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Abstract Heat shock proteins play an essential role in prevent-
ing deleterious effects of high temperatures. In many plants,
HSP101 has a central role in heat stress survival. We report
the isolation and characterization of four cDNAs corresponding
to different members of the durum wheat HSP101 gene family.
Expression analysis revealed differences in their induction.
Accordingly, durum wheat HSP101 genes are differently regu-
lated, therefore having distinct roles in stress response and ther-
motolerance acquisition. These findings are important for further
dissection of the molecular mechanisms underlying the stress re-
sponse and for understanding the functions of the HSP101 fam-
ily members. This information could be important for the
exploitation of specific alleles in marker assisted selection for
abiotic stress resistance.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.

Keywords: Quantitative (Real-Time) RT-PCR; Heat shock
response; HSP101 gene family; Triticum
1. Introduction

Heat stress is one of the major constraints to plant growth

and yield, as it damages cell, tissue and whole plant function-

ing. At the biochemical and molecular levels the synthesis of

heat shock proteins (HSPs) represents the most interesting,

but still not completely explained, aspect of the heat shock re-

sponse. These proteins, mainly chaperones or proteases, play

the essential role of preventing or minimizing the deleterious

effects of heat at the cellular and molecular levels. Moreover,

they help cells in recovering from the stress during the post-

stress phase [1]. This role was confirmed by a study on

HSP101 in Arabidopsis. This protein is part of a molecular

complex involving also small HSPs (sHSPs), and has the role

of re-solubilizing protein aggregates formed as an effect of

the heat stress [2–4]. In maize, HSP101 forms complexes with
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HSP70, that could be part of a large multi-chaperone complex,

involved in the correct protein folding [5]. Other reports have

shown that HSP101 has a central role in establishing thermo-

tolerance [6–8]. These proteins belong to a family of proteases

firstly described in bacteria [9,10], but also in yeast, protozo-

ans, and plants [11,12]. In particular they are ATPases in-

volved in assembly/disassembly of protein complexes such as

the ATP-dependent dissolution of cytosolic or nuclear protein

aggregates formed during heat stress [3,13,14]. Clear evidence

of the protective role of HSP101 and its involvement with ther-

motolerance was shown in Saccharomyces cerevisiae in which

the survival to high temperatures and induction of thermotol-

erance were strictly bound to the presence of HSP104 [13,15].

Nevertheless, the essential functions which are protected or re-

paired by HSP101 remain to be elucidated.

In many plant species (i.e. Arabidopsis thaliana, soybean,

rice, maize, pea, beans), many cDNAs and genomic clones,

coding for different forms of HSP101, with molecular weights

ranging from 100.9 to 109.4 kDa, have been isolated and char-

acterized, suggesting that HSP101 is a member of a small gene

family strongly induced by heat [16,17]. In Triticum aestivum,

the species most similar to that of our interest i.e. Triticum dur-

um, three different HSP101 coding sequences are present in

GenBank [18,19].

In this paper, we report for the first time the isolation and

characterization of four cDNAs coding for different forms of

HSP101 in durum wheat. The relevant cDNAs were sequenced

and single nucleotide polymorphisms (SNPs), specific for the

different isoforms, were identified. This allowed to perform

expression analysis using Quantitative (Real-Time) reverse

transcription polymerase chain reaction (RT-PCR) to quantify

the relative abundance of the various HSP101 isoform tran-

scripts under different stress conditions, revealing differences

in timing and level of expression.
2. Materials and methods

2.1. Plant material
Seeds of T. durum cultivar (cv) Ofanto, cv Creso, and of Triticum

monococcum (ID362) were germinated on cotton pads for 3 days at
24 ± 1 �C. Seedlings were transplanted into small pots with soil and
grown for 14 days at 23 �C with 16 h of light (photosynthetic photon
flux density (PPFD) 80 lmol m�1 s�1) at 65% relative humidity.

