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Abstract

Let A andI” be artin algebras angU a faithfully balanced selforthogonal bimodule. We show
that theU-dominant dimensions of U andU - are identical. As applications of the results obtained,
we give some characterizations of the doutilelual functors preserving monomorphisms and being
left exact respectively.
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1. Introduction

For a ring A, we use modi (respectively modi®) to denote the category of finitely
generated left-modules (respectively right-modules).

Definition 1.1. Let A and I" be rings. A bimodule, 7 is called a faithfully balanced
selforthogonal bimodule if it satisfies the following conditions:

(1) AT e modA andT € modI°P.
(2) The natural mapg — End(7r) andI” — End(, T)°P are isomorphisms.
(3) Ext,(uT, sT)=0and Ex}-(Tr, Tr) =0 foranyi > 1.
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Definition 1.2. Let U be in modaA (respectively mod™°P) andn a non-negative integer.
For a moduleM in modA (respectively mod™P),

(1) M is said to havel/-dominant dimension greater than or equaktowritten U -
dom.dim(4 M) (respectivelyU-dom.dim(M)) > n, if each of the first: terms in a min-
imal injective resolution ofMf is cogenerated by U (respectivelyUr), that is, each of
these terms can be embedded into a direct product of copigl ¢fespectivelyUr) [10].

(2) M is said to have dominant dimension greater than or equat,tavritten
domdim(4 M) (respectively domdim(M)) > n, if each of the firstz terms in a mini-
mal injective resolution oM is A-projective (respectively °P-projective) [12].

Assume thati is an artin algebra. By [4, Theorem 3.3]/ and each of its direct sum-
mands are projective for any index detSo, when U = 4 A (respectivelyUr = A,),
the notion ofU-dominant dimension coincides with that of (ordinary) dominant dimen-
sion. Tachikawa in [12] showed thatf is a left and right artinian ring then the dominant
dimensions ofy A and A4 are identical. Hoshino then in [6] generalized this result to
left and right noetherian rings. Kato in [10] characterized the modules 84ttominant
dimension greater than or equal to one. Colby and Fuller in [5] gave some equivalent con-
ditions of domdim(4 A) > 1 (or 2) in terms of the properties of the double dual functors
(with respect toy A 4).

The results mentioned above motivate our interests in establishing the identity of
dominant dimensions of U and U and characterizing the properties of modules with
a givenU-dominant dimension. Our characterizations will lead a better comprehension
aboutU -dominant dimension and the theory of selforthogonal bimodules.

Throughout this papetd and I" are artin algebras angdU is a faithfully balanced
selforthogonal bimodule. The main result in this paper is the following

Theorem 1.3. U-domdim(,U) = U-domdim(Ur).

Put ,Ur = 4 A4, we immediately get the following result, which is due to Tachikawa
(see [12]).

Coroallary 1.4. domdim(4 A) = domdim(A 4).

Let M be in moda (respectively mod™P) and G(M) the subcategory of mad (re-
spectively mod™°P) consisting of all submodules of the modules generatedfby is
called a QF-3 module if7 (M) has a cogenerator which is a direct summand of every other
cogenerator [13]. By [13] Proposition 2.2 we have that a finitely cogeneratatbdule
(respectivelyl"°P-module) M is a QF-3 module if and only iM cogenerates its injective
envelope. So by Theorem 1.3 we have

Corollary 1.5. 4U is QF-3if and only ifU is QF-3
We shall prove our main result in Section 2. We study the case that the dgedilel

functors(—)** preserves monomorphisms by the language of Lambek torsion theory, show
the left-right symmetry of the fact th&t-)** preserves monomorphisms, and then prove



Z. Huang / Journal of Algebra 285 (2005) 669—681 671

the main result. It should be pointed out that this strategy is similar to that of Hoshino [7].
As applications of the results obtained in Section 2, we give in Section 3 some character-
izations of the doublé/-dual functors(—)** preserving monomorphisms and being left
exact respectively. The results of this paper are natural generalizations of (ordinary) dom-
inant dimension and of several author’s approach to dominant dimension (see Tachikawa
[12], Colby—Fuller [5] and Hoshino [6,7]). In fact, most of the results here aré/tuial
versions of the results in [6,7].

