
J. Symbolic Computation (1991) 12, 127-141 

W u ' s  M e t h o d  and the  K h o v a n s k i i  
F i n i t e n e s s  T h e o r e m  

DANIEL RICHARDSON 
School of Mathematics, University of Bath, 

dsr@uk, ac. bath. maths 

(Received 18 December 1989) 

U.K. 

The Khovanskii finiteness theorem calculates an upper bound for the 
number of connected components of the intersection of an algebraic set 
with a Pfaff manifold in R '~. This paper uses the algebraic methods of 
Wtt Wen-tsun to give an elementary p~oof of Khovanskii 's theorem. An 
extension of the Wu-Ritt  zero structure theorem is also obtMaed. 

I n t r o d u c t i o n  

The Khovanskii finiteness theorem [1980 ] calculates an upper bound for the 
number of connected components of the intersection of an algebraic set with a 
Pfaffmanifold in R n. This implies, for example, that  the zero set of a polynomial 
in Xl, ..., x,~ and exp(xl), ...,exp(xn) is a finite union of connected components  
in R n. The object of this paper is to use the algebraic methods of Wu Wemtsun  
to give an elementary proof of Khovanskii's theorem. Unfortunately, al though 
the bound is recursively calculated in this paper, it is not explicitly given by a 
formula, due to lack of knowledge about the computational complexity of Wu's  
method.  (However, the situation is improving. See [Gallo and Mishra, 1990]. ) 
The  relationship between this bound and the explicit bound giveu by Khovanskii 
is not clear. 

In the first section below Pfaff manifolds are defined and the Wu-Ritt de- 
composition algorithm is defined. In the second section this is used to prove a 
version of the Khovanskii theorem. 

1. Pfaf f  m a n i f o l d s  and Wu's  m e t h o d  

Every set discussed below will be assumed to be a subset of one of the real Eu- 
clidean n-dimensional spaces, R ~. When the space is understood, polynomials 
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will mean  polynomials  with integral coefficients with variables corresponding to 
the coordinate axes of  the space. A polynomial vector field, V, will be a vector 
field in R • de termined  by a list of  n polynomials. 

Define a smooth  pa th  in a manifold to be a differentiable function, p(t),  wi th  
continuous and non zero derivative, from [0,1] into the manifold. We will be 
concerned with differentiable manifolds which are embe~l~lid in /~" in such a 
way tha t  smooth  paths  in the manifolds are smooth paths in R ~, and a smooth  
path  in R "  which happens to lie in one of these manifolds is also a smooth  pa th  
in the manifold.  

A smooth  p a t h  p(r is said to be orthogonal to a polynomial vector field V 
if the scalor product ,  p '( t)  �9 V, is identically zero. 

If M is a differentiable manifold and v is a point on M, and V is a polynomial  
vector field, we will say that  point v is a singular point of V on M if every smooth  
path  p(t) which lies in M satisfies p ' ( t ) .  V = 0 whenever p(t) = v. In other  
words, a singular point of V on M ~s one where the tangent  plane of M is 
or thogonal  to V. 

Let M and Y be differentiable manifolds in R n and let V be a polynomial  
vector field in R '~. We will say that  M is orthogonal to V in Y if: 

C1) M is conta ined  in Y and M has codimension one in Y. No point of M 
is a s ingular  point of V in Y. 

C2) If p(t)  is a smooth  path which lies in Y, and ifp(~) is or thogonal  to V, 
and if there  are no singular points of V in Y on p(t) ,  and if p(t) intersects M,  
then  p(t) is contained in M.  

C3) I f  p(t)  is a smooth  path which is contained in Y, and i f p ( t l )  and p(t2) 
are in M with *1 < t2, then there  is a number  t so tha t  tl _< t _< t2 and 
p'(t)  . V = 0 .  

Condit ion C2) says that  M is closed under nonsingular smooth paths orthog- 
onal to V. Condit ion C3) implies that  smooth  paths in M must be or thogonal  
to V, but  it is much  stronger. The  intuitive idea is that  M is the boundary  
of  a domain  in Y so that  on a path leaving the domain the V vectors are 
point ing ou twards  and thus p'(t) �9 V >_ O, and  on a path entering the domain 
i f ( t )  �9 V ~ 0; since p'( t )  �9 V is continuous, this implies tha t  there is a point  t 
where i f ( t )  �9 V = O. 

Example  1) L.et G be the graph of y = ezp(z)  in/i~ 2. Let V be the gradient  
o f  y - e z p ( x )  on the curve, i.e. ( - y ,  1). Then G is orthogonal to V in R 2. 