Heat treatments were performed exposing pots to 37 �C for different
times (30, 60 and 90 min) or to temperatures of 29, 31, 33, 35 �C for
30 min. Acclimation was achieved by exposing plants to 34 �C for
24 h, and the temperature was then shifted to 42 �C for 2 h for stress
blished by Elsevier B.V. All rights reserved.
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post-acclimation. Stress without acclimation was achieved by exposing
plants directly to 42 �C for 2 h. After the heat stress aerial parts were
collected, frozen in liquid nitrogen and kept at �80 �C until use.

2.2. Database search and primer design
A search in GenBank database showed three sequences of T. aes-

tivum encoding for HSP101: HSP101 (GenBank Accession No.
AF083344), HSP101B and HSP101C (GenBank Accession Nos.
AF097363, AF174433). Based on their alignment, two sets of specific
primers were designed to amplify HSP101B (101b-forw2/101b-rev2)
and HSP101C (101c-forw/101c-rev2) in T. durum (Table 1 – supple-
mentary material). Primers were also designed to the a-tubulin gene se-
quence (aTUBF/aTUBRev2) of T. aestivum (GenBank Accession No.
U76558) and used as an internal control for RT-PCR. Primers and
probes for Quantitative (Real-Time) RT-PCR were designed with ‘‘Pri-
mer Express 2’’ (Applied Biosystems, Foster City, CA) for the previ-
ously identified T. durum sequences. Primers were obtained from
MWG (Ebersberg, Germany) and probes from Applied Biosystems.
Their sequences are listed in Table 1 – supplementary material.

2.3. PCR amplification and sequence analysis
HSP101B, HSP101C and a-tubulin cDNA fragments from T. durum

cv Ofanto and T. monococcum (ID 362) were obtained following stan-
dard procedures. Twenty ng of cDNA were used as template for PCR
reactions with the PCR Master Mix (Promega, Madison, WI) contain-
ing 200 nM of each forward and reverse primer (101b-forw2/101b-
rev2, 101c-forw/101c-rev2, a-TUB-F/a-TUB-R) in the Genius Thermal
Cycler (Techne, Burlington, NJ). PCR products were cloned in
pGEM-T Easy vector (Promega) and amplified in Escherichia coli
JM109 strain. Eight clones for each E. coli transformation were se-
lected and sequenced, in order to verify the presence of different ampli-
fication products.

Full length cDNAs of T. durum HSP101B (TdHSP101B) and
HSP101C (TdHSP101C) were amplified from cv Ofanto, exposed to
37 �C for 1 h, by RT-PCR using primer pairs 101b-5 0F/101b-rev2 3 0

and 101c-50F/101c-rev3, respectively. The cDNAs were sequenced fol-
lowing a walking strategy. Each sequence was performed at least twice
on eight independent clones. Sequence reactions were performed using
CEQTM 2000XL Sequencer (Beckman Coulter, Fullerton, CA). Nucle-
otide and deduced amino-acid sequences were analyzed and compared
with sequences in databases using BLAST [20] and ClustalW [21] pro-
grams.

Chromosomal localization of the genes was obtained by PCR ampli-
fication of genomic DNA from Chinese Spring Nullisomic–Tetrasomic
(NT) and Di-Telosomic (DT) seeds [22,23]. The primer pairs used
were: 101b-5 0F/101b-50R for TdHSP101B, 101cA-forw/101c-revRT
and 101cB-forw/101c-revRT for TdHSP101C. Reaction products were
resolved and identified on a 15% acrylamide gel or 2% w/v agarose gel.

2.4. Southern analysis
Genomic DNA was isolated from the leaves of 14-day-old seedlings

of T. durum cv Ofanto and T. monococcum ID362 as previously re-
ported [24]. DNA was digested overnight at 37 �C with BamHI, EcoRI,
and XbaI restriction enzymes. Gel electrophoresis, Southern blotting,
and hybridization were performed according to standard procedures
[25].