2. Theproof of main result

Let Eg be the injective envelope ofU. Then Eg defines a torsion theory in motl
The torsion clasg is the subcategory of madl consisting of the moduleX satisfying
Homy (X, Eg) = 0, and the torsionfree class is the subcategory of mad consisting of
the modules cogenerated by (equivalently,Y can be embedded iEé for some index
setl). A module in modA is called torsion (respectively torsionfree) if it is # (respec-
tively 7). The injective envelop&, of Ur also defines a torsion theory in mdd@P and
we may give in mod™°P the corresponding notions as above. Kebe in modA (respec-
tively modI"°P) and(X) the torsion submodule, that is(X) is the submoduleX such
that Homy (1 (X), Eo) = 0 (respectively Hom(z(X), Ej) = 0) and Eq (respectivelyE)
cogenerateX /¢ (X) (cf. [9]).

Let A be in modA (respectively mod™©P). We call Homy (4 A, AUr) (respectively
Homp(Ar, AUr)) the dual module ofA with respect to, U, and denote either of these
modules byA*. For a homomorphisnf betweenA-modules (respectively °P-modules),
we put f* =Hom(f, AUr). Letos: A — A** viaoa(x)(f) = f(x) foranyx € A and
f € A* be the canonical evaluation homomorphishis calledU -torsionless (respectively
U-reflexive) ifo4 is a monomorphism (respectively an isomorphism).

The following result is analogous to [7, Lemma 4].

Lemma 2.1. For a moduleX in modA (respectivelymod™°P), t(X) = Kero if and only
if Hom, (Keroy, Eo) = 0 (respectivelyHomy (Keroy, Ep) =0).

Proof. The necessity is trivial. Now we prove the sufficiency.
We have the following commutative diagram with the upper row exact:

0 1(X) X T X/t(X) ——= 0

l ox \LUX/t(X)
skk

X s [X/1(X)]

Since Homy (z(X), Eg) =0, [z(X)]* = 0 andx* is an isomorphism. Sa** is also an
isomorphism and hencgX) C Keroy. On the other hand, Hop(Kerox, Eg) = 0 by
assumption, which implies that Key is a torsion module and contained ¥1 So we
conclude that Kesxy C t(X) and Keloxy =¢(X). O
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Remark. From the above proof we always ham&) C Keroy.

Suppose tha#t € modA (respectively mod™°P) and P, N Pyp— A — 0is a (mini-
mal) projective resolution ofl. Then we have an exact sequence

*

0— A* — Py — P{ — Cokerf* — 0.

We call Cokerf* the transpose (with respect jd/r) of A, and denote it by Ty A.
The following result is thé/-dual version of [7, Theorem A].

Proposition 2.2. The following statements are equivalent.

(1) t(X) =Keroy for everyX € modA.

(2) f** is monic for every monomorphisfi: A — B in modA.
(D°P ¢ (Y) = Keroy for everyY € modI°P.

(2)°P g** is monic for every monomorphisgn C — D in modI"°P.

Proof. By symmetry, it suffices to prove the implications(@j = (2)°P = (1)°F.

(1) = (2)°P. Let g:C — D be monic in mod™°P. Set X = Cokerg. We have that
Keror, x = Ext}_(X, U) and Tiy X € modA by [8, Lemma 2.1]. By (1) and Lemma 2.1,
Hom, (Extk.(X,U), Eg) = 0. Since Cokeg* can be imbedded in EX(X,U),
Homjy (Cokerg*, Eg) = 0. But (Cokeg*)* c Hom, (Cokerg*, Eg), so (Cokeg™)* =0
and hence Keg** = (Cokerg*)* = 0, which implies thag** is monic.

(2)°P = (1)°P. Let Y be in modr°P and X any submodule of Kery and f1: X —
Keraoy the inclusion. Assume that is the composition:

Xi> Keroy — Y.

Thenoy f =0 and f*oy = (oy f)* = 0. But oy is epic by [1, Proposition 20.14], so
f*=0and f* = 0. By (2°P, f** is monic, soX* = 0 and X*** = 0. SinceX* is
isomorphic to a submodule &f*** by [1, Proposition 20.14]X* = 0.