Example  2) Let  p be a polynomial. Let M be the non singular zero set o f  
p, i.e. the set of  points where p is zero but has non zero gradient.  Then M is 
or thogonal  to the gradient  of p in / ~ .  

We will say M is a Pfaff manifold if there is a sequence M0 .... Mk of differ- 
entiable manifolds with M0 = R ~, and, for each i < k, M~+I is contained in Mi,  
and M~ = M, and there is a corresponding sequence V1,..., I/~ of  polynomiM 
vector fields so that ,  for each i < k, Mi+2 is orthogonal to V/+I in Mi.  

Example  3) The  surface of the cylinder of radius one around the z axis is a 
Pfaff manifold in R 3. The curve y = s in ( z )  on this cylinder surface is a Pfaff 
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manifold if it is restr icted to an open z interval on which s in(z)  is aot  equal to 
+1  or-1 .  

The sequence (Mi,  V/), i _< k will be called a construct ion of Mk, and k will 
be the length of the  construction. If M has construct ion from/i~ '~ of length k, 
then the dimension of M is n - k, since by C1) the dimension goes down one at 
each step. It is imagined here that' we could describe a Pfaff manifold by giving 
a construction, and a sample point on each connected component .  However a 
method of verifying that  a given arbi trary sequence of polynomial  vector fields 
and a sample point  determines a manifold satisfying the conditions above is not 
known at present.  

If M is a Pfaff manifold or a subset  of a Pfaff manifold in R n aad v is a 
point of M, we will say M is locally a graph at v if the coordinate variables 
of R ~ can be  divided into k _> 0 independent variables zl , . . . ,  z~ and j = n - k 
dependent  variables wl ..... wj ,  and there exist j analytic functions f l  .... f j  of 
the independent  variables so that  in some R ~ neighbourhood N of v we have 
that  the points u in M and in N are exactly the points in N given by the 
condition (wl,  ..., wj)  = ( f l  ..... f j ) ( z l ,  ..., zk), for Zx, ..., zk in the projection onto 
the space of variables (zl , . . . ,  zk) of N . In this ease k is the dimension of the 
Pfaff manifold, and (zl, ..., z~) is called a local coordinate sys tem for M at v. 

In the following, we will  always use X to mean the vector of coordinate 
variables (xl , . . . ,  xn) of R ~. If a local coordinate system is understood and one 
of its independent  variables is z, then in all of the following OX/Oz will mean 
the vector of part ial  derivatives o f t h e  variables in X with respect to z . 

L o c a l  G r a p h  P r o p o s i t i o n .  

If M is a Pfaff manifold, and v is a point of M,  then M is locally a graph at v . 
Proof. The  p roof  is by induction on the length of the construction of M, 

using the lemma below. 

L o c a l  G r a p h  L e m m a  

Suppose M and Y are differentiable manifolds i n / ~ n  y is locally a graph, V 
is a polynomial vector field in/~n,  and M is orthogonal to V in Y. Then M is 
also locally a graph.  

Proof. Let  v be a point  in M. There is a neighbourhood N of V in which 
Y has a coordinate  system (zl,  ..., zj+l)  . These are coordinates in/~n and the 
other variables are expressed in N as functions of these. 

Now look at the  partial derivatives in relation to V: (OX/Ozq) �9 V, tbr q = 
1 up to j + 1. All of these terms can' t  be zero at v. If they were, then any 
smooth path in Y passing through v would be orthogonal  to V at v, and v would 
be a singular point  of V on Y. But condition C1) asserts that  this does not 
happen. Let z be some zq such that  (OX/Ozq) �9 V is not  zero at v. Renumber  
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the  o ther  independent  variables to be (zl, ..., zj). It is claimed tha t  near v this 
is a coordinate  sys tem for M. 

Let 7~j and ~oj+l be the two projections of R ~ onto the space of the inde- 
penden t  variables, (zl ,  ..., zj), and (zl, ..., zj, z) respectively. These projections 
jus t  forget  the dependen t  coordinates of a point  near v. 

Pick N so small that  for every point in 7~j+1 (N), (SX/Oz) �9 V is bounded 
away f rom zero. 

We now have to define z as a function of (zl ,  ..., zj) so tha t  (zl ..... zj, z) is in 
"Pj+I(M) for (zl ,  ..., zj) in "Pj(N). We assumed, of course tha t  v was in M; and 
we know, by condit ion C2), tha t  M is closed under smooth paths  orthogonal to 
V. 

Given (zl, ..., zj) in the  projection 7oj(N), draw a straight  line in this pro- 
ject ion f rom this point  to "Pj (v), and define z(t) on this line to satisfy dX/d~.  V 
-- 0, where  t parameter izes  the line. This differential equation has a unique 
solution for r sufficiently close to 0, because it satisfies a Lipschitz condition in 
N.  