2.5. Semi-quantitative RT-PCR analysis
Total RNA was extracted from 500 mg of tissue as previously de-

scribed [26], and treated with DNase I (Promega) according to the
manufacturer’s protocol. First strand cDNA was synthesized by M-
MLV Reverse Transcriptase, RNaseH Minus, Point Mutant (Prome-
ga) and random hexamers. Twenty ng of cDNA were used as template
for PCR amplifications with PCR Master Mix (Promega) containing
200 nM of each forward and reverse primer (Table 1 – supplementary
material). The amplicons were separated on a 2% w/v agarose gel.

2.6. Duplex Quantitative (Real-Time) RT-PCR
Quantitative (Real-Time) RT-PCR was performed by ABI PRISM

7000 Sequence Detection System (Applied Biosystems) using the v.
1.1 software for data analysis; for each reaction 20 ng of first strand
cDNA were used in a total reaction volume of 25 ll with 1X TaqMan
Universal Mastermix (Applied Biosystems), 250 nM of target and
endogenous specific probes, 200 nM of target specific primers
(101cA-forw/101c-revRT or 101cB-forw/101c-revRT; 101bA-forw/
101bAR-rev or 101bB-forw/101bBR-rev), and 100/400 nM of a-tubulin
specific primers (a-Tub-F/a-Tub-Rev2). Reaction conditions were:
50 �C for 2 min, 95 �C for 10 min followed by 40 cycles of 95 �C for
15 s, and 60 �C for 1 min. Each sample was amplified in triplicate,
and each experiment was repeated twice. The amount of target con-
tained in each sample was determined using the relative standard curve
method. TdHSP101 transcript levels were normalized with respect to
a-tubulin. All calculations and statistical analysis were performed as
described in the ABI 7700 sequence detection system User Bulletin 2
(Applied Biosystems) using Microsoft Excel program. The specificity
of the amplicons was determined by sequencing.
3. Results

3.1. Sequence isolation and characterization

To study the structure and the expression of the HSP101

gene family members of T. durum we used specific primer pairs

designed on the basis of T. aestivum sequences previously re-

ported for two different isoforms, i.e. HSP101B and HSP101C

[18,19].

Amplifications were performed on cDNAs from cv Ofanto,

the amplicons obtained were cloned and sequenced. Two se-

quences differing in a few nucleotides between each other were

obtained for both TdHSP101B and TdHSP101C genes. To

verify whether the differences were due to the presence of dif-

ferent alleles on each genome and to distinguish between the

sequences belonging to the A and B genomes, amplifications

were performed on both T. durum (AABB genome) and T.

monococcum (AA genome) cDNAs. As shown in Fig. 1a, in

T. durum the amplicons for TdHSP101B were 188 bp long,

with three SNPs that allowed us to distinguish two

TdHSP101B forms: one named TdHSP101B-A, which is iden-

tical to the T. monococcum sequence, and the other, named

TdHSP101B-B, which carried three SNPs. The T. durum

amplicons for HSP101C (Fig. 1b) were 114 bp long: the one

with two SNPs with respect to the T. monococcum sequence

was named TdHSP101C-A, the other, which carried five SNPs,

TdHSP101C-B.

Amplicons with the complete coding sequences for the four

identified isoforms were obtained by RT-PCR. TdHSP101B-A

(GenBank Accession No. AJ970533) was 2909 bp long with a

2739 bp ORF; TdHSP101B-B (GenBank Accession No.

AJ970534) was 2950 bp long with an ORF of 2751 bp;

TdHSP101C-A (GenBank Accession No. AJ970535) was

2878 bp long with a 2739 bp ORF; and TdHSP101C-B (Gen-

Bank Accession No. AJ970536) was 2933 bp long with an

ORF of 2739 bp.

