A Note on Algebra Automorphisms of Triangular Matrices over Commutative Rings

Thomas P. Kezlan
Department of Mathematics
University of Missouri — Kansas City
Kansas City, Missouri 64110-2499

Submitted by George Phillip Barker

ABSTRACT

It is shown that if R is a commutative ring with unity, then every R-algebra, automorphism of the algebra of upper triangular \(n \times n \) matrices over R is inner.

Let \(R \) be a commutative ring with unity and \(\mathcal{T}_n(R) \) the R-algebra of upper triangular \(n \times n \) matrices over \(R \). It was stated in [1] that every R-algebra automorphism of \(\mathcal{T}_n(R) \) is inner provided \(R \) is an integral domain. In I. M. Isaacs's review [2] of this result he mentioned that the proof was in error (although the theorem is true) and also suggested that the hypothesis that \(R \) is an integral domain probably could be weakened or perhaps eliminated altogether. It is the purpose of this note to simultaneously correct the error and generalize the result of [1], thereby confirming the accuracy of Isaacs's conjecture.

Theorem. If \(R \) is any commutative ring with unity, then every R-algebra automorphism of \(\mathcal{T}_n(R) \) is inner.

Proof. We induct on \(n \), the result being trivial with \(n = 1 \), since the only R-algebra automorphism of \(R \) itself is the identity mapping. Thus, assuming the theorem for matrices of size less than \(n \), let \(\Theta \) be an R-algebra automorphism of \(\mathcal{T} = \mathcal{T}_n(R) \).

Let \(E_{ij} \) denote the standard unit matrices for \(1 \leq i, j \leq n \) and \(I_k \) the \(k \times k \) identity matrix. We first show that \(\Theta(E_{11}) = T^{-1}E_{11} T \) for some invertible \(T \in \mathcal{T} \).
We use the following notation:

\[\Theta(E_{kk}) = \begin{bmatrix} e_{ij}^{(k)} \end{bmatrix} \text{ for } k = 1, 2, \ldots, n, \]

\[\Theta(E_{k,k+1}) = \begin{bmatrix} a_{ij}^{(k)} \end{bmatrix} \text{ for } k = 1, 2, \ldots, n-1. \]

Using

\[\Theta(E_{k,k+1}) = \Theta(E_{kk}) \Theta(E_{k,k+1}), \quad \Theta(E_{k,k+1}) \Theta(E_{kk}) = 0, \]

and looking at diagonal entries, we obtain

\[a_{ii}^{(k)} = \sum_{r=1}^{n} e_{ir}^{(k)} a_{ri}^{(k)}, \quad \sum_{r=1}^{n} a_{ir}^{(k)} e_{ri}^{(k)} = 0 \]

for \(1 \leq k \leq n-1\) and \(1 \leq i \leq n\). Recalling that the matrices are upper triangular, we have

\[a_{ii}^{(k)} = e_{ii}^{(k)} a_{ii}^{(k)} = a_{ii}^{(k)} e_{ii}^{(k)} = 0. \]

Thus the matrices \(\Theta(E_{k,k+1})\) are strictly upper triangular for \(k = 1, 2, \ldots, n-1\).

Now consider the product

\[\Theta(E_{1n}) = \Theta(E_{12}) \Theta(E_{23}) \cdots \Theta(E_{n-1,n}) \]

\[= \begin{bmatrix} a_{ij}^{(1)} & a_{ij}^{(2)} & \cdots & a_{ij}^{(n-1)} \end{bmatrix}, \]

the \((i,j)\) entry of which is

\[\sum_{r_{n-2} = 1}^{n} \sum_{r_{n-3} = 1}^{n} \cdots \sum_{r_{2} = 1}^{n} \sum_{r_{1} = 1}^{n} a_{i1}^{(1)} a_{r_{1}r_{2}}^{(2)} \cdots a_{r_{n-3}r_{n-2}}^{(n-2)} a_{r_{n-2}j}^{(n-1)}. \]

But since the matrices are strictly upper triangular, the nonzero terms in the above sum must have first subscript less than the second; thus there can be only one such term, namely that in which

\[i = 1, \quad r_{1} = 2, \quad r_{2} = 3, \ldots, \quad r_{n-2} = n-1, \quad j = n. \]
We now know that the \((1, n)\) entry of \(\Theta(E_{1n})\) is \(a_{12}^{(1)}a_{23}^{(2)} \cdots a_{n-1,n}^{(n-1)}\) while all other entries are 0, that is,

\[
\Theta(E_{1n}) = a_{12}^{(1)}a_{23}^{(2)} \cdots a_{n-1,n}^{(n-1)} E_{1n}.
\]

The above is all true for \(\Theta^{-1}\) as well, so

\[
\Theta^{-1}(E_{1n}) = b_{12}^{(1)}b_{23}^{(2)} \cdots b_{n-1,n}^{(n-1)} E_{1n},
\]

where the \(b\)'s are elements of \(R\). Since

\[
E_{1n} = \Theta(\Theta^{-1}(E_{1n})) = a_{12}^{(1)}a_{23}^{(2)} \cdots a_{n-1,n}^{(n-1)} E_{1n},
\]

it follows that \(a_{12}^{(1)}, a_{23}^{(2)}, \ldots, a_{n-1,n}^{(n-1)}\) are units of \(R\).