It  remains to show tha t  every point  in M in this neighbourhood N is given 
in this form. Suppose not. There  would then be two distinct values of z so 
tha t  (zl,. . . ,  zj, z) was in 7~i+1 applied to the intersection of M and N. Draw 
a s t ra igh t  line f rom one such point to the other  in the projection. (Only the z 
coord ina te  varies in the projection, although in R n a curve is described. ) By 
condit ion C3) there must  be a point on the line at which (OX/~)z) �9 V = O. But 
N was chosen sufficiently small so tha t  this can not happen. 

T h a t  completes the proof of the local graph proposition. 
We wish to s tudy  zero sets of polynomials on Pfaff manifolds. We will 

allow parameters  in the polynomials,  although not in the definition of the Pfaff 
manifolds.  So we adjoin a list (cl, ..., cj) of parameters  to the list of variables 
(xi),  arid from now on a polynomial with parameters  will mean  a polynomial 
wi th  integral coefficients involving both the variables and the parameters.  

Let P S  be a finite list of polynomials with parameters ,  Pl (X) ,  ..., pj (X),  and 
let (Mi, V/)i<k be a construction of a Pfaff manifold, and let J ( X )  be another  
po lynomia l  with parameters .  (We will assume that  no parameters  occur in the 
vector fields V/, so the  Pfaff manifolds are independent  of the parameters .  ) We 
are interested in conditions of the form F = 

V ) sr 
P S = O  
] # o  
which  define the set of  X such tha t  P S ( X )  = 0, J ( X )  :~ 0, and X is in 

Mr .  The  defined set depends on the parameters ,  since there may  be parameters  
in PS or J .  Condit ions in this form will be called G a m m a  conditions. If the 
number  of  vector fields, r, in the construction of a G a m m a  condition is zero, we 
will say tha t  the G a m m a  condition is algebraic. Given an interpreta t ion of the 
pa r ame te r s  as real numbers,  a G a m m a  condition determines a set, which will 
be called a G a m m a  set. 
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Khovanskii has shown tha t  such sets are necessarily finite unions of connected 
components.  The intention here is to prove this using Wu's method.  The  whole 
construction can be done uniformly over the parameters.  T h a t  is, the upper  
bound which is eventually obtained will hold no mat te r  how the parameters  are 
interpreted. 

If S is a set closure(S) will mean the set of finite limit points of sequences 
from S. If S is a G a m m a  set, the boundary of S will mean  closure(S) - S. 

The main idea of this paper is to break Gamma  conditions into uniform 
parts, as described below. 

A Gamma condition, F, is said to be uniform of dimension k if associated 
with it are k of the coordinate variables Zl, ..., zk so that:  

U1) For any interpretat ion of the parameters if S is the Gamma set defined 
by P and v is in S, then (zl,  ..., ze) can be used as the independent  variables 
in a local coordinate system for S near v. (This means that  not only is the 
set equidimensional, but also the selection of independent  variables can be the 
same for all points.) 

U2) For each z among (zl,  ..., zk), and for each variable w, we are able to con- 
struct a rational func t ion /~ (X) ,  involving the variables and the parameters ,  so 
that  bw/Sz = R(X) in all the local coordinate systems of 1). The denominator  
of R(X)  cannot  be zero on any of the Gamma  sets. 

U3) If S is any of the G a m m a  sets defined by r ,  J = 0 on the boundary  of 
S. (This means that  J = 0 at least defines a superset of the boundal'y.) 

The number  of variables in a uniform local coordinate system for a G a m m a  
condition will be  called its dimension. Dimension zero will turn  out  to imply 
that  in every in terpreta t ion every point in the defined set is isolated. 

We next  use Wu's me thod  to break G a m m a  conditions into uniform parts. 
The result will be to extend the Wu-Ritt  zero s t ructure  theorem. 

W u ' s  M e t h o d  

We have a list of parameters  (cl, ..., ca') and another list of variables (xl ,  ..., z , ) ,  
and we wish to order these by importance, by making all the parameters  less 
important  than all the variables, and within the lists ordering by subscript, e.g., 
we will say zl is less impor tan t  than xj, or zi -< xj, if i < j .  For any polynonfial 
p(X),  let class(p(X)) be the most important  variable or, in c ~ e  there  aren ' t  
any variables, the most impor tan t  parameter  which actually occurs in it. We 
will say class(p(X)) is 0 if p(X) has no variables or parameters,  m~d we will say 
p has parameter  class if it contains no variables. 

