMMA 4.3. 9 = suplZ,lw € O} = suplF,lw € O}

Proof. Let we Q and a € G. Then by Lemma 3.1, there exists
a € A* such that U, , = aP(w)Ap,,. Let v € (), be the valuation that is
dependent on w. Then there exists a nonzero prime ideal Q such that A4,
is a valuation overring containing both Ap,, and A4 P(w) So we have
U, = aPw)Ap,, 2 aQAp,, = aQA, = aQAp,, 2 abAp,, 2
abP(v) A Py = U, vapy for any element b € Q \{o: 1

Let w be a valuation on the field K. Then by Lemma 4.3, the J(R,)-
topology on K is the same as the J,-topology on K. Bourbaki con51dered
the completion K% of K with respect to the topology 7,,. Since we will
often use results in Bourbaki, we include some of them here for easy
reference.

Let G, be the value group of w. Define on the set G, = G, U {«} a
topology by setting X (= the closure of X) = X U {x} for every nonempty
subset X of G.,, and & = &. Then clearly w: K — G, is continuous and it
induces the continuous extension W: K'%» — G,.

THEOREM 4.4 [Bo2, VL.5.3, Proposition 5. Let K be a field and let w be
a valuation on K. Then we have the following statements.
(1) K- is a topological field.
(2) The continuous extension W of w to K’ is a valuation and
G, =G,.
(3) The topology on K is the topology with the set {U; o€ Gf}as
a base of zero neighborhoods in K7,
@) U, =T, the closure of U, . in K.
5) R, = Rw 7v the completion of Rw with respect to the 7, topology
onR,.
©) K% =R,i%or
COROLLARY 4.5. Spec(R, ™) = {0~7|Q € Spec(R,)}, where O-% is
the completion of Q with respect to the subspace topology induced by R,,.
Proof. Let Q € Spec(R,)*. We give Q the subspace topology and give
R,,/Q the quotient topology induced by R,,. Then since these are linear
topologies, by [Ma, Theorem 8.1], 0 — Q>7 —» R"”* - R, /Q is exact, so
that Rw"?" /Q7» = R, /Q naturally. Since R, is a valuation domain, by
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Lemmas 3.2 and 4.3, - topology on R, =Y -topology on R, =R, -
topology. Since Q # (0), - (0), Q isopenin R,, and then R /Q has the drscrete
topology, so that RW/Q R, /Q. Thus we have R Zv /0% < R /0.
Since the embeddmg is clearly onto, R, " /0" = R, /Q. Thus 0% is a
prime ideal of R 7+ such that 0™ N R,, = Q for each Q € Spec(R,)*.
From Theorem 44(2) and [Gi, Corollary (17.9)], the conclusion follows:
Let Q, € Spea(R,) = (R, \ Q) = w(R,\ @) = w(R,\ Q) for some
Q € Sped(R,) = Q, = Q.

We denote by (A4,9) and (A4,5,) the topological space A with the
topologies 9 and 7, respectively. Let us denote by 47 and A7~ the
completions of (A4,7) and (A4,7,), respectively.

PROPOSITION 4.6. A7 =TI, cq,47.

Proof. Since A7 is a Hausdorff complete topolog1cal ring, by [Bol,
I1.3.5, Proposition 10}, so is the product space I, < o, A% Let f,: (4,5,)
— A7 be the canonical mapping. Then by Lemma 4.3, the mapping
f=Tl,cqfu: (4,9) > l'IwEQOAy defined by a = I1, ¢ o, f.(a) is a
continuous homomorphism and obviously the conditions (a) ‘and (b) in
Definition 4.1 are satisfied. Now we claim that f(A4) is dense in
IT,cq, A7+ Since (A,7,) and (A,9) are Hausdorff, we may identify
(4,7, ) w1th fu,(4), and (A ) with f(A). Let V' be an open neighbor-
hoodin [, cq, A7~ Since by [Bol, II1.3.4, Proposition 7], the topology on
A 7w is the topology with the sets U, , N A (= the closure of U, , N A4 in

A7), a € G}, as a base of zero ne1ghborhoods in A‘7 there exist
IM,co Y€V and U, ,,...,U,, Wi €0y, q EG+ such that

wEQ(yw+V)CthereV AWforw=#w andV——U NnA
for i = 1,2,...,n. Note that I, caly, +7,) is open in Hwen A,
Since (4,5, ) is a subspace of (K,5,), the closure 4 of A in B is
complete by [Bol, IL3.4, Proposition 8] Thus A% = A c K Let U, .,
be the closure of U, , in K. Then T, ,nA=T, ,NA% = U, ﬂ

AT by Theorem 4.4. Since (4,7, ) is dense in A%, there exists x; EA
such that x; €y, + U~ ﬂAywl, ie., wix, — yw)> o, i=12,.

Since wy,...,w, are mdependent by Proposition 4.2, there exists a eA
suchthatw(a - %) > a;, i =1,2,...,n Then, wia — yw)—w(a—x,+
x; —yw)>m1n(w(a x),wilx, — yw))> a, ie, a€y, +U~ , i=

b Uia

1,2,...,n. Thus V contains an element a of A. Therefore, I1,cq, 4 T is
a completron of (4,9), i.e., l_leQOA v = 47§

As we can see in the proof of Proposition 4.2, for a Priifer domain A4, v
and w being dependent is equivalent to P(v) N P(w) containing a nonzero
prime ideal of A. We define an equivalence relation ~ on the set
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Spec(A)* by
P, ~ P, if and only if P, N P, contains a nonzero prime ideal of A.

Let % be the set of maximal chains of Spec(A4)*. The relation ~ on &
defined by

C, ~ C; ifand only if P, ~ P, for some P, € C, and P, €
is also an equivalence relation. In fact,
C,~Cgifandonlyif P, ~ P, forall P, € C, and all P, € C;.

Let {C )}, be the set of all equivalence classes of #. We denote by
(4, %) and (A4, C,) the topological space 4 with the topologies induced by
% and C, respectlvely Let us denote by A€ and A= the completions of
(4,%) and (A, C,), respectively. Then a similar proof to that of Proposi-
tion 4.6 implies the following resuit.

PROPOSITION 4.7. A% =1, A=, where {C,}, ., is a collection of
representatives of the equivalence classes of €.

