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Abstract

Many problems in bioscience for which observations are reported in the literature can be modelled by
suitable functional di*erential equations incorporating time-lags (other terminology: delays) or memory e*ects,
parameterized by scienti/cally meaningful constant parameters p or/and variable parameters (for example,
control functions) u(t). It is often desirable to have information about the e*ect on the solution of the
dynamic system of perturbing the initial data, control functions, time-lags and other parameters appearing in
the model. The main purpose of this paper is to derive a general theory for sensitivity analysis of mathematical
models that contain time-lags. In this paper, we use adjoint equations and direct methods to estimate the
sensitivity functions when the parameters appearing in the model are not only constants but also variables of
time. To illustrate the results, the methodology is applied numerically to an example of a delay di*erential
model.
c© 2003 Published by Elsevier Science B.V.
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1. Introduction

In many biological applications, mathematical models have an optimal control framework for
systems of delay di*erential equations (DDEs) [3–5,8,11,12,14,22]. We can /nd such examples in
epidemiology, chemostatics, treatment of diseases, physiological control, etc., where complex systems
include transportation delays in state and in control variables.

There are many results on sensitivity analysis of models without delay (see, e.g., [7,10,13,23]);
however, there are few results on sensitivity analysis for time-lag systems. A knowledge of how the
state variable can vary with respect to small variations in the initial data, parameters (or constant
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lags) appearing in the model, and the control functions can yield insights into the behaviour of
the model and can actually assist the modelling process. Sensitivity analysis may provide some
guidelines for the reduction of complex models by indicating those variables and parameters that
determine the essential behaviour of the system and hence must be retained in any simpler model.
For example, if it can be seen that a particular parameter has no e*ect on the solution, it may be
possible to eliminate it, at some stages, from the modelling process.

In this paper we consider models that include variable and constant parameters. We discuss two
di*erent methods to estimate: (i) general sensitivity coeBcients for the constant parameters appearing
in the model, and (ii) functional derivative sensitivity coeBcients for the variable coeBcients such
as initial and control functions. The approaches that we shall consider are the variational method (in
Section 3) and the direct method (in Section 4). n the variational approach, the sensitivity coeBcients
are calculated based on introducing adjoint variables to solve state and adjoint equations. The direct
method is based on considering all parameters as constants and then the sensitivity coeBcients are
estimated by solving a variational system simultaneously with the original system.

2. The problem

Let us consider a class of systems modelled by DDEs of the form

y′(t) = f(t; y(t); y(t − �); u(t); u(t − �); p); 06 t6T; (1a)

y(t) = �(t; p); t ∈ [ − �; 0); y(0) = y0 ∈Rn; (1b)

u(t) = �(t); t ∈ [ − �; 0); u(0) = u0 ∈Rm; (1c)

where the vector function f on the right-hand side is suBciently smooth with respect to each ar-
guments; y(t)∈Rn, y(t − �)∈Rn′ , u(t)∈Rm, u(t − �)∈Rm′

, p∈Rr , and �∈Rr′ and �∈Rr′′ are
positive constant lags (r′; r′′6 r; n′6 n; m′6m). �(t) and �(t) are given continuous functions.
We note that u(t) in (1a) can be viewed as a control variable, de/ned on [ − �; T ], that gives a
minimum to the objective functional

J (u) = F0(y(T )) +
∫ T

0
F1(t; y(t); y(t − �); u(t); u(t − �); p) dt; (2)

where F0 and F1 are continuous functionals.
We also note that the system model involves both lags in the state variable y(t) and the control

variable u(t). In this paper, we are concerned to estimate the sensitivity functions for system (1a)–
(1c) rather than with the computational aspects of optimal control problems. (For the computational
treatment of time-delayed optimal control problems we refer to the monographs in [3,12].)