For two polynomials p and q, we will say p --< q if class(p) -< class(q), or 
if they have the same non zero class, but the degree of p in the class variable 
or parameter  is less than the degree of q in the class variable or p.arameter. 
Polynomials which are incomparable in this ordering have the same class and 
degree, or are both  of class 0. 
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The  degree of a polynomial p will be the degree of its class variable, or 
pa ramete r .  

If  the  class o f p  is ~ and the degree o fp  is d, then p can be put  in the form p 
--- I * z d + (lower degree terms in x), in which all the coefficients of powers of 
are polynomials  in variables or parameters  below x. The  coefficient I is called 
the  initial of p. 

If  p and  q are polynomials, p is said to be reduced with respect  to q if both  
have class 0, or if the class(q) variable or pa ramete r  either does not occur in p 
or only occurs with degree below degree(q). 

A finite sequence of non zero polynomials ASC = (Pi)i<,. is called an ascend- 
ing set if either r = 1 and class(p1)=0; or if 0 -~ class(p1) -.~ elass(p~) ~ ... 
class(pr) and each pj is reduced with respect to all pi with i < j .  

Let F = (pl)i<~ and G = (qi)i<~ be two ascending sets of polynomials. We 
will say tha t  F has lower order than G if for some j < rain(r, s) we have Pl and 
qi are incomparable  for all i less than j ,  but  pj -~ qj; or if r > s and pi and qi 
are incomparable  for all i < s. 

Any  descending sequence of ascending sets is necessarily finite. 
Given any ascer~ding set, (Pi)i<r, and any polynomial g(X)  we get by suc- 

cessive division the following remainder  formula 
1 . , . . ,  , g ( X )  = . + n 

in which Ii are the initials of pi, sl are non negative integers, and qi and R 
are polynomials  with R reduced with respect to all pi. We can make R unique 
by choosing the si to be as small as possible and R is then  called the remainder  
of g(X)  with respect  to the ascending set (pi)i<~. 

All of these definitions are taken from Wu [1987 ]. 
Now, we define tr iangular conditions, which are like the characterist ic con- 

ditions of Wu, and also uniform. 
Let F be a G a m m a  condition. 
1"=  

= 

J # 0 .  
T h e n  we define F* from F by replacing r by r -  1 if r > 0; by replacing s by 

s -  1 if r -- 0 and s > 0; and if r and s are both 0 then F* = F. In other  words, 
F* is obtained from 1" by dropping the top condition. 

A G a m m a  condition F, together with a uniform local coordinate system, as 
above, is said to be in triangular form if 

T1)  F is uniform, and (pi = 0)i<~ is an ascending set, as defined above. If P 
is algebraic the dependen t  variables are the class variables of the polynomials. 
All the initials of  the polynomials and all the derivatives of the polynomials 
wi th  respect  to their  class variables are factors of J .  

T2)  I ~* is also in tr iangular form. Also the uniform local coordinate system 
for P is either the  same as the uniform coordinate system for F* (which can 
only happen  in the nonalgebraic case); or is obtained from the  uniform local 
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coordinate system of F* by dropping one variable, say z, which is then associated 
with the top condition of F. 

T3) When the uniform local coordinate systems for F and F* are not the 
same, then the variable z which was dropped from F* was the most important  
independent variable possible. If another variable, say w, is more important  
than z but remains independent in F, it must happen that the top condition of 
F does not depend on w. This means that in any interpretation, after projection 
to the uniform coordinate system of F*, the set defined by the top condition 
has to be part of a cylinder parallel to the w axis. 

The intuitive idea is that at each stage a triangular Gamma condition is 
obtained by defining, if possible, the currently most important independent 
variable as a function of the others. 

We can now use Wu's algorithm to rewrite any Gamma condition as a finite 
union of Gamma conditions in triangular form. The new Gamma conditions will 
be based on the same Pfaff manifold. That is, they will only differ algebraically. 

Let F be 
v )i<r 

P S  = O, where P S  is (pi)i<~ 
J # 0  
Within the Pfaff manifold we expect the vectors (V/)i<r to be linearly inde- 

pendent. This is required to satisfy condition C1). Thus the r by n matrix of 
the vectors in the construction should have rank r. Let DS be the sum of the 
squares of the determinates of r by r submatrices of this matrix of polynomial 
vectors. Our first step is to replace J in F by DS.'J. 

The algorithm continues by recursiort on the complexity of P. That  is, we 
first show how to break a purely algebraic condition into a union of triangular 
conditions. Then we show how to write F as a union of triangular conditions, 
assuming that P* is already a triangular condition. 

A l g e b r a i c  l e m m a .  

Let I" be an algebraic Gamma condition. Then we can effectively rewrite r as 
a finite disjunction of algebraic Gamma conditions which are triangular. 

