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Genetic diversity of Cryptosporidium isolates from patients in North India
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S U M M A R Y

Background: Cryptosporidiosis is a significant cause of diarrheal illness in both immunocompetent and

immunocompromised populations. Cryptosporidium species infect a wide range of hosts including

humans. Different species are morphologically indistinguishable, and molecular techniques have

become the key to detection and source tracking. The present study was designed to study the genetic

diversity of human Cryptosporidium isolates in North India.

Methods: Cryptosporidium oocysts were detected in stool samples by special staining of fecal smears.

DNA was extracted with a Qiagen kit and all samples were genotyped by small subunit ribosomal

ribonucleic acid (SSU rRNA)-based nested PCR-restriction fragment length polymorphism (RFLP) tool

using enzymes SspI and VspI. Cryptosporidium hominis and Cryptosporidium parvum isolates were

subtyped by sequence analysis of the nested PCR amplified gp60 gene.

Results: Fifty-three fecal samples were found to be positive for Cryptosporidium oocysts. RFLP analysis

revealed 39 isolates as C. hominis and 13 isolates of C. parvum; one sample failed amplification. gp60-

based sequencing of C. hominis and C. parvum divided them into eight subgenotype families and 17

subtypes. gp60-based sequencing identified seven cases of mixed infection with C. hominis and C.

parvum/Cryptosporidium meleagridis and showed the presence of C. meleagridis in six HIV-positive

patients that were indistinguishable in RFLP.

Conclusions: Cryptosporidium isolates obtained in the present study from patients in North India

belonged to three species, eight subgenotype families, and 17 subtypes. The existence of many

Cryptosporidium species, subgenotypes, and subtypes along with mixed infections reveals the

complexity of Cryptosporidium transmission; this heterogeneity indicates stable cryptosporidiosis

transmission in North India. The results may have further implications in understanding the

epidemiology and control of this infection.

� 2012 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Cryptosporidiosis, caused by Cryptosporidium, a protozoan
parasite, is a significant cause of diarrheal illness in both developed
and developing countries. Although Cryptosporidium infections
have been documented in both immunocompetent and immuno-
compromised populations, a high prevalence is documented in
HIV-positive patients (particularly those with CD4+ count of <200
cells/mm3), patients with malignancies (including those with
hematological malignancies undergoing chemotherapy or bone
marrow transplantation), patients with solid organ transplants,
and patients on hemodialysis.1–5 Studies from India have shown
varying rates of prevalence ranging from 11% to 33% in HIV
patients6–9 and 39.7% in the rural population.10 In Chandigarh,
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10.8–13.1% of HIV patients have been reported to harbor
Cryptosporidium.11,12

Humans acquire Cryptosporidium infections through several
transmission routes, such as direct contact with infected persons
and animals and/or the ingestion of contaminated food and water.
To date only eight species have been reported in humans: C.

hominis, C. parvum, C. meleagridis, C. felis, C. canis, C. muris, C. suis,
and Cryptosporidium cervine genotype (C. ubiquitum).13,14 Different
species/genotypes are morphologically indistinguishable, and
molecular techniques have become the key to species identifica-
tion and source tracking. Genetic typing of several loci, such as
those encoding the 18S rRNA, actin, oocyst wall protein, and a 70-
kDa heat shock protein, have been used for species identification.
The small subunit ribosomal ribonucleic acid (SSU rRNA)-based
PCR-restriction fragment length polymorphism (PCR-RFLP) tool is
preferred due to the presence of conserved regions with highly
polymorphic regions in the gene, allowing the design of primers
that can amplify various Cryptosporidium species or genotypes and
ses. Published by Elsevier Ltd. All rights reserved.
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differentiate them. Although genotyping tools can distinguish
anthroponotic from zoonotic parasites, their use in epidemiologic
investigations is limited by the low resolution power of these loci.
Several subgenotyping tools including microsatellites and minis-
atellites have been used in the epidemiologic resolution of C.

hominis and C. parvum. gp60 is a highly polymorphic target similar
to microsatellites, with tandem repeats of serine coding trinucleo-
tide at the 50 end of the gene, and has been used widely for
subgenotyping.15

