Self-Stabilizing Algorithms for Minimal Dominating Sets and Maximal Independent Sets

S. M. Hedetniemi, S. T. Hedetniemi, D. P. Jacobs and P. K. Srimani

Department of Computer Science, Clemson University

Clemson, SC 29634-0974, U.S.A.

<shdet>|<chedet>|<dpj>|<srimiti>@cs.clemson.edu

(Received May 2001; revised and accepted August 2002)

Abstract — In the self-stabilizing algorithmic paradigm for distributed computation, each node has only a local view of the system, yet in a finite amount of time, the system converges to a global state satisfying some desired property. In this paper, we present polynomial time self-stabilizing algorithms for finding a dominating bipartition, a maximal independent set, and a minimal dominating set in any graph. © 2003 Elsevier Ltd. All rights reserved.

Keywords — Graph, Self-stabilizing algorithm, Dominating set, Independent set.

1. INTRODUCTION

A distributed system can be modeled with an undirected graph \(G = (V, E) \), where \(V \) is a set of \(n \) nodes and \(E \) is a set of \(m \) edges. If \(i \) is a node, then \(N(i) \), its open neighborhood, denotes the set of nodes to which \(i \) is adjacent, and \(N[i] = N(i) \cup \{i\} \) denotes its closed neighborhood. Every node \(j \in N(i) \) is called a neighbor of node \(i \). Throughout this paper, we assume \(G \) is connected and \(n > 1 \).

Self-stabilization is a paradigm for distributed systems that allows the system to achieve a desired global state, even in the presence of faults [1,2]. A fundamental idea of self-stabilizing algorithms is that no matter what global state in which the system finds itself, after a finite amount of time, the system will reach a correct and desired global state. Although the concept of self-stabilization was introduced in 1974 by Dijkstra [1], serious work on self-stabilizing algorithms did not start until the late 1980s. In a self-stabilizing algorithm, each node maintains its local variables, and can make decisions based only on its local variables and the contents of its neighbor's local variables. The contents of a node's local variables constitute its local state. The system's global state is the union of all local states.

A node \(i \) may change its local state by making a move, i.e., changing the value of at least one of its local variables. Self-stabilizing algorithms are often given as a set of rules of the form \(p(i) \Rightarrow M \), where \(p(i) \) is a predicate and \(M \) is a move. The predicate \(p(i) \) is defined in terms of

* Srimani was partially supported by NSF Grant #ANI-0073409.

0898-1221/03/$ - see front matter © 2003 Elsevier Ltd. All rights reserved.

doi: 10.1016/S0898-1221(03)00286-4
the local state of \(i\) and the local states of its neighbors \(j \in N(i)\). A node \(i\) becomes privileged if at least one predicate \(p(i)\) is true. When a node becomes privileged, it may (or may not) execute the corresponding move. We say the system has stabilized if no nodes are privileged.

We assume a serial model in which no two nodes move simultaneously. A central daemon selects, among all privileged nodes, the next node to move. If two or more nodes are privileged, we cannot predict which node will move next. An execution of self-stabilizing algorithm is represented by a sequence of moves \(M_1, M_2, \ldots, M_s\), in which \(M_s\) denotes the \(s\)th move. The system's initial state is denoted by \(s_0\), and for \(t > 0\), the state resulting from \(M_t\) is denoted by \(s_t\).

In this paper, we focus on the design and analysis of self-stabilizing graph algorithms; that is, we seek self-stabilizing algorithms for identifying sets of nodes or sets of edges which satisfy a given property \(P\). Previous work in this area has produced self-stabilizing algorithms for centers and medians of trees [3,4], maximal matchings [5-7], graph colourings [8,9], shortest paths [10,11], articulation points [12], and spanning trees [13,14]. In many of these papers, correctness proofs for algorithms are given, but an analysis is not provided.