Proof. 
Remark: this lemma essentially shows that semialgebraic sets can be broken 

up into equidimensional semialgebraic characteristic subsets by Wu's method. 
The only important element which has been added so Wu [1987] is the idea of 
equidimensionality. 

We suppose that r, the length of the Pfaff construction is 0. In this case F 
is: 

P S =  0 
J#o.  
Any ascending set of lowest order of polynomials chosen from P S  will be 

called a basic set from P S .  Now, as in Wu, 



134 D. Richardson 

a) Choose basic set BS from P S  
b) Find remainders of everything in P S  - BS with respect to BS. If all are 

0, then stop. Otherwise, add the remainders to P S  and go back to step a). 
The ascending sets generated in this way are steadily decreasing in order so 

the process eventually terminates. We will be left with 
ASC = 0 
j # 0 .  
where ASC is an ascending set, and every polynomial in the original P S  has 

remainder 0 with respect to ASC. If ASC contains a non zero polynomial of 
class 0, then ASC is inconsistent and may be discarded. Otherwise, let I be the 
product  of all the initials of ASC and all the partial derivatives of polynomials 
in ASC with respect to their class variables, if any, or otherwise with respect to 
their class parameters. 

Consider 
ASC = 0 
J , I # O .  
If the remainder of J . I  with respect to ASC is 0, this condition is inconsistent 

and can be dropped. 
Whether  or not the condition is consistent, it is in triangular form. Call 

this Pl. For any interpretation of the parameters, any point which is in the set 
described by r l  is also in the set described by the original I'. On the other hand 
any point in the original set must have ASC=0. Note also that  all the initials 
of ASC and all the partial derivatives with respect to class variables are factors 
of J , I .  

Pu t  I'1 at the root of a tree, which is to be constructed. The partial deriva- 
tives associated with the uniform coordinate system for F1 are sums of products 
of ratios of partial derivatives of polynomials in ASC. 

Let (I1, ..., Iq) list the factors of 1, i.e. the initials and the partial derivatives 
of polynomials in ASC with respect to class variables or parameters. For each 
one of these factors, Ij,  we form a lower order branch by adding lj = 0 to P S ,  
keeping the J r 0 condition as it was in I ~ , and for each branch we iterate 
the above process. Continuing, we get a tree of conditions F~, all in triangular 
form, and where each ascending set has lower order than the one before. Each 
downward path in the tree is finite, since a descending sequence of ascending 
sets must  be finite. Also we have an upper bound on the number of branches 
at each node: twice the sum of the number of variables and the number of 
parameters.  So, by Konig's lemma, the tree is finite. Therefore, the process 
eventually terminates, r is equivalent to the disjunction of the Fi. 

If we wish the final set of triangular conditions to be disjoint, an alterna- 
tive version of this technique can be used. Given (I1, ..., Iq), the factors of I 
as described at the beginffing of the last paragraph, we form 2q branches by 
considering all ways of dividing these factors into two sets, a zero set and a non 
zero set. Then a branch is formed by multiplying J by the non zero set and by 
adding the zero set to P S .  
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(Another possibility is to factorize all the polynomials in ASC and to branch 
on all the factors, as well as the factors of I.  Note that  if the polynomials are all 
irreducible, the dimension goes down every time a new zero condition is added, 
so no path in the tree could have length more than n.) 

It is not clear which of these alternatives is better computationally,  even if 
we are not interested in disjointness. 

That  completes the proof of the algebraic lemma. 
Next suppose that  r, the length of the Pfaff construction, is greater than 0. 

In this case recursively put  F* in the form of a disjunction of triangular forms. 
All have the same Pfaff manifold, obtained by dropping the last par t  of the 
construction for F. 

We now put  F into triangular form under the assumption the F* is already 
in this form. 

I n d u c t i v e  l e m m a .  

Given F, with F* in triangular form, we can effectively rewrite F into a finite 
disjunction of triangular forms. 

Proof. 
Let F be 
(Mi, V ) sr 
ASC = 0, where ASC is (p~)i<~ 
J # 0  
Since F* is triangular, condition T1) implies that  all the initials of ASC 

and all the partial derivatives of polynomials in ASC with respect to their class 
variables are factors of J.  

Since F* is triangular, it is uniform. Let zl, ..., zk be a uniform local coordi- 
nate system for all the defined sets. The last vector field in the construction is Vr. 
For each z an independent  variable among zl, ..., z~, consider Dz = (OX/~)z). V,.. 
(These Ox/cgz are the partial derivatives defined by the relation between the 
dependent and the independent variables. By condition U2) in the definition of 
uniformity, they axe all rational in X.) There are now two cases. 