Proof.  Since A€« is a Hausdorff complete topological rlng, by
[Bol, I1.3.5, Proposition 10], so is the product space I, 2 A S Let
f.: (A4,C,) > AC be the canonical mapping. Then the mapplng
f= I‘[ueAf (A4, %) > 1, ., AC defined by a— I1,.,f.(a) is
continuous homomorphism. Clearly, Ker f = N, Ker f, =
Neec, aca nenP* = nPESpec(A)* nen P" = {0}, the closure of {0} in
(A, %). We claim that the quotient topology of f(A) comades with the
subspace topology induced by the product space I, - AA a Let Py,..
€ Spec(A)*, ki,...,k, € N. Then there exists o; € A such that P P'
for some P} € C,, i.e., P, N P/ contains a nonzero prime ideal of A4. ThlS
implies that P, contams some O, € C, since C, is a maximal cham in
Spec(A)*. Thus QFr N - N Q% ¢ P"1 AN P" Since Q%1 N -+ N Q¥n
is obviously contained in the inverse image under f of the topology of the
product space I, . AA *C«_ our claim has been verified. Now by Definition
4.1, it remains to show that f(A) isdensein T, AA Ca, Let V be an open
neighborhood in T, . 1A C=, Since by [Bol I11.3.4, Proposition 7], the sets

f.(P¥) (= the closure of f,(P¥)in A%), PeC,, k€N, is a base of
zero nelghborhoods in A C , there exist Il,.,y, €V and P, €
Cop--s P €C,, ky,... k, €N such that T1, o \(y, + V,) €V, where
V _ Qe for o @, V fa(Pk) for i =1,2,...,n. Since f,(A4) is

dense in A =, there exist xl, ..., X, € A such that f,(x) €y, + f,(P").
Since C,,...,C, are independent, Py,..., P, are independent. Let w; be

the valuatlon corresponding to A4, Then wy, ..., w, are independent, and
so by Proposition 4.2 and Lemma 3.1, there exists @ € A such that
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a~x, €PN, i=1,2,...,n. Therefore, f,(a) —y, = (f,(a) —f,(x) +
(f, (x ) —y,) € fu(P" ) i=12,...,n Thus V contains an element f(@
of f(A). Therefore, f(A) is dense in l—IaeAA Ca and so AF = [T, ., AC-.
|

Remark 4.8. For each w € ), let C,, be a maximal chain in Spec(A4)*
containing P(w) Then {jw < q, is the set of all equivalence classes of .

Therefore, A€ = =11, cq, AC

Recall that a Priifer ring (resp., Bezout ring) is a ring in which every
finitely generated regular ideal is invertible (resp., principal). By [Hu,
Theorem 6.2], R is a Priifer ring if and only if (R, [MIR,) is a
valuation pair for each regular maximal ideal M of R.

Later it will turn out that 4>C= is a Priifer domain, a valuation domain,
or a Bezout domain in several important cases. This together with Proposi-
tions 4.6 and 4.7 naturally leads us to consider the direct product of Priifer
domains and Bezout domains. We show that the direct product of Priifer
domains (resp., Bezout domains) is a Priifer ring (resp., Bezout ring).

ProPoSITION 4.9. Let B=11,B,. If B, is a Priifer domain (resp.,
Bezout domain) for each «, then B is a Priifer ring (resp., Bezout ring).

Proof. Note that the total quotient ring T(B) of B is isomorphic to the
direct product of the quotient fields K, of B,. Let I = (a,,...,4a,) be a
regular ideal of I1,B,. Write a; =I1,4, ,, ... ,a, =11,a, ,. Since I is
regular, I contains a regular element. So we may assume that a, is regular.
It follows that a; , # O for all a. For each «, consider the nonzero finitely
generated ideal (4, ,,...,a, ,) of B,. Since B, is a Priifer domain (resp.,
Bezout domain), it is invertible (resp pr1n01pal) Therefore, there exist

xl,a, s X, o € K, such that ¥?_,a; ,x; ,=1and a, ,x; , € B, for all
,j=12,...,n (resp there exists a, € B, such that (a, ,...,a, ,) =
(a,)). Let x1 =ITo% or---» l—Iax,, < €I1,K, = T(B) (resp., let a

=TI1,a,). Then L!_,a;x;, = 1 and a;x; €I1,B, forall i,j=1,2,...,n
Thus 7 is invertible (resp., I = (a), i.e., I is principal). Therefore, B is a
Priifer ring (resp., Bezout ring). |l

5. A7, A AN h-LOCAL PRUFER DOMAIN

Let A be an h-local Priifer domain. Denote by A the completion of A4
in the A-topology and Z; the completion of A4, in the 4,-topology,
M € Max(A). Although it is already known that A4 =T, Max(A)AM > Au
and that the 7 topology on A is the same as the A4 topology [M, Mo], for
the sake of completeness, we present its proof.
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THEOREM 5.1. Let A be an h-local Priifer domain. Then

1 A% = A A’”", where M, is the maximal ideal of A containing
P(w);

(2) A7 is a Bezout ring.

Proof. (1) As in Lemma 3.2, we can show that (A4,7,) is a subspace of
A L, with the A4, -topology. If we show that A is dense in A “x then

A7 = A A4, In fact, it suffices to show that A is dense in A . Given
—eAM , a EA s € A\ M,, and bAM , where b € A*, we must show that
there exists ¢ €4 such that ¢ € 4 + b4 M, If @ =0, we may choose
¢ = 0. So we may assume that a # 0. Let (, = {v € Qv is the valuation
corresponding to A4,,, M € Max(A4)}. Since A4 is h-local, Q, is a repre-
senting family of the independent valuations of (). Since every nonzero
element of A is contained in only a finite number of maximal ideals, the
set {v € OQylv(%) < 0} is finite. Let w, be the valuation corresponding to
Ay, . By Proposition 4.2, there exists t € 4 such that wy(t) = wy(b),
v(t) = 0 for each v € Q, such that v(£) < 0. Consider the finitely gener-
ated fractional ideal (5¢, 2) of A. Smce A is a Priifer domain, it has the
inverse J. Let v € QO. If v(3) > 0, then v(£) < 0 so that v(t) = 0. This
implies that v(%¢) = v(%) < 0. Therefore, v(J) = 0, ie., v(x) = 0 for all
x €J. Thus J € Ny e maxcay Ay = A. Now from (§z,7)J = A, it follows

that for some c;, ¢, € J, we have %tc, + 3¢, = 1, i.e., ¢, — 2= —(9)’tcy,
S0 that wole, — 2) = 2wo(2) + wy(8) + wo(cl) > wO(t) = wo(b), i
o E bAM

(2) By Proposition 4.6, A7 = I, cq, A7 and by (1), A% =
AM 4¥o, where M, is the maximal ideal containing P(w). Let w, be the
Valuatlon corresponding to A, . Since every valuation domam is an
h-local Priifer domain, by Lemmas 3.2 and 4.3, A AMO = A Zvo. By

Theorem 4.4(5), A 7w is a valuation domain. Therefore applymg Propo-
sition 4.9, we conclude that A7 is a Bezout ring. |

6. £7, E THE RING OF ENTIRE FUNCTIONS

Let A be a Priifer domain and let C, be a maximal chain in Spec(A4)*.
Then the C, topology is the linear topology defined by {P"|P € C,,
n € N} Therefore, by [Ma, p. 55], the inverse limit lim, o nenA/P" s
the completion of (A4, C,, ) For each P € C,, we denote by A'* the P-adic
completion of A4, i.e., AF = lim, nA/P". We show that

mPECu(l.‘y__nneNA/Pn) = limpec, aenAd/P"
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LEMMA 6.1. ACe = lim, A"