We claim: Hony (Keroy, Ep) = 0. Otherwise, there existsfa € Homr (Keroy, Ep).
Then Ima N Ur # 0 sinceUr is an essential submodule 6§, Soa YImanUp)isa
non-zero submodule of Kef and there exists a non-zero map(Ima N Ur) — U,
which implies that(e~1(Ima N Ur))* # 0, a contradiction with the former argument.
Hence we conclude thatY) = Keroy by Lemma 2.1. O

Let A be aA-module (respectively &°P-module). Denote either of Hop{, U, 4 A)
and Hom-(uUr, Ar) by *A, and the left (respectively right) flat dimension af by
[.fd4(A) (respectively fdj(A)). We give a remark as follows. For an artin algel®a
and a left (respectively right®-moduleA, we have that the left (respectively right) flat di-
mension ofA and its left (respectively right) projective dimension are identical; especially,
A is left (respectively right) flat if and only if it is left (respectively right) projective.
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Lemma 2.3. Let 4 E (respectivelyE) be injective and: a non-negative integer. Then
[.fd(*E) (respectivelyr.fd o (*E) < n) if and only if HomA(Ext}‘fl(A, U), E) (respec-
tively Homp(Ext’jfl(A, U), E) =0)for any A € modI"°P (respectivelynodA).

Proof. Itis trivial by [3, Chapter VI, Proposition 5.3]. O

The following result is similar to [7, Proposition B]. In fact, we obtain the first two
statements of this result by replacing (g R) is flat” and “E is flat” of [7, Proposition B]
by “*Eq is flat” and “*E is flat” respectively. The third statement is analogous to the cor-
responding one of [7, Proposition B].

Proposition 2.4. The following statements are equivalent.

(1) *Epis flat.
(2) There is an injectivel-moduleE such that“E is flat andE cogenerates.
(3) 1(X) =Keroy forany X e modA.

Proof. (1) = (2). ltis trivial.

(2) = (3). Let X e modA. Since Kewy = Ext}(TrU X, U) with Try X € modI™°P by
[8, Lemma 2.1]. By (2) and Lemma 2.3, ng(Ext}(TrU X,U),E)=0.

SinceE cogenerategy, there is an exact sequence0Eq — E! for some index set.
So

Homy (Ext}-(Try X, U), Eo) € Homy (Exty(Try X, U), E')
= [Homy (Ext-(Try X, U), E)]I =0 and
Homy (Ext}-(Try X, U), Eg) = 0.
By Lemma 2.1¢(X) = Keroy.

(3) = (1). Let N e modI"°P. Since Kebry, y = Ext-(N, U) with Try N € modA by
[8, Lemma 2.1], By (3) and Lemma 2.1 we have HmExtlr(N, U),Eg) =
Hom, (Kerorr, v, Eg) =0, and sd*Eg is flat by Lemma 2.3. O

Dually, we have the following
Proposition 2.4'. The following statements are equivalent.

(1) *Ejisflat.

(2) There is an injectivg™°P-moduleE’ such that“E’ is flat andE” cogenerategz,,.
(3) 1 (Y) =Keroy for anyY € modr °P.

Corollary 2.5. *Eg is flat if and only if* £y is flat.

Proof. By Propositions 2.2, 2.4 and®. O
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Let A € modA (respectively mod™©P) and i a non-negative integer. We say that
the grade ofA with respect to, U, written gradg A, is greater than or equal toif

Ext/, (A, U) =0 (respectively Ext (A, U) =0) for any 0< j <i.

Lemma 2.6. Let X be in modI"®P and n a non-negative integer. rade, X > n and
grade, Ext. (X, U) > n + 1, thenExt}. (X, U) =0.

Proof. Since X* is U-torsionless X** = 0 if and only if X* = 0. Then the case =0
follows.
Now letrn > 1 and

o> P,—-...>PL—>Ph—>X—>0

be a projective resolution of in modr"°P. PutX,, = CokeP,.1 — P,). Then we have
an exact sequence

0— Pg—>~~—>P:_1L>X:—>EX'E7~(X,U)—>O

in modA with eachP* e add 4 U. Since gradg Ext;.(X,U) > n + 1,
Ext, (Ext-(X,U),U) =0 forany 0<i <n.