Case 1. For all z in the coordinate system for F*, Dz has remainder 0 with 
respect to ASC. Then any path in the coordinate system for F*, i.e. any smooth  
path in (zl, ..., Zk) is orthogonal to Vr. Also, as long as J is non zero, such a path 
can't go through a singular point of Vr in Mr - i ,  since we started with a strong 
enough J condition to ensure that  this could not happen. In this case, therefore, 
the same coordinate system, namely, (zl, ..., zk) can be used for F as was used 
for F*. Also for any values of the parameters, the boundary of a F definable 
set is also on the boundary of a F* definable set, and thus must  have J = 0. 
So F is triangular already. In this case we will say tha t  the top condition of F 
is marginal. Regrettably, it is not clear whether or not the marginal conditions 
can be eliminated. Perhaps the marginal conditions are needed to distinguish 
different components of the defined set. 
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Case 2. The o ther  possibility is that  for some z in the coordinate sys tem for 
F*, Dz does not have remainder 0 with respect to ASC. We pick such z with 
m a x i m u m  order. 

(So if independent  w is more impor tant  than z but  not picked, it must  be 
t h a t  D w  has remainder  0 with respect  to ASC; in this case the  top condition 
does not depend on w.) 

We now break into two branches, a zero branch and a non zero branch. The 
zero branch  is ob ta ined  by  adding Dz -- 0 to  ASC. After adding Dz=0  to get 
the  zero branch, we have to recalculate F* in triangular form. The ascending 
sets which are ob ta ined  will all have lower order than ASC. So the zero branch 
eventual ly  terminates .  (Note that  if the polynomials in ASC are kept irreducible 
by factorizing and branching on the factors, then every time a zero condition 
is added,  either the dimension goes down or one of  the vector fields becomes 
marginal ,  thus replacing a possibly transcendental  condition with an algebraic 
one. In this case, no path in the tree can have length more them 2n.) 

The  non zero branch is obtained by replacing J by J*Dz.  It is claimed that 
the new condition, which we will call F1, is in triangular form, and that  the 
new coordinate  sys tem is obtained by removing z from (zl .... , zk). Let Y = 
(yl ,  ..., yk-1)  be this new coordinate system. We are now in the same si tuation 
as we were when proving the local' graph proposit ion above, and the same argue- 
ment  shows that  (yl ,  ..., Y~-I) can be used as a uniform local coordinate system. 
If y is any  one of  the variables in Y ,  Oz/ay  = - ( ( O X / O y )  �9 Vk) / ( (OX/Oz)  �9 V~). 

There  is also a boundary  condition to verify, condition U3). We want to 
show that  JDz  becomes  zero at the boundary in all cases. Fix any values of the 
parameters :  Let S be the set defined by F1. Suppose that  v is a limit point of  
S, bu t  tha t  JDz  is not  zero at v. We want to show that  v is in S. Let S* be the 
set defined by F*, with the same parameters .  Since F* is tr iangular and J is 
not  zero at  v, it mus t  be that  v is in S*. So the coordinate sys tem (zl ,  ..., z~,) 
is valid around v in some neighbourhood N.  We may also assume that  N is 
picked so small tha t  J*Dz  is bounded away from 0 in N. Since v is a limit point  
of  S, there  are points  of S in N. 

Let  v* be  the  Y coordinates of v, obtained by projection. Take any point 
u of  S in N and find its coordinates u* in Y. Draw a s t raight  line in the Y 
pro jec t ion  from u ,  to v, ,  and define the z values appropriately,  with the initial 
value of z agreeing with u at u , ,  so that  the resulting path  is orthogonal  to Vr. 
Shrink N so that  all the paths f rom points in the new N lie in the old N, in 
which J * D z  is bounded  away from 0. (This can be done because we can bound 
the part ia l  derivatives of z in the old N. )  All these paths must  end up with the 
same z value, say z ,  when they arrive at v. ,  since otherwise Dz -- 0 would have 
a solut ion in the old N. Let z(v) be the z coordinate  of v. Around v .  we can 
define z as a funct ion of Y, with z(v . )  = z . ,  and this function is continuous 
at v*. Also a sequence on the graph tends to v. Thus  z(v) is the same as z . .  
This  means  that  there are paths orthogonal to Vr which pass through v and 
also intersect  S in N .  The only way v could then fail to be in S would be if 



Wu's Method and Khovanskii's Theorem 137 

the  path did not lie in Mr,  and this could only happen if the pa th  contained a 
singular point of Vr in Mr-1 .  The original non zero condition J was fixed at  the 
beginning so tha t  where J is not zero, all the vectors are linearly independent .  
However at a singular point, Vr is normal to the orthogonal space of the previous 
vectors, and so the  whole list of vectors is dependent.  