Few studies on the molecular epidemiology have been reported
from India, with most of these being from South India; reports from
North India are scarce.8,16–19 There is only one study from North
India, which was a multisite study that had Delhi as the northern
representative. Moreover, the study was done on children aged <5
years and stool samples were those originally collected for the
Indian Rotavirus Strain Surveillance network.16 They reported SSU
and C. parvum glycoprotein 40/15 (Cpgp40/15)-based PCR-RFLP,
and had done Cpgp40/15-based sequencing in only a few samples
(16 from all centers) with ambiguous results for Cpgp40/15-based
PCR-RFLP. Studies on the molecular epidemiology of cryptospo-
ridia from North India are lacking. Thus the aim of the present
study was to assess the Cryptosporidium species and subgenotypes
from North Indian isolates.

2. Methods

2.1. Study design

Subjects (n = 1400) attending the outpatient departments of the
immunodeficiency clinic, inpatient and outpatient departments of
the advanced pediatric center, and the inpatient departments of
Nehru Hospital attached to the Post Graduate Institute of Medical
Education and Research (PGIMER), Chandigarh, were enrolled in
the study based on the following criteria: (1) group A: HIV-positive
patients with or without diarrhea (n = 970); (2) group B: transplant
patients with or without diarrhea (n = 100); (3) group C:
immunocompetent adults with or without diarrhea (n = 200);
(4) group D: children with diarrhea (n = 130).

Nehru Hospital attached to PGIMER is a tertiary care hospital,
and patients from different areas of North India including Punjab,
Haryana, Himachal Pradesh, Uttar Pradesh, and Bihar, attend the
hospital for treatment. The study protocol was reviewed and
approved by the institutional ethics committee of PGIMER.

2.2. Specimens and processing

Stool samples were collected and screened for Cryptosporidium
by staining (Ziehl–Neelsen and auramine ‘O’). Aliquots of samples
found to be positive for Cryptosporidium by microscopy were
stored at �20 8C until further analysis.

2.3. Cryptosporidium genotyping

DNA was isolated from all Cryptosporidium-positive samples
by QIAamp Stool Mini Kit in accordance with the manufacturer’s
instructions (Qiagen Inc., Valencia, CA). Cryptosporidium-positive
samples were genotyped by SSU rRNA-based PCR-RFLP tool. This
technique amplifies a �850-bp fragment of SSU rRNA by nested
PCR and differentiates Cryptosporidium species or genotypes by
banding patterns in the restriction analysis of secondary products
with restriction enzymes SspI and VspI.20 For restriction digestion
(37 8C for 14 h), 12 ml of secondary product in a 32-ml (total
volume) reaction mixture consisting of 2 ml of restriction buffer
and 2 U of SspI or 2 U of VspI (Fermentas Life Sciences, Vilnius,
Lithuania) was used. Digestion products were fractionated on a 2%
agarose gel and visualized by ethidium bromide staining.
2.4. C. hominis and C. parvum subgenotyping and subtyping

Subgenotyping of C. hominis and C. parvum was based on
sequence analysis of the gp60 gene. This molecular tool amplifies a
�850-bp fragment of the gp60 gene by nested PCR21 and
differentiates subgenotype families and subtypes on the basis of
sequence differences in the non-repeat region of the gene and
number of serine coding trinucleotide repeats (TCA, TCG, or TCT),
respectively. For the samples that failed to be amplified, a smaller
fragment (�400 bp) of the gene was amplified using primers
AL3531 and AL3533 in a primary PCR and AL3532 and LX0029 in a
secondary PCR.22 Secondary products of expected size (�850 bp
and �400 bp) were purified (QIAamp Gel Extraction Kit) and
sequenced in both directions with inner primer pairs. Sequencing
was performed on an ABI 3130 Genetic Analyzer (Applied
Biosystems, Foster City, CA). The categorization into subtype
families was done by alignment of gp60 sequences obtained in this
study with reference sequences retrieved from GenBank using
program ClustalW multiple alignment (BioEdit version 7.0.5.3).
Subgenotypes within gp60 allele families were determined on the
basis of the number of TCA (A), TCG (G), TCT (T), and 50-AAA/G ACG
GTG GTA AGG-30 (R) repeats in the microsatellite region, as per the
nomenclature described previously.22

