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Abstract

Let Λ andΓ be artin algebras andΛUΓ a faithfully balanced selforthogonal bimodule. We sh
that theU -dominant dimensions ofΛU andUΓ are identical. As applications of the results obtain
we give some characterizations of the doubleU -dual functors preserving monomorphisms and be
left exact respectively.
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1. Introduction

For a ringΛ, we use modΛ (respectively modΛop) to denote the category of finitel
generated leftΛ-modules (respectively rightΛ-modules).

Definition 1.1. Let Λ andΓ be rings. A bimoduleΛTΓ is called a faithfully balanced
selforthogonal bimodule if it satisfies the following conditions:

(1) ΛT ∈ modΛ andTΓ ∈ modΓ op.
(2) The natural mapsΛ → End(TΓ ) andΓ → End(ΛT )op are isomorphisms.
(3) ExtiΛ(ΛT ,ΛT ) = 0 and ExtiΓ (TΓ ,TΓ ) = 0 for anyi � 1.
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Definition 1.2. Let U be in modΛ (respectively modΓ op) andn a non-negative intege
For a moduleM in modΛ (respectively modΓ op),

(1) M is said to haveU -dominant dimension greater than or equal ton, written U -
dom.dim(ΛM) (respectivelyU -dom.dim(MΓ )) � n, if each of the firstn terms in a min-
imal injective resolution ofM is cogenerated byΛU (respectivelyUΓ ), that is, each o
these terms can be embedded into a direct product of copies ofΛU (respectivelyUΓ ) [10].

(2) M is said to have dominant dimension greater than or equal ton, written
dom.dim(ΛM) (respectively dom.dim(MΓ )) � n, if each of the firstn terms in a mini-
mal injective resolution ofM is Λ-projective (respectivelyΓ op-projective) [12].

Assume thatΛ is an artin algebra. By [4, Theorem 3.3],ΛI and each of its direct sum
mands are projective for any index setI . So, whenΛU = ΛΛ (respectivelyUΓ = ΛΛ),
the notion ofU -dominant dimension coincides with that of (ordinary) dominant dim
sion. Tachikawa in [12] showed that ifΛ is a left and right artinian ring then the domina
dimensions ofΛΛ and ΛΛ are identical. Hoshino then in [6] generalized this resul
left and right noetherian rings. Kato in [10] characterized the modules withU -dominant
dimension greater than or equal to one. Colby and Fuller in [5] gave some equivalen
ditions of dom.dim(ΛΛ) � 1 (or 2) in terms of the properties of the double dual funct
(with respect toΛΛΛ).

The results mentioned above motivate our interests in establishing the identityU -
dominant dimensions ofΛU andUΓ and characterizing the properties of modules w
a givenU -dominant dimension. Our characterizations will lead a better comprehe
aboutU -dominant dimension and the theory of selforthogonal bimodules.

Throughout this paper,Λ andΓ are artin algebras andΛUΓ is a faithfully balanced
selforthogonal bimodule. The main result in this paper is the following

Theorem 1.3. U -dom.dim(ΛU) = U -dom.dim(UΓ ).

PutΛUΓ = ΛΛΛ, we immediately get the following result, which is due to Tachika
(see [12]).

Corollary 1.4. dom.dim(ΛΛ) = dom.dim(ΛΛ).

Let M be in modΛ (respectively modΓ op) andG(M) the subcategory of modΛ (re-
spectively modΓ op) consisting of all submodules of the modules generated byM . M is
called a QF-3 module ifG(M) has a cogenerator which is a direct summand of every o
cogenerator [13]. By [13] Proposition 2.2 we have that a finitely cogeneratedΛ-module
(respectivelyΓ op-module)M is a QF-3 module if and only ifM cogenerates its injectiv
envelope. So by Theorem 1.3 we have

Corollary 1.5. ΛU is QF-3 if and only ifUΓ is QF-3.

We shall prove our main result in Section 2. We study the case that the doubleU -dual
functors(−)∗∗ preserves monomorphisms by the language of Lambek torsion theory,
the left–right symmetry of the fact that(−)∗∗ preserves monomorphisms, and then pr
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the main result. It should be pointed out that this strategy is similar to that of Hoshin
As applications of the results obtained in Section 2, we give in Section 3 some cha
izations of the doubleU -dual functors(−)∗∗ preserving monomorphisms and being l
exact respectively. The results of this paper are natural generalizations of (ordinary
inant dimension and of several author’s approach to dominant dimension (see Tac
[12], Colby–Fuller [5] and Hoshino [6,7]). In fact, most of the results here are theU -dual
versions of the results in [6,7].