This finishes the description of the algorithm. 
For any G a m m a  condition F, let Zero(F) be the set defined by it, depending 

on the parameters .  We have the following version of the Wu-Ritt  zero s t ruc ture  
theorem. 

Zero structure theorem 
Given aaly G a m m a  condition F, we can effectively find a finite list F~, i = 1, ..., m, 
which are all in tr iangular form and so that  Zero(F) is the union of Zero(F/) ,  i = 
1, . . . ,m.  

Note that  the Fi are found uniformly, for all parameters.  
The G a m m a  sets have remarkable closure properties, as mentioned in Kho- 

vanskii [1983], and this theorem has a large number of applications. T h e y  will 
not  be discussed any fur ther  here, but in the next section the theorem will be 
used to prove a version of the Khovanskii finiteness theorem. 

2.  K h o v a n s k i i  F i n i t e n e s s  

Define a refinement of a G a m m a  condition to be another  Gamma condition 
obtained by adding either more polynomials to the polynomial set PS, or more 
factors to the non zero condition Y. 

Sampling Theorem 

For any Gamma  condition, F, we can find a finite set of refinements (Fi) each 
of which is tr iangular form and of dimension 0 so that ,  for any interpretat ion,  
every connected component  of Zero(F) contains at least one point  f rom one of 
the refinements Zero(Fi). 

Proof 

By the zero s tructure theorem we may as well assume that F is in tr iangular  
form. Suppose the  dimension of it is k. 

For an induction hypothesis, assume that  the sampling can be done for all 
triangular G a m m a  conditions with dimension less than k. 

Suppose F is 

P S = O  
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J # o  
Define eccentricity E to be the sum of the s.quares of the coordinate variables 

plus the square of the reciprocal of the non zero J polynomial. 
E =  Z~'=I ~ + ( l / J )  2 
All the  variables are functions of the independent  variables (zl .... , zk) in the 

uniform coordinate  system, and the  functions have partial derivatives which are 
known rational functions of the coordinate variables. So dE/dzk is a known 
rational function of zl , . . . ,  x , .  Since F is triangular and uniform, J is zero on 
the boundary.  Thus  any path  that  leads to the  boundary necessarily sends E 
to infinity. Consider moving just  zk, leaving the other independent  variables 
constant .  A path which never gets to a boundary but goes to infinity sends E 
to infinity anyway. Therefore there is at least one minimum point of E on a 
pa th  which is formed by start ing at any point  on any component  and moving 
z~ in bo th  directions. Therefore there is at least one isolated root of dE/dzk 
=0 on each such path .  Take dE/dz~ = 0 to be the algebraic condition which 
is used to refine I'. This is done by first multiplying by some factor in order 
to clear the  denominators and thus obtaining a polynomial DE. DE can't  have 
remainder  0 relative to the ascending set P S .  If it did E would be constant, 
which is impossible. Now form PS(E)  by adding DE to P S .  Let F(E) be 
the new G a m m a  condition. This new condition can now be broken down into 
tr iangular parts. We also have Zero(I'(E)) intersects every connected component  
of Zero(I').  

The tr iangular conditions obtained by breaking down I'(E) all have lower 
order than  the original P S ,  so this already proves the sampling theorem, by 
induct ion on order. 

It  is possible also to show directly that  the triangular parts  of F(E) all 
have dimension less than k, so the theorem can also be proved by induction 
on k, ra ther  than by induction on order of ascending sets. Let 7 be one of 
the tr iangular  parts  of F(E). Suppose, to get a contradiction, that  this 7 has 
dimension >_ k. Of course Zero(7) is contained in Zero ( r ) ,  and the bigger 
manifold has dimension k. A smooth path in the small manifold which happens 
to lie in the  bigger manifold is also a smooth path in the bigger manifold, 
since they are locally graphs. Thus  at each point the tangent  plane of the 
small manifold is contained in the tangent plane of the bigger one. However we 
supposed tha t  the smaller manifold had dimension at least k. So the tangent  
planes are equal. It follows that  a smooth path  in the large manifold which 
intersected the small manifold would be contained in the small manifold. It 
would follow that  the path obtained by moving Zk as discussed earlier would 
have to have DE identically 0. However E tends to infinity eventually, so it is 
not possible for E to be constant.  

So the tr iangular parts of F(E) have dimension less than k. By induction 
hypothesis ,  it follows that they can all be refined into triangular sets with di- 
mension zero. 

The  Khovanskii finiteness theorem can now be proved. 
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Khovanski i 's  F in i teness  T h e o r e m  

Given Gamma condit ion,  F, which may depend upon parameters,  we can find 
a number N independent  of the parameters so that Zero(F) can have no more 
than N connected components.  

