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Abstract

We consider the efficiency and the power of the normal theory test for independence after a Box–Cox
transformation. We obtain an expression for the correlation between the variates after a Box–Cox
transformation in terms of the correlation on the normal scale. We discuss the efficiency of test of
independence after a Box–Cox transformation and show that for the family considered it is always
more efficient to conduct the test of independence based on Pearson correlation coefficient after
transformation to normality. Power of test of independence before and after a Box–Cox transformation
is studied for a finite sample size using Monte Carlo simulation. Our results show that we can increase
the power of the normal-theory test for independence after estimating the transformation parameter
from the data. The procedure has application for generating non-negative random variables with
prescribed correlation.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

We are interested in testing independence of two non-negative random variables. In re-
liability investigations, for example,X1 andX2 represent the lifetimes of components in
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a two-component system. Bivariate exponential distributions have been used to model the
lifetimes. Moran[16] gives examples in point processes where it is desirable to test inde-
pendence of successive intervals between points. The lengths of such intervals are unimodal
and right skewed of the gamma type. Moran [16] develops a bivariate negative exponential
distribution to model such data. In many environmental applications, the distribution of
risk factors such as body weight, total skin area, concentration, inhalation, digestion, and
consumption rates are positive and skewed to the right. Bivariate lognormal distribution is
used to model the joint occurrence of the risk factors. In the preliminary examination of
bivariate samples from(X1, X2), we would like to test the hypothesis of independence of
the variables. To test for independence between pairs of variates, which are non-negative
and non-symmetric, Moran [16] uses the Pearson correlation coefficient. Al-Saadi et al. [1]
study the properties and compare the performance of several tests, including Pearson corre-
lation, for independence of exponential variates. More generally, one may be interested in
testing independence of two quadratic forms, whose marginal distributions are of gamma
type (see [13, Chapter 48]).

Let (y11, y21),…,(y1n, y2n) represent a sample from a bivariate normal distribution. The
test ofH0 : �y = 0 is a test of independence ofY1 andY2. Let ry be the sample correlation
coefficient ofY1 andY2. Fisher [5] first discovered the sampling distribution ofr for sam-
ples from a bivariate normal distribution. When�y = 0, Anderson [2, Chapter 4] shows

ry
√
n− 2/

√
1 − r2

y has thet-distribution withn − 2 degrees of freedom. More generally,

one may obtain the exact permutation distribution of the correlation coefficient by enumer-
ation of then! possibilities. Pitman [18] shows thatrx , the sample correlation betweenX1
andX2, has zero expectation and variance 1/(n − 1) whenX1 andX2 are independent.
Kowalski and Tarter [12] study the use of normalizing transformations as a prelude to ap-
plying normal-theory techniques. Given non-normal bivariate random variables(X1, X2),
the method consists of making co-ordinate transformationsYi = �−1(F̂i(Xi)) for i = 1,2
where�−1 is the quantile function of the standard normal distribution andF̂i are the Fourier
estimators of the marginal distribution functions. Normal theory test of independence is then
applied to(y1i , y2i ) for i = 1, . . . , n. Using Monte Carlo simulation, Kowalski and Tarter
[12] show that the normal-theory test of independence is generally more powerful if they
are based onry thanrx .

Box–Cox transformation to normality [4] is often used in practice to obtain nearly nor-
mal variates. The Box–Cox transformation parameter� is defined (see next section) on
(−∞,∞). The literature on the Box–Cox transformation assumes that there exists a value
� such thatY has a normal distribution. However,X > 0 impliesY > −1/� for � > 0
andY < −1/� for � < 0. Thus, for� 	= 0, the domain ofY is not the entire real line.
Researchers have generally assumed thatY has an approximate normal distribution. For
example, Moore [15] sidesteps the issue by assuming that� is large and the coefficient of
variation� = �/� is small for� > 0 so thatP(Y < −1/�) = P [Z < −( 1

� +1/(��))] < �,
where� is a small value (e.g.,��10−6). Another strategy is to transformX+ c instead ofX
wherec is a sufficiently large constant [6, p. 143]. Hernandez and Johnson [7] use Kullback–
Leibler information number to provide benchmarks for maximum amount of improvement
to normality after a Box–Cox transformation. It is evident from Hernandez and Johnson [7,
p. 859, Eq. (4.2)] that any procedure based on multivariate normality of the observations
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should benefit from transformations to normality of the marginal distributions. Box–Cox
transformation to normality provides an alternative to the Fourier-based estimator. We con-
sider the efficiency and the power of the normal theory test for independence after a Box–
Cox transformation. The next section obtains an expression for the correlation between the
variates after a Box–Cox transformation in terms of the correlation on the normal scale. In
Section 3, we discuss the efficiency of test of independence after a Box–Cox transforma-
tion. The last section considers a simulation study and a method for generating non-negative
random variables with prescribed correlation.