Proof.  Since for each Q C P in C,, there exists a natural map from
A/Q" to A/P", n €N, there exists a natural map frg: A9 —->A P,
Therefore, we can construct the inverse system (A4* s frg)- Smce AFisa
Hausdorff complete topologlcal ring, by [Bol, I1.3.5, Corollary to Propos1-
tion 10], so is LPECA For each P € C,, let f,: A - AT be the
natural map. Then fr is the canonical mapping of A into its P-adic
completion AF and Jro°fo =1 whenever Q c P. Then the mapping
f=Tpec fr (4, C)_’ l}_PeC (CnpecA F) defined by a -
Ipec, fo(a) is a well-defined continuous homomorphism, Ker f =
nPGC Ker fp = Npec,, nen P* = {0}, the closure of {0} in (A4,C,), and
obv1ously the C, topology on A is the 1nverse 1mage under f of the
topology of lim PECA Let 7p: lim PECA — A" be the natural pro-
jection. Then mp o f = f. By [Bol, L4.4, Corollary to Proposition 9], f(A)
(= the closure of f(A)in l}_PECA f)=limpy ¢ wp(f(A))(wP(f(A))
denotes the closure of 7rP(f(A)) in A7) = @PecfP(A) = Q_PEC

Thus f(A) is dense in LPECA . Therefore, A€ = LPecA |

LEMMA 6.2. Let P be a_nonzero prime ideal of A. Then AP =
Np e m e MaxcyAar PAu where A,y P4 is the PA,-adic completion of A,,.

Proof. Since P"Ap, = P"A,, [Gi, Theorem (17.6)b)] and P"4,, N A =
P”, n € N, we obtain the natural embeddings A'F < ;1; PAu o ;1;’ e
for all M e Max(A) containing P, so that the intersection
Np ¢ M < Max( A)AM 4u is meaningful. Let R = A/P". Then by [Hu, Theo-
rem 6.1, R = Ny cmaxr) Rovy> Where Ry, ={3€ T(R)la,bER, b &
N, and b is regular}. Since Max(R) = {M/P"|M € Max(A4) such that
M 2 P} and Z(R) (= the set of zero divisors of R) = P/P",

A/P" =R = n Ryy = n Ripypry
N e Max(R) PcMeMax(A)
= ﬂ RM/Pn= ﬂ Ay /P Ay,
PcMeMax(A) PcMeMax(A)
Therefore,

I
Il

AP =im, yA/P"c [T a/Pm = T1 N Au/Pdy

neN "EN(PgMeMax(A)

N ([T APy,

PcMeMax(4) nEN

Let x € A,;™¥ for all M € Max(A4) containing P. Then x €
ﬂngeMax(A)(ﬂnENAM/P”AM) =TI1,cnA/P". Consider the following
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commutative diagram:

LAM/P’IAM i ]._.[AM/P "Ay

neN nelN
T T
mA/P" - []a/p"
neN neN

Since  (Hm , ey Ay /P"Ay) N (T,cyA/P™) = lim, . A/P", x €
1<l_neNA/ " ~A P I
Let C, be a maximal chain in Spec(A4)*. Let Max(C,) denote the set

{M € Max(A4) | M contains some P € C,} and J(C,) = Ny e maxc,) M-
We call J(C,) the Jacobson radical of C,.

LEMMA 6.3. A = Ny manc,)Aar ¥, where C, = {PAy|P € C,
and P € M} (which is a chain in Spec(A,,)*).

Proof. 1If C, has minimal element P, then the C, topology on A is the
same as the P-adic topology and the C, ,, topology on A4,, is the same as
the PA,,-adic topology. Therefore in this case Lemma 6.3 is just Lemma
6.2. Assume that C, has no minimal element. Let M;, M, € Max(C,).
Then there exists P, € C, such that Py € M; N M,. Let w; (resp., v) be
the valuation corresponding to A,, (resp., Ap ), i = 1,2. Since A4, is a
valuation domain and ht(PA,, ) = o for all PA € Spec(A4,,)*, A4 A, Com

=A iy(AM ) by Lemma 3.3. In view of Lemma 4.3, it is equal to A M,
Since by Theorem 4.4, K% is the quotient field of T *“vi and by Lemma
33, K% = K7 A—; Cari and A Caty have the same quotient field
K 70, Thus, the mtersectlon Ny e  MaxC, )A " Ca¥ js meaningful. Note that
A Con = l}_PAMeCaMAM FAu lLPeCA P (¢ nPECAM’PAM)
Let x € Ny e manc, )A =, Choose M, € Max(C,). Since x € A, ' =,
we can write x =1Ilpccxp € LPECﬂAMD PAMo, For each P E C,,
xp € Ay t% for all M € Max(C,). In particular, x, €

NpewemacyAu ™ = A7 by Lemma 6.2. Thus x € [T, A7, Let M
be the maximal ideal contained in C,, ie., {M} = C, N Max(C,). Con-
sider the following commutative diagram:

s T PAy T PAy
lim 4, i H Ay
PeC PeC

@

T
lim 4% - T[] A4°*

PeC PecC,

1
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Since (LPeCAM ) n (HPecA P = IA_PECA x =TIlpccxp
€lmp. A =4 abyLemma61 |

THEOREM 0.4. Let E be the ring of entire functions and let C, be a
maximal chain in Spec(E)*. Then

(1) E-C«=E,, ", where {M,} = Max(C,) and v, is the valuation
corresponding to Ey , . and

(2 E7 is a Bezout ring.

Proof (1) E° = ljm PECQE’P by Lemma 6.1. Since every nonzero
prime ideal of E is contained in a unique maximal ideal [He, Theorem 6},
Max(C,) has only one element = M, so that by Lemmas 6.2 and 6.1,
I}_PEcE = lim, ¢ By "% = E), %™+, which is isomorphic to

7« by Lemmas 3.3 and 4.3.

(2) By Lemma_3. 3 Proposition 4.7, and part (1), E 7 = F¥ =
IT,. AE a=11,e AEM v, Since by Theorem 4.4, each E T is a valua—
tion domain, Proposmon 4.9 implies that E-7 is a Bezout rlng (Note that
Al = Max(E)l) 1

7. A7, A AN SFT PRUFER DOMAIN

Let A4 be an SFT Priifer domain and let C, be a maximal chain in
Spec(A)*. Since Npec, ,enP" =1{0}, the topologlcal ring (A,C,) is
Hausdorff, and so we may assume that 4 € 4=, For each subring B (not
necessarily with identity) of A, let us denote by B« the closure of B in
A€, In fact, by [Bol, I1.3.4, Proposition 8], B'“~ can be regarded as the
completion BC« of B with respect to the subspace topology induced by
(A4, C,). Henceforth we will use similar notation for other topologies.

Although [KP1, Corollary 17] is stated for the finite-dimensional case, its
proof is also valid for the infinite-dimensional case. Thus every nonzero
prime ideal of A'® is of the form OF for some prime ideal Q of A such
that O 2 P. This result is crucial in proving the next result.

LEMMA 7.1.  Let N be a prime ideal of A= such that N N A # (0). Then
A Lo is a valuation domain.