Proof  

The proof is by induction on the length, r, of the construction of F. 
First suppose r = 0. By the sampling theorem we can find a list of G a m m a  

conditions r i ,  i = 1, ..., k, each of which is in triangular form and has dimension 
0 so that  every component  of Zero(F) .contains at least one of the points  in 
Zero(ri).  However for each r i ,  we can find an upper bound on the number  
of points which it can describe. One such upper bound would be the product  
of the degrees of the polynomials in PSi, the polynomial set belonging to r i  
Sharper upper bounds could be found using the Descarte rule of signs. 

Next suppose that  r is greater than zero but that  the theorem has been 
proved for constructions of length less than 7'. 

We can, by the sampling theorem, effectively find a finite list, Fi of G a m m a  
conditions with dimension 0 in triangular form so that  every component  of 
Zero(r)  contains at least one of the sample points. It is sufficient, therefore, 
to show that  we can calculate N in case F itself is in triangular form and has 
dimension 0. 

As above, let F* be obtained from r by dropping the top condition. By defi- 
nition of triangular form r*  is also triangular, and it must  have either dimension 
0 or 1. By induction hypothesis, we can calculate an upper bound, say N1 for 
the number of components  of Zero(r*). If F* has dimension 0, we are finished, 
since N1 is then also an upper bound for the number of points in Zero(F). 

Suppose the dimension is 1, and x is a uniform coordinate. Each of the 
components of Zero(r*) is a smooth path p(z). Let p'(x) be the derivative of 
p(x) at z. Since F* is uniform, p~(t) is a vector of rational functions in the 
coordinate variables, r*  is also simpler than [', so by induction we can find an 
upper bound N2 for the number of solutions of p~(z) �9 Vr=0, where Vr is the 
vector field used in the last step of the construction of r .  Take the N of the 
theorem to be N1 + N2. 

Suppose there were more than N elements in Zero(r). They must  be dis- 
t r ibuted among the at most  N1 paths. There must be more than N2 adjacent 
intersections of a path p(t) with Mr, the last manifold of the construction. By 
assumption C3) about Pfaff manifolds, there would have to be more than N2 
solutions of i f(z)  �9 Vr=O, which is not possible. 

That  completes the proof of the theorem. 
Example 4) A polynomial in several variables zl,..., ~:m and the exponentials 

exp(zl), . . . ,  exp(zm) has a zero set which is necessarily a finite union of connected 
components. 
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Example 5) Let f (x) ,  defined for all ~c > 0, be a function from positive reals 
into R n, whose graph is also a described by some Gamma condition. Then f (z)  
is eventually monotone in all its coordinates. Thus the limit of f (z ) ,  as z tends 
to infinity, exists ( although some of the coordinates of the limit may be plus or 
minus infinity). 

R e m a r k s  

The upper bound which is asserted to exist above is actually found only after 
doing the decomposition of the Gamma condition into triangular parts. 

I don't  know how to bound, in advance, the complexity of the triangular 
parts produced by the Wu algorithm. However, see [Gallo and Mishra, 1990]. 

In order to get a bound comparable to Khovanskii's, it might be desirable 
to begin the whole construction with a random change of coordinate system. In 
particular it might be possible, after a random change of coordinate system, to 
find a 0 dimensional sample of a k dimensional set directly by taking the critical 
points of the eccentricity; rather than by step by step reduction as is done here. 

A technique related to the sampling technique used here has been developed 
independently by A. J. Wilkie, and used to prove model completeness results 
for restricted Pfaffian functions. 

The sampling technique given here allows, in the algebraic case, reduction 
of the problem of whether a given set of polynomial equations implies another 
polynomial equation over the reals to the problem of whether a zero dimensional 
given complex variety defined by rational polynomials has a real element; and 
Philip Milne at Bath and Paul Pedersen in New York have recently indepen- 
dently reported remarkable progress in the solution of this later problem by 
multidimensional Sturm sequences. 

We would like to solve triangular conditions of dimension zero, i.e. to ap- 
proximate the finite sets they define. Even in the algebraic case, this is not 
easy computationally. The results of van den Dries, however, give hope that, at 
least in theory and at least for bounded regions, this can be done for all Pfaff 
manifolds. 

Another unsolved problem is the adjacency problem. This would be, after 
decomposition of a Gamma set into triangular pieces, to decide which pairs of 
these pieces were connected in the sense that one had points which were limit 
points of sequences from the other. A related problem is to construct, if possible, 
the boundary  of a triangular set as a finite union of triangular sets. 

Note tha t  the problem of deciding whether or not a Gamma condition can 
be satisfied generalizes the problem of deciding whether or not a polynomial is 
positive definite, and that all these problems have been reduced to questions 
about existence of solutions of triangular conditions of dimension zero. 
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