2. The proof of main result

Let E0 be the injective envelope ofΛU . ThenE0 defines a torsion theory in modΛ.
The torsion classT is the subcategory of modΛ consisting of the modulesX satisfying
HomΛ(X,E0) = 0, and the torsionfree classF is the subcategory of modΛ consisting of
the modulesY cogenerated byE0 (equivalently,Y can be embedded inEI

0 for some index
setI ). A module in modΛ is called torsion (respectively torsionfree) if it is inT (respec-
tively F ). The injective envelopeE′

0 of UΓ also defines a torsion theory in modΓ op and
we may give in modΓ op the corresponding notions as above. LetX be in modΛ (respec-
tively modΓ op) and t (X) the torsion submodule, that is,t (X) is the submoduleX such
that HomΛ(t (X),E0) = 0 (respectively HomΓ (t (X),E′

0) = 0) andE0 (respectivelyE′
0)

cogeneratesX/t(X) (cf. [9]).
Let A be in modΛ (respectively modΓ op). We call HomΛ(ΛA,ΛUΓ ) (respectively

HomΓ (AΓ ,ΛUΓ )) the dual module ofA with respect toΛUΓ , and denote either of thes
modules byA∗. For a homomorphismf betweenΛ-modules (respectivelyΓ op-modules),
we putf ∗ = Hom(f,ΛUΓ ). Let σA :A → A∗∗ via σA(x)(f ) = f (x) for any x ∈ A and
f ∈ A∗ be the canonical evaluation homomorphism.A is calledU -torsionless (respectivel
U -reflexive) ifσA is a monomorphism (respectively an isomorphism).

The following result is analogous to [7, Lemma 4].

Lemma 2.1. For a moduleX in modΛ (respectivelymodΓ op), t (X) = KerσX if and only
if HomΛ(KerσX,E0) = 0 (respectivelyHomΓ (KerσX,E′

0) = 0).

Proof. The necessity is trivial. Now we prove the sufficiency.
We have the following commutative diagram with the upper row exact:

0 t (X) X
π

σX

X/t (X)

σX/t(X)

0

X∗∗ π∗∗
[X/t(X)]∗∗

Since HomΛ(t (X),E0) = 0, [t (X)]∗ = 0 andπ∗ is an isomorphism. Soπ∗∗ is also an
isomorphism and hencet (X) ⊂ KerσX. On the other hand, HomΛ(KerσX,E0) = 0 by
assumption, which implies that KerσX is a torsion module and contained inX. So we
conclude that KerσX ⊂ t (X) and KerσX = t (X). �
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Remark. From the above proof we always havet (X) ⊂ KerσX.

Suppose thatA ∈ modΛ (respectively modΓ op) andP1
f−→ P0 → A → 0 is a (mini-

mal) projective resolution ofA. Then we have an exact sequence

0→ A∗ → P ∗
0

f ∗
−→ P ∗

1 → Cokerf ∗ → 0.

We call Cokerf ∗ the transpose (with respect toΛUΓ ) of A, and denote it by TrU A.
The following result is theU -dual version of [7, Theorem A].

Proposition 2.2. The following statements are equivalent.

(1) t (X) = KerσX for everyX ∈ modΛ.
(2) f ∗∗ is monic for every monomorphismf :A → B in modΛ.
(1)op t (Y ) = KerσY for everyY ∈ modΓ op.
(2)op g∗∗ is monic for every monomorphismg :C → D in modΓ op.

Proof. By symmetry, it suffices to prove the implications of(1) ⇒ (2)op ⇒ (1)op.
(1) ⇒ (2)op. Let g :C → D be monic in modΓ op. SetX = Cokerg. We have tha

KerσTrU X
∼= Ext1Γ (X,U) and TrU X ∈ modΛ by [8, Lemma 2.1]. By (1) and Lemma 2.

HomΛ(Ext1Γ (X,U),E0) = 0. Since Cokerg∗ can be imbedded in Ext1
Γ (X,U),

HomΛ(Cokerg∗,E0) = 0. But (Cokerg∗)∗ ⊂ HomΛ(Cokerg∗,E0), so (Cokerg∗)∗ = 0
and hence Kerg∗∗ ∼= (Cokerg∗)∗ = 0, which implies thatg∗∗ is monic.

(2)op ⇒ (1)op. Let Y be in modΓ op andX any submodule of KerσY andf1 :X →
KerσY the inclusion. Assume thatf is the composition:

X
f1−→ KerσY → Y.