So Ext'A(Ext’;(X, U),P]*) =0 for any 0<i <n and 0< j < n — 1, and hence
Ext (ExtL (X, U), Im f) = Ext}, (Ext-(X, U), P§) = 0, which implies that we have an
exact sequence HopiEXt}.(X, U), X;;) — Hom, (Exty (X, U), Ext. (X, U)) — 0. No-
tice that X;; is U-torsionless and Hop(Ext}. (X, U),U) = 0. So Homy (Ext}(X, U),
X;) = 0 and Homy (Ext}.(X, U), Ext}.(X,U)) = 0, which implies that EXt(X, U)
=0. O

Remark. We point out that all of the above results (from 2.1 to 2.6) in this section also
hold in the caser andI” are left and right noetherian rings.

For a modulel’ in modA (respectively mod™°P), we use adg, T’ (respectively add)
to denote the subcategory of madrespectively mod™°P) consisting of all modules iso-
morphic to direct summands of finite direct sums of copieg Bf(respectivelyT). Let
A be in modA. If there is an exact sequence — U, — --- — Uy — Up—> A — 0 in
modA with eachU; € add 2 U for anyi > 0, then we defind/-resol.dimy (A) = inf{n |
there is an exact sequence9U,, — --- —> Uy — Up — A — 0 in modA with each
U; e add 4 U for any 0< i < n}. We setU-resol.dimy (A) infinity if no such an integer
exists. Dually, for a modul® in modI"°P, we may defind/-resol.dim-(B) (see [2]).

Lemma2.7. Let E be injective irmodA (respectivelynod"°P). Thenl.fd-(* E) (respec-
tivelyr.fd, (* E) < n) ifand only ifU -resoldim 4 (E) (respectivelyU-resoldim,(E) < n).
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Proof. Assume thatt is injective in modA and I.fd-(*E) < n. Then there is an exact
sequence 8> Q, — --- — Q1 — Q¢ —* E — 0 with eachQ; flat (and hence projec-
tive) in modI” for any 0< i < n. By [3, Chapter VI, Proposition 5.3] T§r(U,* E)=
HomA(Ext}(U, U), E)=0forany;j > 1. Then we easily have an exact sequence:

0-U®rQn—-—>U®rQ01—>UQ®r Qo— U E—O0.

It is clear thatU @, Q; € add,U for any 0<i < n. By [11, p. 47],U ®}. E =
Hom,(Homp (U, U), E) = E. Hence we conclude that-resol.dimy (E) < n.

Conversely, ifU-resol.dimy (E) < n then there is an exact sequence>QX,, — --- —
X1 — Xo — E — 0 with eachX; in add 54U for any 0< i < n. Since Exﬁl(U, X;)=0
foranyj>1and 0<i<n, 0—>*X, »> --- > *X1 > *Xo —>* E — 0 is exact with
each*X; (0<i < n) I'-projective. Hence we are doneQ

Corollary 2.8. Let E be injective inmodA (respectivelymodl™°P). Then*E is flat in
modI” (respectivelynodA°P) if and only if  E € add AU (respectivelyE € addUr).

From now on, assume that

0 AU L Eg L by L2 I p S

is a minimal injective resolution of U .
The following result is thd/-dual version of [6, Lemma 2.2].

Lemma 2.9. Supposd/-domdim(,U) > 1. Then, for any: > 2, U-domdim(,U) > n if
and only ifgradg, M > n for any M € modA with M* =0.

Proof. For anyM € modA andi > 1, we have an exact sequence
Hom, (M, E;_1) — Homu (M, Im f;) — Ext, (M, U) — 0. ()

SupposelU/-dom.dim(4,U) > n. Then E; is cogenerated by U for any 0<i <n — 1.
So, for a givenM € modA with M* = 0 we have that Hom(M, E;) = 0 and
Homu (M, Im f;) = 0forany 0< i < n—1. Then by the exactness(@f), Exf'A(M, U)=0
forany 1<i <n —1, and so grageM > n.

Now we prove the converse, that is, we will prove tlate add 4 U for any 0< i <
n—1.