Proof. let Py = N N A. Since A is an SFT Priifer domain, there exists
a finitely generated ideal J of A such that P{ cJ c P, (Proposition 2.2).
We claim that P, contains some P € C,. Note that ](1‘1__ PGCA 7y
c l}_PecJA for any ideal J of A, where A" means fP(J)A , fp the
canonical mapping of A4 into the P-adlc completion A'®. Since J is finitely
generated, J is invertible. Let J~! be its inverse. Choose a € J \ {0}. Then
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aJ~1 is an ideal of A. So

a(lirg_/f”’) =a/-11( lim /f”’) gaJ—l( lim J/f"’) c lim e/ 14"

PecC, PecC, PeC PecC
= lim aA’P=a( l'@A’P)
PeC, PecC,

(For the last equality, note the following. Since a # 0, a & nneN P" for
some P € C, and hence a is regular in 4>”. In fact, a is regular in every
AP such that P0 e€C, and P, cP.) Thus aJ” 1J(l(l_tgPECA )A—
al” (Lpec IAP). Multlplymg both sides by a”'J, we get J(LPECA P)
= l}_PECJA Note that Max(A4?) = {M'*|M € Max(A4) and M con-
tains P} [KPl Corollary 17(2)]. If J ¢ M for any M € Max(C,), then
JA® A P for all P e C,, which implies that J(l}_PECA Py =
lim PecA . Now

NQPO( lim A’P) :_>J( lim AA”’) = lim A7
PeC, PeC,

e

9]
B

a contradiction. Therefore, J € M for some M € Max(C,), i.e., Py C M.
So P, and P are comparable for some P € C,. If P, C P, then since C,, is
a maximal chain in Spec(A)*, P, € C,. Thus P C P, for some P € C,.
Let v be the valuation correspondmg to Ap,. Then since P, contains
some P in C,, the C,-topology is the same as the C ,-topology (see
Remark 4.8). As in Lemma 3.4, we can show that the C,-topology is the
same as the 7,-topology on 4. H Hence A« ¢ K. Since by Theorem 4.4,
Kyv is the quotient field ofAP %, Ap, c AyCa CKy We give Ap and
AE Ay the subspace topologies of )€ 7 . Then taking the completions, we get

APO c Af=c K7 Since K7 is the quotient field of 4 0‘?, Al is a
valuation overring of Z:O %, Since by Corollary 4.5, Spec(Z; o) =

{04 P“’y” | Q is a prime ideal of A contained in Py}, A=A P“’Za_,yﬂ
Py

for some Q € P,. We claim that Q = P,. Let P be an arbitrary nonzero
prime ideal of A4 contained in P,. Since A is an SFT Priifer domain, there
exists a finitely generated ideal I of A such that P2 ¢ I c P. So the
P-adic topology coincides with the I-adic topology Since I ¢ \/_ Py,
there exists / > 1 such that I'  J. Therefore, I'4"! C JA L= 4" . Since I

is finitely generated by [Na, Theorem 17.4], I'4 = I* "™ Note that I*' is
open in A" [Bol, II1.3.4, ProPosmon 7). Since JA'” is an ideal of A'”

containing an open set (= 1%P), JAP is closed in A7, ie., JA? = /',
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Therefore,

PecC, C,,PcP,
= lm JAP= lm J7FP=)C
PeC,,PcP PeC,,PcPy

Since P cJ C P, ;’\ZC“ c /€« = J4% c PyA"C=  N. For each n & N,
we give A/Pg the quotient top topology of (A, C ). Then by | [Ma, Theorem
8.1], 0 —» PF% — A€ > A /PT is exact, so that A Ce/PFCe o A/
A /Py naturally. Since the embedding is clearly onto, we have ACay P" s
= A/PJ. From this, it follows that ;’E’C" is a i’;’ Ca_primary ideal since P
is a Py-primary ideal of A4, and so f’\o Ca ¢ N. Now, again by [Ma, Theorem
8.1], we have Z;O’y“/ I';A\Po’y” = A, /P"Ap 2 A/P" = ACayP™C and
hence F”:Tﬂ)’z N A€« = P* = from which it follows that F’A\PO’?“ N Ay
(ﬁ To N A C) A = PCef.Ca. Since NAE= 2 PyCedrSe
DPOAP % mAN« and PyAp’ PyA, 7" is open in K‘7 NANa is open in ANC
We give AC W /NA S« the quotient topolo iy\f AE v and then Af $a S NAG
has the discrete topology, so that A€ N /NA N ZALH /NA v nhaturally.
From the exact sequence 0 — N—ji\,\,c«x - ?Ni« - f:}i"/Nz{}VC" [Ma, Theorem
8.1], we obtain the natural embedding 14;\?;/ NAE= > A:Ea /NAC-. Since
the embedding is clearly onto, AyCa/ NAE== /’fyc: /N/f*,f;_(_and it is a
field). Thus NA;¢« is the unique maximal ideal of A, i.e., Ny == OA, "
Z;;yv@ #. Therefore, P, = N N A = NA-n A =NAS N4
= QA Py ’—;0"7"67:0,% NA= QZ;(;Z N A = @, where the last equality

follows from the fact that ;1; o 1 QA PO"?” =Ap /QAp, Thus Py = Q.

After all, A Wa= :4; 7o, Now let R = /f,f Since for each nonzero prime
ideal P contained in Py, P"A, " N R = (P"A,""" N AS)R = P*“R,
{P’l CRI()=PC Py, n € N} is a base of zero nelghborhoods in R. We
claim that R is a valuation domain. It suffices to show that aR N R =aR
for all @ € R* since R is a valuation domain. The case when a is a unit
being trivial, we may assume that a is a nonunit, i.e., a € NR. Since R is a
Hausdorff complete space, M. pc POP”A Po’y” = (0). Since R is a valua-
tion domain, there exist a nonzero prime ideal P contamed in Py and
neN such that P'A,"" caR. So P*“R=P4,"" NRcaRNR.

Since aR N R € Ngysocr, 1en(aR + Q'CR), aR + P" R = aR
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+ PrtlCR = ... Since A is an SFT Priifer domain, there exists a
finitely generated ideal I of A such that P2cIcP. So I"RC P"R
C PPCR c PR DC 4 gR cI" VSR + aR = (I""'AS)R + aR =
I"*'R +aR. Thus aR+I"R=aR +I"*'R= -+ . Let R = R/aR and
IR= (IR + aR)/aR. Then IR is a finitely generated ideal of R, IRC J(R)
= NR/aR, and IR" = IR""". By Nakayama’s lemma, IR" = {0}, i.c., I'R
C aR. Thus aR N R CaR + P* R CaR + I"R = aR and hence aR N
R=aR. 1

COROLLARY 7.2. Let N be a prime ideal of A€~ such that N N A # (0).
Then the following statements hold.

(1) N = P;, where Py = N N A, and P, contains some P € C,.

) /f’;%fca = ;1;0 7o qf(ACa), where qf(AC=) denotes the quo-
tient field of A€« and v is the valuation corresponding 10 Ap, .

(3) Every prime ideal of A« contained in I”;’ Ca s of the form PG,
where P € Spec(A) and P C P,

(4) A= is an SFT valuation domain.