2.5. Phylogenetic analysis

To further support the grouping of subtypes, a phylogenetic tree
was generated from aligned sequences using one-click mode in the
phylogeny.fr server (http://www.phylogeny.fr/). The tree was
constructed with sequences obtained in the present study
(numbered as PGIMER), one reference sequence corresponding
to each Cryptosporidium subtype (GenBank accession number_-
species_subtype) and sequences available from Indian studies
(GenBank accession number_IN_species). A rooted tree was
constructed with Plasmodium falciparum MSPI (merozoite surface
protein 1, having similar properties to Cryptosporidium 60-kDa
glycoprotein Cpgp40/15 or gp60) sequence (GenBank FJ959104.1)
as an outgroup. All the sequences in FASTA format were pasted in
space for analysis in one-click mode. Sequences were aligned with
MUSCLE (v3.7), and ambiguous regions (i.e., containing gaps and/
or poorly aligned) were removed with Gblocks (v0.91b). The
phylogenetic tree was constructed using the maximum likelihood
method implemented in the PhyML program (v3.0 aLRT). Graphical
representation and edition of the phylogenetic tree were
performed with TreeDyn (v198.3).

2.6. Nucleotide sequence accession numbers

All the unique gp60 sequences obtained in this study have been
submitted to GenBank under accession numbers HQ241927–
HQ241932, JF268622–JF268649, and JF495136–JF495160.

3. Results

3.1. Prevalence of Cryptosporidium

Fifty-three of 1400 samples (3.8%) were found to be positive for
Cryptosporidium by Ziehl–Neelsen and/or auramine ‘O’ staining;
this included 44/970 HIV patients (4.5%), 3/100 transplant patients
(3%), 1/200 immunocompetent adults (0.5%), and 5/130 children
(3.8%).

3.2. Cryptosporidium species/genotypes

DNA preparations of 52/53 positive samples yielded products of
�850 bp in the nested PCR of the 18s rRNA gene, while one

http://www.phylogeny.fr/


Table 1
Cryptosporidium species and subgenotype families in the study groups based on SSU

rRNA PCR-RFLP and gp60 sequencing

Source Species (n) Subgenotype families

HIV patients C. hominis (33)a,b Ia, Ib, Id, Ie, If

C. parvum (10)b IIc, IId, IIe

C. meleagridis (6)a -

Transplant patients C. hominis (2) Ie, If

C. parvum (1) IIe

Children C. hominis (3) Ie, If, Id

C. parvum (2) IIc, IId

Immunocompetent adults C. hominis (1) If

SSU rRNA, small subunit ribosomal ribonucleic acid; RFLP, restriction fragment

length polymorphism.
a Five mixed infections.
b Two mixed infections.
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(PGIMER32) failed to be amplified. C. hominis was the most
prevalent species, found in 39 (75%) samples, followed by C.

parvum in 13 (25%) (Table 1).

3.3. C. hominis and C. parvum subgenotyping and subtyping

DNA of the 53 samples was also amplified for the gp60 gene.
DNAs from 16/53 samples failed to produce the expected PCR
product (�850 bp) and were amplified with a new primer set,22

giving products of �400 bp. Out of 16 DNA samples (amplified for
�400 bp product), two (PGIMER64, PGIMER65) also failed to give
amplification for the small product and eight resulted in multiple
products. Multiple products were found in the eight samples as:
two products (400 bp, 310 bp) in six samples, three products
(420 bp, 380 bp, 320 bp) in one sample, and four products (400 bp,
370 bp, 300 bp, 260 bp) in one sample (PGIMER32).

All the distinct PCR products for small as well as large products
were gel-extracted and sequenced. PCR amplicons for the gp60
gene succeeded in sequencing reactions for all samples; however
for PGIMER32, out of the four products, only one PCR product of
300 bp succeeded in the sequencing reaction and was found to be
C. meleagridis. Mixed infections of Cryptosporidium species/
subgenotypes/subtypes were found in seven samples and all were
from HIV-seropositive patients. In five samples C. hominis was
found with C. meleagridis, in one sample C. hominis was found with
C. parvum, while in one sample two C. hominis subgenotypes were
present with C. parvum (Tables 1 and 2).