In order to determine their chromosomal location, a PCR

analysis was performed for each gene on NT and DT lines

of T. aestivum cv Chinese Spring [22,23]. Nullisomic–tetraso-

mic are wheat lines each lacking a different pair of homologous

chromosomes, due to the replacement with its homeologous

(i.e. N3AT3B means a line in which the 3A pair is missing

and replaced by an additional 3B pair). Ditelosomics are eu-

ploid lines in which one arm of a given chromosome is missing,

for example line DT3AS contains only the short arm of chro-

mosome 3A and lacks its long arm. Due to their characteris-

tics, these lines can be used in wheat to map a gene on a

specific chromosome arm. As shown in Fig. 2a, using

TdHSP101C-A specific primers, no amplification product

was obtained for the N3AT3B line, while using TdHSP101C-



Fig. 1. CLUSTAL W analysis of nucleotide sequences of the amplicons obtained using the specific primers for HSP101B gene (a) and HSP101C
gene (b) on T. durum and T. monococcum cDNAs. Shadowed nucleotides indicate point substitutions.

Fig. 2. Chromosome assignment of TdHSP101C-A and -B genes. (a) PCR products obtained from genomic DNA of the seven wheat nullisomic–
tetrasomic lines (1 = N1AT1B; 2 = N2BT2A; 3 = N3AT3B; 4 = N4AT4B; 5 = N5AT5B; 6 = N66BT6A; 7 = N7AT7B) and of Chinese Spring wheat
(C). In the nomenclature of the nullisomic–tetrasomic lines the ‘‘N’’ is followed by the number and genome of the nullisomic chromosome and the
‘‘T’’ is followed by the same for the tetrasomic chromosome. For the amplification TdHSP101C-A and TdHSP101C-B gene specific primers were
used. M = marker, 50 bp DNA ladder; B = PCR negative control. (b) PCR products obtained from genomic DNA of four wheat ditelosomic lines
(DT3AL, DT3AS, DT3BL, DT3BS) and of Chinese Spring wheat (C). In the nomenclature of the ditelosomic lines, the numeral indicates the
chromosome number, the A, or B represents the specific genome, and the L or S indicates which chromosome arm is present. For the amplification
TdHSP101C-A and TdHSP101C-B gene specific primers were used. M = marker, 50 bp DNA ladder; B = PCR negative control.
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B specific primers the amplification product was present. Con-

sidering that N3AT3B line lacks the 3A chromosome pair, that

is replaced with the homeologous 3B pair, TdHSP101C-A was

assigned to chromosome 3A and TdHSP101C-B to chromo-
some 3B. The results obtained by PCR performed on the DT

lines 3AL, 3AS, 3BL, and 3BS are shown in Fig. 2b. Using

TdHSP101C-A and -B specific primers the corresponding

amplicons were obtained in the DT3AL and DT3BL lines,
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but not in DT3AS and DT3BS. These results confirmed that

TdHSP101C-A is located on chromosome 3A long arm and

TdHSP101C-B on chromosome 3B long arm.

Using the same strategy, TdHSP101B-A and -B were as-

signed to the long arm of chromosomes 1A and 1B, respec-

tively (data not shown).
Fig. 3. Alignment of the deduced amino acid sequences of TdHSP101B-A,
with CLUSTAL W. Gaps in the sequences are indicated by dashes. ‘‘*’’
substitutions; ‘‘.’’ indicates semi-conserved substitutions. Boxes indicate con
Comparison of the deduced aminoacid sequences of these

genes is shown in Fig. 3. TdHSP101B shares 90% identity with

TdHSP101C, TdHSP101B-A and TdHSP101B-B share 98%

identity; TdHSP101C-A and TdHSP101C-B share 98% iden-

tity. The conserved consensus sequences peculiar to plant

HSP101 [17] are indicated in Fig. 3.
TdHSP101B-B, TdHSP101C-A, and TdHSP101C-B cDNAs obtained
indicate identical residues in all sequences; ‘‘:’’ indicate conserved

served consensus sequences.
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The deduced T. durum aminoacid sequences were compared

to the known HSP101 from higher plants and a phylogenetic

tree was obtained (Fig. 4).
3.2. Genomic organization of the TdHSP101 gene family

