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1. Introduction

Let Fq be a finite field of characteristic p and A2 ⊂ P2 the affine and projective planes over Fq and
C ⊂ P2 a plane projective absolutely irreducible reduced curve over Fq and X its smooth projective
model and J the jacobian variety of X . Let g be the genus of X and d the degree of C .

We assume that we are given the numerator of the zeta function of the function field Fq(X ).
So we know the characteristic polynomial of the Frobenius endomorphism Fq of J . This is a monic
degree 2g polynomial χ(X) with integer coefficients.

Let � �= p be a prime integer and let n = �k be a power of �. We look for a nice generating set for
the group J [�k](Fq) of �k-torsion points in J (Fq). By nice we mean that the generating set (gi)1�i�I

should induce a decomposition of J [�k](Fq) as a direct product
∏

1�i�I 〈gi〉 of cyclic subgroups with
non-decreasing orders.

Given such a generating set and an Fq-endomorphism of J , we also want to describe the action
of this endomorphism on J [�k](Fq) by an I × I integer matrix.

In Section 3 we recall how to compute in the Picard group J (Fq). Section 4 gives a naive al-
gorithm for picking random elements in this group. Pairings are useful when looking for relations
between divisor classes. So we recall how to compute pairings in Section 5. Section 6 is concerned
with characteristic subspaces for the action of Frobenius inside the �∞-torsion of J (F̄q). In Section 7
we look for a convenient surjection from J (Fq) onto its �k-torsion subgroup. We use the Kummer
exact sequence and the structure of the ring generated by the Frobenius endomorphism. In Section 8
we give an algorithm that, on input a degree d plane projective curve over Fq , plus some information
on its singularities, and the zeta function of its function field, returns a nice generating set for the
group of �k-torsion points inside J (Fq) in probabilistic polynomial time in log q, d and �k . Sections 9
and 10 are devoted to two families of modular curves. We give a nice plane model for such curves.
The general algorithms presented in Section 8 are then applied to these modular curves in Section 11
in order to compute explicitly the modular representation modulo � associated with the discriminant
modular form (level 1 and weight 12). This modulo � representation V� is seen as a subgroup of
order �2 inside the �-torsion of J1(�)/Q. The idea is to compute the reduction modulo p of the group
scheme V� as a subgroup of J1(�)/Fp , for many small primes p. One then lifts using the Chinese
Remainder Theorem. This makes a connection with Edixhoven’s program for computing coefficients
of modular forms. My contribution to this program is sketched in Section 2. See [10,11]. The core of
Edixhoven’s program is that if one knows V� , one can efficiently compute the Ramanujan function
τ (P ) modulo � for a large prime P . If we have enough primes �, we can deduce the actual value
of τ (P ).

The last three sections present variants of the main algorithm and auxiliary results. Section 12
presents a simpler variant of the method of Section 11, that is particularly useful when the action of
the p-Frobenius on V� modulo p is semisimple non-scalar. In the non-semisimple case, this simpler
method may only produce a non-trivial subspace inside V� modulo p. Section 14 proves that this
semisimplicity condition holds quite often indeed, as expected. As a consequence, one may compute
the representation V� associated with the discriminant form for at least half (say) the primes �, using
this simplified algorithm. This suffices for the purpose of computing the Ramanujan function τ (P ) at
a large prime P since we may afford to skip half the auxiliary primes �. On the other hand, if one
wishes to compute a representation modulo � for a given �, then one should be ready to face (at least
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theoretically) the case when no small prime p is semisimple for �. In that situation, the simplified
algorithm would only give a non-trivial subspace of V� modulo p for many primes p.

Section 13 addresses the problem of computing V� from all the knowledge we have collected
concerning V� mod p for many small primes p. It requires a sort of interpolation theorem in the
context of polynomials with integer coefficients. The goal is to recover a polynomial P (X) once given
a collection of non-trivial factors of P (X) mod p for many primes p. This helps recovering V�/Q once
given a subspace in its reduction modulo p for enough small primes p.

Altogether, this proves that the simplified algorithm, despite the possibility of many non-
semisimple primes p, suffices to compute V�/Q for all �.

Remark 1. The symbol O in this article stands for a positive effective absolute constant. So any state-
ment containing this symbol becomes true if the symbol is replaced in every occurrence by some
large enough real number.

Remark 2. By an algorithm in this paper we usually mean a probabilistic (Las Vegas) algorithm. This is
an algorithm that succeeds with probability � 1

2 . When it fails, it gives no answer. In some places we
shall give deterministic algorithms or probabilistic (Monte Carlo) algorithms, but this will be stated
explicitly. A Monte Carlo algorithm gives a correct answer with probability � 1

2 . But it may give an
incorrect answer with probability � 1

2 . A Monte Carlo algorithm can be turned into a Las Vegas one,
provided we can efficiently check the correctness of the result. One reason for using probabilistic
Turing machines is that in many places it will be necessary (or at least wiser) to decompose a divisor
as a sum of places. This is the case in particular for the conductor of some plane curve. Another more
intrinsically probabilistic algorithm in this paper is the one that searches for generators of the Picard
group.

2. Context: the inverse Jacobi problem

The initial motivation for this work is a discussion I had in 2000 with Bas Edixhoven about his
program aiming at polynomial time computation of coefficients of modular forms.

He asked how one can compute (e.g.) the decomposition field of the dimension two modulo �

Galois representation V� associated to the discriminant modular form Δ. This amounts to computing
the field of moduli of some very special �-cyclic coverings of X1(�).

I had some experience in explicit computation of coverings using numerical techniques and got the
impression that a purely algebraic approach would fail to solve such a problem. This is because V� ,
however small it is, is lost in the middle of the full �-torsion of J1(�). And the latter is a huge
dimension zero variety (its number of geometric points is exponential in �).

The second time I discussed this question with Edixhoven, it became clear that we had two op-
tions. We might compute V� inside the complex torus of J1(�) and evaluate a theta function at some
point x in V� . Edixhoven convinced me that this approach was unlikely to succeed since the number
of terms to be considered in the expansion of the theta function would be exponential in �, even for
a poor accuracy. Another possibility was to solve the inverse Jacobi problem for x and find a divisor
D = P1 +· · ·+ P g − g O in the class associated to x in the Picard group of X1(�). Then one would pick
a function f on X1(�) and evaluate F (x)= f (P1)+ · · · + f (P g) for example.

Solving the inverse Jacobi problem seemed easy. Indeed one could pick any divisor D0 = P 0
1 +· · ·+

P 0
g − g O of the above form on X1(�) and compute its image x0 by the Jacobi map. Then one would

move slowly from x0 to x inside the complex torus J1(�)(C). At each step the corresponding divisor
would be computed from the previous one using Newton’s method.

Although the Jacobi map is birational, it is not quite an isomorphism however. It has a singular
locus and it was not clear how one could avoid this obstacle in the journey from x0 to x.

It was decided that I would think about how to solve this problem while Edixhoven would prove
good bounds on the height of the algebraic number F (x) coming out of the algorithm. Edixhoven first
proved the analogous bound in the function field case. Then, Bas Edixhoven and Robin de Jong, using
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Arakelov theory and results by Merkl in [11] or J. Jorgenson and J. Kramer in [19], proved the bound
for the height of F (x).

On my side, I was trying to avoid the singular locus. I believe that in general, the problem of
avoiding the singular locus might very well be NP-complete. Indeed, if the curve under consideration
is very close to the boundary of the moduli space, the problem takes a discrete aspect: the curve has
long tubes and sometimes one may have to decide to push one point through one tube or the other
one. In case one makes the wrong decision, one may be lost for ever. The problem can be phrased
in a more mathematical way: if the curve is (close to) a Mumford curve, solving the inverse Jacobi
problem assumes one can solve the discrete counterpart for it: solving the Jacobi problem for a finite
graph; namely the intersection graph of the curve. See [7], Theorem 2.1 and the following remark for
a statement of this problem, that I suspect is very hard when the genus of the graph tends to infinity.

Of course one may expect that J1(�) keeps far enough from the boundary of its moduli space
when � tends to infinity. However, I was not able to give a proof that the above ideas do succeed in
solving the inverse Jacobi problem, even for these curves. I had to build on a rather different idea and
proved in [8] that for X0(�) at least, solving the inverse Jacobi problem is deterministic polynomial
time in � and the required precision.

The first version of [8] was ready in January 2004. Extending this result to any modular curve is
just a technical problem, but I confess I was tired with technicalities and I stopped there with the
complex method.

Starting in August 2003 I decided to look for a p-adic analogue of this complex method: looking
for a p-adic approximation instead of a complex one. After some hesitation I realized that computing
modulo several small primes p and then lifting using the Chinese Remainder would lead to a simpler
algorithm. This text gathers the results of this research. The methods presented here are the discrete
counterpart of the ones in [8]. The essence of Theorem 2 is that the discrete method presented in this
paper applies to modular curves X1(�). This is exactly what is needed for the purpose of computing
the Ramanujan function.

The complex approach is more tedious but leads to deterministic algorithms. The main reason
is that the set of complex points in the jacobian is a connected topological space. The modulo p
approach that we present here seems intrinsically probabilistic, because one has to find generators of
Picard groups of curves over finite fields.

I should also say that the complex approach was not abandoned since Johan Bosman started in
June 2004 his PhD with Edixhoven on this topic and he succeeded in explicitly computing some V�

using the complex method. See [3]. He built on the Newton approach to solving the inverse Jacobi
problem, as sketched above. This shows that the singular locus of the Jacobi map is not so disturbing
after all, at least in practice.

Several sections in this text have been included in Edixhoven’s report [11]. Many thanks are due
to Bas Edixhoven and Robin de Jong for useful discussions, suggestions, and comments.

Many thanks also to John Cremona and the anonymous referee for reading in detail this long
manuscript and for their useful comments.

3. Basic algorithms for plane curves

We recall elementary results about computing in the Picard group of an algebraic curve over a
finite field. See [16,33].

3.1. Finite fields

We should first explain how finite fields are represented. The base field Fq is given by an ir-
reducible polynomial f (X) with degree a and coefficients in Fp where p is the characteristic and
q = pa . So Fq is Fp[X]/ f (X). An extension of Fq is given similarly by an irreducible polynomial in
Fq[X]. Polynomial factoring in Fq[X] is probabilistic polynomial time in log q and the degree of the
polynomial to be factored.
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3.2. Plane projective curves and their smooth model

We now explain how curves are supposed to be represented in this paper.
To start with, a projective plane curve C over Fq is given by a degree d homogeneous polynomial

E(X, Y , Z) in the three variables X , Y and Z , with coefficients in Fq . The curve C is assumed to be
absolutely irreducible and reduced. By a point on C we mean a geometric point (an element of C(F̄q)).
Any F̄q-point on C can be represented by its affine or projective coordinates.

Let X be a smooth model of C . There is a desingularization map X → C . If P ∈ X (F̄q) is a geo-
metric point on X above a singular point S on C , we say that P is a singular branch.

The conductor C is an effective divisor on X with even coefficients. Some authors call it the adjunc-
tion divisor. Its support is made of all singular branches. The conductor expresses the local behavior
of the map X → C . See [29, IV.1], [15]. We have deg(C) = 2δ where δ is the difference between the
arithmetic genus (d−1)(d−2)

2 of C and the geometric genus g of X . Since δ � (d−1)(d−2)
2 , the support

of C contains at most (d−1)(d−2)
2 geometric points in X (F̄q). So the field of definition of any singular

branch on X is an extension of Fq with degree � (d−1)(d−2)
2 . A modern reference for singularities of

plane curves is [5] and especially Section 5.8.
The smooth model X of C is not given as a projective variety. Indeed, we shall only need a

nice local description of X above every singularity of C . This means we need a list of all singular
points on C , and a list (a labeling) of all points in X (F̄q) lying above every singularity of C (the
singular branches), and a uniformizing parameter at every such branch. We also need the Laurent
series expansions of affine plane coordinates in terms of all these uniformizing parameters.

More precisely, let P ∈ X (F̄q) be a geometric point above a singular point S , and let v be the
corresponding valuation. The field of definition of P is an extension field FP of Fq with degree �
(d−1)(d−2)

2 . Let x and y be affine coordinates that vanish at the singular point S on C . We need a local
parameter t at P and expansions x = ∑

k�v(x) aktk and y = ∑
k�v(y) bktk with coefficients in FP .

Because these expansions are not finite, we just assume we are given an oracle that on input a
positive integer n returns the first n terms in all these expansions.

This is what we mean when we say the smooth model X is given.
We may also assume that we are given the conductor C of C as a combination of singular branches

with even coefficients. The following algorithms still work if the conductor is replaced by any divisor
D that is greater than the conductor and has polynomial degree in d. Such a divisor can be found
easily: the singular branches on X are supposed to be known already, and the multiplicities are
bounded above by (d−1)(d−2)

2 .
There are many families of curves for which such a smooth model can be given as a Turing ma-

chine that answers in probabilistic polynomial time in the size log q of the field and the degree d of
C and the number n of requested significant terms in the parametrizations of singular branches. This
is the case for curves with ordinary multiple points for example. We shall show in Sections 9 and 10
that this is also the case for two nice families of modular curves.

3.3. Divisors, forms, and functions

Smooth F̄q-points on C are represented by their affine or projective coordinates. Labeling for the
branches above singular points is given in the description of X . So we know how to represent divisors
on X .

For any integer h � 0 we set

Sh = H0(P2/Fq, OP2/Fq
(h)

)

the Fq-linear space of degree h homogeneous polynomials in X , Y , and Z . It is a vector space of

dimension (h+1)(h+2)
2 over Fq . A basis for it is made of all monomials of the form XaY b Z c with

a,b, c ∈ N and a + b + c = h.
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We denote by

Hh = H0(X /Fq, O X /Fq (h)
)

the space of forms of degree h on X . Here O X /Fq (h) is the pullback of OP2/Fq
(h) to X .

Let W be a degree h form on P2 having non-zero pullback W X on X . Let H = (W X ) be the
divisor of this restriction. The map f 	→ f

W X
is a bijection from H0(X /Fq, O X /Fq (h)) to the linear

space L(H).
If Δ is a divisor on X we note Hh(−Δ) the subspace of forms in Hh with divisor � Δ. The

dimension of Hh(−C) is at least dh + 1 − g − deg(C) and is equal to this number when it exceeds
g − 1. This is the case if h � d. The dimension of Hh(−C) is greater than 2g if h � 2d.