Then σY f = 0 andf ∗σ ∗
Y = (σY f )∗ = 0. But σ ∗

Y is epic by [1, Proposition 20.14], s
f ∗ = 0 andf ∗∗ = 0. By (2)op, f ∗∗ is monic, soX∗∗ = 0 andX∗∗∗ = 0. SinceX∗ is
isomorphic to a submodule ofX∗∗∗ by [1, Proposition 20.14],X∗ = 0.

We claim: HomΓ (KerσY ,E′
0) = 0. Otherwise, there exists 0�= α ∈ HomΓ (KerσY ,E′

0).
Then Imα ∩ UΓ �= 0 sinceUΓ is an essential submodule ofE′

0. Soα−1(Imα ∩ UΓ ) is a
non-zero submodule of KerσY and there exists a non-zero mapα−1(Imα ∩ UΓ ) → UΓ ,
which implies that(α−1(Imα ∩ UΓ ))∗ �= 0, a contradiction with the former argumen
Hence we conclude thatt (Y ) = KerσY by Lemma 2.1. �

Let A be aΛ-module (respectively aΓ op-module). Denote either of HomΛ(ΛUΓ ,ΛA)

and HomΓ (ΛUΓ ,AΓ ) by ∗A, and the left (respectively right) flat dimension ofA by
l.fdΛ(A) (respectively r.fdΓ (A)). We give a remark as follows. For an artin algebraR

and a left (respectively right)R-moduleA, we have that the left (respectively right) flat d
mension ofA and its left (respectively right) projective dimension are identical; espec
A is left (respectively right) flat if and only if it is left (respectively right) projective.
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Lemma 2.3. Let ΛE (respectivelyEΓ ) be injective andn a non-negative integer. The
l.fdΓ (∗E) (respectivelyr.fdΛ(∗E) � n) if and only if HomΛ(Extn+1

Γ (A,U),E) (respec-
tively HomΓ (Extn+1

Λ (A,U),E) = 0) for anyA ∈ modΓ op (respectivelymodΛ).

Proof. It is trivial by [3, Chapter VI, Proposition 5.3]. �
The following result is similar to [7, Proposition B]. In fact, we obtain the first t

statements of this result by replacing “E(RR) is flat” and “E is flat” of [7, Proposition B]
by “∗E0 is flat” and “∗E is flat” respectively. The third statement is analogous to the
responding one of [7, Proposition B].

Proposition 2.4. The following statements are equivalent.

(1) ∗E0 is flat.
(2) There is an injectiveΛ-moduleE such that∗E is flat andE cogeneratesE0.
(3) t (X) = KerσX for anyX ∈ modΛ.

Proof. (1) ⇒ (2). It is trivial.
(2) ⇒ (3). Let X ∈ modΛ. Since KerσX

∼= Ext1Γ (TrU X,U) with TrU X ∈ modΓ op by
[8, Lemma 2.1]. By (2) and Lemma 2.3, HomΛ(Ext1Γ (TrU X,U),E) = 0.

SinceE cogeneratesE0, there is an exact sequence 0→ E0 → EI for some index setI .
So

HomΛ

(
Ext1Γ (TrU X,U),E0

) ⊂ HomΛ

(
Ext1Γ (TrU X,U),EI

)

∼= [
HomΛ

(
Ext1Γ (TrU X,U),E

)]I = 0 and

HomΛ

(
Ext1Γ (TrU X,U),E0

) = 0.

By Lemma 2.1,t (X) = KerσX.
(3) ⇒ (1). Let N ∈ modΓ op. Since KerσTrU N

∼= Ext1Γ (N,U) with TrU N ∈ modΛ by
[8, Lemma 2.1], By (3) and Lemma 2.1 we have HomΛ(Ext1Γ (N,U),E0) ∼=
HomΛ(KerσTrU N ,E0) = 0, and so∗E0 is flat by Lemma 2.3. �

Dually, we have the following

Proposition 2.4′. The following statements are equivalent.

(1) ∗E′
0 is flat.

(2) There is an injectiveΓ op-moduleE′ such that∗E′ is flat andE′ cogeneratesE′
0.

(3) t (Y ) = KerσY for anyY ∈ modΓ op.

Corollary 2.5. ∗E0 is flat if and only if∗E′
0 is flat.

Proof. By Propositions 2.2, 2.4 and 2.4′. �
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Let A ∈ modΛ (respectively modΓ op) and i a non-negative integer. We say th
the grade ofA with respect toΛUΓ , written gradeU A, is greater than or equal toi if

ExtjΛ(A,U) = 0 (respectively ExtjΓ (A,U) = 0) for any 0� j < i.