Using \(\Theta(E_{12}) = \Theta(E_{11}) \Theta(E_{12})\), we get \(a_{12}^{(1)} = e_{11}^{(1)}a_{12}^{(1)}\), and since \(a_{12}^{(1)}\) is a unit, we obtain \(e_{11}^{(1)} = 1\). Similarly, for \(k = 1, 2, \ldots, n-1\) we use \(\Theta(E_{kk+k+1}) = \Theta(E_{kk} + e_{kk+k+1})\) to obtain \(a_{k,k+1}^{(k)} = a_{k,k+1}^{(k)} + e_{k+1,k+1}^{(k)}\), and since \(a_{k,k+1}^{(k)}\) is a unit, we have \(e_{k+1,k+1}^{(k)} = 1\). We now have \(e_{11}^{(1)} = e_{22}^{(2)} = \cdots = e_{nn}^{(n)} = 1\).

Using \(\Theta(E_{kk}) \Theta(E_{qq}) = 0\) for \(q \neq k\), we have \(e_{qq}^{(k)}e_{qq}^{(q)} = 0\) with \(e_{qq}^{(q)} = 1\), whence \(e_{qq}^{(k)} = 0\). In short, the \(k\)th diagonal entry of \(\Theta(E_{kk})\) is 1, while the other diagonal entries are 0, that is, \(\Theta(E_{kk})\) has the form \(\Theta(E_{kk}) = E_{kk} + S_k\), where \(S_k\) is strictly upper triangular.

Taking \(k = 1\), we use the fact that \(\Theta(E_{11})\) is idempotent and \(S_1 E_{11} = 0\) to obtain \(S_1 = E_{11} S_1 + S_1^2\), which upon left multiplication by \(S_1\) yields \(S_1^2 = S_1^3 = \cdots = S_1^n = 0\). Thus \(S_1 = E_{11} S_1\), and therefore we may write

\[
\Theta(E_{11}) = \begin{bmatrix}
1 & c_{12} & c_{13} & \cdots & c_{1n} \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{bmatrix}.
\]

Taking

\[
T = \begin{bmatrix}
1 & c_{12} & c_{13} & \cdots & c_{1n} \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & I_{n-1} & \ddots & \vdots \\
0 & \cdots & 0 & 1 & c_{12} \\
0 & \cdots & 0 & 0 & 1
\end{bmatrix},
\]

gives \(\Theta(E_{11}) = T^{-1} E_{11} T\), and since our aim is to show \(\Theta\) inner, we may assume \(\Theta(E_{11}) = E_{11}\).
We now apply the inductive hypothesis to

$$\mathcal{S} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 0 \end{bmatrix} \in \mathcal{F}_{n-1}(R).$$

Note that for $A \in \mathcal{S}$ we have $A \in \mathcal{S}$ iff $E_{11}A = 0 = AE_{11}$. But $E_{11}A = 0 = AE_{11}$ iff $E_{11}\Theta(A) = 0 = \Theta(A)E_{11}$, and hence $A \in \mathcal{S}$ iff $\Theta(A) \in \mathcal{S}$. Inductively, Θ restricted to \mathcal{S} is inner; say it is induced by $S_0 \in \mathcal{S}$. Let $S = E_{11} + S_0$. Then S is invertible in \mathcal{S}, and $\Theta(U) = S^{-1}US$ for all $U \in \mathcal{S}$. Again, since our aim is to show Θ inner, it suffices to assume $\Theta(U) = U$ for all $U \in \mathcal{S}$.

For $j > 1$ we have $\Theta(E_{1j}) = \Theta(E_{11}E_{1j}E_{jj}) = E_{11}\Theta(E_{1j})E_{jj}$ and hence $\Theta(E_{1j}) = a_{1j}E_{1j}$ for some $a_{1j} \in R$. We shall show that $a_{1j} = a_{12}$ for $j > 1$. Since the above is also true of Θ^{-1}, we have $\Theta^{-1}(E_{1j}) = b_{1j}E_{1j}$ for some $b_{1j} \in R$. Since $\Theta(b_{1j}E_{11}) = \Theta(b_{1j}E_{11}E_{11}) = \Theta(b_{1j}E_{11})E_{11}$, we have $\Theta(b_{1j}E_{11}) = c_{1j}E_{11}$ for some $c_{1j} \in R$. Finally, $E_{1j} = \Theta(b_{1j}E_{1j}) = \Theta(b_{1j}E_{11}E_{1j}) = \Theta(b_{1j}E_{11})\Theta(E_{1j}) = c_{1j}E_{11}a_{1j}E_{1j} = c_{1j}a_{1j}E_{1j}$, whence $c_{1j}a_{1j} = 1$ and a_{1j} is a unit of R. Also, $a_{1j}E_{1j} = \Theta(E_{1j}) = \Theta(E_{12}E_{2j}) = a_{12}E_{12}E_{2j}$ [note that $\Theta(E_{2j}) = E_{2j}$, since $E_{2j} \in \mathcal{S}$] = $a_{12}E_{1j}$. Thus $a_{1j} = a_{12}$ for $j > 1$.

Letting

$$D = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{1j} \\ 0 & \cdots & 0 & a_{12} \end{bmatrix},$$

we obtain $D^{-1}E_{ij}D = \Theta(E_{ij})$ for all i, j. Thus Θ is inner, and the proof is complete.

REFERENCES

Received 10 July 1989; final manuscript accepted 21 July 1989