In order to examine the e*ects of parameter uncertainty on a model, it is necessary to test the
sensitivity of the predicted model responses to numerical values of the parameters. In this way,
possible de/ciencies in the model can be revealed if, for example, small changes in a parameter
from its nominal value result in large, improbable changes in patterns of model prediction. Equally,
sensitivity analysis can indicate the most informative data points for a speci/c parameter. We start
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our analysis with the de/nitions of sensitivity functions of a dynamic system, including constant and
variable parameters, as follows:

De�nition 1. For the given DDEs (1a)–(1c):

(1) The sensitivity coeBcients, when the parameters are constants, are de/ned by the partial deriva-
tives

Sij(t) =
9yi(t)
9�j

; (3)

where �j represent the parameters pj, the constant lags �j or the initial values yj(0). Then the
total variation in yi(t) due to small variations in the parameters �j is such that

�yi(t) =
∑
j

9yi(t)
9�j

��j + O(|�|2): (4)

Thus Eq. (3) estimates the sensitivity of the state variable to small variations in the parameters �j.
(2) The functional derivative sensitivity coeBcients, when the parameters are functions of time, are

de/ned by

�ij(t; t∗) =
9yi(t∗)
9uj(t)

; t ¡ t∗: (5)

Then the total variation in yi(t∗) due to any perturbation in the parameters uj(t) is, denoted by
�yi(t∗), such that

�yi(t∗) =
∫ t∗

0

9yi(t∗)
9uj(t)

�uj(t) dt; t ¡ t∗: (6)

Thus the functional derivative sensitivity density function 9yi(t∗)=9uj(t) measures the sensitivity
of yi(t) at location t∗ to variation in uj(t) at any location t ¡ t∗. It is then noted that the
sensitivity density functions inherently contain and provide more information than the sensitivity
coeBcients.

2.1. Adjoint equations

Adjoint equations have been used, in [15,16], to study sensitivity analysis of nonlinear functionals
J (y) depending on the solution to the delay di*erential models

y′(t) = f(t; y(t); y(t − �); p); t¿ t0; y(t) = (t; p); t ∈ [t0 − �; t0]: (7)

He considered the quadratic functional and its /rst-order variation caused by perturbations of the
basic parameter set p (where y ≡ y(t; p)):

J (y) =
∫ T

0
〈y; y〉 dt; �J (y) = 2

∫ T

0
〈y; �y〉 dt = 2

∑
i

∫ T

0
〈y; si(t; p)�pi〉 dt;

where si(t; p) is a solution of the sensitivity equation

A(y(t; p); p)si(t; p) =
9f
9pi

; t¿ 0; si(t; p) =
9
9pi

; t ∈ [ − �; 0]: (8)



448 F.A. Rihan / Journal of Computational and Applied Mathematics 151 (2003) 445–462

The operator

A ≡ d
dt

− 9f(t)
9y − 9f(t + �)

9y�
D�;

where f(t) denotes the value of f at time t, y� = y(t − �), and D� is a backward shift operator.
The linear operator A in (8) acts on some Hilbert space H with domain D(A). Given A, the
adjoint operator A∗ can be introduced satisfying the Lagrange identity 〈A(y; p)s;w〉=〈s;A∗(y; p)w〉,
where 〈·; ·〉 is an inner product in H; s∈D(A); w∈D(A∗). Using the solution w(t) of the adjoint
problem

A∗(y; p)w(t) ≡ −dw(t)
dt

− 9fT(t)
9y w(t) − 9fT(t + �)

9y�
w(t + �) = y(t; p);

06 t6T; w(t) = 0; t ∈ [T; T + �]; (9)

enables one to estimate the /rst-order variation of J (y), due to perturbations of the parameters pi,
via the formula

�J (y) =
r∑

i=1

2
∫ T

0

〈
w;
9f
9pi

�pi

〉
dt =

r∑
i=1

9J
9pi

�pi; (10)

where

9J
9pi

≡ 2
∫ T

0

〈
w; 9f
9pi

〉
dt

is the gradient of the functional with respect to the parameters.
In order to estimate the sensitivity of the functional J (y) to variations in all parameters appearing

in model (7), we need to solve this system model together with the adjoint problem (9) (see Section
5). In the next section, we extend the use of adjoint equations to investigate the sensitivity analysis
for more general system (1a)–(1c) including constant and variable parameters.