Proof. (1) From the proof of Lemma 7.1, we have N = NA,S= N A>C«
= NA = N AC = POA,,Oy N ACa = PyCe

(2) Let R= AA c. and R = Z;O’y”. Since aR N R = aR for all
a € R*, RN qf. (R)—

(3) By Corollary 4 5, Spec(A Py 7Y = (PA, Py 7:|P € Spec(A) con-
tained in Py}, so that by (2) and [Gi, Theorem (19.16)), every prime ideal of
A€« contained in Py = is of the form PA, """ N A = P:C«, P C P,

(4) Since A is an SFT Priifer domaln Ap is an SFT Valuatlon
domain and hence it is discrete, i.e., each branched prime ideal of A, is
not idempotent. (For thc definition of “branched,” see [Gi, p. 189].) Smce
by Theorem 4.4, A 7v is a valuation domain with the value group
G, =G, by [Gi, Exerc1se 22, p. 205}, A, Py 7 s also discrete, and hence by
(2) and [Gi, Theorem (19.16)(b)], so is AC-. Now we claim that every
nonzero prime ideal of the valuation domain A <« is branched, i.e., it is
the radical of a principal ideal [Gi, Theorem (17. 3)] By (3), every nonzero
prime ideal of A,¢= is of the form P>C=4:C« for some P € Spec(A4)* such
that p C P,. Since A is an SFT Priifer domain, there exists a finitely
generated ideal J such that P?2cJcCP. In the proof of Lemma 7.1, we
have shown that P>+ C J:Co = J4C. ¢ P:C+ and P> is a P> Co-primary

ideal of ACe, s0 that PCediCa = Y JA;S= . Since J is finitely generated
and A)¢ v is a valuation domam JA¥« is pr1nc1pal So no nonzero prime
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ideal of A}fu is idempotent. Thus since every nonzero prime ideal of A’NCu
is a radical of a finitely generated ideal and it is not idempotent, the
conclusion follows from Proposition 2.3 and Theorem 2.4. ||

Recall that J(C,) = Ny c maxc,) M- Since in an h-local Priifer domain
and the ring of entire functions, the condition J(C,) # {0} is obviously
satisfied, we are naturally led to consider the SFT Priifer domain 4 with
the condition J(C,) # {0} for all maximal chains in Spec(A)*.

LEMMA 7.3. J(C,) # {0} if and only if there exists a prime ideal P, € C,
such that P, C J(C,).

Proof. Assume that J(C,) # {0}. Since J(C,) = Ny c maxc,) M J(C,)
is a nonzero radical ideal of A. Since A is an SFT Priifer domain, by
Proposition 2.1(2), J(C,) has only finitely many minimal prime divisors, say
P,, P,,..., P,. By rearranging, we may assume that there exists k (1 < k <
n) such that for i <k, P, c M for some M € Max(C,) and for i > k,
P ¢ M for any M € Max(C,). Let B;={M e Max(C)IM 2P}, i=

,k. Then Max(C,) = UL, B,. Choose M, € B, i=1,...,k. By the
deflnmon of Max(C,), M, ~ M, for all i,j= 1 s k. Smce P ~ M; for
all i=1,....k, Pb,~P, for all iLj=1,...,k Therefore there exists a
prime ideal P, C, such that P, C n; P.c Nkt 1Nae g, M) =
Nyt e Maxicy M = J(Ca)' |

LemMa 7.4, IfJ(C,) # {0}, then q.f(AC) = A:Su,.

Proof. By Lemma 7.3, there exists a prime ideal P, € C, such that
Py € J(C,). Recall that ACe = Nt e Maxcc, )AMC # (Lemma 6.3) and

A Cam A "Ca.ro, Choose a € Py \ {0}. Then for each prime ideal P €
C contalned in P, and for each M € Max(C,),

ady P = a( lm 4,, /P"APO) = im a(4,/P"p,)

ne

neN neN
C Lim Ay, /P Ay = A,y .
neN

From this and Lemma 6.1, we have aA Carry = a(lLPA’pf c.. PAP0 PAryy

LPAPOECQPE Fhr CLI_.PGC PCPAMPAM ~AMCRM’ M e
Max(C,,). Now adp; " € Ny e axcc, )A o Co¥ = ACe which 1mphes that
AS A = =4, P UA\(O) A P oA \ﬂ)) Since A is an SFT Priifer domain, A R
= A 7 (Lemma 3.4), where v is the valuation corresponding to A
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Since by Theorem 4.4(6), q- f. (A 7o) = ‘i"ﬂ \(op We conclude that
qf(A n‘Po) = qf(A ) AA\{()) I

THEOREM 7.5. Let A be an SFT Priifer domain such that J(C,) + {0} for
all maximal chains C,, in Spec(A)*. Then

) Spec(A ) ={O}u {PO "|P0 is a prime ideal of A containing
some P € C,} and Max(A Ca) = {MC|M € Max(C,)};

) A’;\‘fc =4, Py 7o for every Py« € Spec( A C=)*, where v is the
~Ca
valuation corresponding to Ap ;
(3) A« is an SFT Priifer domain;

@ A7 isa Priifer ring. Moreover it is an SFT-ring if and only if
[Q4| < o, i.e., the number of independent valuation overrings of A is finite.

Proof Let N be a prime ideal of AC= such that N n A = (0). Then
NAA\{O) is a prime ideal of AA\(O) Since by Lemma 7.4, AA\(O} q. £ A €2),
NAE ey = (0),ie, N =(0). Therefore (1) and (2) 1mmed1ate1y follow from
Corollary 7.2 (for (2), note that A, Py %o ¢ qf (4, Py 7y = A 4oy as is shown
in the proof of Lemma 7.4).

(3) From (1) and (2), it follows that 4= is a Priifer domam Now let
N be a nonzero prime ideal of A€ Then N = P0 o Pp=NnNnA
(# (0)). Since A is an SFT Priifer domain, there exists a finitely generated
ideal J such that P§ < J < P,. In the proof of Lemma 7.1, we have shown
that P> S« < J>Ca = 14« ¢ Py« and P#“* is a P, C~-primary ideal, so that
Py = VIAC. Since by Corollary 7.2(4), A:¢~ is an SFT valuation
domain, NAS« # (NAC=)?. This implies N #N?, ie, Py e = (PyC)2.
Then by Proposition 2. 3 and Theorem 2.4, A Ca is an SFT Priifer domain.