2. Correlation of X1 and X2

Suppose(X11, X21),...,(X1n,X2n) representsn i.i.d. bivariate vectors from (X1,X2) with
a joint distribution functionF and a density functionf. We will assume that all observations
are non-negative and consider the bivariate Box–Cox transformation

Yj = p�j (Xj )




X
�j
j −1

�j
, �j 	= 0,

ln(Xj ), �j = 0,

j = 1,2.

We assumeY1 andY2 have a bivariate normal distribution with mean
� = (�1,�2), covari-
ance� = (�ij ) for some value of the transformation parameter
� = (�1, �2). The p.d.f. of

X = (X1, X2) is

f ( 
X | 
�,�, 
�) = 1

(2	) | � |1/2

2∏
j=1

x
�j−1
j exp

[
−1

2

(
p
�( 
X)− 
�

)′
�−1

(
p
�( 
X)− 
�

)]
.

Let �x denote the correlation coefficient on the original scale. We will show that�x =
h(�y), where the form of the functionh depends on
�, 
�, and �. Lancaster[14] uses
Chebyshev–Hermite polynomial to obtain the correlation coefficient of transformed bi-
variate random vectors. We will obtain the form of the correlation after a Box–Cox trans-
formation. Let
(r)(z) denote therth derivative of the standard normal density function

(z) with respect toz. Chebyshev–Hermite polynomial,Hr(z), is defined by the identity
(−1)r dr

dzr

(z) = Hr(z)
(z). It follows thatH0(z) = 1, H1(z) = z, H2(z) = z2 − 1,

H3(z) = z3 − 3z, and so on. For�1 	= 0 and �2 	= 0, we haveXj = (�j Yj +
1)1/�j = ∑∞

i=0

(1/�j
i

)
�ij (�j�j + 1)(1/�j−i)(Yj − �j )

i for j = 1,2. The last expression

can also be written as
∑∞

i=0 aijZ
i
j = ∑∞

i=0 bijHi(Zj ) for somebij whereHi(Zj ) is the

ith Chebyshev–Hermit polynomial evaluated atZj = (Yj − �j )/�j , where�2
j = �jj .

The sum is finite and extends tomj = 1/�j whenmj is an integer. By the following or-

thogonal property of the polynomials,
∫ ∞
−∞ Hr(x)Hs(x)
(x) dx =

{
0, i 	= r,

r!, i = r,
we have

E(Hi(Zj )) = ∫ ∞
−∞ Hi(zj )
(zj )dzj = 1 at i = 0 and zero fori > 0. Therefore, we

haveE(Xj ) = b0j , whereb0j is a function of�j , �j , and�2
j for j = 1,2. Similarly,

E(X2
j ) = E

(∑∞
i=0 bijHi(Zj )

∑∞
k=0 bkjHk(Zj )

) = ∑∞
i=0 b

2
ij i! and we obtainV ar(Xj ) =
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∑∞
i=1 b

2
ij i!. Furthermore,X1X2 = (�1Y1 + 1)1/�1(�2Y2 + 1)1/�2, which can be written as∑∞

i=0
∑∞

k=0 bi1bk2Hi(Z1)Hk(Z2). When bothm1 andm2 are integers, the sum is finite and
extends tom = min(m1,m2). Table 1 contains the means, variances and covariances of
(X1, X2) for specified
�.

Suppose(Z1, Z2) is a bivariate standard normal random variable with correlation�z.
Then,E(Hi(Z1)Hk(Z2)) = �izi! for i = k and zero fori 	= k. It follows thatE(X1X2) =∑∞

i=0 bi1bi2�
i
y i!. Hence, the correlation coefficient�x is

�x = h(�y) =
∑∞

i=1 bi1bi2�
i
y i!√

(
∑∞

i=1 b
2
i1i!)(

∑∞
k=1 b

2
k2k!)

for �1 	= 0 and�2 	= 0. The covariance of a bivariate lognormal distribution; i.e.,�1 = �2 =
0, can be obtained using Chevyshev–Hermit Polynomials as follows. By Taylor’s expansion

of Xj = exp(Yj ) about�j , we have exp(Yj ) = ∑∞
i=0 exp(�j )

�ij
i! z

i
j = ∑∞

i=0 bijHi(zj ).