The image of the restriction map ρ : Sh → Hh contains Hh(−C) according to Noether’s residue
theorem [15, Theorem 7].

We set SC = S2d and HC = H2d(−C), and HC = ρ−1(HC )⊂ SC and KC = Ker(ρ)⊂ HC . So we have
0 → KC → HC → HC → 0.

To find linear equations for HC ⊂ SC we consider a generic homogeneous form F (X, Y , Z) =∑
a+b+c=2d εa,b,c XaY b Z c of degree 2d in X , Y and Z . For every branch P above a singular point

S ∈ C (assuming for example that S has non-zero Z -coordinate) we replace in F ( X
Z ,

Y
Z ,1) the affine

coordinates x = X
Z and y = Y

Z by their expansions as series in the local parameter tP at this branch.
We ask the resulting series in tP to have valuation at least the multiplicity of P in the conductor C.
Every singular branch thus produces linear equations in the εa,b,c . The collection of all such equations
defines the subspace HC .

A basis for the subspace KC ⊂ HC ⊂ SC consists of all XaY b Z c E(X, Y , Z) with a + b + c = d. We fix
a supplementary space MC to KC in HC and assimilate HC to it.

Given a homogeneous form in three variables one can compute its divisor on X using resultants
and the given expansions of affine coordinates in terms of the local parameters at every singular
branch. A function is given as a quotient of two forms.

3.4. The Brill–Noether algorithm

Linear spaces of forms computed in the previous paragraph allow us to compute in the group
J (Fq) of Fq-points in the jacobian of X . We fix an effective Fq-divisor ω with degree g on X . This ω
will serve as an origin: a point α ∈ J (Fq) is represented by a divisor A−ω in the corresponding linear
equivalence class, where A is an effective Fq-divisor with degree g . Given another point β ∈ J (Fq)

by a similar divisor B −ω, we can compute the space H2d(−C − A − B) which is non-trivial and pick
a non-zero form f1 in it. The divisor of f1 is ( f1) = A + B + C + R where R is an effective divisor
with degree 2d2 − 2g − 2δ. The linear space H2d(−C − R − ω) has dimension at least 1. We pick a
non-zero form f2 in it. It has divisor ( f2) = C + R +ω + D where D is effective with degree g . And
D −ω is linearly equivalent to A −ω+ B −ω.

In order to invert the class α of A −ω we pick a non-zero form f1 in H2d(−C − 2ω). The divisor
of f1 is ( f1) = 2ω + C + R where R is an effective divisor with degree 2d2 − 2g − 2δ. The linear
space H2d(−C − R − A) has dimension at least 1. We pick a non-zero form f2 in it. It has divisor
( f2)= C+ R + A + B where B is effective with degree g . And B −ω is linearly equivalent to −(A −ω).

This algorithm works just as well if we replace C by some D � C having polynomial degree in d.

Lemma 1 (Arithmetic operations in the jacobian). Let C/Fq be a degree d plane projective absolutely irre-
ducible reduced curve. Let g be the geometric genus of C . Assume we are given the smooth model X of C and
an Fq-divisor with degree g on X , denoted ω. We assume ω is given as a difference between two effective divi-
sors with degrees bounded by a polynomial in d. This ω serves as an origin. Arithmetic operations in the Picard
group Pic0(X /Fq) can be performed in time polynomial in log q and d. This includes addition, substraction
and comparison of divisor classes.
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If ω is not effective, we use Lemma 2 below to compute a non-zero function f in L(ω) and we
write ω′ = ( f ) + ω. This is an effective divisor with degree g . We replace ω by ω′ and finish as in
the paragraph before Lemma 1.

We now recall the principle of the Brill–Noether algorithm for computing complete linear series.
Functions in Fq(X ) are represented as quotients of forms.

Lemma 2 (Brill–Noether). There exists an algorithm that on input a degree d plane projective absolutely ir-
reducible reduced curve C/Fq and the smooth model X of C and two effective Fq-divisors A and B on X ,
computes a basis for L(A − B) in time polynomial in d and log q and the degrees of A and B.

We assume deg(A) � deg(B), otherwise L(A − B) = 0. Let a be the degree of A. We let h be the
smallest integer such that h � 2d and hd + g + 1 > a + (d − 1)(d − 2).

So the space Hh(−C− A) is non-zero. It is contained in the image of the restriction map ρ : Sh →
Hh so that we can represent it as a subspace of Sh . We pick a non-zero form f in Hh(−C − A) and
compute its divisor ( f )= C + A + D .

The space Hh(−C − B − D) is contained in the image of the restriction map ρ : Sh → Hh so
that we can represent it as a subspace of Sh . We compute forms γ1, γ2, . . . , γk in Sh such that their
images by ρ provide a basis for Hh(−C − B − D). A basis for L(A − B) is made of the functions γ1

f ,
γ2
f , . . . ,

γk
f . Again this algorithm works just as well if we replace C by some D � C having polynomial

degree in d.
We deduce an explicit moving lemma for divisors.

Lemma 3 (Moving divisor Lemma I). There exists an algorithm that on input a degree d plane projective
absolutely irreducible reduced curve C/Fq and the smooth model X of C and a degree zero Fq-divisor D =
D+ − D− and an effective divisor A with degree < q on X computes a divisor E = E+ − E− linearly equivalent
to D and disjoint to A in time polynomial in d and log q and the degrees of D+ , and A. Further the degree of
E+ and E− can be taken to be � 2gd.

Let O be an Fq-rational divisor on X such that 1 � deg(O ) � d and disjoint to A. We may take
O to be a well chosen fiber of some plane coordinate function on X . We compute the linear space

L = L(D+ − D− +2g O ). The subset of functions f in L such that ( f )+ D+ − D− +2g O is not disjoint
to A is contained in a union of at most deg(A) < q hyperplanes. We conclude invoking Lemma 4
below.

There remains to state and prove the

Lemma 4 (Solving inequalities). Let q be a prime power, d � 2 and n � 1 two integers and let H1, . . . , Hn
be hyperplanes inside V = Fd

q , each given by a linear equation. Assume n < q. There exists a deterministic
algorithm that finds a vector in U = V − ⋃

1�k�n Hk in time polynomial in log q, d and n.

This is proved by lowering the dimension d. For d = 2 we pick any affine line L in V not containing
the origin. We observe that there are at least q−n points in U ∩ L = L −⋃

1�k�n L ∩ Hk . We enumerate
points in L until we find one which is not in any Hk . This requires at most n + 1 trials.

Assume now d is bigger than 2. Hyperplanes in V are parametrized by the projective space P(V̂ )

where V̂ is the dual of V . We enumerate points in P(V̂ ) until we find a hyperplane K distinct from
every Hk . We compute a basis for K and an equation for every Hk ∩ K in this basis. This way, we
have lowered the dimension by 1.

We can strengthen a bit the moving divisor algorithm by removing the condition that A has
degree < q. Indeed, in case this condition is not met, we call α the smallest integer such that
qα > deg(A) and we set β = α + 1. We apply Lemma 3 after base change to the field with qα el-
ements and find a divisor Eα . We call eα the norm of Eα from Fqα to Fq . It is equivalent to αD .
We similarly construct a divisor eβ that is equivalent to (α + 1)D . We return the divisor E = eβ − eα .
We observe that we can take α � 1 + logq deg(A) so the degree of the positive part E+ of E is
� 6gd(logq(deg(A))+ 1).
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Lemma 5 (Moving divisor Lemma II). There exists an algorithm that on input a degree d plane projective
absolutely irreducible curve C/Fq and the smooth model X of C and a degree zero Fq-divisor D = D+ − D−
and an effective divisor A on X computes a divisor E = E+ − E− linearly equivalent to D and disjoint to A in
time polynomial in d and log q and the degrees of D+ , and A. Further the degree of E+ and E− can be taken
to be � 6gd(logq(deg(A))+ 1).

4. A first approach to picking random divisors

Given a finite field Fq and a plane projective absolutely irreducible reduced curve C over Fq with
projective smooth model X , we call J the jacobian of X and we consider two related problems:
picking a random element in J (Fq) with (close to) uniform distribution and finding a generating set
for (a large subgroup of) J (Fq). Let g be the genus of X . We assume we are given a degree 1 divisor
O = O + − O − where O + and O − are effective, Fq-rational and have degree bounded by an absolute
constant times g .

We know from [26, Theorem 2] that the group Pic0(X /Fq) is generated by the classes [p −
deg(p)O ] where p runs over the set of prime divisors of degree � 1 + 2 logq(4g − 2). For the con-
venience of the reader we quote this result as a lemma.

Lemma 6 (Müller, Stein, Thiel). Let K be an algebraic function field of one variable over Fq. Let N � 0 be an
integer. Let g be the genus of K . Let χ : Div(K ) → C∗ be a character of finite order which is non-trivial when
restricted to Div0 . Assume that χ(B)= 1 for every prime divisor B of degree � N. Then

N < 2 logq(4g − 2).

If q < 4g2, the number of prime divisors of degree � 1 + 2 logq(4g − 2) is bounded by O gO . So
we can compute easily a small generating set for J (Fq).

In the rest of this section, we will assume that the size q of the field is greater than or equal to
4g2. This condition ensures the existence of an Fq-rational point.

Picking efficiently and provably random elements in J (Fq) with uniform distribution seems dif-
ficult to us. We first give here an algorithm for efficiently constructing random divisors with a
distribution that is far from uniform but still sufficient to construct a generating set for a large sub-
group of J (Fq). Once given generators, picking random elements becomes much easier.

Let r be the smallest prime integer bigger than 30, 2g − 2 and d. We observe r is less than
max(4g − 4,2d,60).

The set P(r,q) of Fq-places with degree r on X has cardinality

#P(r,q)= #X (Fqr )− #X (Fq)

r
.

So

(
1 − 10−2)qr

r
� #P(r,q)�

(
1 + 10−2)qr

r
.

Indeed, |#X (Fqr )− qr − 1| � 2gq
r
2 and |#X (Fq)− q − 1| � 2gq

1
2 .

So |#P(r,q)− qr

r | � 4g+3
r q

r
2 � 8q

r
2 and 8rq

−r
2 � r23− r

2 � 10−2 since r � 31.
Since we are given a degree d plane model C for the curve X , we have a degree d map x : X → P1.

Since d < r, the function x maps P(r,q) to the set U(r,q) of monic prime polynomials of degree r

over Fq . The cardinality of U(r,q) is qr−q
r so

(
1 − 10−9)qr

� #U(r,q)� qr

.

r r



J.-M. Couveignes / Journal of Algebra 321 (2009) 2085–2118 2093
The fibers of the map x : P(r,q)→ U(r,q) have cardinality between 0 and d.
We can pick a random element in U(r,q) with uniform distribution in the following way: we pick

a random monic polynomial of degree r with coefficients in Fq , with uniform distribution. We check
whether it is irreducible. If it is, we output it. Otherwise we start again. This is polynomial time in r
and log q.

Given a random element in U(r,q) with uniform distribution, we can compute the fiber of x :
P(r,q) → U(r,q) above it and, provided this fiber is non-empty, pick a random element in it with
uniform distribution. If the fiber is empty, we pick another element in U(r,q) until we find a non-
empty fiber. At least one in every d × (0.99)−1 fibers is non-empty. We thus define a distribution μ
on P(r,q) and prove the following.

Lemma 7 (A very rough measure). There is a unique measureμ on P(r,q) such that all non-empty fibers of the
map x : P(r,q)→ U(r,q) have the same measure, and all points in a given fiber have the same measure. There
exists a probabilistic algorithm that picks a random element in P(r,q) with distribution μ in time polynomial
in d and log q. For every subset Z of P(r,q) the measure μ(Z) is related to the uniform measure #Z

#P(r,q) by

#Z

d#P(r,q)
�μ(Z)� d#Z

#P(r,q)
.

Now let D(r,q) be the set of effective Fq-divisors with degree r on X . Since we have assumed
q � 4g2 we know that X has at least one Fq-rational point. Let Ω be a degree r effective divisor
on X /Fq . We associate to every α in D(r,q) the class of α − Ω in J (Fq). This defines a surjection
Jr : D(r,q)→ J (Fq) with all its fibers having cardinality #Pr−g(Fq).

So the set D(r,q) has cardinality qr−g+1−1
q−1 #J (Fq).

So

#P(r,q)� #D(r,q)� qr−g
1 − 1

qr−g+1

1 − 1
q

qg
(

1 + 1√
q

)2g

.

Since q � 4g2 we have #D(r,q)� 2eqr .
Assume G is a finite group and ψ an epimorphism of groups ψ : J (Fq) → G . We look for some

divisor Δ ∈ D(r,q) such that ψ( Jr(Δ)) �= 0 ∈ G . Since all the fibers of ψ ◦ Jr have the same cardinality,
the fiber above 0 has at most 2eqr

#G elements. So the number of prime divisors Δ ∈ P(r,q) such that
ψ( Jr(Δ)) is not 0 is at least qr( 0.99

r − 2e
#G ). We assume #G is at least 12r. Then at least half of the

divisors in P(r,q) are not mapped onto 0 by ψ ◦ Jr . The μ-measure of the subset consisting of these
elements is at least 1

2d .
So if we pick a random Δ in P(r,q) with μ-measure as in Lemma 7, the probability of success is

at least 1
2d . If we make 2d trials, the probability of success is � 1 − exp(−1)� 1

2 .

Lemma 8 (Finding non-zero classes). There exists a probabilistic (Monte Carlo) algorithm that takes as input

(1) a degree d and geometric genus g plane projective absolutely irreducible reduced curve C over Fq, such
that q � 4g2 ,

(2) the smooth model X of C ,
(3) a degree g effective divisor ω, as origin,
(4) an epimorphism ψ : Pic0(X /Fq) → G (that need not be computable) such that the cardinality of G is at

least max(48g,24d,720),

and outputs a sequence of 2d elements in Pic0(X /Fq) such that at least one of them is not in the kernel of ψ
with probability � 1

2 . The algorithm is polynomial time in d and log q.
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As a special case we take G = G0 = J (Fq) and ψ = ψ0 the identity. Applying Lemma 8 we find
a sequence of elements in J (Fq) out of which one at least is non-zero (with high probability). We
take G1 to be quotient of G by the subgroup generated by these elements and ψ1 the quotient
map. Applying the lemma again we construct another sequence of elements in J (Fq) out of which
one at least is not in G0 (with high probability). We go on like that and produce a sequence of
subgroups in J (Fq) that increase with constant probability until the index in J (Fq) becomes smaller
than max(48g,24d,720). Note that every step in this method is probabilistic: it succeeds with some
probability, that can be made very high (exponentially close to 1) while keeping a polynomial overall
complexity.