(4) By Lemma 3.4 and Proposition 4.7, A7 = A% =11, , AC-= Since
each A« is a Priifer domain, by Proposition 4.9, A7 i is a Priifer ring,

Now for the second claim, consider the ideal X, AA e of I, < AA
where A is the index set for a representing family of the 1ndependent
maximal chains in Spec(A4)*, i.e., {C,}, < , is a collection of representatives
of the equivalence classes of #. Note that by Remark 4.8, IAI |, For
each element x € 1, _ , A=, write x = I, cpx, IfX, A ACe is an SFT
ideal, then there exist a frnrtely generated ideal (x;,...,x,) C X, AA Ca
and a positive 1nteger k such that x* € (x,,..., x,) for all xeEX, . AA Ca
Smce XK€Y, e AA «, there exists a fmrte subset A; of A such that

=0 for all @ € A\A Therefore, x* = 0 for all x€ £, , A%, a
e A \ UL A Smce ACa'is an integral domarn this implies that x, = O
forall x € L, , A€, ae A\ U, A;. This is impossible if A # U7
Thus in order that [T, . AA is an SFT ring, we must have |A| < 00.
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Conversely, assume that |A| < », say A = {a,,..., a,}. Then A7 = A*¢
= A€ @ -+ ® A Can. Since by (3) A€« is an SFT Priifer domain and
every prlme ideal of A7 is of the form ACa R GBA Casr @ Q; @
ACair @ -+ @ A€, where Q, is a prime ideal of 4 Ca; A is an SFT ring
by Proposition 2. 1(1) |

For an integral domain A and a prime ideal P of A,
AlXy, ., X pe i, x) #AplX), ..., X, T unless P is the unique maxi-
mal ideal of A. Interestingly it turns out that

A[[Xl""7Xn]P+(X1 ..... X,.)/(Xl —a,....X, —a,)
=A,[X,,....X,1/(Xy —ay,.... X, —a,)

for all a,,...,a, € A provided that A4 is an SFT Priifer domain. First we
show that for an SFT Priifer domain A4 and a,,...,a, € A, AW =
AlX,,..., X, 1/(X, — ay,..., X, — a,), which is well known in the case
when A is a Noetherian domain.

THEOREM 7.6. Let A be an SFT Priifer domainand a, ..., a, € A. Then
the (a,,...,a,)-adic completzon A8 of 4 s tsomorphic to the ring
ALX,,..., X, )/(X, - ~a,).

Proof Since by [Na, Theorem 17.5],
A = AlX,, . X1/ (X, — a5 4,),

where (X; — a4,..., X, — a,) is the closure of the ideal (X, — ay,..., X,
—a,) in A[X,,..., X,] with respect to the (X,,..., X,)-adic topology, it
suffices to show that

(X, —ay,.... X, —a,)=(X,—ay,....X, —a,).

Since
(X, —ay,....X, —a,)
= N (X -a,.... X, —a,) + (Xy,...,X)")
m=1
= N(X-a,....,X,—a,) + (al,...,an)m),
m=1
we have

(X, —ay,....X,—a,)/( X, —ay,...., X, — a,)

= N (a,...,a,)" (AL Xy, ..., X, V/(X, — ay,..., X, — a,)).
m=1
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So it suffices to show that N}, _,(a,,...,a, )" (Al X,,..., X,1/(X| — a,,
..,X, —a,)) = {0}. We will use induction on 7. The case n = 1 is clear
by [GS, Proposition 3.4]. Suppose

N (ay,..c.a,_)" (ALXy, ., X J/( Xy — @y s Xy — a,_1))
m=1
= {0}.

Now we consider
N (al,...,an)m(A[Xl,...,X,,]I/(X1 -ay,..., X, —a,)).
m=1

Let R=A4[X,,..., X, ]/(X; —ay,..., X, — a,). Then
R=(A[X]/(X, —a))X,,.... X, )/ (X, — ag,..., X, — a,)
=A@[X,,...,X,1/(X, - ay,..., X, ~a,).

If a, = 0, then since 4@ =4, R=A[X,,...,X,]/(X, —a,,..., X, —
a,). Therefore, by induction hypothesis, the conclusion follows. If a, is a
unit in A4, then X; —a, is also a unit in A[X],..., X, ], which implies

= {0}. In this case, clearly N*,_ (a,...,a,)"R = {0}. So we may assume
that a, is a nonzero nonunit element in A Let {Pl, .., P} be the set of
minimal prime divisors of @, 4. Then 4 = 4P @ - ® 4 P (see [KP1,
Theorem 15]). Therefore,

R=AP[X,,....,X1/(X, - ay,..., X, —a,) ® -

® ANX,,..., X,1/(X, - ay,..., X, — a,).

To prove N, _i(a;,...,a,)"R = {0}, it suffices to show that
Ne_(ag,...,a,)"(A4 P[[XZ,.A. xX1/(X,—ay,..., X, —a,)=1{0} for
all i = 1,2,. k Note that A7 is an SET Priifer domain with Spec( A7)

= {0} v {Q P, i1Q € Spec(A4) and Q 2 P;} (KP1, Theorem 15 and Corol-
lary 17], where the proof of Corollary 17 is also valid for the infinite-

dimensional case). Therefore, by 1nduct10n hypothesis, A7 [X,,...,X,]1/
(X, —a,,..., X, —a) = AP a A" .

n n

CaseI. (a,,...,a,) A" ={0}. Then

@ — IS
() (@rreeey @) "o
m=1

= n (al7 7an)mAP
m=1

- Napdtc ( Pritc (B = (0
m=1 m=1 m=1
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since A% is complete with respect to the linear topology determined by
{Pim, Pi}m eN-

Casell. (ay,...,a,) A" = 4. Then A A Pz a 4™ _ (0} and hence
N2 _(ay,...,a, )" A A Pelanand T _ gy

Case Il. (a,,...,a,) A" ',E 2 NONZEro Proper i ideal of A% . Since A P

is an SFT Priifer domain, A Petarad® 2 GG g g 4P O
where {Q,; A', ey Q,k P} is the set of minimal prime divisors of
(a,,...,a,) A" Note that Q;; € Spec(A4) and Q;; 2P, > a, for all i=

..k; and j=1,2,..., k. Therefore, ﬂm=1(‘11,--- A A0t c
—_— —_— . F; -__ .
1 07AT " c e _ 1@ Poyme 20 = {0} since A P 0" i complete
with respect to the linear topology determined by {(Q o " oy 2 Y« - This

implies that N%,_,(a,,...,a,)" A A Po @z A = {0}. Thus the conclusion
follows. |

Next we provide an equivalent condition for an SFT Priifer domain to be
analytically irreducible (with respect to a given ideal-adic topology).

COROLLARY 7.7. Let A be an SFT Priifer domain and a,,...,a, € A.
Then

® (X, -ay,...,X, — a,) is a prime ideal of A[X,,..., X,] if and
only if y/(ay,...,a,) is a prime ideal of A.
@ X;-ay....,X, —a,)is a radical ideal of A[ X, ..., X,].