A TdHSP101C cDNA fragment (1169 bp) was utilized to

probe T. durum and T. monococcum genomic DNA digested

with BamHI, EcoRI, and XbaI, the sites for which were absent

in the cDNA used as a probe (Fig. 5). Hybridization patterns

of the different digests showed that in T. durum there were two

hybridization signals (ca. 9.0 and 4.8 kb) in the BamHI digest,

two (ca. 11 and 6.0 kb) in the EcoRI digest, and two (ca. 12.0

and 5.6 kb) in the XbaI digest. In contrast, in T. monococcum

the hybridization bands were two (ca. 9.0 and 6.6 kb) in the

BamHI digest, one (ca. 11.0 kb) in the EcoRI digest, and one

(ca. 6.1 kb) in the XbaI digest.
3.3. Expression analysis

The level of expression of the different HSP101 genes in T.

durum was investigated by Quantitative (Real-Time) RT-

PCR. To establish any variation in response of the durum

wheat HSP101 genes to heat stress, their expression was com-

pared in different thermal conditions. Preliminary expression

analysis was performed by semi-quantitative RT-PCR to ver-

ify primers specificities and amplicons identities (data not

shown). Further, to discriminate the expression of the individ-

ual genes belonging to this family, a duplex Quantitative

(Real-Time) RT-PCR system was set up. The expression of

the A and B forms of TdHSP101B and TdHSP101C was eval-

uated in two durum wheat cvs (Ofanto and Creso) exposed to

the different thermal regimes. The results obtained by this anal-

ysis are reported in Figs. 6 and 7; in the cv Ofanto the tran-
Fig. 4. Phylogenetic tree based on amino acid sequences showing the relation
plants: Arabidopsis thaliana (GenBank Accession Nos. NP565083, AF21
AF174433, AF097363), Zea mays (GenBank Accession Nos. AF133840
CAC87117, AF332981, AAU44265), Vitis vinifera (GenBank Accession
AAC83688.2), Glycine max (GenBank Accession No. L35272), Phaseolus lun
scripts of TdHSP101B-A and -B forms were already

detectable at 23 �C, although at very low level, and abruptly

increased after 30 min at 29 �C. The expression of both

TdHSP101B forms reached almost the maximum level at

33 �C and remained very high along all the thermal treatments

tested (Fig. 6a). On the contrary TdHSP101C-A and -B forms

in the cv Ofanto were induced starting from 29 �C. During the

stress, TdHSP101C transcripts gradually accumulated reach-

ing a maximum level after 60 min at 37 �C but decreased by

90 min at 37 �C. Compared with TdHSP101C forms, the level

of expression of TdHSP101B forms was considerably higher

under all the thermal treatments (Fig. 6a).

In the cv Creso (Fig. 6b) the TdHSP101B-B transcripts were

already detectable at 23 �C. TdHSP101B-A and -B forms were

strongly induced after 30 min at 29 �C, and reached their max-

imum level at 35 �C. The level of expression remained very

high at all the 37 �C treatments. Transcripts of the

TdHSP101C-A and -B forms in the cv Creso were induced

at 29 �C, reached their maximum level after 60 min at 37 �C

with comparable values, and remained high also after 90 min

at 37 �C. In this cv also, the levels of transcripts of the

TdHSP101B forms were considerably higher than that of

TdHSP101C forms under all the thermal treatments (Fig. 6b).

The possible different roles of the two TdHSP101B and

TdHSP101C isoforms in conferring thermotolerance, were

analyzed in seedlings after a treatment at very high tempera-

ture (42 �C) performed with and without the pre-treatment at

34 �C.

As shown in Fig. 7a and b, in both cvs TdHSP101B (A and B

forms) are transcribed under all the thermal treatments tested

although the highest level of expression was induced when heat

shock (2 h at 42 �C) was imposed after a long term pre-treat-

ment (24 h at 34 �C). On the contrary in both cvs heat shock
ship of TdHSP101B and TdHSP101C with other HSP101 from higher
8796), Triticum aestivum (GenBank Accession Nos. AAC83689.2,

, AAR37417.1), Oryza sativa (GenBank Accession Nos. Q6F2Y7,
No. AAX08108.1), Nicotiana tabacum (GenBank Accession No.

atus (GenBank Accession No. AAF91178).