Lemma 9 (Finding an almost generating set). There exists a probabilistic (Monte Carlo) algorithm that takes
as input

(1) a degree d and geometric genus g plane projective absolutely irreducible reduced curve C over Fq, such
that q � 4g2 ,

(2) the smooth model X of C ,
(3) a degree g effective divisor ω, as origin,

and outputs a sequence of elements in Pic0(X /Fq) that generate a subgroup of index at most

max(48g,24d,720)

with probability � 1
2 . The algorithm is polynomial time in d and log q.

Note that we do not catch the whole group J (Fq) of rational points but a subgroup A with
index at most ι= max(48g,24d,720). This is a small but annoying gap. In the sequel we shall try to
compute the �-torsion of the group J (Fq) of rational points. Because of the small gap in the above
lemma, we may miss some �-torsion points if � is smaller than ι. However, let k be an integer such
that �k > ι. And let x be a point of order � in J (Fq). Assume there exists a point y in J (Fq) such
that x = �k−1 y. The group 〈y〉 generated by y and the group A have non-trivial intersection because
the product of their orders is bigger than the order of J (Fq). Therefore x belongs to A.

Our strategy for computing J (Fq)[�] will be to find a minimal field extension FQ of Fq such
that all points in J (Fq)[�] are divisible by �k−1 in J (FQ ). We then shall apply the above lemma to
J (FQ ). To finish with, we shall have to compute J (Fq) as a subgroup of J (FQ ). To this end, we
shall use the Weil pairing.

5. Pairings

Let n be a prime to p integer and J a jacobian variety over Fq . The Weil pairing relates the full
n-torsion subgroup J (F̄q)[n] with itself. It can be defined using Kummer theory and is geometric
in nature. The Tate–Lichtenbaum–Frey–Rück pairing is more cohomological and relates the n-torsion
J (Fq)[n] in the group of Fq-rational points and the quotient J (Fq)/nJ (Fq). In this section, we
quickly review the definitions and algorithmic properties of these pairings, following work by Weil,
Lang, Menezes, Okamoto, Vanstone, Frey and Rück.

We first recall the definition of Weil pairing following [20]. Let k be an algebraically closed field
with characteristic p. For every abelian variety A over k, we denote by Z0(A)0 the group of 0-cycles
with degree 0 and by S : Z0(A)0 → A the summation map, that associates to every 0-cycle of degree
0 the corresponding sum in A.

Let V and W be two projective non-singular irreducible and reduced varieties over k, and let
α : V → A and β : W → B be the canonical maps into their Albanese varieties. Let D be a correspon-
dence on V × W . Let n � 2 be a prime to p integer. Let a (resp. b) be a 0-cycle of degree 0 on
V (resp. W ) and let a = S(α(a)) (resp. b = S(β(b))) be the associated point in A (resp. B). Assume
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na = nb = 0. The Weil pairing en,D(a,b) is defined in [20, VI, §4, Theorem 10]. It is an nth root of
unity in k. It depends linearly in a, b and D .

Assume V = W = X is a smooth projective irreducible and reduced curve over k and A = B = J
is its jacobian and α = β = f : X → J is the Jacobi map (once an origin on X has been chosen). If
we take D to be the diagonal on X × X we define a pairing en,D(a,b) that will be denoted en(a,b)
or en,X (a,b). It does not depend on the origin for the Jacobi map. It is non-degenerate.

The jacobian J is principally polarized. We have an isomorphism λ : J → Ĵ between J and its
dual Ĵ . If α is an endomorphism α : J → J , we denote by tα its transpose tα : Ĵ → Ĵ . If D is a
divisor on J that is algebraically equivalent to zero, the image by tα of the linear equivalence class
of D is the linear equivalence class of the inverse image α−1(D). See [20, V, §1]. The Rosati dual of α
is defined to be α∗ = λ−1 ◦ tα ◦ λ. The map α → α∗ is an involution, and α∗ is the adjoint of α for
the Weil pairing

en,X
(
a,α(b)

) = en,X
(
α∗(a),b

)
(1)

according to [20, VII, §2, Proposition 6].
If Y is another smooth projective irreducible and reduced curve over k and K its jacobian and

φ : X → Y a non-constant map with degree d, and φ∗ : K → J the associated map between jacobians,
then for a and b of order dividing n in K one has en,X (φ∗(a),φ∗(b))= en,Y (a,b)d .

The Frey–Rück pairing can be constructed from the Lichtenbaum version of Tate’s pairing [22] as
was shown in [14]. Let q be a power of p. Let again n � 2 be an integer prime to p and X a smooth
projective absolutely irreducible reduced curve over Fq . Let g be the genus of X . We assume n divides
q − 1. Let J be the jacobian of X . The Frey–Rück pairing {, }n : J (Fq)[n]× J (Fq)/nJ (Fq)→ F∗

q/(F
∗
q)

n

is defined as follows. We take a class of order dividing n in J (Fq). Such a class can be represented
by an Fq-divisor D with degree 0. We take a class in J (Fq) and pick a degree zero Fq-divisor E in
this class, that we assume to be disjoint to D . The pairing evaluated at the classes [D] and [E] mod n
is {[D], [E] mod n}n = f (E) mod (F∗

q)
n where f is any function with divisor nD . This is a non-

degenerate pairing.
We now explain how one can compute the Weil pairing, following work by Menezes, Okamoto,

Vanstone, Frey and Rück. The Tate–Lichtenbaum–Frey–Rück pairing can be computed similarly.
As usual, we assume we are given a degree d plane model C for X . Assume a and b have disjoint

support (otherwise we may replace a by some linearly equivalent divisor using the explicit moving
Lemma 3). We compute a function φ with divisor na. We similarly compute a function ψ with divisor
nb. Then en(a,b) = ψ(a)

φ(b)
. This algorithm is polynomial in the degree d of C and the order n of the

divisors, provided the initial divisors a and b are given as differences between effective divisors with
polynomial degree in d.

Using an idea that appears in a paper by Menezes, Okamoto and Vanstone [24] in the context
of elliptic curves, and in [14] for general curves, one can make this algorithm polynomial in logn
in the following way. We write a = a0 = a

+
0 − a

−
0 where a

+
0 and a

−
0 are effective divisors. Let φ be

the function computed in the above simple minded algorithm. One has (φ) = na
+
0 − na

−
0 . We want

to express φ as a product of small degree functions. We use a variant of fast exponentiation. Using
Lemma 3 we compute a divisor a1 = a

+
1 − a

−
1 and a function φ1 such that a1 is disjoint to b and

(φ1) = a1 − 2a0 and such that the degrees of a
+
1 and a

−
1 are � 6gd(logq(deg(b))+ 1). We go on and

compute, for k � 1 an integer, a divisor ak = a
+
k − a

−
k and a function φk such that ak is disjoint to

b and (φk) = ak − 2ak−1 and such that the degrees of a
+
k and a

−
k are � 6gd(logq(deg(b)) + 1). We

write the base 2 expansion of n = ∑
i εk2k with εk ∈ {0,1}. We compute the function Ψ with divisor∑

k εkak . We claim that the function φ can be written as a product of the φk , for k � log2 n, and Ψ

with suitable integer exponents bounded by n in absolute value. Indeed we write μ1 = φ1, μ2 = φ2φ
2
1 ,

μ3 = φ3φ
2
2φ

4
1 and so on. We have (μk)= ak − 2ka and Ψ

∏
k μ

−εk
k has divisor na so is the φ we were

looking for.

Lemma 10 (Computing the Weil pairing). There exists an algorithm that on input an integer n � 2 prime to q
and a degree d absolutely irreducible reduced plane projective curve C over Fq and its smooth model X and
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two Fq-divisors on X , denoted a = a+ − a− and b = b+ − b− , with degree 0, and order dividing n in the
jacobian, computes the Weil pairing en(a,b) in time polynomial in d, log q, log n and the degrees of a+ , a− ,
b+ , b− , the positive and negative parts of a and b.

Lemma 11 (Computation of Tate–Lichtenbaum–Frey–Rück pairings). There exists an algorithm that on input
an integer n � 2 dividing q − 1 and a degree d absolutely irreducible reduced plane projective curve C over Fq

and its smooth model X and two Fq-divisors on X , denoted a = a+ −a− and b = b+ −b− , with degree 0, and
such that the class of a has order dividing n � 2 in the jacobian, computes the Tate–Lichtenbaum–Frey–Rück
pairing {a,b}n in time polynomial in d, log q, log n and the degrees of a+ , a− , b+ , b− , the positive and negative
parts of a and b.

6. Divisible groups

Let Fq be a finite field with characteristic p and let X be a projective smooth absolutely irreducible
reduced algebraic curve over Fq . Let g be the genus of X and let � �= p be a prime integer. We assume
g � 1. Let J be the jacobian of X and let End(J /Fq) be the ring of endomorphisms of J over Fq .
Let Fq be the Frobenius endomorphism. In this section we study the action of Fq on �k-torsion points
of J . We first consider the whole �k-torsion group. We then restrict to some well chosen subgroups
where this action is more amenable.

Let χ(X) be the characteristic polynomial of Fq ∈ End(J /Fq). The Rosati dual to Fq is q/Fq . Let
O = Z[X]/χ(X) and O� = Z�[X]/χ(X). We set ϕq = X mod χ(X) ∈ O. Mapping ϕq onto Fq defines
an epimorphism from the ring O onto Z[Fq]. In order to control the degree of the field of definition
of �k-torsion points we shall bound the order of ϕq in (O/�k O)∗ .

We set U1 = (O/�O)∗ = (F�[X]/χ(X))∗ . Let the prime factorization of χ(X) mod � be
∏

i χi(X)ei

with deg(χi)= f i . The order of U1 is
∏

i �
(ei−1) f i (� f i − 1). Let γ be the smallest integer such that �γ

is bigger than or equal to 2g . Then the exponent of the group U1 divides A1 = �γ
∏

i(�
f i − 1). We

set B1 = ∏
i(�

f i − 1) and C1 = �γ . There is a unique polynomial M1(X) ∈ Z[X] with degree < 2g such

that
ϕ

A1
q −1
�

= M1(ϕq) ∈ O.
Now for every positive integer k, the element ϕq belongs to the unit group Uk = (O/�k O)∗ of

the quotient algebra O/�k O = Z[X]/(�k,χ(X)). The prime factorization of χ(X) mod � is lifted mod-
ulo �k as

∏
i Ξi(X) with Ξi monic and deg(Ξi) = ei f i , and the order of Uk is

∏
i �

f i(kei−1)(� f i − 1).
The exponent of the latter group divides Ak = A1�

k−1. So we set Bk = B1 = ∏
i(�

f i − 1) and
Ck = C1�

k−1 = �k−1+γ . There is a unique polynomial Mk(X) ∈ Z[X] with degree < deg(χ) such that
ϕ

Ak
q −1

�k = Mk(ϕq) ∈ O.
For every integer N � 2 we can compute Mk(X) mod N from χ(X) in probabilistic polynomial

time in log q, log�, log N , k, g: we first factor χ(X) mod � then compute the χi and the ei and f i .
We compute X Ak modulo (χ(X), �k N) using fast exponentiation. We remove 1 and divide by �k .

Lemma 12 (Frobenius and �-torsion). Let k be a positive integer and � �= p a prime. Let χ(X) be the charac-
teristic polynomial of the Frobenius Fq of J /Fq. Let ei and fi be the multiplicities and inertiae in the prime
decomposition of χ(X) mod �. Let γ be the smallest integer such that �γ is bigger than or equal to 2g. Let
B = ∏

i(�
f i − 1). Let Ck = �k−1+γ and Ak = BCk. The �k-torsion in J splits completely over the degree Ak

extension of Fq. There is a degree < 2g polynomial Mk(X) ∈ Z[X] such that F Ak
q = 1 + �k Mk(Fq). For every

integer N one can compute such an Mk(X) mod N from χ(X) in probabilistic polynomial time in log q, log �,
log N, k, g.

In order to state sharper results it is convenient to introduce �-divisible subgroups inside the �∞-
torsion of a jacobian J , that may or may not correspond to subvarieties. We now see how to define
such subgroups and control their rationality properties.
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Lemma 13 (Divisible group). Let Π : J [�∞] → J [�∞] be a group homomorphism whose restriction to its
image G is a bijection. Multiplication by � is then a surjection from G to itself. We denote by G[�k] the �k-
torsion in G. There is an integer w such that G[�k] is a free Z/�kZ module of rank w for every k. We assume
that Π commutes with the Frobenius endomorphism Fq. We then say G is the divisible group associated
with Π . From Tate’s theorem [30] Π is induced by some endomorphism in End(J /Fq) ⊗Z Z� and we can
define Π∗ the Rosati dual of Π and denote by G∗ = Im(Π∗) the associated divisible group, that we call the
adjoint of G.

Remark 3. The dual G∗ does not only depend on G. It may depend on Π also.

Remark 4. We may equivalently define Π∗ as the dual of Π for the Weil pairing. See formula (1).

We now give an example of divisible group. Let F (X) = F1(X) and G(X) = G1(X) be two monic
coprime polynomials in F�[X] such that χ(X)= F1(X)G1(X) mod �. From Bezout’s theorem we have
two polynomials H1(X) and K1(X) in F�[X] such that F1 H1 + G1 K1 = 1 and deg(H1) < deg(G1)

and deg(K1) < deg(F1). From Hensel’s lemma, for every positive integer k there exist four polyno-
mials Fk(X), Gk(X), Hk(X) and Kk(X) in (Z/�kZ)[X] such that Fk and Gk are monic and χ(X) =
Fk(X)Gk(X) mod �k and Fk Hk + Gk Kk = 1 mod �k and deg(Hk) < deg(G1) and deg(Kk) < deg(F1) and
F1 = Fk mod �, G1 = Gk mod �, H1 = Hk mod �, K1 = Kk mod �. The sequences (Fk)k , (Gk)k , (Hk)k ,
(Kk)k converge in Z�[X] to F0, G0, H0, K0.