Recall that \(S \subseteq V\) is a dominating set if \(N(i) \cap S \neq \emptyset\) for every \(i \in V - S\). Said another way, every node in \(V\) is either a member of \(S\) or is a neighbor of some member of \(S\). A dominating set \(S\) is minimal dominating if no proper subset is dominating. Many papers have been written on graph domination and its generalizations. See [15,16] for a comprehensive treatment of this large body of work. A dominating bipartition is a partition of \(V\) into two disjoint dominating sets. A set \(S \subseteq V\) is independent if no two members of \(S\) are adjacent. An independent set is maximal independent if no independent set properly contains it. In this paper, we present linear and polynomial time self-stabilizing algorithms for finding dominating bipartitions, maximal independent sets, and minimal dominating sets.

The following additional definitions will be useful. A set \(S \subseteq V\) is called a vertex cover if every \(e \in E\) contains some member of \(S\). We say that a vertex \(u \in V\) is perfect with respect to \(S\) if \(|N[u] \cap S| = 1\). A perfect neighborhood set is a set \(S\) for which every vertex \(v \in V\) is either perfect, with respect to \(S\), or is adjacent to such a vertex. Given a set \(S\) and a node \(s \in S\), we say \(v\) is a private neighbor of \(s\) (with respect to \(S\)) if \(v \in N[s] - N[S - \{s\}]\). (The term private neighbor is somewhat misleading since \(v\) is allowed to equal \(s\).) A set \(S\) is said to be irredundant if every member of \(S\) has a private neighbor. We omit the proofs of the following lemmas, and other lemmas, that are straightforward.

Lemma 1. Every maximal independent set is minimal dominating.

Lemma 2. \(S\) is maximal independent if and only if \(S\) is independent dominating.

Lemma 3. \(S\) is independent if and only if \(V - S\) is a vertex cover.

Lemma 4. Every maximal independent set \(S\) is maximal irredundant.

Lemma 5. Every maximal independent set is a perfect neighborhood set.

2. DOMINATING BIPARTITIONS

Our first self-stabilizing algorithm is shown below. Each node \(i\) has a single binary variable \(x(i)\). The rules allow a node to change its value if all nodes in its closed neighborhood have the same value. Upon stabilization, the two sets of nodes \(\{i \mid x(i) = 0\}\) and \(\{i \mid x(i) = 1\}\) are each dominating sets, if \(G\) has no isolated nodes, thus forming a dominating bipartition. Figure 1 shows two different executions, (a)-(d) and (e)-(f), that begin with the same initial configuration.

Algorithm 2.1: Dominating Bipartition.

R1: if \(x(i) = 0 \land (\forall j \in N(i)) (x(j) = 0)\)
then \(x(i) = 1\)

R2: if \(x(i) = 1 \land (\forall j \in N(i)) (x(j) = 1)\)
then \(x(i) = 0\)
Figure 1. Starting with the initial configuration shown in (a), diagrams (a)–(d) depict one execution of Algorithm 2.1. Nodes \(i \) for which \(x(i) = 1 \) are black. Starting with the same initial configuration, diagrams (e) and (f) show an alternate execution, stabilizing in only one move. Diagrams (d) and (f) depict stable states.

Lemma 6. If node \(i \) ever makes a move, either R1 or R2, it will never make another move, nor will any of its neighbors.

Proof. Let \(i \) and \(j \) be neighbors. A node can move only if it and its neighbors all have the same value. Once \(i \) moves, \(s(i) \) and \(x(j) \) will be different, and so neither node can move. \(\square \)

Lemma 7. Algorithm 2.1 can make at most \(n - 1 \) moves.

Proof. Since the network has no isolated vertices, the first node that moves must have at least one neighbor. By Lemma 6, neither of these nodes will be able to move thereafter. Also by Lemma 6, any remaining nodes can move at most once. \(\square \)

Lemma 8. When Algorithm 2.1 stabilizes, every node labeled 0 has at least one neighbor labeled 1, and conversely, every node labeled 1 has at least one neighbor labeled 0.

Theorem 1. In any network having no isolated nodes, Algorithm 2.1 stabilizes with a dominating bipartition in at most \(n - 1 \) moves.