Proof. (1) follows from Theorem 7.6 and [KP1, Theorem 15]. Since by
[KP1, Theorem 15], 4@+ s a direct product of a finite number of
SFT Priifer domains, (2) follows from (1). {

PROPOSITION 7.8. Let A be an SFT Priifer domain, P be a prime ideal
of A, and ay,...,a, € A. Then A[X,,..., X, 1p(x,.. x,/ X1 — a1+,
X, —a,)=A[X,,....X,]/(X, —a,..., X, —a

Proof. If (ay,...,a,) ¢ P, then both sides are {0}. So we may assume
that (a,...,a,) € P. If P = (0), then both sides are K, the quotient field

of A. So we may assume that P # (0). Note
A[[Xl""’Xn]P+(X1 ,,,,, X,,)/(Xl —-ay....X, —a,)
AlX,,....X,]

Xy —ay,..., X, —a, PH(X(,..., X)X —ay,....,X,—a,)
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by Theorem 7.6. Let {P,..., P} be the set of minimal prime divisors of
(al, ,a,) and P, CP. Then by [KP1, Theorem 15], Au--+a0 =Ah

GBA“’"andP("1 """ ) = PA@v-a) = PP @ P42 @ - @ PAD
*'P”1 oA e - EBAPk (note that P, ¢_P and P;t_P for all i=

hand AP[[XI, , X, ]]/(X a,...,X, —a ) =4, o e = A, "
by Theorem 7.6 and the fact that A P 1s an SFT Prufer domain. Thus to
prove the proposition, it suffices to show that 4}, b= A, » 7147 Following
Arnold’s notation, put &(P,) = N, _, P, which is the prime ideal of A
just below P, and let A = A /@(Pl), P, = P,/®(P,), and P = P/%(P)).
Note that A is an SFT Priifer domain, P, is a height 1 prime ideal of A,

Therefore, we may assume that P, is a height 1 prime ideal of A4. Let C,
be a maximal chain in Spec(A)* containing P;. Then clearly AC= 4P

and hence by Theorem 7.5, A b = A, » 7147 Now the conclusion follows.

8. PRUFER RING

Mockor [Mo] introduced the notion of an FPriifer ring. He defined an
F-Priifer ring to be a commutative ring R with identity and the total
quotient ring T(R) in which, for every maximal regular ideal M of R,
(Ripp [MIR, M]) is a valuation pair associated with a valuation w on T(R)
such that w is continuous in &, where ¥ is a topology on the ring T(R).

Again, let A be a Priifer domain with quotient field K and let {2 be the
family of nontrivial valuations on K which are nonnegative on 4 and put
T =suplT,lw € Q). If (K-7,7) and (K7,9) are the completions of
(K,Z,) and (K,9), respectlvely, we denote by w and w the continuous
extensions of w on K7 and K7, , respectively. It is well known that W is a
valuation on the field K7 and <7 A (Theorem 4.4). In [Mo], Mockor
proved that  is a (Manis) valuation on K7 for any w € () and that

= suplZ;lw € Q}.

Mockor [Mo] asked if there exists a Priifer domain A such that A is not
a F-Priifer ring or such that A7 is a Priifer ring but not a F-Priifer ring.
In this section, we answer Mockor’s question by constructing some exam-
ples. We show that (1) the completion A7 of an h- local Priifer domain is a
F-Priifer ring < [Max(A4)| < %, (2) the completion E"7 of the ring E of
entire functions is not a F- Prufer ring, (3) the completion D7 of a
Dedekind domain is a F-Priifer ring < [Spec(D)| < », and (4) the com-
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pletion 47 of an SFT Priifer domain with J(C,) # {0} for all maximal
chains C, is a F-Priifer ring < there exist only finitely many indepen-
dent valuation overrings of 4. In the cases (1), (3), and (4), every nonmini-
mal prime ideal of 47 is of the form P-7, where P is a nonzero prime

ideal of A. To show these, we begin with quotlng Mockor’s result.

THEOREM 8.1 [Mo, Theorem 14). Let A be a Priifer domain. Then the
following conditions are equivalent.

(1) A7 is a F-Priifer ring.
(2) Every maximal regular ideal of A7 is open in A7 and R,
(A )iy for every w € Q, where P(W) is the center of R, on A,

PROPOSITION 8.2. Let A be an h-local Priifer domain, the ring of entire
functions, or an SFT Priifer domain such that J(C,) + {0} for all maximal
chains C,, in Spec A)*. Then R, = A iy for every w € Q.

Proof. Let A be an h-local Priifer domain. Slnce ACR,cKk, A
cR,% =R, c K+ By Theorem 5.1, A" = 4,, m, "0, where M, is the
unique maximal ideal of A4 containing P(w) and w, is the valuation
corresponding to A, . By applying Lemma 4.3 and Theorem 4.4(6) to A,
with Q(A,,) = {w} ‘and Qo(A,,) = {w,}, we deduce

A

R = R = q (A ).

Thus since K7 is the quotient field of A%« R, is an overring of the
valuation domain A7, and so R, = Ay7s.

Now let E be the rlng of entlre functions. Then by Theorem 6.4, -
= EM 7w, where M, is the unique maximal ideal of 4 containing P(w)
and w, is the valuation correspondlng to E, . From the same argument as
above, it follows that R, = E;7 POS)

The case when A is an SFI‘ Priifer domain follows directly from
Theorems 4.4(5) and 7.5(2). 1

Thus in an A-local Priifer domain, the ring of entire functions and an
SFT Priiffer domain such that J(C,) # {0} for all maximal chains in
Spec(A)*, the second condition in Theorem 8.1(2) is satisfied. Therefore,
to determine whether 47 is a .9’ Priifer rlng, it suffices to check whether
every maximal regular ideal of A7 is open in A7

LEMMA 8.3. Let A be a Priifer domain and let () be a representing family
of the independent valuations in (). Assume that each nonzero element a of A
is a nonunit in A7 for only finitely many w’s in Q. Then if |Qq| = 0, A7
is not a - Priifer ring.
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Proof. Recall that A 7 =1Tl,cq, A7+ (Proposition 4.6). Note that if
[Qpl =, then £, < g, A7 is a proper ideal of I, c o, A7, Since w is a
nontr1v1al valuation on KyA v is an integral domain which is not a field.
(Note that A% € 4, " <K% and P(w)AP(W) N A = P(w).) For
each w € (), choose a nonzero nonunit element a,, in A7+, Then

¥ A‘fw+( I1 aw) + [T 4.

we, we ), weld,

For otherwise, there exist I, .o %, € X, cq, A%+ and I,cao,0w €

I, < o, A7 such that 1 = I, c 0, % " (l—lweﬂoaw)(l'[wEQ ¥,,)- Since x,,
=0 for almost all (that is, for all but a finite number of) w € QO,
a,y, = 1 for almost all w € Q. This contradicts our choice of a,’s,

Now let N be a maximal ideal of A containing L, cq, e
(I, < g, @,)- Since I1, < o a, is a regular element of A7 Nisa regular
maximal ideal of A7, Now we claim that Lyeaq, AT + (l'IWE 0,8 = A7
for all a € A\ {0}. Let {w,,w,,...,w,} be the finite subset of (), consist-
ing of those elements w such that a is a nonunit in A7, For each w # w;,
let b, be the inverse of a in A% Put x = Il, c o %, Where x,, = b, for
w#w, x, =0fori=12..,nand y= I"[weﬂyw,whereyw—Ofor
w o w, yw‘ 1fori—12..,n Then xEHWEQAw,yE
Lyeq, A5 7», and y +x(HWEﬂ a) = 1. Therefore, NN A = (0). If N is
open in A7, then NnAis also open in A, but since (0) is not open in 4,
N is not open in A7 Then by Theorem 8.1, A7 is not a F-Priifer ring. |

THEOREM 8.4. Let A be an h-local Priifer domain. Then A7 is a F-Priifer
ring if and only if Max(A)| < .