If we substitute Fq for X in F0 H0 we obtain a map ΠG : J [�∞] → J [�∞] and similarly, if we
substitute Fq for X in G0 K0 we obtain a map ΠF . It is clear that Π2

F = ΠF and Π2
G = ΠG and

ΠF +ΠG = 1 and ΠFΠG = 0. We call GF = Im(ΠF ) and GG = Im(ΠG) the associated supplementary
�-divisible groups.

Definition 1 (Characteristic subspaces). For every non-trivial monic factor F (X) of χ(X) mod � such
that the cofactor G = χ/F mod � is prime to F , we write χ = F0G0 the corresponding factorization
in Z�[X]. The �-divisible group GF is called the F0-torsion in J [�∞] and is denoted J [�∞, F0]. It is
the characteristic subspace of Fq associated with the factor F . If F = (X − 1)e is the largest power
of X − 1 dividing χ(X) mod � we abbreviate G(X−1)e = G1. If F = (X − q)e then we write similarly
G(X−q)e = Gq = G∗

1.

We now compute fields of definitions for torsion points inside such divisible groups. The action of
Fq on the �k-torsion GF [�k] = J [�k, F0] inside GF factors through the smaller ring O�/(�

k, F0(ϕq))=
Z�[X]/(�k, F0). We deduce the following.

Lemma 14 (Frobenius and F0-torsion). Let k be a positive integer and � �= p a prime. Let χ(X) be the charac-
teristic polynomial of the Frobenius Fq of J . Let χ = F G mod � with F and G monic coprime. Let ei and fi be
the multiplicities and inertiae in the prime decomposition of F (X) mod �. Let γ be the smallest integer such
that �γ is bigger than or equal to 2g. Let B(F ) = ∏

i(�
f i − 1). Let Ck(F ) = �k−1+γ and Ak(F ) = B(F )Ck(F ).

The �k-torsion in GF splits completely over the degree Ak(F ) extension of Fq. There is a degree < deg(F ) poly-

nomial Mk(X) ∈ Z�[X] such that ΠF F Ak(F )
q = ΠF + �kΠF Mk(Fq). For every power N of �, one can compute

such an Mk(X) modulo N from χ(X) and F (X) in probabilistic polynomial time in log q, log�, log N, k, g.

If we take for F the largest power of X − 1 dividing χ(X) mod � in the above lemma, we can take
B(F )= 1 so Ak(F ) is an � power � 2g�k .

If we take for F the largest power of X − q dividing χ(X) mod � in the above lemma, we have
B(F )= �− 1 so Ak(F ) is � 2g(�− 1)�k .

So the characteristic spaces associated with the eigenvalues 1 and q split completely over small
degree extensions of Fq .
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7. The Kummer map

Let X be a smooth projective absolutely irreducible reduced curve over Fq of genus g and J the
jacobian of X . Let n � 2 be an integer dividing q − 1. We assume g � 1. In this section, we construct
a convenient surjection from J (Fq) to J (Fq)[n].

If P is in J (Fq) we take some R ∈ J (F̄q) such that nR = P and form the 1-cocycle (σ R − R)σ in
H1(Fq, J [n]). Using the Weil pairing we deduce an element

� 	→ (
en(

σ R − R,�)
)
σ

in

Hom
(

J [n](Fq), H1(μn)
) = Hom

(
J [n](Fq),Hom

(
Gal(Fq),μn

))
.

The map that sends P mod nJ (Fq) to � 	→ (en(
σ R − R,�))σ is injective because the Frey–Rück

pairing is non-degenerate. We observe that Hom(Gal(Fq),μn) is isomorphic to μn: giving a homomor-
phism from Gal(Fq) to μn is equivalent to giving the image of the Frobenius generator Fq . We obtain
a bijection Tn,q from J (Fq)/nJ (Fq) to the dual Hom(J [n](Fq),μn) of J [n](Fq) that we call the Tate
map. It maps P onto � 	→ en(

Fq R − R,�). If J [n] splits completely over Fq we set Kn,q(P )= Fq R − R
and define a bijection Kn,q : J (Fq)/nJ (Fq)→ J [n](Fq)= J [n] that we call the Kummer map.

Definition 2 (The Kummer map). Let J /Fq be a jacobian and n � 2 an integer. Assume J [n] splits
completely over Fq . For P in J (Fq) we choose any R in J (F̄q) such that nR = P and we set Kn,q(P )=
Fq R − R . This defines a bijection

Kn,q : J (Fq)/nJ (Fq)→ J [n](Fq)= J [n].

We now assume that n = �k is a power of some prime integer � �= p. We also make the (strong !)
assumption that J [n] splits completely over Fq . We want to compute the Kummer map Kn,q explic-
itly. Let P be an Fq-rational point in J . Let R be such that nR = P . Since Fq − 1 kills J [n], there is
an Fq-endomorphism κ of J such that Fq − 1 = nκ . We note that κ belongs to Z[Fq] ⊗Z Q = Q[Fq]
and therefore commutes with Fq . We have κ(P )= (Fq − 1)(R)= Kn,q(P ) and κ(P ) is Fq-rational.

Computing the Kummer map will be seen to be very useful but it requires that J [n] splits com-
pletely over Fq . In general, we shall have to base change to some extension of Fq .

Let χ(X) be the characteristic polynomial of Fq and let B = ∏
i(�

f i − 1) where the f i are the
degrees of prime divisors of χ(X) (mod �). Let �γ be the smallest power of � that is bigger than
or equal to 2g . Let Ck = �γ+k−1 and Ak = BCk . Set Q = qAk . From Lemma 12 there is a polynomial
Mk(X) such that F Q = 1+�k Mk(Fq). So, for P an FQ -rational point in J and R such that nR = P , the
Kummer map Kn,Q applied to P is Mk(Fq)(P ) = (F Q − 1)(R) = Kn,Q (P ) and this is an FQ -rational
point.

Lemma 15 (Computing the Kummer map). Let J /Fq be a jacobian. Let g � 1 be its dimension. Let � �= p be a
prime integer and n = �k a power of �. Let χ(X) be the characteristic polynomial of Fq and let B = ∏

i(�
f i −1)

where the fi are the degrees of prime divisors of χ(X) (mod �). Let �γ be the smallest power of � that is
bigger than or equal to 2g. Let Ck = �γ+k−1 and Ak = BCk. Set Q = qAk and observe that n divides Q − 1
because J [n] splits completely over FQ . There exists an endomorphism κ ∈ Z[Fq] of J such that nκ = F Q −1
and for every FQ -rational point P and any R with nR = P one has κ(P ) = (F Q − 1)(R) = Kn,Q (P ). This
endomorphism κ induces a bijection between J (FQ )/nJ (FQ ) and J [n](FQ ) = J [n]. Given χ(X) and a
positive integer N one can compute κ mod N as a polynomial in Fq with coefficients in Z/NZ in probabilistic
polynomial time in g, log �, log q, k, log N.
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This lemma is not of much use in practice because the field FQ is too big. On the other hand, we
may not be interested in the whole n-torsion in J but just a small piece in it, namely the n-torsion
of a given divisible group.

So let � �= p be a prime integer and G an �-divisible group in J [�∞] and Π = Π2 : J [�∞] → G

a projection onto it. Let n = �k and let Q be a power of q such that G[n] splits completely over FQ .
Let P be an FQ -rational point in G. Let R ∈ G(F̄q) be such that nR = P . We set KG,n,Q (P )= F Q R − R
and define an isomorphism

KG,n,Q : G(FQ )/nG(FQ )→ G(FQ )[n] = G[n].

In order to make this construction explicit, we now assume that there exists some κ ∈ Z�[Fq] such
that Π(F Q − 1 − nκ) = 0. Lemma 14 provides us with such a Q and such a κ when G = J [�∞, F0]
is some characteristic subspace.

We now can compute this new Kummer map KG,n,Q . Let P be an FQ -rational point in G. Let
R ∈ G be such that nR = P . From (F Q − 1 − nκ)Π(R) = 0 = (F Q − 1 − nκ)(R) we deduce that
KG,n,Q (P )= κ(P ). Hence the

Lemma 16 (The Kummer map for a divisible group). Let J /Fq be a jacobian. Let g be its dimension. Let � �= p
be a prime integer and n = �k a power of �. We assume g � 1. Let χ(X) be the characteristic polynomial
of Fq. Assume χ(X) = F (X)G(X) mod � with F and G monic coprime polynomials in F�[X] and let GF be
the associated �-divisible group. Let B = (�− 1)

∏
i(�

f i − 1) where the fi are the degrees of prime divisors of
F (X) (mod �). Let �γ be the smallest power of � that is bigger than or equal to 2g. Let Ck = �k−1+γ and Ak =
BCk. Set Q = qAk . From Lemma 14 there exists an endomorphism κ ∈ Z�[Fq] such that ΠF (nκ− F Q +1)= 0
and for every FQ -rational point P ∈ GF and any R ∈ GF with nR = P one has κ(P ) = (F Q − 1)(R) =
KG,n,Q (P ). This endomorphism κ induces a bijection between GF (FQ )/nGF (FQ ) and GF [n](FQ )= GF [n].
Given χ(X) and F (X) and a power N of �, one can compute κ mod N as a polynomial in Fq with coefficients
in Z/NZ in probabilistic polynomial time in g, log �, log q, k, log N.

8. Linearization of torsion classes

Let C be a degree d plane projective absolutely irreducible reduced curve C over Fq with geometric
genus g � 1, and assume we are given the smooth model X of C . We also assume we are given a
degree 1 divisor O = O + − O − where O + and O − are effective, Fq-rational and have degree bounded
by an absolute constant times g .

Let J be the jacobian of X . We assume � �= p is a prime integer that divides #J (Fq). Let n = �k

be a power of �. We want to describe J (Fq)[�k] by generators and relations.
If x1, x2, . . . , xI are elements in a finite commutative group G we let R be the kernel of the map

ξ : ZI → G defined by ξ(a1, . . . ,aI )= ∑
i ai xi . We call R the lattice of relations between the xi .

We first give a very general and rough algorithm for computing relations in any finite commutative
group.

Lemma 17 (Finding relations in blackbox groups). Let G be a finite and commutative group and let
x1, x2, . . . , xI be elements in G. A basis for the lattice of relations between the xi can be computed at the
expense of 3I#G operations (or comparisons) in G.

We first compute and store all the multiples of x1. So we list 0, x1,2x1, . . . until we find the first
multiple e1x1 that is equal to zero. This gives us the relation r1 = (e1,0, . . . ,0) ∈ R. This first step
requires at most o = #G operations in G and o comparisons.

We then compute successive multiples of x2 until we find the first one e2x2 that is in L1 =
{0, x1, . . . , (e1 − 1)x1}. This gives us a second relation r2. The couple (r1, r2) is a basis for the lattice
of relations between x1 and x2. Using this lattice, we compute the list L2 of elements in the group
generated by x1 and x2. This second step requires at most 2o operations and e1e2 � o comparisons.
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We then compute successive multiples of x3 until we find the first one e3x3 that is in L2. This
gives us a third relation r3. The triple (r1, r2, r3) is a basis for the lattice of relations between x1, x2
and x3. Using this lattice, we compute the list L3 of elements in the group generated by x1, x2 and x3.
This third step requires at most 2o operations and o comparisons. And we go on like this.

This is far from efficient unless the group is very small.
We come back to the computation of generators and relations for J (Fq)[�k].
Let B = � − 1. Let �γ be the smallest power of � that is bigger than or equal to 2g and let

Ak = B�γ+k−1. We set Q k = qAk .
If we take for F a power of X − 1 in Definition 1 and Lemma 16 we obtain two surjective maps

Π1 : J (FQ k )[�∞] → G1(FQ k ) and KG1,�
k,Q k

: G1(FQ k )→ G1[�k].
If we now take for F a power of X − q in Definition 1 and Lemma 16 we obtain two surjective

maps Πq : J (FQ k )[�∞] → Gq(FQ k ) and KGq,�k,Q k
: Gq(FQ k )→ Gq[�k].

There exists a unit u in End(J /Fq)⊗Z Z� such that the Rosati dual Π∗
1 of Π1 is

Π∗
1 = uΠq.

Therefore Gq = G∗
1 and the restriction of the Weil pairing to G1[�k] × Gq[�k] is non-degenerate.

If Q k � 4g2, we use Lemma 9 to produce a sequence γ1, . . . , γI of elements in J (FQ k ) that gen-
erate (with high probability) a subgroup of index at most ι= max(48g,24d,720). If Q k � 4g2 we use
Lemma 6 to produce a sequence γ1, . . . , γI of elements in J (FQ k ) that generate it.

Let N be the largest divisor of #J (FQ k ) which is prime to �.
We set αi = KG1,�

k,Q k
(Π1(Nγi)) and βi = KGq,�k,Q k

(Πq(Nγi)).

The group Ak generated by the αi has index at most ι in G1[�k]. The group Bk generated by the
βi has index at most ι in Gq[�k].

Let �δ be smallest power of � that is bigger than ι and assume k > δ. Then Ak contains G1[�k−δ].
We now explain how to compute the lattice of relations between given elements ρ1, . . . , ρ J in

G1[�k]. We denote by R this lattice. Recall the restriction of the Weil pairing to G1[�k] × Gq[�k] is a
non-degenerate pairing

e�k : G1
[
�k] × Gq

[
�k] →μ�k .

We fix an isomorphism between the group μ�k (F̄q) =μ�k (FQ k ) of �kth roots of unity and Z/�kZ.
Having chosen the preimage of 1 mod �k , computing this isomorphism is a problem called discrete
logarithm. We can compute this discrete logarithm by exhaustive search at the expense of O (�k)

operations in FQ k . There exist more efficient algorithms, but we do not need them for our complexity
estimates.