Lemma 2.6. Let X be in modΓ op and n a non-negative integer. IfgradeU X � n and
gradeU ExtnΓ (X,U) � n + 1, thenExtnΓ (X,U) = 0.

Proof. SinceX∗ is U -torsionless,X∗∗ = 0 if and only if X∗ = 0. Then the casen = 0
follows.

Now letn � 1 and

· · · → Pn → ·· · → P1 → P0 → X → 0

be a projective resolution ofX in modΓ op. PutXn = Coker(Pn+1 → Pn). Then we have
an exact sequence

0→ P ∗
0 → ·· · → P ∗

n−1
f−→ X∗

n → ExtnΓ (X,U) → 0

in modΛ with eachP ∗
i ∈ addΛU . Since gradeU ExtnΓ (X,U) � n + 1,

ExtiΛ
(
ExtnΓ (X,U),U

) = 0 for any 0� i � n.

So ExtiΛ(ExtnΓ (X,U),P ∗
j ) = 0 for any 0� i � n and 0� j � n − 1, and hence

Ext1Λ(ExtnΓ (X,U), Imf ) ∼= ExtnΛ(ExtnΓ (X,U),P ∗
0 ) = 0, which implies that we have a

exact sequence HomΛ(ExtnΓ (X,U),X∗
n) → HomΛ(ExtnΓ (X,U),ExtnΓ (X,U)) → 0. No-

tice thatX∗
n is U -torsionless and HomΛ(ExtnΓ (X,U),U) = 0. So HomΛ(ExtnΓ (X,U),

X∗
n) = 0 and HomΛ(ExtnΓ (X,U),ExtnΓ (X,U)) = 0, which implies that ExtnΓ (X,U)

= 0. �
Remark. We point out that all of the above results (from 2.1 to 2.6) in this section
hold in the caseΛ andΓ are left and right noetherian rings.

For a moduleT in modΛ (respectively modΓ op), we use addΛT (respectively addTΓ )
to denote the subcategory of modΛ (respectively modΓ op) consisting of all modules iso
morphic to direct summands of finite direct sums of copies ofΛT (respectivelyTΓ ). Let
A be in modΛ. If there is an exact sequence· · · → Un → ·· · → U1 → U0 → A → 0 in
modΛ with eachUi ∈ addΛU for any i � 0, then we defineU -resol.dimΛ(A) = inf{n |
there is an exact sequence 0→ Un → ·· · → U1 → U0 → A → 0 in modΛ with each
Ui ∈ addΛU for any 0� i � n}. We setU -resol.dimΛ(A) infinity if no such an intege
exists. Dually, for a moduleB in modΓ op, we may defineU -resol.dimΓ (B) (see [2]).

Lemma 2.7. LetE be injective inmodΛ (respectivelymodΓ op). Thenl.fdΓ (∗E) (respec-
tively r.fdΛ(∗E) � n) if and only ifU -resol.dimΛ(E) (respectivelyU -resol.dimΓ (E) � n).
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Proof. Assume thatE is injective in modΛ and l.fdΓ (∗E) � n. Then there is an exac
sequence 0→ Qn → ·· · → Q1 → Q0 →∗ E → 0 with eachQi flat (and hence projec
tive) in modΓ for any 0� i � n. By [3, Chapter VI, Proposition 5.3] TorΓ

j (U,∗ E) ∼=
HomΛ(ExtjΓ (U,U),E) = 0 for anyj � 1. Then we easily have an exact sequence:

0→ U ⊗Γ Qn → ·· · → U ⊗Γ Q1 → U ⊗Γ Q0 → U ⊗∗
Γ E → 0.

It is clear thatU ⊗Γ Qi ∈ addΛU for any 0� i � n. By [11, p. 47], U ⊗∗
Γ E ∼=

HomΛ(HomΓ (U,U),E) ∼= E. Hence we conclude thatU -resol.dimΛ(E) � n.
Conversely, ifU -resol.dimΛ(E) � n then there is an exact sequence 0→ Xn → ·· · →

X1 → X0 → E → 0 with eachXi in addΛU for any 0� i � n. Since ExtjΛ(U,Xi) = 0
for any j � 1 and 0� i � n, 0 → ∗Xn → ·· · → ∗X1 → ∗X0 →∗ E → 0 is exact with
each∗Xi (0� i � n) Γ -projective. Hence we are done.�
Corollary 2.8. Let E be injective inmodΛ (respectivelymodΓ op). Then∗E is flat in
modΓ (respectivelymodΛop) if and only ifΛE ∈ addΛU (respectivelyEΓ ∈ addUΓ ).