Proof. This is immediate from Lemmas 7 and 8. \(\square \)

The bound given in Theorem 1 is tight. Consider any star \(K_{1,n-1} \) in which every node is initially 1. If every leaf moves, there will there will be exactly \(n - 1 \) moves.

3. MAXIMAL INDEPENDENT SETS

Our second self-stabilizing algorithm is a slight modification of the first, where the universal quantifier in the second rule has been replaced by an existential quantifier. Algorithm 3.1 labels the nodes in such a way that the set of nodes labeled 1 is a maximal independent set, while the set of nodes labeled 0 is a (not necessarily independent) dominating set. Thus, Algorithm 3.1 produces a dominating bipartition in which the first set is an independent dominating set. Note that we are not trying to obtain a maximal independent set of largest cardinality.

In Algorithm 3.1, each node \(i \) has a Boolean variable \(s(i) \) indicating membership in the set that we are trying to construct.

Algorithm 3.1: Maximal Independent.

\[
\text{R1: if } s(i) = 0 \land (\forall j \in N(i)) \ (s(j) = 0) \\
\text{then } s(i) = 1
\]

\[
\text{R2: if } s(i) = 1 \land (\exists j \in N(i)) \ (s(j) = 1) \\
\text{then } s(i) = 0
\]

For purposes of this paper, we say that a node \(i \) is independent if

\[
s(i) = 1 \land (\forall j \in N(i)), \quad s(j) = 0,
\]
and that i is dominated if

$$s(i) = 0 \land (\exists j \in N(i)), \quad s(j) = 1.$$

By executing R1, a node becomes independent. By executing R2, a node becomes dominated. Figure 2 illustrates Algorithm 3.1.

Lemma 9. If every node is either independent or dominated, then the system is stable.

Lemma 10. If the system is stable, then every node is independent or dominated.

Proof. Suppose there exists a node i which is neither independent nor dominated. If $s(i)$ is 1 and i is not independent, then i may use rule R2. If $s(i) = 0$ and i is not dominated, then i may use rule R1.

Lemma 11. The system is stable if and only if $S = \{i \mid s(i) = 1\}$ is a maximal independent set.

Proof. By Lemmas 9 and 10, being stable is equivalent to every node being either independent, or dominated, which is clearly equivalent to every member of S being independent and every member of $V - S$ being dominated. This is equivalent to S being both independent and dominating, which by Lemma 2, is equivalent to S being maximal independent.

Lemma 12. Any node that becomes independent will never move again.

Proof. Assume i becomes independent. Were i ever to move again, its next move would necessarily be with R2. But since i is independent, no neighbor of i can ever execute R1. Hence, i will never execute R2.

Lemma 13. A node cannot use a rule in Algorithm 3.1 twice in a row.

Proof. This follows from the fact that R1 changes $s(i)$ from 0 to 1, and R2 changes $s(i)$ from 1 to 0.

Lemma 14. Given any system having n nodes, and any initial state, rules R1 and R2 can be used at most $2n$ times.

Proof. By contradiction, suppose there is a sequence of $2n + 1$ moves. Then there must be some node i that moves three times. From Lemma 13, it follows that during the computation, i must execute either R1, R2, R1, or R2, R1, R2. But executing R1 causes a node to become independent, so by Lemma 12, it can never move again, a contradiction.

By Lemmas 11 and 14, we have the following theorem.

Theorem 2. Algorithm 3.1 finds a maximal independent set in at most $2n$ moves.

From Lemmas 1–5, we have the following corollary.

Corollary 1. In any network without isolated nodes, Algorithm 3.1 identifies

(i) a maximal independent set,
(ii) a minimal dominating set,
(iii) a perfect neighborhood set,
(iv) a minimal vertex cover, and
(v) a maximal irredundant set.
We exhibit a family of graphs, each having executions of $2n - 3$ moves, to show that the upper bound in Theorem 2 is close to tight. Again, we consider the n-vertex graph $K_{1,n-1}$ with a center vertex 0, and neighbors $1, \ldots, n - 1$. Initially, all $s(i)$ are 1. Each $i, 2 \leq i \leq n - 1$, executes rule R2 until only nodes 0 and 1 have the value one. Then node 0 executes rule R2, so that only node 1 has one. Finally, nodes 2, \ldots, n - 1 execute rule R1.