3. Variational approach

In this section, we use adjoint equations to formulate systematically formulae for the sensitivities
of the state variable to small variations in the initial data, delays, parameters, and the control function
appearing in the model. Then the main object here is to derive equations for the sensitivity coeBcients
9yi(t)=9�j and the sensitivity density functions 9yi(t∗)=9uj(t).

Theorem 1. If W(t) is an n-dimensional adjoint function which satis5es the di6erential equation

W′(t) ≡ dW(t)
dt

= −9f
T(t)
9y W(t) − 9fT(t + �)

9y�
W(t + �); t6 t∗;

W(t) = 0; t ¿ t∗; W(t∗) = [0; : : : ; 0; 1ith; 0; : : : ; 0]T; (11)
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then:

(i) The sensitivity coe8cients for the DDEs (1a)–(1c) can be expressed by the formulae

9yi(t∗)
9y0

= W(0); (12a)

9yi(t∗)
9p =

∫ t∗

0
WT(t)

9f
9p dt; t6 t∗; (12b)

9yi(t∗)
9� = −

∫ t∗−�

−�
WT(t + �)

9f(t + �)
9y�

y′(t) dt; (12c)

9yi(t∗)
9� = −

∫ t∗−�

−�
WT(t + �)

9f(t + �)
9u�

u′(t) dt: (12d)

(ii) The functional derivative sensitivity coe8cients can also be expressed by

9yi(t∗)
9�(t)

=
9fT(t + �)

9y W(t + �); t ∈ [ − �; 0); (13a)

9yi(t∗)
9�(t)

=
9fT(t + �)
9u�

W(t + �); t ∈ [ − �; 0); (13b)

9yi(t∗)
9u(t)

=
9fT

9u W(t) +
9fT(t + �)
9u�

W(t + �); t ∈ (0; t∗]: (13c)

Proof. For simplicity in Eq. (1a), we write

f(t; y; y�; u; u�; p) = f(t; y(t); y(t − �); u(t); u(t − �); p):

Small variations in the initial data, control, and system parameters cause a perturbation in the system
state in (1a)–(1c). Then small variations ��, ��, �y0, �u, �p, �� and �� result in a variation �y
which satis/es (for /rst order) the equation

�y′(t) =
9f
9y �y(t) +

9f
9y�

�y(t − �) +
9f
9u �u(t) +

9f
9u�

�u(t − �) +
9f
9p �p

+
9f
9y
9y(t − �)
9� �� +

9f
9u
9u(t − �)
9� ��; (14a)

�y(t) = ��(t); t ∈ [ − �; 0); �y(0) = �y0 ∈Rn; (14b)

�u(t) = ��(t); t ∈ [ − �; 0): (14c)

If we multiply both sides of (14a) by WT(t) (the transpose of the function W(t)) and integrate both
sides with respect to t over the interval [0; t∗], we obtain

WT(t∗)�y(t∗) −WT(0)�y(0) −
∫ t∗

0
W′T(t)�y(t) dt
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=
∫ t∗

0
WT(t)

[
9f
9y �y(t) +

9f
9y�

�y(t − �)
]

dt

+
∫ t∗

0
WT(t)

[
9f
9u �u(t) +

9f
9u�

�u(t − �)
]

dt

+
∫ t∗

0
WT(t)

[
9f
9p �p +

9f
9y�

9y(t − �)
9� �� +

9f
9u�

9u(t − �)
9� ��

]
dt: (15)

Eq. (15), after some manipulations, can be rewritten in the form

WT(t∗)�y(t∗) −WT(0)�y(0)