From now on, assume that

0→ ΛU
f0−→ E0

f1−→ E1
f2−→ · · · fi−→ Ei

fi+1−→ · · ·
is a minimal injective resolution ofΛU .

The following result is theU -dual version of [6, Lemma 2.2].

Lemma 2.9. SupposeU -dom.dim(ΛU) � 1. Then, for anyn � 2, U -dom.dim(ΛU) � n if
and only ifgradeU M � n for anyM ∈ modΛ with M∗ = 0.

Proof. For anyM ∈ modΛ andi � 1, we have an exact sequence

HomΛ(M,Ei−1) → HomΛ(M, Imfi) → ExtiΛ(M,U) → 0. (†)

SupposeU -dom.dim(ΛU) � n. ThenEi is cogenerated byΛU for any 0� i � n − 1.
So, for a givenM ∈ modΛ with M∗ = 0 we have that HomΛ(M,Ei) = 0 and
HomΛ(M, Imfi) = 0 for any 0� i � n−1. Then by the exactness of(†), ExtiΛ(M,U) = 0
for any 1� i � n − 1, and so gradeU M � n.

Now we prove the converse, that is, we will prove thatEi ∈ addΛU for any 0� i �
n − 1.

First, E0 ∈ addΛU by assumption. We next proveE1 ∈ addΛU . For any 0 �=
x ∈ Imf1, we claim thatM∗ = HomΛ(M,U) �= 0, whereM = Λx. Otherwise, we
have ExtiΛ(M,U) = 0 for any 0� i � n − 1 by assumption. SinceE0 ∈ addΛU ,
HomΛ(M,E0) = 0. So from the exactness of(†) we know that HomΛ(M, Imf1) = 0,
which is a contradiction. Then we conclude that Imf1, and henceE1, is cogenerated b
ΛU . Notice thatE1 is finitely cogenerated, soE1 ∈ addΛU . Finally, suppose thatn � 3
andEi ∈ addΛU for any 0� i � n − 2. Then by using a similar argument to that abo
we haveEn−1 ∈ addΛU . The proof is finished. �
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Dually, we have the following

Lemma 2.9′. SupposeU -dom.dim(UΓ ) � 1. Then, for anyn � 2, U -dom.dim(UΓ ) � n if
and only ifgradeU N � n for anyN ∈ modΓ op with N∗ = 0.

We now are in a position to prove the main result in this paper.

Proof of Theorem 1.3. We only need to proveU -dom.dim(ΛU) � U -dom.dim(UΓ ).
Without loss of generality, supposeU -dom.dim(ΛU) = n.

The casen = 1 follows from Corollaries 2.5 and 2.8. Letn � 2. Notice that
U -dom.dim(ΛU) � 1 andU -dom.dim(UΓ ) � 1. By Lemma 2.9′ it suffices to show tha
gradeU N � n for anyN ∈ modΓ op with N∗ = 0. By Lemmas 2.3 and 2.7, for anyi � 1,
HomΛ(ExtiΓ (N,U),E0) ∼= TorΓi (N,∗ E0) = 0, so [ExtiΓ (N,U)]∗ = 0. Then by assump
tion and Lemma 2.9, gradeU ExtiΓ (N,U) � n for any i � 1. It follows from Lemma 2.6
that gradeU N � n. �

3. Some applications

As applications of the results in above section, we give in this section some char
zations of(−)∗∗ preserving monomorphisms and being left exact respectively.

Assume that

0→ UΓ

f ′
0−→ E′

0

f ′
1−→ E′

1

f ′
2−→ · · · f ′

i−→ E′
i

f ′
i+1−→ · · ·

is a minimal injective resolution ofUΓ . We first have the following

Proposition 3.1. The following statements are equivalent for any positive integerk.

(1) U -dom.dim(ΛU) � k.

(2) 0→ (ΛU)∗∗ f ∗∗
0−→ E∗∗

0

f ∗∗
1−→ E∗∗

1

f ∗∗
2−→ · · · f ∗∗

k−1−→ E∗∗
k−1 is exact.

(1)op U -dom.dim(UΓ ) � k.

(2)op 0→ (UΓ )∗∗ (f ′
0)

∗∗
−→ (E′

0)
∗∗ (f ′

1)
∗∗

−→ (E′
1)

∗∗ (f ′
2)

∗∗
−→ · · · (f ′

k−1)
∗∗

−→ (E′
k−1)

∗∗ is exact.