4. MINIMAL DOMINATING SETS

In this section, we present a third self-stabilizing algorithm, Algorithm 4.1. In a graph without isolated nodes, it produces a dominating bipartition where the nodes labeled 1 define a minimal dominating set, and the nodes labeled 0 define a dominating set.

Algorithm 4.1 uses two variables. The first variable is a binary variable $x(i)$ defining a minimal dominating set $S = \{i \mid x(i) = 1\}$. We will use S_t to denote this set at time t. The second variable is a pointer. By pointing to a neighbor j, written $i \rightarrow j$, a node i communicates to j that i is a private neighbor; that is, node j is the only node in S which currently dominates node i. The value null is used for nodes in S and nodes in $V - S$ that are not private neighbors. We write $i \neq j$ to denote that i is not pointing to j, and we write $i \neq$ null to denote that the pointer of i is not null. Our algorithm is based on the following well-known and straightforward characterization of minimal dominating sets, whose proof can be found in [15].

Lemma 15. A set S is a minimal dominating set if and only if it is dominating and every $u \in S$ has a private neighbor.

Algorithm 4.1: Minimal Dominating Set.

\begin{align*}
\text{M1: } & \text{if } (x(i) = 0) \land (\forall j \in N(i)) (x(j) = 0) \\
& \text{then } x(i) = 1 \\
\text{M2: } & \text{if } (x(i) = 1) \land (\exists j \in N(i)) (j \rightarrow i) \land (\exists k \in N(i))(x(k) = 1) \\
& \text{then } x(i) = 0 \\
\text{P1: } & \text{if } (x(i) = 1) \land (i \neq \text{null}) \\
& \text{then } i \rightarrow \text{null} \\
\text{P2: } & \text{if } (x(i) = 0) \land (\exists \text{ exactly one } j \in N(i))((x(j) = 1) \land (i \neq j)) \\
& \text{then } i \rightarrow j \\
\text{P3: } & \text{if } (x(i) = 0) \land (\exists \text{ more than one } j \in N(i)) ((x(j) = 1)) \land (i \neq \text{null}) \\
& \text{then } i \rightarrow \text{null}
\end{align*}

Figure 3 depicts one execution of Algorithm 4.1. Rules M1 and M2, which we call membership moves, allow nodes to change membership in the set S under construction. In particular, if a node is not a member, nor are any neighbors, then it may enter the set by M1. A node i that is already a member, but has a neighbor k who is also a member, may use rule M2 to leave the set provided no neighbor j depends on i. Node i knows that a neighbor j is a private neighbor if $j \rightarrow i$.

![Figure 3](image_url)

Figure 3. An execution of Algorithm 4.1. Figure (i) depicts a stable state.
We call rules P1–P3 pointer moves. They do not modify membership in the dominating set, but rather are used only to adjust pointer values so that

1. Every node \(i \in S \) has a null pointer;
2. Every node \(i \notin S \) having exactly one neighbor \(j \in S \), points to \(j \);
3. Every node \(i \notin S \) having more than one neighbor \(j \in S \), has a null pointer.

Lemma 16. If at time \(t \), \(S_t \) is not a minimal dominating set, then the system is not stable.

Proof. By contradiction, suppose \(S_t \) is not minimal dominating, but the system is stable. If \(S_t \) is not a dominating set, then at least one node can make move M1. Hence, we may assume that \(S_t \) is a dominating set but is not minimal. Then by Lemma 15, there exists some \(i \in S_t \) that does not have a private neighbor. It follows that \(i \) must have a neighbor \(k \in S_t \), for otherwise, \(i \) would be its own private neighbor. There must also be some \(j \in N(i) \) with \(j \rightarrow i \), for otherwise \(i \) could make move M2. It must be the case that \(j \notin S_t \), for otherwise \(j \) could execute P1. We know that \(j \) has only one neighbor in \(S_t \), namely \(i \), for otherwise \(j \) could execute P3. But if \(j \notin S_t \) and \(i \) is its only neighbor in \(S_t \), it follows that it is a private neighbor of \(i \). This is a contradiction.