First, Eg € add U by assumption. We next prov&; € add,U. For any 0#
x € Im f1, we claim thatM* = Homs (M, U) # 0, where M = Ax. Otherwise, we
have Ext(M,U) =0 for any 0<i < n — 1 by assumption. Sincé&€g € add U,
Homyu (M, Eg) = 0. So from the exactness ¢f) we know that Hom (M, Im f1) = 0,
which is a contradiction. Then we conclude that fmand henceE1, is cogenerated by
AU. Notice thatE; is finitely cogenerated, sf1 € add 4U. Finally, suppose that > 3
andE; € add 4 U for any 0< i < n — 2. Then by using a similar argument to that above
we haveE,,_1 € add ,U. The proof is finished. O
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Dually, we have the following

Lemma 2.9'. Supposd/-domdim(Ur) > 1. Then, for any: > 2, U-domdim(U) > n if
and only ifgradg; N > n for any N € modI"°P with N* =0.

We now are in a position to prove the main result in this paper.

Proof of Theorem 1.3. We only need to provd/-dom.dim(,U) < U-dom.dimUr).
Without loss of generality, suppoge-dom.dim(,U) = n.

The casen = 1 follows from Corollaries 2.5 and 2.8. Let > 2. Notice that
U-dom.dim(4,U) > 1 andU-dom.dimUr) > 1. By Lemma 2.9it suffices to show that
gradg; N > n for any N € modI"°P with N* = 0. By Lemmas 2.3 and 2.7, for amny= 1,
Hom, (Ext,-(N, U), Eg) = Tor! (N,* Eg) = 0, so [Ext-(N, U)]* = 0. Then by assump-
tion and Lemma 2.9, gra@ixt"F(N, U) > n for anyi > 1. It follows from Lemma 2.6
thatgradg N >n. O

3. Some applications

As applications of the results in above section, we give in this section some characteri-
zations of(—)** preserving monomorphisms and being left exact respectively.
Assume that

f/ f f/ fz/ fl/
0— Ur % Ey—5 E] % ... L E] aE

is a minimal injective resolution df . We first have the following

Proposition 3.1. The following statements are equivalent for any positive intéger

(1) U-domdim(,U) > k.
@) 0 Uy 15 Ezr

(1P U- domdlm(Up) > k.

(2% 0— (Up)** =% L L (Ep™ /i X (Epm s LNI/SY (Ej_,)*™ is exact.

Vi 13 f
s g2 5 B s exact

Proof. By Theorem 1.3 we havel) < (1)°P. By symmetry, we only need to prov#) <
(2).

If U-dom.dim(4U) >k, thenE; is in add,U for any 1< i < k — 1. Notice that, U
and eacht; (0<i <k — 1) areU-reflexive and hence we have that

1

0— (AU)"™ — Ej* — fi

E** fz** fk**l E
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is exact. Assume th@®) holds. We proceed by induction @nBy assumption we have the
following commutative diagram with exact rows:

fo f1 f2 Si—1
0 AU Eo Eq Er_1
loy iUEO laEl iUEkl
f** f** fax f*,*
0 —= (W)™ —= E§" ——= By s B

Sinceoy is an isomorphismgg, fo = fi* oy is a monomorphism. Bufp is essential, so
oK, IS monic, that isEq is U-torsionless andtg is cogenerated by U. Moreover,Eg is
finitely cogenerated, so we have thg € add ,U (and hencerg, is an isomorphism).
The casek = 1 is proved. Now suppose that> 2 andE; € add 4U (and thenog, is an
isomorphism) forany & i <k —2.PutAg= AU, Bo=(AU)**, go = fo, g5 = f§* and
ho =oy. Then, for any 0< i < k — 2, we get the following commutative diagrams with
exact rows:

0 A; E; Ait1 0
l/ hi \L OE; l hiy1
0 B; E; Bia 0
and
8i+1
0 A Eita
l hiy1 i OFit1
81
0 Bij1 E’

where A; =1Im f; and A;y1 =Im fi11, B; =Im f** and B;y1 = Im i & and g; 11
are essential monomorphisnig,and#; 1 are induced homomorphisms. We may get in-
ductively that eacth; is an isomorphism for any &€ j < k — 1. Becauserg, ,8r—1 =
8)_1hk—11s a monomorphism, by using a similar argument to that above we Bavee
add AU . Hence we conclude that-dom.dim,U) > k. O

The following result develops [5, Theorem 1] and [6, Proposition 3.1].

Proposition 3.2. The following statements are equivalent.