3.4. C. hominis and C. parvum subgenotype families and subtypes

Phylogenetic analysis of sequences revealed that C. hominis and
C. parvum isolates belonged to eight subgenotype families. Most of
Table 2
gp60 sequence-based subgenotypes and subtypes

Species Subgenotype family Total isolates 

C. hominis Ia 12 

Ib 1 

Id 8 

Ie 13 

If 5 

C. parvum IIc 6 

IId 5 

IIe 3 

C. meleagridis 6

a Triple infection.
b Double infection.
c With C. meleagridis.
the C. hominis isolates (n = 33) belonged to subgenotype families Ie
(n = 13), Ia (n = 12), and Id (n = 8). Subgenotype families Ie and Id
had two subtypes, subgenotype family Ia had six subtypes, while Ib
and If had one subtype only. Both anthroponotic (IIc and IIe) and
zoonotic (IId) subtypes of C. parvum were isolated. Two subtypes of
IId subgenotype family were IIdA14G1 and IIdA15G1, while in IIc
and IIe only one kind of subtype was found. Concurrent infection of
C. hominis subgenotype families Ia and Ie was found with C. parvum

subgenotype family IIc in one sample, while in another sample C.

hominis subgenotype Ia was found with C. parvum subgenotype IIe.
In four samples C. hominis subgenotype Ie was found with C.

meleagridis, while in one sample C. hominis subgenotype Id was
present with C. meleagridis (Table 2 and Figure 1).

4. Discussion

This is the first study to genetically characterize Cryptosporidi-

um spp from immunocompromised patients, children, and
immunocompetent adults in North India by SSU rRNA-based
PCR-RFLP and to subtype C. hominis and C. parvum by microsatel-
lite-based sequence analysis of the gp60 gene. Studies from South
India have been based on multilocus genotyping of Cpgp40/15 by
PCR-RFLP in HIV-seropositive patients, showing five C. hominis (Ia,
Ib, Ic, Id, and If) and three C. parvum subtypes (IIa, IIb, and IIc),18 and
multilocus sequence typing in children which identified four C.

hominis subtypes (Ia, Ib, Id, and Ie) but no sample was identified as
C. parvum.23 gp40/15 sequence-based subtyping has been done in
children in a multisite study including Delhi. However, they were
subtyped mainly by Cpgp40/15-based PCR-RFLP and sequencing
was done in only 16 samples (from all three centers, viz. Christian
Medical College, Vellore, South India, Child Jesus Hospital, Trichy,
South India, and St. Stephen’s Hospital, Delhi, North India), which
had ambiguous results for the Cpgp40/15-based PCR-RFLP.16

On RFLP analysis C. hominis was the most commonly identified
species (75%). This is in concordance with previous studies from
developing nations24 and South Indian studies in children,8,16,17,19

adults,19 and HIV-infected individuals.18 In the present study
zoonotic species C. parvum was identified in 25% of the children
and immunocompromised patients, but in none of the immuno-
competent adults. The prevalence of C. parvum (25%) was similar to
that reported from South India.8,16,17,19 Earlier studies from South
India have documented the presence of other zoonotic species of
Cryptosporidium, i.e., C. felis, C. muris, and C. meleagridis, by
RFLP,17,18 but in the present study these species were not found by
SSU rRNA-based PCR-RFLP.

C. hominis subgenotypes were from Ie (13), Ia (12), Id (8), If (5),
and Ib (1) subgenotype families in order of frequency. These five
subgenotypes have been reported from children in an earlier
multisite study in India, however as most of the results were based
Subtype

IaA18R3a, IaA19R3, IaA21R3, IaA26R3, IaA27R3, IaA29G1T3R3b

IbA9G3

IdA14G1, IdA15G11c, IdA16G1

IeA11G3T21c, IeA11G3T33a,c

IfA13G1

IIcA5G3a

IIdA14G1, IIdA15G1

IIeA7G1b



Figure 1. Phylogenetic relationship among North Indian isolates with sequences

retrieved from GenBank corresponding to reference sequences of C. meleagridis and