We regard the matrix (e�k (βi,ρ j)) as a matrix with I rows, J columns and coefficients in Z/�kZ.
This matrix defines a morphism from Z J to (Z/�kZ)I whose kernel is a lattice R′ that contains R.
The index of R in R′ is at most ι. Indeed R′/R is isomorphic to the orthogonal complement of
Bk in 〈ρ1, . . . , ρ J 〉 ⊂ G1[�k]. So it has order � ι. We then compute a basis of R′ . This boils down to
computing the kernel of an I × ( J + I) integer matrix with entries bounded by �k . This can be done
by putting this matrix in Hermite normal form (see [6, 2.4.3]). The complexity is polynomial in I , J
and k log �. See [17], [6, 2.4.3] and [31].

Once given a basis of R′ , the sublattice R can be computed using Lemma 17 at the expense of
� 3 J ι operations.

We apply this method to the generators (αi)i of Ak . Once given the lattice R of relations between
the αi it is a matter of linear algebra to find a basis (b1, . . . ,bw) for Ak[�k−δ] = G1[�k−δ]. The latter
group is a rank w free module over Z/�k−δZ and is acted on by the q-Frobenius Fq . For every b j we
can compute the lattice of relations between Fq(b j), b1,b2, . . . ,bw and deduce the matrix of Fq with
respect to the basis (b1, . . . ,bw). From this matrix we deduce a nice generating set for the kernel of
Fq − 1 in G1[�k−δ]. This kernel is J [�k−δ](Fq). We deduce the following.
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Theorem 1. There is a probabilistic Monte Carlo algorithm that on input

(1) a degree d and geometric genus g plane projective absolutely irreducible reduced curve C over Fq,
(2) the smooth model X of C ,
(3) a degree 1 divisor O = O + − O − where O + and O − are effective, Fq-rational and have degree bounded

by a constant times g,
(4) a prime � different from the characteristic p of Fq and a power n = �k of �,
(5) the zeta function of X ;

outputs a set g1, . . . , gW of divisor classes in the Picard group of X /Fq, such that the �k torsion Pic(X /Fq)[�k]
is the direct product of the 〈gi〉, and the orders of the gi form a non-decreasing sequence. Every class gi is given
by a divisor Gi − g O in the class, where Gi is a degree g effective Fq-divisor on X .

The algorithm runs in probabilistic polynomial time in d, g, log q and �k. It outputs the correct answer with
probability � 1

2 . Otherwise, it may return either nothing or a strict subgroup of Pic(X /Fq)[�k].
If one is given a degree zero Fq-divisor D = D+ − D− of order dividing �k, one can compute the coordi-

nates of the class of D in the basis (gi)1�i�W in polynomial time in d, log q, �k and the degree of D+ . These
coordinates are integers xi such that

∑
1�i�W xi gi = [D].

9. An example: modular curves

In this section we consider a family of modular curves for which we can easily provide and study
a plane model. Let � � 5 be a prime. We set d� = �2−1

4 and m� = �−1
2 . We denote by X� = X(2)1(�)

the moduli of elliptic curves with full 2-torsion plus one non-trivial �-torsion point. We first describe
a homogeneous singular plane model C� for this curve. We enumerate the geometric points on X�

above every singularity of C� and compute the conductor C� using the Tate elliptic curve.
Let λ be an indeterminate and form the Legendre elliptic curve with equation y2 = x(x − 1)(x −λ).

Call T�(λ, x) the �-division polynomial of this curve. It is a polynomial in Q[λ][x] with degree 2d� =
�2−1

2 in x.
As a polynomial in x we have

T�(λ, x)=
∑

0�k�2d�

a2d�−k(λ)x
k

where a0(λ) has degree 0 in λ so that we normalize by setting a0(λ)= �.
Let F be a splitting field of T�(λ, x) over Q(λ). A suitable twist of the Legendre curve has a point

of order � defined over F (and the full two torsion also). This proves that F contains the function
field Q(X�). Comparison of the degrees of F/Q(λ) and Q(X�)/Q(λ) shows that the two fields F and
Q(X�) are equal and the polynomial T� is irreducible in Q̄(λ)[x].

We can compute the 2d� roots of T�(λ, x) in the field Q̄{{λ−1}} of Puiseux series in λ−1. We set

j = j(λ)= 28 (λ
2 − λ+ 1)3

λ2(λ− 1)2
= 28λ2(1 − λ−1 + 3λ−2 + 3λ−4 + · · ·)

so that j−1 = 2−8(λ−2 + λ−3 − 2λ−4 − 5λ−5 + · · ·).
We introduce Tate’s q-parameter, defined implicitly by

j = 1

q
+ 744 + 196884q + · · ·

so that
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q = j−1 + 744 j−2 + 750420 j−3 + · · ·
= 1

256
λ−2 + 1

256
λ−3 + 29

8192
λ−4 + 13

4096
λ−5 + · · · .

We set x = x′ + 1+λ
3 and y′ = y and find the reduced Weierstrass equation for the Legendre curve

y′ 2 = x′ 3 − λ2 − λ+ 1

3
x′ − (λ− 2)(λ+ 1)(2λ− 1)

27
.

We want to compare the latter curve and the Tate curve with equation

y′′ 2 = x′′ 3 − E4(q)

48
x′′ + E6(q)

864

where E4(q)= 1 + 240q + · · · and E6(q)= 1 − 504q + · · ·.
The quotient E4(q)(dq)2

(λ2−λ+1)q2 is a quadratic differential on the curve X(2) with divisor −2(0)− 2(1) in

the λ coordinate. Examination of the leading terms of its expansion shows that

E4

(
dq

q

)2

= 4(λ2 − λ+ 1)(dλ)2

λ2(1 − λ)2

and similarly

E6

(
dq

q

)3

= 4(λ− 2)(λ+ 1)(2λ− 1)(dλ)3

λ3(1 − λ)3
.

We deduce the isomorphism x′ = γ 2x′′ and y′ = γ 3 y′′ with

γ 2 = 2λ(λ− 1)

(
dq

qdλ

)
= −4λ+ 2 + 3

8
λ−1 + 3

16
λ−2 + · · · .

Set ζ� = exp( 2iπ
�
). For a and b integers such that either b = 0 and 1 � a � �−1

2 or 1 � b � �−1
2 and

0 � a � �− 1 we set w = ζ a
� q

b
� in the expansion

x′′(w,q)= 1

12
+

∑
n∈Z

wqn

(1 − wqn)2
− 2

∑
n�1

nqn

1 − qn

and find

x′′
a,b = 1

12
+ ζ a

� q
b
� + O

(
q

b+1
�

)

if b �= 0, and x′′
a,0 = 1

12 + ζ a
�

(1−ζ a
� )

2 + O (q).

So

xa,b = γ 2x′′ + 1 + λ

3
= −4ζ a

� 2
−8b
� λ1− 2b

� + O
(
λ1− 2b+1

�
)

if b �= 0 and xa,0 = −4ζ a
�

(1−ζ a
� )

2 λ+ O (1).

The xa,b are the roots of T�(λ, x) in the field Q̄{{λ−1}} of Puiseux series.
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We deduce that for 1 � k � �−1
2 the polynomial ak(λ) has degree at most k. Further a �−1

2
(λ) =

2�−1(−λ)
�−1

2 + O (λ
�−3

2 ). For k > �−1
2 the polynomial ak(λ) has degree < k and � d� .

The coefficients in all the series expansions above are in Z[ 1
6� , ζ�,2

1
� ]. The coefficients of T�(λ, x)

are in Z[ 1
6� ]. In fact T�(λ, x) is in Z[λ, x] but this is not needed here.

Since T� ∈ Q[λ, x] is absolutely irreducible, the equation T�(λ, x) = 0 defines a plane absolutely
irreducible affine curve C� . Let C� ⊂ P2 be the projective plane curve made of the zeroes of the
homogeneous polynomial T�(

Λ
Y ,

X
Y )Y

2d� .
For every geometric point P on X� such that λ(P ) /∈ {0,1,∞}, the function λ − λ(P ) is a uni-

formizing parameter at P . Further x(P ) is finite and P is the only geometric point on X� above the
point (λ(P ), x(P )) of C� . So the only possible singularities of C� lie on one of the three lines with
equations Λ= 0, Y = 0 and Λ− Y = 0.

The points at infinity are given by the degree 2d� form

2�−1(−1)
�−1

2 Λ
�−1

2 X
�2−�

2 + · · · + �X
�2−1

2 = X
�2−�

2
∏

0�a� �−1
2

(−4Λ− (
ζ a
� + ζ−a

� − 2
)

X
)
.

We call Σ∞ = [1,0,0] the unique singular point at infinity and for every 1 � b � �−1
2 we call σ∞,b

the point above Σ∞ on X� associated with the orbit

{x0,b, x1,b, . . . , x�−1,b}
for the local monodromy group. We call μ∞,a the point on X� corresponding to the expansion xa,0.
The ramification index of the covering map λ : X� → X(2) is � at σ∞,b and 1 at μ∞,a . Since �−2b and
� are coprime, there exist two integers αb and βb such that αb(�− 2b)− βb� = 1 and 1 � αb � �− 1

and 1 � βb � � − 1. The monomial xαbλ−βb ∈ Q̄(X�) is a local parameter at σ∞,b . Of course, λ− 1
� is

also a local parameter at this point, and it is much more convenient, although it is not in Q̄(X�).
The morphism φ : X� → X1(�) corresponding to forgetting the 2-torsion structure is Galois with

group S3 generated by the two transpositions τ(0,∞) and τ(0,1) defined in homogeneous coordinates
by

τ(0,∞) : [Λ, X, Y ] → [Y , X,Λ]
and

τ(0,1) : [Λ, X, Y ] → [Y −Λ, Y − X, Y ].
We observe that these act on X� , P2 and C� in a way compatible with the maps X� → C�

and C� ⊂ P2. We set Σ0 = τ(0,∞)(Σ∞) = [0,0,1] and Σ1 = τ(0,1)(Σ0) = [1,1,1]. We set σ0,b =
τ(0,∞)(σ∞,b) and σ1,b = τ(0,1)(σ0,b), μ0,a = τ(0,∞)(μ∞,a) and μ1,a = τ(0,1)(μ0,a).

The genus of X� is g� = (�−3)2

4 = (m�−1)2. The arithmetic genus of C� is ga = (m2
� +m�−1)(2m2

� +
2m� − 1). We now compute the conductor of C� . Locally at Σ∞ the curve C� consists of m� branches
(one for each point σ∞,b) that are cusps with equations

(
X

Λ

)�

= −22�−8b
(

Y

Λ

)2b

+ · · · .

The conductor of this latter cusp is σ∞,b times (� − 1)(2b − 1) which is the next integer to the
last gap of the additive semigroup generated by � and 2b. The conductor of the full singularity Σ∞ is
now given by Gorenstein’s formula [15, Theorem 2] and is

∑
1�b�m

{
b
(
4m2

� + 4m� − 1
) − 2m� − (2m� + 1)b2} · σ∞,b.
�
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The full conductor C� is the sum of this plus the two corresponding terms to the isomorphic
singularities Σ0 and Σ1. The degree deg(C�) of C� is 2m�(2m3

� + 4m2
� − 2m� − 1). So we set δ =

m�(2m3
� + 4m2

� − 2m� − 1) and we check that ga = g� + δ.
Now let p /∈ {2,3, �} be a prime. Let Cp be the (complete, algebraically closed) field of p-adics

and F̄p its residue field. We embed Q̄ in Cp and also in C. In particular ζ� = exp( 2iπ
�
) and 2

1
� are

well defined as p-adic numbers. We observe that in the calculations above, all coefficients belong to

Z[ 1
6� , ζ�,2

1
� ]. More precisely, the curves C� and X� are defined over Z[ 1

6� ]. We write C� mod p =
C�/Fp = C� ⊗

Z[ 1
6� ] Fp for the reduction of C� modulo p, and define similarly X� mod p. We write

similarly σ∞,b mod p and μ∞,a mod p.
We deduce the following.

Lemma 18 (Computing C� and resolving its singularities). There exists a deterministic algorithm that given
a prime � � 5 and a prime p /∈ {2,3, �} and a finite field Fq with characteristic p such that ζ� mod p and

2
1
� mod p belong to Fq, computes the equation T�(λ, x) modulo p and the expansions of all xa,b as series in

λ
−1
� with coefficients in Fq, in time polynomial in �, log q and the required λ

−1
� -adic accuracy.

10. Another family of modular curves

In this section we consider another family of modular curves for which we can easily provide
and study a plane model. This family will be useful in the calculation of modular representations
as sketched in the next section. Let � > 5 be a prime. This time we set X� = X1(5�) the moduli of
elliptic curves with one point of order 5�. The genus of X� is g� = �2 − 4� + 4. We first describe a
homogeneous singular plane model C� for this curve. We then enumerate the geometric points on
X� above every singularity of C� and provide series expansions for affine coordinates at every such
branch. Finally, for p /∈ {2,3,5, �} a prime integer, we recall how to compute the zeta function of the
function field Fp(X�). All this will be useful in Section 11 where we apply Theorem 1 to the curve X� .

Let b be an indeterminate and form the elliptic curve Eb in Tate normal form with equation
y2 + (1 − b)xy − by = x3 − bx2. The point P = (0,0) has order 5 and its multiples are 2P = (b,b2),
3P = (b,0), 4P = (0,b). The multiplication by � isogeny induces a degree �2 rational function on x-
coordinates: x 	→ N (x)

M(x) where N (x) is a monic degree �2 polynomial in Q(b)[x]. Recursion formulae
for division polynomial (see [12], Section 3.6) provide a quick algorithm for computing this polyno-
mial, and also show that the coefficients actually lie in Z[b]. If � is congruent to ±1 modulo 5 then
�P = ±P and x divides N (x). Otherwise N (x) is divisible by x − b.

Call T�(b, x) the quotient of N (x) by x or x − b, accordingly. This is a monic polynomial in Z[b][x]
with degree �2 − 1 in x. As a polynomial in x we have

T�(b, x)=
∑

0�k��2−1

a�2−1−k(b)x
k

where a0(λ)= 1. We call d be the total degree of T� .
As in the previous section, we check that T� is irreducible in Q̄(b)[x] and Q(X�) is the splitting

field of T� over Q(b). Let C� ⊂ P2 be the projective curve made of the zeroes of the homogeneous
polynomial T�(

B
Y ,

X
Y )Y

d .
We set

j = j(b)= (b4 − 12b3 + 14b2 + 12b + 1)3

b5(b2 − 11b − 1)
.