=
∫ 0

−�
WT(t + �)

9f(t + �)
9y�

��(t) dt

+
∫ t∗−�

0

[
W′(t) +

9fT

9y W(t) +
9fT(t + �)
9y�

W(t + �)
]T

�y(t) dt

+
∫ t∗

t∗−�

[
W′(t) +

9f
9y W(t)

]T

�y(t) dt +
∫ 0

−�
WT(t + �)

9f(t + �)
9u�

��(t) dt

+
∫ t∗−�

0

[
WT(t)

9f
9u + WT(t + �)

9f(t + �)
9u�

]
�u(t) dt +

∫ t∗

t∗−�
WT(t)

9f
9u �u(t) dt

+
∫ t∗

0
WT(t)

9f
9p �p dt −

∫ t∗−�

−�
WT(t + �)

9f(t + �)
9y�

y′(t)�� dt

−
∫ t∗−�

−�
WT(t + �)

9f(t + �)
9u�

u′(t)�� dt; t6 t∗: (16)

Under the assumptions given in (11) the above equation takes the form

�yi(t∗) =WT(0)�y(0) +
∫ 0

−�
WT(t + �)

9f(t + �)
9y�

��(t) dt

+
∫ 0

−�
WT(t + �)

9f(t + �)
9u�

��(t) dt

+
∫ t∗

0

[
WT(t)

9f
9u + WT(t + �)

9f(t + �)
9u�

]
�u(t) dt

+
∫ t∗

0
WT(t)

9f
9p �p dt −

∫ t∗−�

−�
WT(t + �)

9f(t + �)
9y�

y′(t)�� dt

−
∫ t∗−�

−�
WT(t + �)

9f(t + �)
9u�

u′(t)�� dt; t6 t∗ (17)
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or

�yi(t∗) =WT(0)�y(0) +
∫ t∗

0
WT(t)

9f
9p �p dt

−
∫ t∗−�

−�
WT(t + �)

9f(t + �)
9y�

y′(t)�� dt −
∫ t∗−�

−�
WT(t + �)

9f(t + �)
9u�

u′(t)�� dt

+
∫ 0

−�
WT(t + �)

9f(t + �)
9y�

��(t) dt +
∫ 0

−�
WT(t + �)

9f(t + �)
9u�

��(t) dt

+
∫ t∗

0

[
WT(t)

9f
9u + WT(t + �)

9f(t + �)
9u�

]
�u(t) dt; t6 t∗: (18)

Functional derivative sensitivity coeBcients, for constant parameters, are equivalent to the partial
derivative sensitivity coeBcients de/ned by (3). When �y(0) → 0, �p → 0, �� → 0, and �� → 0,
we, respectively, obtain the sensitivity coeBcients (12a)–(12d) from the /rst four terms of Eq. (18).
Then the /rst part of Theorem 1 is proved.

From the de/nition of the functional derivative sensitivity coeBcients in (6), we then obtain
formulae (13a)–(13c) from the last three terms of Eq. (18). Thus, the second part of Theorem 1 is
proved.

4. Direct approach

If we take all the parameters appearing in the system model (1a)–(1c) to be constants, then
sensitivity analysis, in this case, may just entail /nding the partial derivatives of the solution with
respect to each parameter.

We denote by S(t) the n× ñ matrix S(t; �) of the sensitivity functions

S(t) ≡ S(t; �) :=
[
9yi(t; �)
9�j

]
i=1; :::; n
j=1; :::; ñ

; ñ = r + r′:

If we introduce the notation {9=9�}T, the matrix of sensitivity functions takes the form

S(t; �) ≡
{
9
9�

}T

y(t; �)∈Rn×ñ: (19)

Its ith column is

Si(t; �) =
[
9yi(t; �)
9�1

;
9yi(t; �)
9�2

; : : : ;
9yi(t; �)
9�ñ

]T

:

Thus Si(t; �) is a vector whose components denote the sensitivity of the solution yi(t; �) of the model
to small variations in the parameters �j; j = 1; 2; : : : ; ñ.