Note V ar(Xj ) = exp(2�j + �2
j )(exp(�2

j ) − 1) = ∑∞
i=1[exp(�j + �2

j

2 )
�ij
i! ]2i! and for

i�1 andj = 1,2. Thus,bij = exp(�j + �2
j

2 )
�ij
i! . By the fact thatE(Hi(Z1),Hj (Z2)) ={

0, i 	= j,

�i i!, i = j,
[15],E(X1X2) = ∑∞

i=0 b1ib2i�i i!.Consequently, the covariance ofX1 and

X2 simplifies toCov(X1, X2) = ∑∞
i=1 exp(�1+�2

1/2)�i1 exp(�2+�2
2/2)�i2/(i!)2�iy i!. The

last expression equals the well-known form exp

(
�1 + �2 + �2

1
2 + �2

2
2

)
(exp(�y�1�2)−1).

When�1 = 0 and�2 	= 0, we haveE(X1X2) = exp

(
�1 + �2

1
2

) ∑∞
i=0 b2i

�i1
i! �

i i!. Hence,

Cov(X1, X2) = exp(�1 + �2
1/2)

∑∞
i=1 b2i�1�2

y . The form ofCov(X1, X2) follows by
symmetry when�1 	= 0 and�2 = 0. The values ofb0i = E(Xi), b1i , andb2i for specified

� appear in Tables 1 and 2. It follows from the form of the joint density of(X1, X2) and
h(�y) that if �y = 0, then�x = h(�y) = 0. Further,�y is zero whenh(�y) = 0 by the
transformation property of functions of independent random variables [9].

3. Efficiency of test for independence

Let ry = ∑n
i=1(Y1i − Ȳ1)(Y2i − Ȳ2)/S1(�1)S2(�2), whereSj (�j ) = 1

n−1

∑n
i=1(Yji −

Ȳj )
2, j = 1,2, i = 1, ..., n. Let rx = ∑n

i=1(X1i − X̄1)(X2i − X̄2)/SX1SX2. For testing
the hypothesisH0 : �x = 0 againstH1 : �x = �/

√
n for some� > 0, we will compare the

asymptotic efficiencies of the test statistics based onrx andry .
Let Xi, Xj , Xk, andXh be four random variables describing a multivariate distribu-

tion with finite fourth-order moments. Define�i = E(Xi), �ij = E(Xi − �i )(Xj − �j ),
�ijkh = E(Xi − �i )(Xj − �j )(Xk − �k)(Xh − �h), �ij = �ij (�ii�jj )−1/2, and�ijkh =
�ijkh(�ii�jj�kk�hh)−1/2. Let 
� = (�ij ,�kh) and its sample correlations
r = (rij , rkh).
Then,

√
n(
r − 
�) has an asymptotic normal distribution with mean vector zero and co-

variance matrix� where elements�ij,kh of � are given byn · Cov(rij , rkh), which equals
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Table 1
Means, variances, and covariances of(X1, X2)


� = (0,0)

E(X1) exp(�1 + 1
2�2

1)

E(X2) exp(�2 + 1
2�2

2)

V ar(X1) exp(2�1 + �2
1)(exp(�2

1)− 1)

V ar(X2) exp(2�2 + �2
2)(exp(�2

2)− 1)

Cov(X1, X2) exp(�1 + �2 + 1
2�2

1 + 1
2�2

2)(exp(��1�2)− 1)


� = (0, 1
2)

E(X1) exp(�1 + 1
2�2

1)

E(X2) ( 1
2�2 + 1)2 + 1

4�2
2

V ar(X1) exp(2�1 + �2
1)(exp(�2

1)− 1)

V ar(X2) �2
2(

1
8�2

2 + 1
4�2

2 + �2 + 1)

Cov(X1, X2) ��1�2 exp(�1 + 1
2�2

1)(
1
4��1�2 + 1

2�2 + 1)


� = (0,1)

E(X1) exp(�1 + 1
2�2

1)

E(X2) �2 + 1
V ar(X1) exp(2�1 + �2

1)(exp(�2
1)− 1)

V ar(X2) �2
2

Cov(X1, X2) ��1�2 exp(�1 + 1
2�2

1)


� = ( 1
2 ,

1
2)