Let
√

5 ∈ C be the positive square root of 5 and let ζ5 = exp( 2iπ
5 ). Let s = 11+5

√
5

2 and s̄ be the two
roots of b2 − 11b − 1. The forgetful map X1(5�) → X1(5) is unramified except at b ∈ {0,∞, s, s̄}. For
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every point P on X� such that b(P ) /∈ {0, s, s̄,∞}, the function b − b(P ) is a uniformizing parameter
at P .

Let U be the affine open set with equation Y B(B2 − 11BY + Y 2) �= 0. Every point on C� ∩ U is
smooth and all points on X� above points in C� − U are cusps in the modular sense (i.e. the modular
invariant at these points is infinite).

In order to desingularize C� at a given cusp, we shall construct an isomorphism between the
Tate q-curve and the completion of Eb at this cusp. We call A∞ , A0, As , As̄ the points on X1(5)
corresponding to the values ∞, 0, s and s̄ of b. We first study the situation locally at A∞ . A local
parameter is b−1 and j−1 = b−5 + 25b−6 + · · · .

We introduce Tate’s q-parameter, defined implicitly by

j = 1

q
+ 744 + 196884q + · · ·

so

q = j−1 + 744 j−2 + 750420 j−3 + · · ·
= b−5 + 25b−6 + · · ·

and we fix an embedding of the local field at A∞ inside the field of Puiseux series C{{q}} by setting

b−1 = q
1
5 − 5q

2
5 + · · ·.

We set x′ = 36x + 3(b2 − 6b + 1) and y′ = 108(2y + (1 − b)x − b) and find the reduced Weierstrass
equation

y′ 2 = x′ 3 − 27
(
b4 − 12b3 + 14b2 + 12b + 1

)
x′ + 54

(
b2 + 1

)(
b4 − 18b3 + 74b2 + 18b + 1

)
.

We want to compare the latter curve and the Tate curve with equation

y′′ 2 = x′′ 3 − E4(q)

48
x′′ + E6(q)

864

where E4(q)= 1 + 240q + · · · and E6(q)= 1 − 504q + · · · . See [18, Theorem 10.1.6].
From the classical (see [28, Proposition 7.1]) identities

(
qdj

dq

)2

= j( j − 1728)E4,

(
qdj

dq

)3

= − j2( j − 1728)E6

we deduce

(
qdb

dq

)2

= b2(b2 − 11b − 1)2 E4

25(b4 − 12b3 + 14b2 + 12b + 1)

and

(
qdb

dq

)3

= − b3(b2 − 11b − 1)3 E6

125(b2 + 1)(b4 − 18b3 + 74b2 + 18b + 1)
.



2106 J.-M. Couveignes / Journal of Algebra 321 (2009) 2085–2118
We deduce the isomorphism x′ = γ 2x′′ and y′ = γ 3 y′′ with

γ 2 = −36b(b2 − 11b − 1)dq

5qdb
.

The point P has (x, y) coordinates equal to (0,0). So

x′′(P )= 3
(
b2 − 6b + 1

)
/γ 2 = 1

12
+ b−2 + 11b−3 + · · · = 1

12
+ q

2
5 + O

(
q

3
5
)
.

Since on the Tate curve we have

x′′(w,q)= 1

12
+

∑
n∈Z

wqn

(1 − wqn)2
− 2

∑
n�1

nqn

1 − qn
(2)

we deduce that w(P ) = q± 2
5 mod 〈q〉. We may take either sign in the exponent because we may

choose any of the two isomorphisms corresponding to either possible values for γ . We decide that

w(P ) = q
2
5 mod 〈q〉. Set ζ� = exp( 2iπ

�
). For α and β integers such that 0 � α,β � � − 1 we set

w = ζα� q
β
� q

2
5� in the expansion (2) and find

x′′
α,β = 1

12
+ ζα� q

β
� q

2
5�

(
1 + O

(
q

1
5�

))

if 0 � β � �−1
2 and

x′′
α,β = 1

12
+ ζ−α

� q
�−β
�

− 2
5�

(
1 + O

(
q

1
5�

))

if �+1
2 � β � �− 1.
Since

xα,β = (
γ 2x′′

α,β − 3
(
b2 − 6b + 1

))
/36

and γ 2 = 36b2 − 216b − 396 + O (b−1)= 36q
−2
5 + 144q

−1
5 + 144 + · · · we deduce that

xα,β + 1 = ζα� q
β
�
+ 2

5�− 2
5
(
1 + O

(
q

1
5�

))

if 0 � β � �−1
2 and

xα,β + 1 = ζ−α
� q

�−β
�

− 2
5�− 2

5
(
1 + O

(
q

1
5�

))

if �+1
2 � β � �− 1.
In particular, the degree of T�(b, x) in b is � 2(�2 − 1).
For 0 � α < � and 0 � β < � we set α̃ = 5α mod � and β̃ = 5β+2 mod �. If β̃ is non-zero, the local

monodromy group permutes cyclically the � roots xα,β for 0 � α < �. We call σ∞,β̃ the corresponding

branch on X� . On the other hand, if β = −2
5 mod � then β̃ = 0 mod � and every xα,−2

5 mod �
is fixed

by the local monodromy group. We observe that x0,−2
5 mod �

is either b or 0 and is not a root of

T�(b, x). For α̃ a non-zero residue modulo �, we denote by μ∞,α̃ the branch on X� corresponding to
xα,−2 mod �

.

5
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So we have �− 1 unramified points on X� above A∞ and �− 1 ramified points with ramification
index �.

The coefficients in all the series expansions above are in Z[ 1
30 , ζ�]. The coefficients of T�(b, x) are

in Z. From the discussion above we deduce the following.

Lemma 19 (Computing C� and resolving its singularities, I). There exists a deterministic algorithm that given a
prime �� 7 and a prime p /∈ {2,3,5, �} and a finite field Fq with characteristic p such that ζ� mod p belongs

to Fq, computes the equation T�(b, x) modulo p and the expansions of all xα,β as series in b− 1
� with coefficients

in Fq, in time polynomial in �, log q and the required b
−1
� -adic accuracy.

In Appendix A we give a few lines of GP-PARI code (see [1]) that compute these expansions.
We now study the singular points above A0. A local parameter at A0 is b and j−1 = −b5 + 25b6 +

· · · so q = −b5 + 25b6 + · · · and we fix an embedding of the local field at A0 inside C{{q}} by setting

b = −q
1
5 +5q

2
5 +· · · . From γ 2 = 36−216q

1
5 +· · · we deduce that the coordinate x′′(P ) of the 5-torsion

point P is x′′(P )= 1
12 + q

1
5 + O (q

2
5 ) so the parameter w at P can be taken to be w(P )= q

1
5 mod 〈q〉

this time. For α and β integers such that 0 � α,β � �− 1 we set w = ζα� q
β
� q

1
5� in the expansion (2)

and we finish as above.
Now, a local parameter at As is b − s and j−1 = ( 1

2 − 11
√

5
50 )(b − s) + O ((b − s)2) so q = ( 1

2 −
11

√
5

50 )(b − s)+ O ((b − s)2) and we fix an embedding of the local field at As inside C{{q}} by setting

b − s = 125+55
√

5
2 q + O (q2). We deduce that the coordinate x′′(P ) of the 5-torsion point P is x′′(P )=

1
12 + w

(1−w)2 + O (q) where w = exp( 4iπ
5 ) = ζ 2

5 so the parameter w at P can be taken to be w(P ) =
ζ 2

5 mod 〈q〉 this time.
Altogether we have proved the following.

Lemma 20 (Computing C� and resolving its singularities, II). There exists a deterministic algorithm that given
a prime � � 7 and a prime p /∈ {2,3,5, �} and a finite field Fq with characteristic p such that ζ� mod p and
ζ5 mod p belong to Fq, computes the equation T�(b, x) modulo p and expansions (with coefficients in Fq) at
every singular branch of C� in time polynomial in �, log q and the required number of significant terms in the
expansions.

In order to apply Theorem 1 to the curve X� , we shall also need the following result due to Manin,
Shokurov, Merel and Cremona [9,13,23,25].

Lemma 21 (Manin, Shokurov, Merel, Cremona). For � a prime and p /∈ {5, �} another prime, the zeta function
of X� (mod p) can be computed in deterministic polynomial time in � and p.

We first compute the action of the Hecke operator T p on the space of Manin symbols for the
congruence group Γ1(5�) associated with X� . Then, from the Eichler–Shimura identity T p = F p + p <

p > /F p we deduce the characteristic polynomial of the Frobenius F p .
In Appendix B we give a few lines of Magma code (see [2]) that compute the zeta function of

X1(5�)/Fp .

11. Computing the Ramanujan subspace over FFFp

This section explains the connection between the methods given here and Edixhoven’s program
for computing coefficients of modular forms. Recall the definition of the Ramanujan arithmetic τ
function, related to the sum expansion of the discriminant form:

Δ(q)= q
∏
k�1

(
1 − qk)24 =

∑
k�1

τ (k)qk.
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We call T ⊂ End( J1(�)/Q) the algebra of endomorphisms of J1(�) generated by the Hecke opera-
tors Tn for all integers n � 2. Following Edixhoven [11, Definition 10.9] we state the

Definition 3 (The Ramanujan ideal). Assume � � 13 is a prime. We denote by m the maximal ideal in
T generated by � and the Tn − τ (n). The subspace J1(�)[m] of the �-torsion of J1(�) cut out by all
Tn − τ (n) is called the Ramanujan subspace at � and denoted V� .

This V� is a 2-dimensional vector space over F� and for p �= � the characteristic polynomial of the
Frobenius endomorphism F p on it is X2 − τ (p)X + p11 mod �.

In this section, we address the problem of computing m-torsion divisors on modular curves over
some extension field Fq of Fp for p �= �. The definition field Fq for such divisors can be predicted
from the characteristic polynomial of F p on V� . So the strategy is to pick random Fq-points in the
�-torsion of the jacobian J1(�) and to project them onto V� using Hecke operators.

In Section 10 we have defined the modular curve X� = X1(5�) and the degree 24 covering φ : X� →
X1(�) of X1(�). We prefer X� to X1(�) because we are able to construct a natural and convenient
plane model for it. The covering map φ : X� → X1(�) corresponds to forgetting the 5-torsion structure.
It induces two morphisms φ∗ : J1(�) → J� and φ∗ : J� → J1(�) such that the composite map φ∗ ◦ φ∗
is multiplication by 24 in J1(�). We write φ∗ ◦ φ∗ = [24]. Thus the curve X� provides a convenient
computational model for the group of Fq-points of the jacobian of X1(�).

We denote by A� ⊂ J� the image of ν = φ∗ ◦ φ∗ . This is a subvariety of J� isogenous to J1(�).
The restriction of ν to A� is multiplication by 24. The maps φ∗ and φ∗ induce Galois equivariant
bijections between the N-torsion subgroups J1(�)[N] and A�[N] for every integer N which is prime
to 6.

We call W� ⊂ A� ⊂ J� the image of the Ramanujan subspace by φ∗ . We choose an integer k such
that 24k is congruent to 1 modulo �, and set T̂n = [k] ◦ φ∗ ◦ Tn ◦ φ∗ , for every n. We notice that
T̂n ◦φ∗ = φ∗ ◦ Tn on J1(�)[�]. This way, the map φ∗ : J1(�)→ J� induces a Galois equivariant bijection
of Hecke modules between J1(�)[�] and A�[�], and W� = φ∗(V�) is the subspace in A�[�] cut out by
all T̂n − τ (n). So W� will also be called the Ramanujan subspace at � whenever there is no risk of
confusion. We notice that φ∗ , φ∗ , Tn , and T̂n can be seen as correspondences as well as morphisms
between jacobians, and we state the following.

Lemma 22 (Computing the Hecke action). Let � and p be primes such that p /∈ {2,3,5, �}. Let n � 2 be an
integer. Let q be a power of p and let D be an effective Fq-divisor of degree deg(D) on X� (mod p). The divisors
φ∗ ◦ φ∗(D) and φ∗ ◦ Tn ◦ φ∗(D) can be computed in polynomial time in �, deg(D), n and log q.

If n is prime to �, we define the Hecke operator T (n,n) as an element in the ring of correspon-
dences on X1(�) tensored by Q. See [21, VII, §2 ]. From [21, VII, §2, Theorem 2.1] we have T�i = (T�)i

and Tni = Tni−1 Tn − nTni−2 T (n,n) if n is prime and n �= �. And of course Tn1 Tn2 = Tn1n2 if n1 and n2
are coprime. So it suffices to explain how to compute T� and also Tn and T (n,n) for n prime and
n �= �.

Let x = (E,u) be a point on Y1(�) ⊂ X1(�) representing an elliptic curve E with one �-torsion
point u. Let n be an integer. The Hecke operator Tn maps x onto the sum of all (E I , I(u)), where
I : E → E I runs over the set of all isogenies of degree n from E such that I(u) still has order �. If n is
prime to �, the Hecke operator T (n,n) maps x onto 1

n2 times (E,nu). So we can compute the action
of these Hecke correspondences on points x = (E,u) using Vélu’s formulae [32].

There remains to treat the case of cusps. We call σβ̃ for 1 � β̃ � �−1
2 and μα̃ for 1 � α̃ � �−1

2 the
cusps on X1(�) images by φ of the σ∞,β̃ and μ∞,α̃ . To every cusp one can associate a set of Tate
curves with �-torsion point (one Tate curve for every branch at this cusp).

For example the Tate curves at σβ̃ are the Tate curves C∗/q with �-torsion point w = ζ �� q
β̃
� where

the star runs over the set of all residues modulo �. There are � branches at each such cusp.
Similarly, the Tate curves at μα̃ are the Tate curves C∗/q with �-torsion point w = ζ α̃� . One single

branch here: no ramification.
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For n prime and n �= � we have

Tn(σβ̃ )= σβ̃ + nσnβ̃

and

Tn(μα̃)= nμα̃ +μnα̃ ,

where nα̃ in μnα̃ (resp. nβ̃ in σnβ̃ ) should be understood as a class in (Z/�Z)∗/{1,−1}.
Similarly

T�(σβ̃ )= σβ̃ + 2�
∑

1�α̃� �−1
2

μα̃

and

T�(μα̃)= �μα̃.