(1) U-domdim(,U) > 1.
(2) (—)**:modA — modA preserves monomorphisms.
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(3) 0= (4U)™ 22 E}* is exact.
(1)°° U-domdim(Ur) > 1.
(2)°P (=)** :modI"°P — modI°P preserves monomorphisms.

fO* .
(3)°P 0— (Ur)** > (E{)** is exact.

Proof. By Theorem 1.3 we havél) < (1)°P. By symmetry, we only need to prove that
the conditions of (1), (2) and (3) are equivalent.
D) = 2. If U-dom.dim(4U) > 1 thent(X) = Keroy for any X € modA by Corol-
lary 2.8 and Proposition 2.4. Se-)** preserves monomorphisms by Proposition 2.2.
(2) = (3) is trivial and(3) = (1) follows from Proposition 3.1. O

The following result excep3) and (3)°P is the U-dual version of [7, Proposition E],
which develops [5, Theorem 2].

Proposition 3.3. The following statements are equivalent.

(1) U-domdim(,U) > 2.
(2) (—=)**:modA — modA is left exact.

(3) 0 (40 > E}* LN E}* is exact.

(4) (—)**:modA — modA preserves monomorphisms aBeth(Ext} (X, U), U) = 0
for any X e modA.

(1)°F U-domdim(Ur) > 2.

(2)°P (—)**:modI"°P — modI°Pis left exact.

( /) %k 1 % )

(3°P 0— (Up)** @ (Ep)** (& (E7)™ is exact.

(4)°P (—)**:modI"°P — modI"°P preserves monomorphisms arkt (Extk.(Y, U),
U) =0foranyY € modI°P.

Proof. By Theorem 1.3 we havél) < (1)°P and by Proposition 3.1 we havé) < (3).
So, by symmetry we only need to prove thiat < (2) and(1) = (4) = (1)°P.

(1) & (2). Assume that—)** :modA — modA is left exact. Then, by Proposition 3.2,
we have tha/-dom.dim,U) > 1 andEg € add 4 U .

LetK =Im(Eqp — E1) andv: K — E1 be the essential monomorphism. By assumption
and the exactness of the sequences 0 — Eg— K — 0 and 0— K Y5 E1, we have
the following exact commutative diagrams:

0 U Eg K 0
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and
0 K - Eq
l/ OK l UEl
0 K** v Eik*

whereoy andog, are isomorphisms. By applying the snake lemma to the first diagram
we have thatgx is monic. Then we know from the second diagram #gtv = v**og
is a monomorphism. However,is essential, Sog, is monic, that is,E1 is U-torsionless
and E1 is cogenerated by U. Moreover, E1 is finitely cogenerated, so we conclude that
Ei1ecaddU.

Conversely, assume that-dom.dim,U) > 2 and 0— A 2. B i> C — 0 is an ex-
act sequence in madl. By Proposition 3.2¢** is monic. By assumption, Corollary 2.8
and Lemma 2.3 we have HQf(IEXt}‘(C, U), Eg) = 0. Since Cokes* is isomorphic to
a submodule of E)}‘t(C, U), Homp(Cokera™*, Eg) = 0 and Hom-(Cokera™, U) = 0.
Then, by Theorem 1.3 and Lemma 2.9radg, Cokere™ > 2. It follows easily that

a** ﬂ** A
0— A®™ — B* —— (C** s exact.

(1) = (4). SupposeU-dom.dim,U) > 2. By Proposition 3.2,(—)**:modA —
modA preserves monomorphisms. On the other hand, we havé&/tlam.dimUy) > 2
by Theorem 1.3. It follows from Corollary 2.8 and Lemma 2.3 that hIQExt}‘(X, U),
Ep) =0 for anyX € modA. So[Ext} (X, U)]* = 0 and hence EXt(Ext} (X, U), U) =0
by Lemma 2.9

(4) = (1)°P. Suppose that (4) holds. Théh-dom.dimUr) > 1 by Proposition 3.2.