Fig. 5. Southern hybridization of genomic DNA from T. durum wheat
and T. monococcum with the TdHSP101(B-C) cDNA probe. Total
DNA (30 lg each sample for durum wheat and 15 lg each sample for
T. monococcum) was digested with either BamHI (B), EcoRI (E), or
XbaI (X), and separated on 0.7% agarose gel. M = molecular masses of
markers (k-HindIII) in kb.

4846 M. Gullı̀ et al. / FEBS Letters 581 (2007) 4841–4849
treatment at 42 �C for 2 h did not induce a high level of expres-

sion of TdHSP101C (A and B forms), unless a long term pre-

treatment (24 h at 34 �C) was performed to induce thermotoler-

ance. Moreover, after the pre-treatment at 34 �C all isoforms

reached their maximum level of expression, though the induc-

tion of TdHSP101B-A and -B was higher than induction of

TdHSP101C-A and -B in both cultivars; nevertheless, some dif-

ferences can be observed between the two cvs, in fact the level of

expression of the two isoforms was higher in the cv Creso.
4. Discussion

HSP101 is a key stress protein induced by abscisic acid

(ABA), heat, drought, and cold stresses and its synthesis is in-

creased to promote stress tolerance under such abiotic stress

conditions [27]. In the last few years significant progress was

obtained about the characterization of HSP101 gene family

in many plants, however so far no information exists about ge-

netic organization of this gene family in durum wheat. We

have identified in T. durum four stress-induced cDNAs, that

were not reported before. The molecular characterization of
these cDNAs indicated that they code for two different

HSP101 isoforms (i.e. TdHSP101B and TdHSP101C) that,

due to the presence of SNPs, can be distinguished in A and

B forms. Previous investigations of the HSP101 genes in other

cereals showed that the maize HSP101 gene is located on chro-

mosome 6 bin 6.06 [28], while, the rice gene for the only

HSP101 cytoplasmic isoform (Os05g44340), so far identified,

is located on chromosome 5 position 25,720,401-25,723,954

(TIGR Rice Genome Annotation – Release 4). The genes for

T. durum HSP101 isoforms here reported mapped on wheat

chromosomes 1 long arm (TdHSP101B) and 3 long arm

(TdHSP101C). These data are in accordance with the compar-

ative analysis of maize, rice and wheat available maps indicat-

ing that maize chromosome 6, rice chromosome 5, and wheat

chromosome 1 share an overall synteny. Nevertheless, since

the wheat HSP101 have not been mapped so far, we can not

have a confirmation about the position of these genes on the

wheat genome.

Phylogenetic analysis indicated that T. durum TdHSP101B-

A and -B forms cluster with the other monocot sequences

and that they are separated from TdHSP101C. Moreover the

two T. durum HSP101C are more related to the dicots, and

form with the T. aestivum HSP101C a cluster that seems to

be peculiar to the Triticeae, suggesting that this isoform might

have originated in these species, and that the HSP101 genes in

T. durum belong to a small gene family. This was further con-

firmed by Southern analysis on T. durum and T. monococcum

indicating that different members of the HSP101 gene family

are present per haploid genome in T. durum. Other authors

[19] reported the same kind of evaluation concerning the geno-

mic organization of the T. aestivum HSP101 gene family. In

fact, in their studies they suggested that in the hexaploid gen-

ome of T. aestivum the HSP101 gene family consists of a small

number of genes in each wheat genomes.