And of course, if n is prime to �, then T (n,n)(σβ̃ )= 1
n2 σnβ̃ and T (n,n)(μα̃)= 1

n2 μnα̃ .
All together, one can compute the effect of Tn on cusps for all n. For the sake of completeness, we

also give the action of the diamond operator 〈n〉 on cusps. If n is prime to � then 〈n〉(σβ̃ ) = σnβ̃ and
〈n〉(μα̃)=μnα̃ .

We can now state the following.

Theorem 2. There is a probabilistic (Las Vegas) algorithm that on input a prime �� 13 and a prime p � 7 such
that � �= p, computes the Ramanujan subspace W� = φ∗(V�) inside the �-torsion of the jacobian of X�/Fp .
The answer is given as a list of �2 degree g� effective divisors on X� , the first one being the origin ω. The
algorithm runs in probabilistic polynomial time in p and �.

Lemma 20 gives us a plane model for X� (mod p) and a resolution of its singularities. From
Lemma 21 we obtain the zeta function of X� (mod p). The characteristic polynomial of F p on the
Ramanujan space V� is X2 − τ (p)X + p11 mod �. So we compute τ (p) (mod �) using the expansion
of the discriminant form. We deduce some small enough field of decomposition Fq for V� (mod p).
We then apply Theorem 1 and obtain a basis for the �-torsion in the Picard group of X�/Fq . The same
theorem allows us to compute the matrix of the endomorphism ν = φ∗ ◦ φ∗ in this basis. We deduce
a basis for the image A[�](Fq) of ν . Using Theorem 1 again, we now write down the matrices of the
Hecke operators T̂n in this basis for all n < �2. It is then a matter of linear algebra to compute a basis
for the intersection of the kernels of all T̂n − τ (n) in A[�](Fq). The algorithm is Las Vegas rather than
Monte Carlo because we can check the result, the group W� having known cardinality �2.

Remark 5. In the above theorem, one may impose an origin ω rather than letting the algorithm
choose it. For example, following work by Edixhoven in [11, Section 12], one may choose as origin a
well designed linear combination of the cusps. Such an adapted choice of the origin may ensure that
the �2 − 1 divisors representing the non-zero classes in W� are unique in characteristic zero and thus
remain unique modulo p for all but finitely many primes p.

12. The semisimple non-scalar case

In this section we present a simplified algorithm for computing the Ramanujan subspace V� mod-
ulo p, that applies when the Frobenius action on it is semisimple and non-scalar or equivalently when
τ (p)2 − 4p11 is not divisible by �. The main idea is to associate a divisible group with V� .
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For every integer n � 2 we call An(X) ∈ Z[X] the characteristic polynomial of Tn acting on weight
2 modular forms for Γ1(�). We factor

An(X)= Bn(X)
(

X − τ (n)
)en

in F�[X] with Bn(X) monic and Bn(τ (n)) �= 0 ∈ F� . For every integer k � 1 this polynomial factoriza-
tion lifts modulo �k as

An(X)= Bn,k(X)Cn,k(X)
(
mod �k).

We call Πk : J1(�)[�k] → J1(�)[�k] the composite map of all Bn,k(Tn) for all integers n such that
2 � n < �2. We observe that Πk+1 coincides with Πk on J1(�)[�k]. So we have defined a map
Π : J1(�)[�∞] → J1(�)[�∞].

We have the following.

Lemma 23 (The Ramanujan modules). For k � 1 an integer, we denote by Gk the subgroup of J1(�)[�k]
consisting of elements killed by some power of m. Let G be the union of all Gk. The group Gk is the image
Πk( J1(�)[�k]) of the �k-torsion by Πk. It is killed by m2kg(X1(�)) and the restriction of Πk to Gk is a bijection.
Further Gk+1[�k] = Gk = �Gk+1 . The (Z/�kZ)-module Gk is free. We call it the Ramanujan module.

We show that for every integer n � 2, the restriction of Bn,k(Tn) to Gk is a bijection. It suffices
to show injectivity. Assume Bn,k(Tn) restricted to Gk is not injective. There is a non-zero �-torsion
element P in its kernel. This P is killed by (Tn − τ (n))m (mod �) for some integer m. It is also killed
by Bn(Tn) (mod �). Since these two polynomials are coprime, P is zero, contradiction.

So Πk is an automorphism of Gk . In particular Gk ⊂Πk( J1(�)[�k]). We set Ik =Πk( J1(�)[�k]) and
we prove the converse inclusion Ik ⊂ Gk . For every integer n between 2 and �2, the restriction of Tn

to I1 is killed by (X − τ (n))en . Since the Hecke algebra is generated by these Tn and is commutative,
its image in End(I1) is triangulizable1 and consists of matrices with a single eigenvalue. We deduce
that for every integer n the restriction of Tn to I1 has a single eigenvalue (namely τ (n) (mod �)).
Because the dimension of I1 as an F�-vector space is � 2g(X1(�)) we deduce that I1 is killed by
m2g(X1(�)) . So I1 = G1 is killed by m2g(X1(�)) .

For every integer n between 2 and �2, the restriction of Tn to Ik[�] is killed by Cn,k(X) which
is congruent to (X − τ (n))en modulo �. So Ik[�] is killed by (Tn − τ (n))en and by m2g(X1(�)) . So any
morphism in m2kg(X1(�)) kills Ik[�k] = Ik . So Ik is killed by m2kg(X1(�)) and Ik = Gk .

It is clear that �Gk+1 ⊂ Gk . Conversely if P = Πk(Q ) and Q is �k-torsion then let R such that
�R = Q and S =Πk+1(R). Then S is in Ik+1 = Gk+1 and �S =Πk+1(Q )=Πk(Q )= P . So �Gk+1 = Gk .
From Gk+1[�k] = �Gk+1 we deduce that Gk+1 is a free (Z/�k+1Z)-module.

We now study the Galois action on this divisible group. Let p �= � be a prime. We regard J1(�)

as a variety over the finite field Fp . The Ramanujan module G = J1(�)[m∞] is then an �-divisible
group inside J1(�)[�∞] in the sense of Definition 13. According to the Eichler–Shimura identity F 2

p −
T p F p + p〈p〉 = 0. The diamond operator 〈p〉 ∈ T has a unique eigenvalue on G1, namely p10 (mod �).
Since F p commutes with T, the algebra generated by T and F p is triangulizable1 in GL(G1 ⊗F�

F̄�).
So any eigenvalue of F p on G1 is killed by X2 − τ (p)X + p11 (mod �). Let η be an integer that kills
the roots of the polynomial X2 − τ (p)X + p11 (mod �) in F̄∗

� . For example one may take η = �2 − 1.
As an endomorphism of G1 one has F ηp = Id + n where n is nilpotent. Since the dimension of G1

is � 2g(X1(�)) � �2 one has n�
2 = 0 and F η�

2

p = Id. So G1 splits completely over F
p�2(�2−1) . As a

consequence, Gk splits completely over the extension of degree (�2 − 1)�k+1 of Fp .

1 If K is a field and V a K -vector space, we write L(V ) for the algebra of linear maps from V to itself. Let A be a subset
of L(V ). We say that A is triangulizable if there exists a basis B of V such that the matrix of every element in A with respect
to B is upper triangular.
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Lemma 24 (Galois action on the Ramanujan module). If p �= � is a prime, then the Ramanujan module G =
J1(�)[m∞] is a divisible group inside J1(�)[�∞](F̄p). Let η be an integer that kills the roots of X2 − τ (p)X +
p11 in F̄∗

� . For example η = �2 − 1. The �k-torsion Gk = G[�k] inside G splits completely over the extension of
degree η�k+1 of Fp .

For computational convenience we may prefer X� = X1(5�) to X1(�). If this is the case, we em-
bed G inside the jacobian J� of X� using the map φ∗ . For the sake of simplicity we present the
calculations below in the context of J1(�) although they take place inside J� .

The knowledge of a non-zero element in Gk sometimes suffices to construct a basis of V�(F̄p):

Lemma 25 (The inert case). Assume X2 − τ (p)X + p11 (mod �) is irreducible. Let k � 1 be an integer and
q = pd a power of p. Given a non-zero element in Gk(Fq), one can compute a basis of V�(F̄p) in polynomial
time in log q, � and k.

Indeed, let P ∈ Gk(Fq) be non-zero. We replace P by �P until we find a non-zero element in
G1(Fq). Given such a P we can test whether it belongs to V� by computing (Tn − τ (n))x for all
2 � n � �2. If we only obtain zeroes this shows P is in V� . Otherwise we replace P by some non-zero
(Tn − τ (n))P and test again. This process stops after 2g(X1(�)) steps at most, and produces a non-
zero element P in V�(Fq). Since F p has no eigenvector in V�(F̄p), the couple (P , F p(P )) is a basis of
V�(F̄p).

So assuming that τ (p)2 − 4p11 is not a square modulo �, we have a simpler method to construct
a basis for the Ramanujan module V� modulo p:

We set q = p(�
2−1)�3

. We have G(Fq) ⊃ G2 = G2(Fq). Set Nq = # J1(�)(Fq) = Mq Lq where Mq is
prime to �. This Nq can be computed using Manin symbols as in Lemma 21. Let Lq = �w . The image
of J1(�)(Fq) by the morphism ψ = Πw ◦ [Mq] contains G2(Fq) and is in fact equal to G(Fq). We
check #G(Fq) � #G2 � �4. So at least one of the elements in J1(�)(Fq) given by Lemma 9 has a
non-zero image by ψ for � large enough. We apply Lemma 25 to this element and find a basis for
the Ramanujan module at �.

We now assume the polynomial X2 − τ (p)X + p11 mod � has two distinct roots a mod �

and b mod �. So (F p − a)2g(X1(�))(F p − b)2g(X1(�)) kills G1. Since G1 = Gk[�] we deduce that
(F p − a)2kg(X1(�))(F p − b)2kg(X1(�)) kills Gk .

This leads us to the following definition.

Definition 4 (Split Ramanujan modules). Assume X2 −τ (p)X + p11 mod � has two distinct roots a mod �

and b mod � where a and b are integers. Let ma be the ideal in T[F p] generated by �, all Tn − τ (n)
and F p − a. Let V�,a = J1(�)[ma] ⊂ V� be the eigenspace associated with a. For k � 1 an integer, we
denote by Gk,a the subgroup of J1(�)[�k] consisting of elements killed by some power of ma . Let Πk,a

the composition of Πk and (F p − b)2kg(X1(�)) . We denote by Ga the union of all Gk,a .

We have the following.

Lemma 26 (Properties of split Ramanujan modules). For every integer k � 1, the group Gk,a is the image

Πk,a( J1(�)[�k]) of the �k-torsion by Πk,a. It is killed by m
2kg(X1(�))
a and the restriction of Πk,a to Gk,a is a

bijection. So Ga = J1(�)[m∞
a ] ⊂ G is a divisible group. Let η be an integer that kills a in F∗

� (e.g. η = � − 1).
Then Gk,a splits over F

pη�k+1 .

The lemma below is the counterpart to Lemma 25 in the split non-scalar case.

Lemma 27 (The split non-scalar case). Assume X2 − τ (p)X + p11 (mod �) has two distinct roots a (mod �)

and b (mod �). Let k � 1 be an integer and q = pd a power of p. Given a non-zero element in Gk,a(Fq), one
can compute a generator of V�,a in polynomial time in log q, � and k.
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So if τ (p)2 − 4p11 is a non-zero square modulo � we also have a simple method to construct a
basis for the Ramanujan module V� modulo p:

We let a (mod �) and b (mod �) be the two roots of X2 − τ (p)X + p11 (mod �). Take q = p(�−1)�4
.

We have Ga(Fq) ⊃ G3,a = G3,a(Fq) we set Nq = # J1(�)(Fq) = Mq Lq with Mq prime to �. Let Lq = �w

and ψ = Πw,a ◦ [Mq]. The image of J1(�)(Fq) by ψ contains G3,a(Fq) and is in fact equal to Ga(Fq).
We check #Ga(Fq)� #G3,a � �3. So at least one of the elements in J1(�)(Fq) given by Lemma 9 has
a non-zero image by ψ for � large enough. We apply Lemma 27 to this element and find a generator
of V�,a . A similar calculation produces a generator of V�,b . These two eigenvectors form a basis of V�

modulo p.
All this is enough to compute the Ramanujan ideal when the Frobenius action on it is semisimple

non-scalar i.e. when � is prime to τ (p)2 − 4p11.

Remark 6. The main simplification in this variant is that we do not need to compute pairings. In
practice, one would just take a random degree zero Fq-divisor on X1(�), multiply it by the prime to
� part of # J1(�)(Fq) and apply a few Bn,k(Tn) to it. This should usually suffice.

Remark 7. If � divides τ (p)2 − 4p11, the method described in this section is no longer sufficient but
one can easily show that it provides at least one non-zero element in V� modulo p.

13. Computing the Ramanujan subspace over QQQ

Once one has computed the Ramanujan space V� inside J1(�) (or rather W� inside J� the jacobian
of X�) modulo p for many small primes p, one can try to compute this space over the rationals. This
calculation is described in detail in [11, Section 13]. In this section we sketch a variant of the method
presented in [11, Section 13]. We then explain how this method should be modified to fit with the
simplified method presented in Section 12. This leads us to a sort of generalization of the Chinese
Remainder Theorem that is more adapted to the context of polynomials with integer coefficients.

The complexity analysis of the methods presented in this section rely on results in Arakelov theory
that have been proven by Bas Edixhoven and Robin de Jong, using results by Merkl in [11] or J. Jor-
genson and J. Kramer in [19]. In fact, the complexity analysis of the variant described here requires a
bit more than what has been already given in [11]. The necessary bounds to the proof of this variant
will appear in Peter Bruin’s PhD thesis [4].

We use the model over Z[ 1
30� ] for X� = X1(5�) that is described in Section 10. We start by fixing

a Q-rational cusp O on X� . This will be the origin of the Jacobi map.
Let x be a point in J�(Q̄). We denote by θ(x) the smallest integer k such that there exists an

effective divisor D of degree k such that D − kO belongs to the class represented by x in the Picard
group. We call θ(x) the stability of x. For all but finitely many primes p and for any place p of Q(x)
above p, one can define θp(x) the stability of x modulo p: the smallest integer k such that there exists
an effective divisor D of degree k such that D −kO belongs to the class represented by x mod p in the
Picard group of X� mod p. We define θp(x) to be the minimum of all θp(x) for all places p above p.
We note that θp(x) � θp(x) � θ(x) whenever θp(x) is defined. Clearly θp(x) is defined and equal to
θ(x) for all large enough primes.