E(X1) ( 1
2�1 + 1)2 + 1

4�2
1

E(X2) ( 1
2�2 + 1)2 + 1

4�2
2

V ar(X1) �2
1(

1
8�2

1 + 1
4�2

1 + �1 + 1)

V ar(X2) �2
2(

1
8�2

2 + 1
4�2

2 + �2 + 1)

Cov(X1, X2)
1
8(��1�2)

2 + ��1�2
1
2(

1
2�1�2 + �1�2 + 2)


� = ( 1
2 ,1)

E(X1) ( 1
2�1 + 1)2 + 1

4�2
1

E(X2) �2 + 1

V ar(X1) �2
1(

1
8�2

1 + 1
4�2

1 + �1 + 1)

V ar(X2) �2
2

Cov(X1, X2) ��1�2(
1
2�1 + 1)


� = (1,1)

E(X1) �1 + 1
E(X2) �2 + 1

V ar(X1) �2
1

V ar(X2) �2
2

Cov(X1, X2) ��1�2
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Table 2
Constantb1, b2 andARE(ry, rx) values for�1 = �2 = 1 and�1 = �2 = 3


� b1 b2 ARE

(0,0) b1i = exp(�1 + �2
1/2)�i1/i! b2i = exp(�2 + �2

2/2)�i2/i! 1800.4
(0,1/2) b1i = exp(�1 + �2

1/2)�i1/i! b21 = �2(�2/2 + 1) 1350.3
b22 = �2

2/4
(0,1) b1i = exp(�1 + �2

1/2)�i1/i! b21 = �2 900.2
(1/2,1/2) b11 = �1(�1/2 + 1) b21 = �2(�2/2 + 1) 22.7

b12 = �2
1/4 b22 = �2

2/4
(1/2,1) b11 = �1(�1/2 + 1) b21 = �2 1.5

b12 = �2
1/4

(1,1) b11 = �1 b21 = �2 1.0

�ijkh+ 1
4�ij�kh(�iikk+�jjkk+�iihh+�jjhh)− 1

2�ij (�iikh+�jjkh)− 1
2�kh(�ijkk+�ijhh).

This result was first obtained by Pearson and Filton[17] for the multivariate normal distri-
bution. A good treatment of this subject appears in Steiger and Hakstian [19].

Let Wj = (Xj − E(Xj ))/
√
V ar(Xj ). It follows that

√
n(rx − �x) has an asymp-

totic normal distribution with mean zero andnV ar(rx) = E(W2
1W

2
2 ) + �2

x(E(W
4
1 )/4 +

2E(W2
1W

2
2 ) + E(W4

2 )) − �x(E(W
3
1W2) + E(W1W

3
2 )). Note that when�x = 0, X1

andX2 are independent andV ar(rx) simplifies to 1/n. Further, it is known that under
joint normality,

√
n(ry − �y) has an asymptotic normal distribution with mean zero and

the variance(1 − �2
y)

2 [2]. The Pitman’s asymptotic efficiency ofry to rx is defined as

ARE(ry, rx) = limn→∞

{
[�E(ry)/��y ]2

|�y=0

V ar(ry)|�=0
× V ar(rx)|�y=0

[�E(rx)/��y ]2
|�y=0

}
. The following lemma

shows thatARE(ry, rx) is at least 1.

Lemma. SupposeX1 andX2 have a bivariate p.d.f.f (
x | 
�,�, 
�). For testingH0 : �x = 0
againstH1 : �x = �/

√
n for some� > 0, ARE(ry, rx)�1 with equality holding at
� =

(1,1).

Proof. Using the chain rule, we have�E(rx)/��y = �E(rx)/��x × ��x/��y . Because
�E(ry)/��y |�y=0

= 1 andV ar(ry) |�y=0= 1/n, we have�E(rx)/��y = ��x/��y . Note

�x = h(�y) = 0 if and only if�y = 0. Thus,H0 : �x = 0 is equivalent toH0 : h(�y) = 0,
which is true whenever�y = 0. Also, �h(�y)/��y |�y=0= b11b21/(v1v2) wherevj =√∑∞

i=1 b
2
ji i! for j = 1,2 andV ar(rx) = V ar(ry) = 1 under the null hypothesis. The

Pitman’s ARE of the test statistic based onry to the one based onrx is

ARE(ry, rx) = (
∑∞

i=1 b
2
1i i!)(

∑∞
j=1 b

2
2j j !)

b2
11b

2
21

.