Lemma 17. If a node uses M1, it will never make another membership move.

Proof. If node \(i \) makes M1 at time \(t \), then none of its neighbors are in \(S_t \). For \(i \) to later use M2, there must be a neighbor \(k \) for which \(x(k) = 1 \). But no \(k \) will be able to use M1 because \(x(i) = 1 \).

Lemma 18. A node can make at most two membership moves.

Proof. If a node's first membership move is M1, by Lemma 17, it will not make a membership move again. If its first membership move is M2, then any next membership move must be M1, after which, it cannot make another membership move.

Lemma 19. There can be at most \(n \) consecutive pointer moves.

Proof. Any pointer move by node \(i \) leaves \(i \) unprivileged. No pointer moves made by other nodes can make \(i \) privileged. Therefore, in a sequence of consecutive pointer moves, each node can move at most once.

Lemma 20. The system can make at most \((2n + 1)n\) moves.

By Lemma 18, there are at most \(2n \) membership moves. Before and after each membership move there can be, by Lemma 19, at most \(n \) consecutive pointer moves.

Theorem 3. Algorithm 4.1 produces a minimal dominating set and stabilizes in \(O(n^2) \) moves.

Proof. This follows from Lemmas 16 and 20.

Algorithm 4.1, in fact, produces a dominating bipartition since the complement of a minimal dominating set always is dominating in graphs having no isolated nodes [15]. The following theorem is stated without proof.

Theorem 4. Algorithm 4.1 is stable if

1. \(S_t \) is a minimal dominating set;
2. Every private neighbor outside \(S_t \) points to its unique neighbor in \(S_t \); and
3. All other nodes have null pointers.

The significance of Theorem 4 is that if the system is initialized to any minimal dominating set with the correct pointer settings, including minimal dominating sets that are not independent, then it will remain stable. While Algorithm 3.1 can only stabilize with an independent set, Algorithm 4.1 is capable of being stable with any minimal dominating set. The importance is that for some graphs, no dominating set of smallest cardinality is independent. For example, consider the graph \(G \) formed by taking two stars \(K_{1,n} \), and joining their centers by an edge. For this graph, Algorithm 3.1 will identify a set having at least \(n + 1 \) nodes, but Algorithm 4.1 can be stable with the minimum cardinality having two nodes.
5. CONCLUDING REMARKS

We have given three self-stabilizing algorithms, each of which constructs a different kind of dominating set. Algorithm 2.1 stabilizes in at most \(n - 1 \) moves, but its dominating sets are not necessarily minimal. The bound \(n - 1 \) is tight. Algorithm 3.1 stabilizes in at most \(2n \) moves, its dominating set is minimal, but always independent, and therefore, for some graphs, is never of smallest cardinality. We have demonstrated graphs that approach the bound of \(2n \). Algorithm 4.1 stabilizes in \(O(n^2) \) moves, is more complex, but can potentially produce any minimal dominating set.

Our research aims at discovering self-stabilizing algorithms for other domination-related problems. Recently, self-stabilizing algorithms for maximal 2-packings and minimal total dominating sets were obtained and will appear in forthcoming papers.

Algorithm 3.1 produces a bipartition of a network into an independent dominating set and a dominating set. If a network \(G \) without isolated nodes is bipartite, then, trivially, it is possible to define a bipartition of \(G \) into two independent dominating sets, simply by two-coloring \(G \). It is interesting to note that so far we have been unable to design a self-stabilizing algorithm that can produce a two-coloring of a bipartite graph in a polynomial number of moves! We note that the self-stabilizing algorithm in [9] for two-coloring a bipartite graph has been shown to terminate, but a careful analysis of its complexity has not been achieved.

REFERENCES