A consequence of the results by Bas Edixhoven and Robin de Jong, extended by Peter Bruin in his
forthcoming PhD thesis, see [4,11], is that, for at least half the primes smaller than �O , the following
holds: θp(x) is defined and equal to θ(x) for all x in W� . Notice that θ(x)= θ(y) if x and y are Galois
conjugate.

Now let x be a non-zero point in W� . We can compute x modulo places p above p, for many small
(e.g. polynomial in �) primes p such that θp(x)= θ(x). We only use primes such that θp(x)= θ(x) for
every x in W� .

There is a unique effective divisor D = P1 + · · · + Pθ(x) such that D − θ(x)O is mapped onto x
by the Jacobi map. This divisor remains unique modulo all the places p in question. Further, no Pi
specializes to O modulo any such p. So we choose a function f on X� having no pole except at O .
We define e.g. F (x)= f (P1)+ · · · + f (Pθ(x)).
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We form the polynomial

Pk(X)=
∏

y∈W� with θ(y)=k

(
X − F (y)

)
.

This polynomial has coefficients in Q. For the above primes p we have

Pk(X) mod p =
∏

y∈W� mod p with θp(y)=k

(
X − F (y)

)
.

We set P (X)= ∏
k>0 Pk(X). If the Galois action on W� − {0} is transitive then P (X) is likely to be

irreducible and equal to the unique non-trivial Pk(X). To be quite rigorous one should say some more
about the choice of f . See [11, Section 22].

If a reasonable f (e.g. the divisor of f is n(O − O ′) where O ′ is another rational cusp and n is the
order of O − O ′ in the jacobian) is chosen then Peter Bruin, improving on Edixhoven, de Jong, and
Merkl, proves in [4] that the logarithmic height of P (X) is bounded by a polynomial in �.

If we know W� modulo p then we can compute P (X) modulo p and, provided we have taken
enough such primes p, we deduce P (X) using Chinese Remainder Theorem and the bounds proved
by Edixhoven, de Jong, Merkl and Bruin.

However, if we use the simplified algorithm presented in Section 12 we shall only obtain P (X)
modulo p for those p such that � does not divide τ (p)2 − 4p11. If � divides τ (p)2 − 4p11 then we
may only obtain a non-trivial factor of P (X) mod p. This factor has degree �− 1 in fact.

This leads us to the following problem:
Let P (X) be a degree d � 2 irreducible2 polynomial with integer coefficients.
Let H be an upper bound for the naive height of P (X): any coefficient of P lies in [−H, H].
Let I be a positive integer and for every integer i from 1 to I assume we are given an integer

Ni � 2 and a degree ai monic polynomial Ai(X) in Z[X] where 1 � ai � d. Assume the Ni are pairwise
coprime.

Question: assuming P (X) mod Ni is a multiple of Ai(X) mod Ni for every i, can we recover P (X),
and is P (X) the unique polynomial fulfilling all these conditions?

We start with the following.

Lemma 28 (Resultant and intersections). Let P and Q be two non-constant polynomials with integer coef-
ficients and trivial gcd.3 Let N � 2 be an integer. If P mod N and Q mod N are both multiples of the same
degree d � 1 monic polynomial A mod N, then the resultant of P and Q is divisible by Nd.

This easily follows from the resultant being given as a determinant.
Let Pd be the additive group of integer coefficient polynomials with degree � d. Let ρi : Pd →

Z[X]/(Ai,Ni) be the reduction map modulo the ideal (Ai,Ni).
The product map

ρ =
∏

1�i�I

ρi : Pd →
∏

1�i�I

Z[X]/(Ai,Ni)

is surjective (Chinese Remainder). Its kernel is therefore a lattice R with index Θ = ∏
1�i�I Nai

i in

Pd = Zd+1.
If P1 and P2 are two coprime non-constant polynomials with degree � d and respective naive

heights K1 and K2, then their resultant is bounded above by (2d)!K d
1 K d

2 . If further P1, P2 ∈ R then,
according to Lemma 28, Θ = ∏

1�i�I Nai
i divides the resultant of P1 and P2.

2 Irreducible means here irreducible in the ring Z[X].
3 The gcd here is the gcd in the ring Z[X].
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Lemma 29 (Heights and intersections). Let (Ni)1�i�I be pairwise coprime integers. Let P be an irreducible
polynomial with integer coefficients and degree d � 2 and naive height bounded by H. Let Q be a polynomial
with integer coefficients and degree � d and naive height bounded by K . Assume that for every i from 1 to N
the polynomials P mod Ni and Q mod Ni are multiples of the same monic polynomial Ai(X) mod Ni with
degree ai where 1 � ai � d. Assume further that

∏
1�i�I

Nai
i > (2d)!Hd K d.

Then Q is a multiple of P .

We observe that the L2 norm of P is � H
√

d + 1. Also, if Q has L2 norm � H
√

d + 1 then its
coefficients are � H

√
d + 1. Therefore if

Θ =
∏

1�i�I

Nai
i > (2d)!(d + 1)

d
2 H2d

the polynomial P is the shortest vector in the lattice R for the L2 norm.
Applying the LLL algorithm to the lattice R we find [6, Theorem 2.6.2] a vector in it with L2 norm

� 2
d
4 Θ

1
d+1 . Taking this latter value for K we see that if

∏
i

Nai
i > (2d)!d+1 Hd(d+1)2

d2(d+1)
4

then the vector output by the LLL algorithm is a multiple of P .

Lemma 30 (Interpolation and lattices). Let d � 2 be an integer. Let I be a positive integer and for every i from
1 to I let Ni � 2 be an integer and Ai(X) a monic polynomial with integer coefficients and degree ai where
1 � ai � d. We assume the coefficients in Ai(X) lie in the interval [0,Ni[.

We assume there exists an irreducible polynomial P (X) with degree d and integer coefficients and naive
height � H such that P (X) mod Ni is a multiple of Ai(X) mod Ni for all i.

We assume the Ni are pairwise coprime and

∏
1�i�I

Nai
i > (2d)!d+1 Hd(d+1)2

d2(d+1)
4 .

Then P (X) is the unique polynomial fulfilling all these conditions and it can be computed from the
(Ni, Ai(X)) by a deterministic Turing machine in time polynomial in d, log H and I , and the log Ni .

Note that the dependency on I and log Ni is harmless because one may remove some information
if there is too much of it. We can always do with some I and log Ni that are polynomial in d and log H .

This lemma shows that we can compute (lift) the Ramanujan module W� using the simplified
algorithm of Section 12, even if the action of the Frobenius at p on W� is not semisimple for any
auxiliary prime p.

14. Are there many semisimple pairs (�, p)?

We have seen in Section 12 that the computation of V� modulo p becomes simpler whenever the
two primes p and � satisfy the condition that � is prime to τ (p)2 − 4p11. If this is the case, we say
that the pair (�, p) is good (otherwise it is bad).
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In the situation of Section 13 we are given a fixed prime � and we look for primes p such that
(�, p) is good. We need these primes p to be bounded by a polynomial in �. And there should be
enough of them that we can find them by random search.

This leads us to the following definition.

Definition 5 (What bad and good means in this section). We say that a pair (�, p) of prime integers is
bad if � divides τ (p)2 − 4p11. Otherwise it is good. Let c > 1 be a real. We say that a given prime �

is c-bad if (�, p) is bad for at least half the primes p � �c . Otherwise it is c-good.

In this section we give an elementary unconditional proof that there are enough good primes �. Let
α, β , γ and δ be four positive constants such that for every integer k � 2 the kth prime pk satisfies
αk log k � pk � βk log k and for every real x � 2 the arithmetic function π(x) giving the number of
primes � x satisfies γ x(log x)−1 � π(x)� δx(log x)−1.

Work by Tchebitchef allows γ = 1
3 and δ = 5

4 . Work by Rosser [27] shows that α = 1 is fine. Rosser
also proved that pk � k(log k + log log k) for k � 6. So we can take β = 2.17 for example. I thank
Guillaume Hanrot for pointing out these references to me.

Let X � 3 be an integer. Let L be the Xth prime integer. Let X (c, X) be the set of pairs of primes
(�, p) with � � L and p � �c . We set �1 = p1 = 2, �2 = p2 = 3, . . . the successive prime integers. Let
P be the largest prime � Lc and let Y be the integer such that P = pY . One has L � βX log X and
P � βc Xc(log X)c and Y � P .

Since τ (p)2 − 4p11 has at most log2(4p11) prime divisors, there are at most Y (2 + 11 log2 P ) bad
pairs and this is � 51cβc Xc(log X)c+1 provided X � β . We want to bound from above the number
of bad � � L. The worst case is when the smallest � are bad. Assume all primes � � �x are bad. The
number of bad pairs is then at least

1

2

∑
1�k�x

π
(
�c

k

)
� γαc

2

∑
3
α �k�x

kc(log k)c

c logα + c logk + c log log k
� γαc

4c

∑
3
α �k�x

kc(log k)c−1

and this is at least

γαc

4c(c + 1)

(
xc+1 −

(
3

α

)c+1)
� γαc

8c(c + 1)
xc+1

provided x � 6/α. Assume at least half of the primes � � L are bad. Then the number of bad pairs is
at least γαc

8c(c+1) (X/2)c+1 provided X � 12/α. So

γαc

8c(c + 1)
(X/2)c+1 � 51cβc Xc(log X)c+1

so

X

(log X)c+1
� 816

(
2β

α

)c

c2(c + 1)γ−1.

We call a the right-hand side in the above inequality. We set Z = X
1

c+1 and we have Z
log Z �

(c + 1)a
1

c+1 . Since log Z �
√

Z we have Z � (c + 1)2a
2

c+1 and X � (c + 1)2(c+1)a2.

Lemma 31. Let α, β , γ and δ be the four constants introduced before Definition 5 above. Let c > 1 be a real
number. Assume X is an integer bigger than 8162c4(c + 1)2(c+2)(

2β
α )2cγ−2 . Then at least half among the X

first primes are c-good.
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Lemma 32 (Effective bound for the density of good primes �). Let c > 1 be a real number. Assume X is an
integer bigger than 223+5cc4(c + 1)2(c+2) . Then at least half among the X first primes are c-good.

Appendix A. A GP-PARI code for Puiseux expansions at singular branches of modular curves

Below are a few lines of GP-PARI code (see [1]) that compute the expansions of xα,β as series in

b− 1
� with coefficients in a finite field containing a primitive �th root of unity. We use the methods

and notation given in Section 10, before the statement of Lemma 19.
Our code computes the q-series for the modular function j as

j(q)= 1728E3
4(q)

(
E3

4(q)− E2
6(q)

)−1

where

E4(q)= 1 + 240
∑
n�1

n3qn

1 − qn

and

E6(q)= 1 − 504
∑
n�1

n5qn

1 − qn
.

The expansions for the xα,β are then obtained through standard operations on series like product,
sum, reversion, composition.

{ser(aa,bb,prec,ell,p,z,b,jc,E4,E6,D,jq,qc,gc,w,x)=
ell=7;
p=953;
z=Mod(431,p);
b=1/c;
jc=(b^4-12*b^3+14*b^2+12*b+1)^3/b^5/(b^2-11*b-1);
E4=sum(n=1,prec, n^3*q^n/(1-q^n))*240+1+O(q^prec);
E6=sum(n=1,prec, -n^5*q^n/(1-q^n))*504+1+O(q^prec);
D=(E4^3-E6^2)/1728;
jq=E4^3/D;
qc=subst(serreverse(1/jq),q,1/jc+O(c^prec));
gc= -36*b*(b^2-11*b-1)*deriv(qc)*(-c^2)/5/qc;
w=z^aa*Q^(2+5*bb);
xabs=Mod(1,p)*(1/12
+sum(n=1,prec,
w*Q^(5*ell*n)/(1-w*Q^(5*ell*n))^2+O(Q^(5*ell*prec)))
+w/(1-w)^2
+sum(n=1,prec,
Q^(5*ell*n)/w/(1-(w)^(-1)*Q^(5*ell*n))^2+O(Q^(5*ell*prec)))
-2*sum(n=1,prec,
n*Q^(5*ell*n)/(1-Q^(5*ell*n))+O(Q^(5*ell*prec )) ));
cQ=subst(serreverse((qc/c^5)^(1/5)*c),c,Q^ell);
bQ=1/cQ;
gQ=subst(gc,c,cQ);
XabQ=(gQ*xabs-3*(bQ^2-6*bQ+1) )/36;
QC=subst(serreverse(1/((bQ*Q^ell)^(1/ell)/Q)),Q,C);
XabC=subst(XabQ,Q,QC);
}
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Appendix B. A Magma code that computes the zeta function of modular curves

Below are a few lines written in the Magma language (see [2]). They compute the characteristic
polynomial of the Frobenius of X1(5�)/Fp using the methods given in the proof of Lemma 21.

ZZ:=IntegerRing();
l:=11;
N:=5*11;
QN:=CyclotomicField(EulerPhi(N));
R1<T>:=PolynomialRing(QN,1);
R2<T,U>:=PolynomialRing(QN,2);
G := DirichletGroup(N,QN);
chars := Elements(G);
gen4:=chars[2];
gen10:=chars[5];
Genus(Gamma1(N));
charsmc:=[gen4,gen4^2,gen4^4, gen4*gen10,gen4^2*gen10,
gen10,gen4*gen10^2,gen4^2*gen10^2,gen10^2 , gen4*gen10^5,
gen4^2*gen10^5,gen10^5];
p:=101;
PT:= R2 ! 1;
W:=1;
g:=1;

for eps in charsmc do

M := ModularForms([eps],2);
P:= R2 ! Evaluate(HeckePolynomial(CuspidalSubspace(M),p),T);
g:=Degree(P,T);
W := Evaluate(P,[ T+Evaluate(eps,p)*p/T, 1])*T^g;
PT:=PT*W;

end for;

PT := R2 ! PT;

k:=2;
PTk:= Resultant(PT, T^k-U,T);
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