Theorem 2. S(t) satis5es the DDE

S′(t) = J(t)S(t) + J�(t)S(t − �) + B(t); t¿ 0; (20)
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where

J(t) :=
9
9y f(t; y; y�; u; u�; p)∈Rn×n (21a)

J�(t) :=
9
9y�

f(t; y; y�; u; u�; p)∈Rn×r′ ; (21b)

B(t) :=
9
9� f(t; y; y�; u; u�; p)∈Rn×ñ: (21c)

Proof. Assuming appropriate di*erentiability of y(t; �) with respect to �, we have

y(t; � + ��) = y(t; �) +
ñ∑

j=1

9y(t; �)
9�j

��j + O(‖��‖2);

or using (19),

�y(t; �) = S(t; �)�� + O(‖��‖2):

Thus, the n× ñ matrix S(t; �) may be regarded as the local sensitivity of the solution y(t; �) to small
variations in �. (The term local refers to the fact that these sensitivities describe the system around
a given set of values for the parameters �.)

By di*erentiating Eqs. (1a)–(1c) with respect to the vector of parameters � we obtain the varia-
tional system

S′(t; �) =
9f
9y (t; y; y�; u; u�; p)S(t; �) +

9f
9y�

(t; y; y�; u; u�; p)S(t − �; �)

+
9f
9� (t; y; y�; u; u�; p); t¿ 0; (22)

S′(t; �) =
9�(t; �)
9� ; t6 0:

Our result follows.

To estimate the sensitivity functions S(t), we then have to solve the n × ñ sensitivity equations
(20) together with the original system (1a)–(1c). We should mention here, solving such systems can
be a diBcult and costly numerical problem when the number of states and parameters is large, or
when the sensitivities must be computed repeatedly; see Section 5.

Remark 1. We apply the direct method to the linear DDE model

y′(t; �) = p1y(t; �) + p2y(t − �; �) + p3u(t); t¿ 0;

y(t; �) =  (t; �); t6 0; (23)

as an example. Here � = [p1; p2; p3; �]T. The equations for S(t) cannot be solved in isolation; they
require the solution y(t). We obtain, in the present model, a system of neutral delay di6erential
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equations (NDDEs) expressed as

x′(t; �) = Ax(t; �) + Bx(t − �; �) + Cx′(t − �; �) + D(t); t ¿ 0;

x(t; �) = �(t; �); t ∈ [ − �; 0]; (24)

where

A =




p1 0 0 0 0

1 p1 0 0 0

0 0 p1 0 0

0 0 0 p1 0

0 0 0 0 p1



; B =




p2 0 0 0 0

0 p2 0 0 0

1 0 p2 0 0

0 0 0 p2 0

0 0 0 0 p2



;

C =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −p2



;

D(t) =




p3u(t)

0

0

u(t)

0



; x(t; �) =




y(t; p)

sp1(t; �)

sp2(t; �)

sp3(t; �)

s�(t; �)



; and �(t; �) =




 (t; �)
9
9p1

 (t; �)

9
9p2

 (t; �)

9
9p3

 (t; �)

9
9� (t; �)



:

Here s�i ≡ 9y(t; �)=9�i, and some terms (9=9�i) (t; �) are nonvanishing in the case where the
initial function  depends nontrivially upon p1, p2, p3 and �.

5. Numerical method for sensitivity equations and adjoint problems

The numerical method, that we applied here, for solving the DDEs (1a)–(1c) or (20) is based
upon the use of a one-step continuous Runge–Kutta method for solving delay and neutral di*erential
equations. This method, implemented in Archi code [18], is based on the Dormand and Prince
explicit /fth-order Runge–Kutta method for ODEs [9], due to Shampine [21], and /fth-order Hermite
interpolant [17]. We may refer to [1,19] for remarks on the design and analysis of numerical methods
for DDEs and NDDEs.