Proof. By Theorem 1.3 we have(1) ⇔ (1)op. By symmetry, we only need to prove(1) ⇔
(2).

If U -dom.dim(ΛU) � k, thenEi is in addΛU for any 1� i � k − 1. Notice thatΛU

and eachEi (0� i � k − 1) areU -reflexive and hence we have that

0→ (ΛU)∗∗ f ∗∗
0−→ E∗∗

0

f ∗∗
1−→ E∗∗

1

f ∗∗
2−→ · · · f ∗∗

k−1−→ E∗∗
k−1
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is exact. Assume that(2) holds. We proceed by induction onk. By assumption we have th
following commutative diagram with exact rows:

0 ΛU
f0

σU

E0
f1

σE0

E1
f2

σE1

· · · fk−1
Ek−1

σEk−1

0 (ΛU)∗∗ f ∗∗
0

E∗∗
0

f ∗∗
1

E∗∗
1

f ∗∗
2 · · ·

f ∗∗
k−1

E∗∗
k−1

SinceσU is an isomorphism,σE0f0 = f ∗∗
0 σU is a monomorphism. Butf0 is essential, so

σE0 is monic, that is,E0 is U -torsionless andE0 is cogenerated byΛU . Moreover,E0 is
finitely cogenerated, so we have thatE0 ∈ addΛU (and henceσE0 is an isomorphism)
The casek = 1 is proved. Now suppose thatk � 2 andEi ∈ addΛU (and thenσEi

is an
isomorphism) for any 0� i � k − 2 . PutA0 = ΛU , B0 = (ΛU)∗∗, g0 = f0, g′

0 = f ∗∗
0 and

h0 = σU . Then, for any 0� i � k − 2, we get the following commutative diagrams w
exact rows:

0 Ai

gi

hi

Ei

σEi

Ai+1

hi+1

0

0 Bi

g′
i

E∗∗
i Bi+1 0

and

0 Ai+1
gi+1

hi+1

Ei+1

σEi+1

0 Bi+1

g′
i+1

E∗∗
i+1

whereAi = Imfi and Ai+1 = Imfi+1, Bi = Imf ∗∗
i and Bi+1 = Imf ∗∗

i+1, gi and gi+1
are essential monomorphisms,hi andhi+1 are induced homomorphisms. We may get
ductively that eachhj is an isomorphism for any 0� j � k − 1. BecauseσEk−1gk−1 =
g′

k−1hk−1 is a monomorphism, by using a similar argument to that above we haveEk−1 ∈
addΛU . Hence we conclude thatU -dom.dim(ΛU) � k. �

The following result develops [5, Theorem 1] and [6, Proposition 3.1].

Proposition 3.2. The following statements are equivalent.

(1) U -dom.dim(ΛU) � 1.

(2) (−)∗∗ : modΛ → modΛ preserves monomorphisms.
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(3) 0→ (ΛU)∗∗ f ∗∗
0−→ E∗∗

0 is exact.

(1)op U -dom.dim(UΓ ) � 1.

(2)op (−)∗∗ : modΓ op → modΓ op preserves monomorphisms.

(3)op 0→ (UΓ )∗∗ (f ′
0)

∗∗
−→ (E′

0)
∗∗ is exact.

Proof. By Theorem 1.3 we have(1) ⇔ (1)op. By symmetry, we only need to prove th
the conditions of (1), (2) and (3) are equivalent.

(1) ⇒ (2). If U -dom.dim(ΛU) � 1 thent (X) = KerσX for anyX ∈ modΛ by Corol-
lary 2.8 and Proposition 2.4. So(−)∗∗ preserves monomorphisms by Proposition 2.2.

(2) ⇒ (3) is trivial and(3) ⇒ (1) follows from Proposition 3.1. �
The following result except(3) and(3)op is theU -dual version of [7, Proposition E

which develops [5, Theorem 2].

Proposition 3.3. The following statements are equivalent.

(1) U -dom.dim(ΛU) � 2.

(2) (−)∗∗ : modΛ → modΛ is left exact.

(3) 0→ (ΛU)∗∗ f ∗∗
0−→ E∗∗

0

f ∗∗
1−→ E∗∗

1 is exact.

(4) (−)∗∗ : modΛ → modΛ preserves monomorphisms andExt1Γ (Ext1Λ(X,U),U) = 0
for anyX ∈ modΛ.