The capacity of genotypes to cope with stress appears to be

correlated with qualitative and/or quantitative variations of

HSP synthesis. In particular, the expression of HSP101 genes

has been linked to increased thermotolerance in many organ-

isms [6–8]. In fact, as already reported for T. aestivum and

other species like E. coli, yeast, Arabidopsis, and maize [9–

12], the different HSP101 gene family members are involved

in the response to different stresses, and exhibit a particular

role in the heat stress response. Nevertheless, specific roles

for the different isoforms have not been attributed. This task

is particularly difficult to achieve in the presence of gene family

in polyploid genomes like the T. durum one. In order to inves-

tigate whether the four identified genes are different not only in

structure but also in function, we have studied their expression

profiles in different conditions, with the aid of quantitative

transcriptomic tools like Quantitative (Real-Time) RT-PCR.

This is a useful approach when the aim of the work is to iden-

tify and quantify transcripts belonging to a gene family, as this

technique allows to distinguish exactly among the contribution

to the transcriptome of each of the different members. This

would be difficult in allotetraploid species such as durum

wheat, because of the presence of transcripts from each gen-

ome. In our case, this analysis was made possible because

the complete sequence of the different cDNAs, corresponding

to the different isoforms, essential for this kind of evaluation,

had been determined. The presence of regions characterized

by SNPs allowed the design of specific primers and probes

for each specific gene.



Fig. 6. Expression patterns of TdHSP101B (A and B form) and TdHSP101C (A and B form) genes in response to temperature increase (from 23 �C
to 29, 31, 33, 35 �C for 30 min, or 37 �C for 30, 60, 90 min) by duplex Quantitative (Real-Time) RT-PCR in T. durum cvs Ofanto (a) and Creso (b).
Error bar represents ±S.E. from three replicates for each sample.

Fig. 7. Expression patterns of TdHSP101B (A and B form) and TdHSP101C (A and B form) genes in response to different thermal treatments (23 �C
as control, 34 �C for 24 h; 42 �C for 2, after a pre-treatment at 34 �C for 24 h; 42 �C for 2 h without pre-treatment) by duplex Quantitative (Real-
Time) RT-PCR in T. durum cvs Ofanto (a) and Creso (b). Error bar represents ±S.E. from three replicates for each sample.
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According to the data here reported, TdHSP101B and

TdHSP101C are characterized by an extremely different level

of expression; thus suggesting that the two isoforms might

have different roles/functions in the heat shock response. In

particular, they might have different roles during acquisition

of thermotolerance. So far the role of HSP101 in the acquisi-

tion of thermotolerance has been demonstrated in many

organisms [8,15], for instance in some Arabidopsis mutants it

has been shown a clear link between HSP101 expression and

thermotolerance [7,29], although the specific role for each iso-

form has not yet been demonstrated.

High temperature tolerance in plants has two main compo-

nents: an inherent thermotolerance, i.e. the constitutive com-

ponent resulting from evolutionary thermal adaptation of the

species to their habitat, and an acquired thermotolerance, i.e.

the ability of a plant to survive lethal temperatures, following

the exposure to a mild heat stress (acclimation) [30,31].

In order to establish whether TdHSP101B and TdHSP101C

isoforms have different roles in conferring thermotolerance,

the heat shock was performed with and without the thermotol-

erance inducing pre-treatment. Through this analysis, differ-

ences in timing and level of expression for the two isoforms

were observed in both cvs analyzed, thus confirming the differ-

ent role for TdHSP101C gene with respect to TdHSP101B. In

particular, TdHSP101C (A and B forms) being massively ex-

pressed only after the long term treatment at 34 �C might be

the leading actor in the acquisition of thermotolerance.

According to our findings, in T. durum there are different

members of HSP101 gene family, located on A and B gen-

omes, actively transcribed in response to thermal stress, and

differently expressed under various thermal treatments. How-

ever, to dissect their regulatory mechanisms further analysis

is needed. A better elucidation of the relationships between

molecular diversity within the HSP101 gene family, and the

comprehension of the role of the different members will help

us to understand the functions of these genes in stress re-

sponses and induction of tolerance in durum wheat; moreover,

this knowledge will be useful to improve the tolerance of dur-

um wheat to abiotic stresses.
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