The adjoint problem is formulated as the initial value problem for the system of adjoint equations
(9) or (11), where the right-hand side is determined by the solution y(t) of the original problem.
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The original delay di*erential system (1a)–(1c) is then solved numerically forward in time with
positive integration step from t0 to t0 + T , and the adjoint system is solved backward in time with
negative integration step from t0 + T to t0. The solution of the original system (1a)–(1c) on the
interval [t0; t0 + T ] results in the set of values {tn; ỹ n} in the grid points of an irregular grid of
integration which are used while solving the adjoint problem form the right-hand side of system
(11). We may note that the grid points of integration algorithms are not the same for the original
and adjoint problems. Therefore, we can use an interpolation (such as a continuous extension formula
or a Hermite interpolant) to estimate the solution of the original problem at nonmesh points. For
more discussion about numerical treatment of DDEs, we may refer to [19].

While solving the DDEs such as (1a)–(1c), we should take into account the existence of disconti-
nuity points for the derivatives of the solutions. In other words, if the solution y(t) is not smoothly
linked to the initial function �(t; �) at the initial point t0, jumps may arise in the derivatives of y(t).
(To be precise, this occurs when �′(t0) �= f(t0; y(t0); y(t−�); u(t)).) Such jumps spread forward along
the integration interval. The location of such discontinuities is determined by the delayed argument
t − �. Therefore, the set of discontinuity points for the DDEs (1a)–(1c) of the /rst p derivatives of
a solution is {t0 + j�}p+1

j=0 , and for the adjoint problem is the join {t0 + j�}p+1
j=0 ∪ {t0 + T − j�}p+1

j=0 .
We may note that the solution of the original problem becomes smoother as t increases toward the
end point T and then the smoothness of the solution of the adjoint problem decreases from p at the
point t0 + p� to 1 at the point t0. For further discussion about this issue, we refer to [2].

6. Numerical results

In this section, we apply the results obtained in the above sections to an example of linear
DDE:

y′(t) = p1y(t) + p2y(t − �) + p3; t¿ 0;

y(t) =  (t); t ∈ [ − �; 0]: (25)

We have chosen this model because it has many applications in cell growth dynamics, as the
behaviour of its solution (for particular parameters) is consistent with the step-like growth pattern;
see [6,19,20]. A knowledge of how the solution can vary with respect to small changes in the
initial data or the parameters can yield insights into the behaviour of the model and can assist the
modelling process. The observation interval is often divided into subintervals each of which could
be informative about a speci/c parameter. Knowledge of these intervals is not only important for
understanding the role of the model, but also for an enhanced experiment design for estimating
selected parameters. Thus, sensitivity functions can allow one to assess qualitatively which data
points have the most e*ect on a particular parameter.

According to the above analysis, we wish to /nd (analytically and numerically) the sensitivity
density function 9y(t∗)=9 (t) (where t6 t∗) and the sensitivity coeBcients 9y(t)=9�. The sensitiv-
ity coeBcients (for constant parameters) can be obtained by using both the variational and direct
methods. However, the functional derivative sensitivity coeBcients can only be computed by using
the variational method.
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First, we apply the variational approach:
In (25) � = [p1; p2; p3; �]T and the control is chosen to be u(t) =p3 = 1. The adjoint equation for

this case is

W ′(t) = −p1W (t) − p2W (t + �); t6 t∗;

W (t) = 0; t ¿ t∗; W (t∗) = 1: (26)

The analytical solution of the adjoint equation (26) is as follows:

(i) 0¡t∗6 �,

W (t) = e−p1(t−t∗); t6 t∗: (27)

(ii) �¡ t∗6 2�,

W (t) =

{
e−p1(t−t∗) − p2(t − t∗ + �)e−p1(t−t∗+�); 0¡t6 t∗ − �;

e−p1(t−t∗); t∗ − �¡ t6 t∗:
(28)

(Here W (t + �) = 0 for t∗ − �¡ t6 t∗ and W (t + �) = e−p1(t−t∗+�) for 0¡t6 t∗ − �.)