Thus,ARE(ry, rx)�1 with equality holding at
� = (1,1), in which casebj1 = �j , and
bjk = 0 for j = 1,2 andk > 1. �

When(X1, X2) have a bivariate lognormal distribution, i.e.,�1 = �2 = 0, we have�x =
(exp(�y�1�2)− 1)/

√
e�1 − 1

√
e�2 − 1 and ARE(ry, rx) = (e�1 − 1)(e�2 − 1)/�2

1�
2
2

> 1.
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Fig. 1. Empirical power functions forn = 20.

4. Application

The lemma in the previous section shows that it is more efficient to conduct test indepen-
dence on transformed observations. How does the procedure perform when the sample sizes
are finite? More importantly how does it perform when the transformation parameter
� is
estimated from the data? Figs. 1–3 show the power of test of independence using Pearson
correlation coefficient before and after a Box–Cox transformation. We have also included the
power of the Spearman rank correlation. To obtain the figures, we generated(x1i , x2i ), i =
1, .., n from a bivariate lognormal distribution with mean vector zero, unit variances and cor-
relation�. The power of test of independence based onrx andry were computed over 1000
simulations withn = 20,30,40 and� = −0.2, . . . ,0.8. To obtain the scale to which we
need to transform, we maximized the likelihood function and obtained an estimate for� in in-
terval(0,1). The figures and the asymptotic ARE show that we can increase the power of the
normal theory test of independence by a Box–Cox transformation to normality. It is interest-
ing to compare the performance of Spearman correlation. Figs. 1–3 show that the empirical
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Fig. 2. Empirical power functions forn = 30.

power curves of the Spearman correlation are enclosed by those of Pearson correlation
before and after a transformation.

Andrews[3] shows that the maximum likelihood estimate of the Box–Cox transformation
parameter is sensitive to outliers. It can, however, be argued that all efficient methods depend
critically on the extreme observations. In this case, extreme observations contain pertinent
information for selecting the best power transformation. As noted by a referee, in our testing
problem robustness to outliers may be a greater issue than efficiency. A clear lesson from
the figures is that one should perform the test of independence on the original scale using
Spearman rank correlation if testing independence is all that is intended and one does not
wish to perform further analysis based on normal theory. In such cases, Spearman correlation
is recommenced as Pearson correlation is notorious for the effects of extreme observations.
Kowalski [11] demonstrates the effects of non-normality of the bivariate parent distribution
on the distribution of the Perason correlation. These effects are why one may consider
a transformation to normality. For example, Kowalski [10] and Kowalski and Tarter [12]
assume that normal correlation analysis is robust with respect to the kinds of non-normality
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Fig. 3. Empirical power functions forn = 40.

possible when the marginals are constrained to be normal. Kowalski[10] notes that for a
wide range of bivariate distributions, transformed correlation agrees more closely with the
normal theory distribution of the sample correlation coefficient for a wide range of values
of the correlation.

In many cases of interest, testing for independence is only a prelude to further analy-
sis after a transformation to normality [8]. Box–Cox transformation is used when further
investigation such as regression analysis on the transformed data is needed following the
rejection of the null hypothesis of independence based onry . In order to see whether or not
efficiency comparisons in the presence of outliers are affected we performed the follow-
ing experiment with samples from a bivariate log-normal distribution with at point mass
at (a) (10−6,10−6) (Fig. 4) and (b)(20,20) (Fig. 5). With probability 0.90, we gener-
ated a random sample of size 30 from a bivariate lognormal distribution with mean vec-
tor zero, unit variances and correlation� and with probability 0.10 we generated from
the point mass. Effects of the contamination on the power comparison can be seen in
Figs. 4 and 5. One can study the behavior of the sample correlation coefficient before and
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Fig. 4. Bivariate log-normal distribution with a point mass at(10−6,10−6).

after the transformation through its influence function. We plan to investigate this further in
another paper.

In many applications, we want to obtain correlated random variables with marginals that
are positive and skewed. Bivariate lognormal distribution with
� = (0,0) is frequently used
to model such data. One can specify other values for
� and use the form ofh(�y) to obtain

the value of�y required to induce the correlation�x on observationsXj = (�j Yj + 1)1/�j .
We generate a random sample of sizen from (Y1, Y2), a bivariate normal distribution with
mean
� and covariance�. For specified
�, we formXj . The generated values(X1, X2)

have means, variances and covariances determined fromb’s. The values ofb’s for some
specified
� can be found in Tables 1 and 2. However, in general, numerical calculation may
be required to obtain these.
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Fig. 5. Bivariate log-normal distribution with a point mass at(20,20).
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