Proof. Note that Oy ={w € Q |w is the valuation corresponding to
Ay, M, € Max(A4)} is a representlng family of the independent valuations
in . By Theorem 5.1, A% = A 7+ and by Theorem 4.4 and Corollary

4.5, 4, A,, 7 is a valuation domain w1th the maximal ideal M,, M, A, M, 7v_ Since

M, Ay e N A = M, each nonzero element a of A4 is a nonunit in AT
for only finitely many w’s in ;. So by Lemma 8.3, the “only if” part
follows.

Now assume that Max(A4) = {M,,..., M,}. Then A7~A‘7M O O
A7, where w; is the valuation correspondmg to Ay, Jj=1, 2,...,n. Let
N be a (regular) maximal ideal of A7 Then N = 4 yw ) /f o ®
N, ® A%%+1 & -+ ® A%, where N, is a maximal ideal of A ywl Note that
Aﬁl_K%@ @ K71 @ A 7 ® Bt & -+ @ K% and A =
A j:5 ». By the same argument as in Proposmon 4.6 (or see [Mo, Lemma 8]),
we can show that K7 = K+ @ -+ ® K*7w. Let v;: K7 = T2 K -
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G,, U {} be given by x = (x,...,x,) — wix,). Then v, is a (Manis)
valuatlon on K7 and a contmuous extension of w So v; = w,. Since
R, =K% @ &K GDRAEBKZWH @ @ KT, which is equal

to A[ NP and v; = W, is contlnuous in .7 A7 is a F-Priifer ring. |l

Since every Dedekind domain is an h-local Priifer domain, from the
above theorem, we obtain

COROLLARY 8.5. Let A be a Dedekind domain. Then A7 is a -Priifer
ring if and only if A has only finitely many prime ideals.

THEOREM 8.6. Let E be the ring of entire functions. Then E7isa Priifer
ring but not a - ~Priifer ring.

Proof. Let Q) ={w € QUE) | P(w) e Max(E)}, Q, = {w € Q, | P(w)
is a maximal fixed ideal}, and Q; = {w € Q| P(w) is a maximal free
ideal}. Since Q, = Q, U Q,, E‘7~l—[wEﬂE‘7 (I—IWEQE 0K
(IT,cq, E7) (Proposmon 4.6). Recall that {(X — a)|a € C} is the set of
all fixed maximal ideals of E and for each f e EN{0}, Z(f), which is the
set of zeros of f, is a countable discrete set with no limit pomt in the open
complex plane [Gi, p. 146]. Let I = {l'IWEQ Y €M, eq, Ey, =0 ex-
cept for countably many w’s}). Then since lQll = ¢, where ¢ is the cardinal
number of the continuum, [ is a proper ideal of [], g, E-%+. For each
we Q,, let P(w)=(X—a,), a, €C. Then clearly / + (Hwen(X‘
a,)) # HWEQIE 7. Let N be a maximal ideal of IT,coq, £+ containing
I+ (I—IWGQ(X a,)). Since IT,co(X —@a,) is a regular element of
IT,cq, E“v, N is regular Since for each f € E\ {0}, Z(f) is a countable
set, fisa nonumt in B only for countably many w’s in {2, and hence as
in Lemma 8.3, we can show that 7 + (IT,, .o, f) = wEQlE » for all
fe E\{O} This implies that N N E = (0). Let Ny =N o (I, < g, B
Then N, is a regular maximal ideal of E7 such that N, N E = (0). Then
by Theorems 8.1 and 6.4, E7 is a Priifer ring which is not a S-Priifer ring.

THEOREM 8.7. Let A be an SFT Priifer domain such that for each
maximal chain C,, in Spec(A)*, J(C,) # {0}. Then A7 is a F-Priifer ring if
and only if 10| < .

Proof. For each w € Q,, let P(w) be the center of R, on A. As in
Remark 4.8, let C, be a maximal chain in Spec(A4)* contamlng P(w).
Then since A is an SFT Priifer domain, A% = 4~ for all w e Q,
(Lemma 3.4). Since J(C,) # {0}, Spece( A ) = {(0)} U {P,*|P, contains
some P € C,} by Theorem 7.5. Note that i’;’cw NA=P;. Nowlet a be a
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nonzero element of A. Since A is an SFT ring, («) has only finitely many
minimal prime divisors, say P,,..., P, (Proposition 2.1). For each i, let
w; € {, be the valuation such that P P(w;). We claim that a is a unit in
A for all w # w,. Assume the contrary. Then a is a nonunit in AC» for
some w # w; and hence a € M-~ for some M- v € Max(AC»). Since
aeM=M C. N A, P, ¢ M for some i. This implies that P, ~ M. More-
over since M ~ P(w) P(w;) ~ P(w). By the definition of QO, =w, a
contradiction. Therefore, by Lemma 8.3, the “only if”” part follows.

Now let 0, = {w;,...,w,}. Since J(C, ) # {0} forall j = 1,...,n, K7y
=q. £(ACw) by Lemrna 74 Let N, be a maximal ideal of A c,,l Then by
Theorem 7.5(2), N, = M-S~ where M = N, N A and AN = Ay = R

The same argument as in the proof of Theorem 8.4 allows us to conclude
that A7 is a F-Priifer ring. |

Remark 8.8. (1) It is easy to see that the collection {J(C )}, ., is
independent of a particular representing family {C,}, . , of the maximal
chains in Spec(A4)*. Then what matters in Theorem 8.7 is whether there
exists a representing family {C,}, . , of the maximal chains in Spec(A4)*
such that J(C,) # {0} for each @ € A.

(2) Facchini’s existence theorem (Theorem 2.5) and Lemma 7.3 pro-
vide a lot of SFT Priifer domains satisfying the various conditions such as
J(C,) =1{0}, J(C,) # {0}, || = =, and Q| < ce.

(3) Since every Dedekind domain is just a one-dimensional SFT Priifer
domain, Corollary 8.5 also follows from Theorem 8.7.

(4) Let A be a h-local Priifer domain, the ring of entire functions, or
an SFT Priifer domain such that J(C,) # {0} for all maximal chains C, in
Spec(A)* In each case, we can see that Spec(A%) = {(0)} U
{P7|P € Spec( A)* such that P ~ P(w)}, w € Q (Corollary 4.5, Theorem
5.1, Theorem 6.4, and Theorem 7. 5). Since by Proposition 4.6, A7 =
Mycq, A7 if || < o, then we can easily describe Spec( A7) as follows.
Let QO {wl, . w} Then Spec(Ay)—{AyweB AT 00
ATvii @ - @ lQeSpec(A w), i=1,2,...,n}. Let Q &
Spec( A 7w)*. Then Q = P% for some P e Spec(A)* such that P ~
P(w,). By the definition of QO, P+ P(w;) for all j # i, and so P = A yw}
for all j # i. Therefore, AT @ o @ A 1€BQ€BAny+1€B - A4
= I1%_ 2% = P7_ Thus every nonminimal prime ideal of 47 is of the
form P f where P is a nonzero prime ideal of A. However, for the case
[Q,| = o, we have been unable to descrlbe Spec(A .

We could neither describe Spec(A 7Y when A is an SFT Priifer domain
such that J(C,) = {0} for all C, € &, nor Spec( A C=), and we do not know
if A7 is a Prifer ring.
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