C. hominis, C. parvum subgenotype/subtypes, and sequences obtained in Indian

studies (‘IN’ with GenBank accession number stands for Indian isolates). Sequences

obtained in the present study have numeric values starting with PGIMER and all are

available in GenBank. Values on tree branches are branch support values.
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on Cpgp40/15 RFLP, sequencing was done in only 16 samples for
which the subtype details were given.16 Most of the Ie subtypes
were IeA11G3T3 (12/13), which was the most commonly
identified subtype in developing countries including India.16,24

Another Ie subtype was IeA11G3T2. Under subgenotype family Ia,
six subtypes were found which differed in the number of
trinucleotide serine coding repeats, but all had a constant number
(3) of 15-bp 50-AAA/G ACG GTG GTA AGG-30 repeat (R3). In an
earlier study from South India, four Ia subtypes were found by
multilocus sequence typing (MLST),23 and in another multisite
study in children, two subtypes IaA18 and IaA19 were reported.16

In the present study, three subtypes for subgenotype Id were
observed, while for subgenotypes If and Ib only one subtype was
found. In the multisite study in children they also reported one and
the same If subtype (IfA11G3), but for Ib and Id subtype details
were not given. C. hominis subtype IbA9G3 is commonly seen in
Australia,25 India,23 Kenya,15 and Malawi,26 while in the present
study only one isolate of this subtype was found. The existence of
many subtypes within C. hominis subgenotype families Ia, Id, and Ie
supports the complexity of Cryptosporidium transmission, as
reported in earlier studies from other developing countries.23,25,27

C. parvum anthroponotic subgenotypes IIc and IIe were most
common, along with zoonotic subgenotype IId. In developing
countries, the IIc subgenotype family causes most human
infections, and IIe subgenotype in addition to IIc is seen in Kenya
and Malawi.15,25–29 C. parvum subgenotype family IId has been
reported from Portugal.30,31 In the multisite study from India, four
C. parvum subtypes (IIc, IId, IIm, and IIn) were reported, but
subgenotype IIe was not reported, while in the present study new
subtypes IIm and IIn were not reported. In the present study, there
were two C. parvum IId subtype alleles (IIdA14G1 and IIdA15G1),
while for IIc and IIe only one subtype was seen. In the earlier
multisite study from India, one subtype of IIc (IIcA5G3), as well as
IId (IIdA15G1) was reported.

Subgenotyping of C. hominis and C. parvum by gp60-based
sequencing revealed mixed infections of Cryptosporidium species/
subgenotypes/subtypes in seven samples. In one sample with three
concurrent infections, C. hominis subtypes IaA18R3 and IeA11G3T3
were found with C. parvum subtype IIcA5G3, while in another
sample C. hominis subtype IaA29G1T3R3 was found with C. parvum

subtype IIeA7G1. Mixed infections of C. hominis and C. parvum have
been reported in several patients in Switzerland, Scotland, the UK,
and USA,32–36 and South India.19 In a multisite study of Indian
children, RFLP patterns showed a mixed infection with Ia and If in
one child from Delhi.16 In the present study, five cases of
coinfection of C. meleagridis with C. hominis subtype families Id
(n = 1) and Ie (n = 4) was also found. Two cases of mixed infection
of C. hominis and C. meleagridis has also been reported from
children in Kolkata by multilocus sequence analysis.23 In the
present study mixed infections were not found by restriction
analysis and this observation is supported by earlier studies that
have shown only 31–74% success of the SSU rRNA-based PCR-RFLP
tool in detecting concurrent infections.37 As is true for all genus-
specific tools, SSU rRNA-based PCR-RFLP can detect and differen-
tiate a wide range of Cryptosporidium species or genotypes, but its
use in detecting mixed infections is compromised by preferential
amplification of dominant species or genotypes in the samples.15,38

Thus, the use of genus-specific primers in combination with
species-specific primers can help to resolve the issue of mixed
infections.

In conclusion, Cryptosporidium isolates obtained in the
present study from patients in North India belonged to three
species, eight subgenotype families, and 17 subtypes. The
existence of many Cryptosporidium species, subgenotypes, and
subtypes along with mixed infections of species/subgenotypes/
subtypes reveals the complexity of Cryptosporidium transmission
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and this heterogeneity indicates stable cryptosporidiosis trans-
mission in North India. The results may have further implications
in understanding the epidemiology and control of this infection.
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