(1)op U -dom.dim(UΓ ) � 2.

(2)op (−)∗∗ : modΓ op → modΓ op is left exact.

(3)op 0→ (UΓ )∗∗ (f ′
0)

∗∗
−→ (E′

0)
∗∗ (f ′

1)
∗∗

−→ (E′
1)

∗∗ is exact.

(4)op (−)∗∗ : modΓ op → modΓ op preserves monomorphisms andExt1Λ(Ext1Γ (Y,U),

U) = 0 for anyY ∈ modΓ op.

Proof. By Theorem 1.3 we have(1) ⇔ (1)op and by Proposition 3.1 we have(1) ⇔ (3).
So, by symmetry we only need to prove that(1) ⇔ (2) and(1) ⇒ (4) ⇒ (1)op.

(1) ⇔ (2). Assume that(−)∗∗ : modΛ → modΛ is left exact. Then, by Proposition 3.
we have thatU -dom.dim(ΛU) � 1 andE0 ∈ addΛU .

LetK = Im(E0 → E1) andv :K → E1 be the essential monomorphism. By assump
and the exactness of the sequences 0→ U → E0 → K → 0 and 0→ K

v−→ E1, we have
the following exact commutative diagrams:

0 U

σU

E0

σE0

K

σK

0

0 U∗∗ E∗∗
0 K∗∗
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,
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d

and

0 K
v

σK

E1

σE1

0 K∗∗ v∗∗
E∗∗

1

whereσU andσE0 are isomorphisms. By applying the snake lemma to the first diag
we have thatσK is monic. Then we know from the second diagram thatσE1v = v∗∗σK

is a monomorphism. However,v is essential, soσE1 is monic, that is,E1 is U -torsionless
andE1 is cogenerated byΛU . Moreover,E1 is finitely cogenerated, so we conclude th
E1 ∈ addΛU .

Conversely, assume thatU -dom.dim(ΛU) � 2 and 0→ A
α−→ B

β−→ C → 0 is an ex-
act sequence in modΛ. By Proposition 3.2,α∗∗ is monic. By assumption, Corollary 2
and Lemma 2.3 we have HomΓ (Ext1Λ(C,U),E0) = 0. Since Cokerα∗ is isomorphic to
a submodule of Ext1

Λ(C,U), HomΓ (Cokerα∗,E0) = 0 and HomΓ (Cokerα∗,U) = 0.
Then, by Theorem 1.3 and Lemma 2.9′, gradeU Cokerα∗ � 2. It follows easily that

0→ A∗∗ α∗∗−→ B∗∗ β∗∗
−→ C∗∗ is exact.

(1) ⇒ (4). SupposeU -dom.dim(ΛU) � 2. By Proposition 3.2,(−)∗∗ : modΛ →
modΛ preserves monomorphisms. On the other hand, we have thatU -dom.dim(UΓ ) � 2
by Theorem 1.3. It follows from Corollary 2.8 and Lemma 2.3 that HomΓ (Ext1Λ(X,U),

E′
0) = 0 for anyX ∈ modΛ. So[Ext1Λ(X,U)]∗ = 0 and hence Ext1

Γ (Ext1Λ(X,U),U) = 0
by Lemma 2.9′.

(4) ⇒ (1)op. Suppose that (4) holds. ThenU -dom.dim(UΓ ) � 1 by Proposition 3.2.
Let A be in modΛ and B any submodule of Ext1

Λ(A,U) in modΓ op. Since
U -dom.dim(UΓ ) � 1, HomΓ (Ext1Λ(A,U),E′

0) = 0 by Corollary 2.8 and Lemma 2.3
So HomΓ (B,E′

0) = 0 and hence HomΓ (B,E′
0/U) ∼= Ext1Γ (B,U). On the other hand

HomΓ (B,E′
0) = 0 implies B∗ = 0. Then by [8, Lemma 2.1] we have thatB ∼=

Ext1Λ(TrU B,U) with TrU B in modΛ. By (4), HomΓ (B,E′
0/U) ∼= Ext1Γ (B,U) ∼=

Ext1Γ (Ext1Λ(TrU B,U),U) = 0. Then by using a similar argument to that in the pr
(2)op ⇒ (1)op in Proposition 2.2, we have that HomΓ (Ext1Λ(A,U),E′

1) = 0 (note:E′
1 is

the injective envelope ofE′
0/U ). ThusE′

1 ∈ addUΓ by Lemma 2.3 and Corollary 2.8, an
thereforeU -dom.dim(UΓ ) � 2. �

Finally we give some equivalent characterizations ofU -resol.dimΛ(E0) � 1 as follows,
which is theU -dual version of [7, Proposition D].