Let A be in modA and B any submodule of E}(A,U) in modI"°P. Since
U-dom.dimUr) > 1, Homp(Ext}‘(A, U), Ey) =0 by Corollary 2.8 and Lemma 2.3.
So Hony(B, E}) = 0 and hence Hom(B, E)/U) = ExtL(B, U). On the other hand,
Homp (B, Ep) = 0 implies B* = 0. Then by [8, Lemma 2.1] we have thdt =
Exty (Try B,U) with Try B in modA. By (4), Homr(B, E{/U) = Exth(B,U) =
ExtL (Exty (Try B, U), U) = 0. Then by using a similar argument to that in the proof
(2)°P = (1)°P in Proposition 2.2, we have that HortExt, (4, U), E}) =0 (note:E] is
the injective envelope af/U). ThusE; € addUr by Lemma 2.3 and Corollary 2.8, and
thereforeU-dom.dimUr) > 2. O

Finally we give some equivalent characterization®/effesol.dimy (Eo) < 1 as follows,
which is theU -dual version of [7, Proposition D].

Proposition 3.4. The following statements are equivalent.

(1) U-resoldim,(Ep) < 1.

(2) ox is an essential monomorphism for abiytorsionless modulé& in modA.

(3) f** is a monomorphism for any monomorphigimX — Y in modA with Y U-tor-
sionless.
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(4) gradg Extl (X,U) > 1 (thatis, [Ext} (X, U)]* = 0) for any X in modA.

Proof. (1) = (2). Assume thatX is U-torsionless in modi. Then Coketry =
EthF(TrU X,U) by [8, Lemma 2.1]. By Lemmas 2.7 and 2.3 we have

Hom, (Cokero, Eq) = Homy (Ext(Try X, U), Eg) =0.

Then Homy (A, 4 U) = 0 for any submodule&l of Cokerox, which implies that any non-
zero submodule of Cokety is notU -torsionless.

Let B be a submodule af** with XN B=0.ThenB=B/(XNB)=(X+B)/X is
isomorphic to a submodule of Cokeg. On the other hand? is clearlyU -torsionless. So
B =0 and hencey is essential.

(2) = (3). Let f: X — Y be monic in modA with Y U-torsionless. Therf**ox =
oy f is monic. By (2),0x is an essential monomorphism, g&* is monic.

(3) = (4).LetX beinmodA and0— Y %, P X = Oanexact sequence in mdd
with P projective. It is easy to see th[ﬁxt}l (X, U)]* = Kerg™**. On the other handz**
is monic by (3). So Keg** = 0 and[Ext}, (X, U)]* =0.

(4 = (1). Let M be in modr°? and--- — P — Pp — M — 0 a projective reso-
lution of M in modI"°P. PutN = CokerP, — P1). By [8, Lemma 2.1], Eﬁ,(M, U)=
Ext-(N, U) = Kerory, y. On the other hand, sineé is U-torsionless, EXt(Try N, U) =
Keroy =0.

Let X be any finitely generated submodule of ?EM U)andfi: X — EthF(M, U)
(= Kerorr, n) the inclusion, and lef be the composition:

x 2% Ex@.(m,U) 55 Try N,

whereg is a monomorphism. By using the same argument as that in the pro2f°8f=
(1)°Pin Proposition 2.2, we get thgt* = 0. Hence, by applying Hop(—, U) to the exact
sequence

0— X —L Try N = Cokerf — 0,

we haveX* = Extl (Cokerf, U). Then X** = [Ext}, (Cokerf, U)]* = 0 by (4), which
implies thatX* = 0 sinceX* is a direct summand of ***(= 0) by [1, Proposition 20.24].
Also by using the same argument as that in the prog2p® = (1)°P in Proposition 2.2,
we get that Hom(EthF(M, U), Eg) = 0. It follows from Lemma 2.3 that [.fd(*Eg) < 1.
ThereforeU-resol.dimy (Eg) < 1 by Lemma 2.7. O

Remark. By Theorem 1.3, we have thadi € add,U if and only if Ej € addUr, that
is, U-resol.dimy (Eo) = 0 if and only if U-resol.diny-(Eg) = 0. However, in general, we
don't have the fact thal/-resol.dimy (Eo) < 1 if and only if U-resol.din-(Ep) < 1 even
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when ,Ur = A 4. We uselp and I to denote the injective envelope g4 and A4,
respectively. Consider the following example. lletbe a field andA the quiver:

o 14
1———2—3.

(1) If A=KA/(aBa). Then Lids(lo) = 1 and r.fdy (1)) > 2. (2) If A= KA/(ya, Ba).
Then Lfdy (Io) =2 and r.fdy (1) = 1.
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