Proposition 3.4. The following statements are equivalent.

(1) U -resol.dimΛ(E0) � 1.
(2) σX is an essential monomorphism for anyU -torsionless moduleX in modΛ.
(3) f ∗∗ is a monomorphism for any monomorphismf :X → Y in modΛ with Y U -tor-

sionless.
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(4) gradeU Ext1Λ(X,U) � 1 (that is,[Ext1Λ(X,U)]∗ = 0) for anyX in modΛ.

Proof. (1) ⇒ (2). Assume thatX is U -torsionless in modΛ. Then CokerσX
∼=

Ext2Γ (TrU X,U) by [8, Lemma 2.1]. By Lemmas 2.7 and 2.3 we have

HomΛ(CokerσX,E0) = HomΛ

(
Ext2Γ (TrU X,U),E0

) = 0.

Then HomΛ(A,Λ U) = 0 for any submoduleA of CokerσX, which implies that any non
zero submodule of CokerσX is notU -torsionless.

Let B be a submodule ofX∗∗ with X ∩ B = 0. ThenB ∼= B/(X ∩ B) ∼= (X + B)/X is
isomorphic to a submodule of CokerσX. On the other hand,B is clearlyU -torsionless. So
B = 0 and henceσX is essential.

(2) ⇒ (3). Let f :X → Y be monic in modΛ with Y U -torsionless. Thenf ∗∗σX =
σY f is monic. By (2),σX is an essential monomorphism, sof ∗∗ is monic.

(3) ⇒ (4). LetX be in modΛ and 0→ Y
g−→ P → X → 0 an exact sequence in modΛ

with P projective. It is easy to see that[Ext1Λ(X,U)]∗ ∼= Kerg∗∗. On the other hand,g∗∗
is monic by (3). So Kerg∗∗ = 0 and[Ext1Λ(X,U)]∗ = 0.

(4) ⇒ (1). Let M be in modΓ op and · · · → P1 → P0 → M → 0 a projective reso
lution of M in modΓ op. PutN = Coker(P2 → P1). By [8, Lemma 2.1], Ext2Γ (M,U) ∼=
Ext1Γ (N,U) ∼= KerσTrU N . On the other hand, sinceN is U -torsionless, Ext1Λ(TrU N,U) ∼=
KerσN = 0.

Let X be any finitely generated submodule of Ext2
Γ (M,U) andf1 :X → Ext2Γ (M,U)

(∼= KerσTrU N) the inclusion, and letf be the composition:

X
f1−→ Ext2Γ (M,U)

g−→ TrU N,

whereg is a monomorphism. By using the same argument as that in the proof of(2)op ⇒
(1)op in Proposition 2.2, we get thatf ∗ = 0. Hence, by applying HomΛ(−,U) to the exact
sequence

0→ X
f−→ TrU N → Cokerf → 0,

we haveX∗ ∼= Ext1Λ(Cokerf,U). Then X∗∗ ∼= [Ext1Λ(Cokerf,U)]∗ = 0 by (4), which
implies thatX∗ = 0 sinceX∗ is a direct summand ofX∗∗∗(= 0) by [1, Proposition 20.24]
Also by using the same argument as that in the proof of(2)op ⇒ (1)op in Proposition 2.2,
we get that HomΛ(Ext2Γ (M,U),E0) = 0. It follows from Lemma 2.3 that l.fdΓ (∗E0) � 1.
ThereforeU -resol.dimΛ(E0) � 1 by Lemma 2.7. �
Remark. By Theorem 1.3, we have thatE0 ∈ addΛU if and only if E′

0 ∈ addUΓ , that
is, U -resol.dimΛ(E0) = 0 if and only if U -resol.dimΓ (E′

0) = 0. However, in general, w
don’t have the fact thatU -resol.dimΛ(E0) � 1 if and only if U -resol.dimΓ (E′ ) � 1 even
0
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whenΛUΓ = ΛΛΛ. We useI0 and I ′
0 to denote the injective envelope ofΛΛ andΛΛ,

respectively. Consider the following example. LetK be a field and∆ the quiver:

1
α

2
β

γ

3.

(1) If Λ = K∆/(αβα). Then l.fdΛ(I0) = 1 and r.fdΛ(I ′
0) � 2. (2) If Λ = K∆/(γ α,βα).

Then l.fdΛ(I0) = 2 and r.fdΛ(I ′
0) = 1.
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