The solution of the DDE (25), with an initial function  (t) = 0 with t6 0, is

y(t) =

{
 (ep1t − 1); 0¡t6 �;

 2p2 −  +  ep1t +  p2(t − �−  )ep1(t−�); �¡ t6 2�;
(29)

where  = 1=p1.
Thus, the functional derivative sensitivity density function to the initial function, by using (13a),

becomes

(i) 0¡t∗6 �,

9y(t∗)
9 (t)

= p2W (t + �) =

{
p2e−p1(t−t∗+�); −�¡ t6 t∗ − �;

0; t∗ − �¡ t6 0:
(30)

(ii) �¡ t∗6 2�,

9y(t∗)
9 (t)

=

{
p2e−p1(t−t∗+�) − p2

2(t − t∗ + 2�)e−p1(t−t∗+2�); −�¡ t6 t∗ − 2�;

p2e−p1(t−t∗+�); t∗ − 2�¡ t6 0:
(31)

On the other hand, the functional derivative sensitivity density sensitivity function to the control
variable u(t), as depicted in (13c), becomes

9y(t∗)
9u(t)

= W (t): (32)
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The sensitivity function of y(t) to the constant parameter p1, by using (12b), takes the form

9y(t∗)
9p1

=
∫ t∗

0
W (t)

9f
9p1

dt =

{
 2 +  (t∗ −  )ep1t∗ ; 0¡t∗6 �;

I1 + I2; �¡ t∗6 2�;
(33)

where

I1 =
∫ t∗−�

0
W (t)

9f
9p1

dt

=  (t∗ − �)ep1t∗ +  2(ep1� − ep1t∗) +
1
2
 p2(t∗ − �)2ep1(t∗−�)

−  2p2(t∗ − �)ep1(t∗−�) −  3p2(1 − ep1(t∗−�)) (34)

and

I2 =
∫ t∗

t∗−�
W (t)

9f
9p1

dt = I1 +  2 +  (t∗ −  )ep1t∗ : (35)

The sensitivity of y(t) to the parameter p3 is given by

9y(t∗)
9p3

=
∫ t∗

0
W (t)

9f
9p3

dt;

=

{
 (ep1t∗ − 1); 0¡t∗6 �;

 2p2 −  +  ep1t∗ +  p2(t∗ − �−  )ep1(t∗−�); �¡ t∗6 2�:
(36)

It is clear that 9y(t∗)=9p3 = y(t∗), as it is satisfying Eq. (25).
By using (12c), we obtain the sensitivity coeBcient of y(t) to the constant parameter � as

9y(t∗)
9� =−

∫ t∗−�

−�
W (t + �)

9f(t + �)
9y�

y′(t) dt

=

{
0; 0¡t∗6 �;

−p2(t∗ − �)ep1(t∗−�); �¡ t∗6 2�:
(38)

Numerical results, using the variational approach, are presented in Figs. 1–6. Fig. 1 plots the ana-
lytical solution of DDE (25) in the interval [0; 2�]. Figs. 2 and 3 show the sensitivity of the state
variable to the initial function, 9y(t∗)=9 (t) (t ¡ t∗) as a function of t for (i) 0¡t∗6 � and (ii)
�¡ t∗6 2�, respectively. For case (i), 9y(t∗)=9 (t) is positive and increases monotonically in the
interval [− �; t∗− �] and attains maximum value at t = t∗− � and vanishes for t∗− �¡ t6 0. In case
(ii), 9y(t∗)=9 (t) monotonically increases and then decreases to attain the minimum at t = t∗ − 2�.
We note that t = t∗− 2� is the time when the initial data stop to a*ect the state delay in the system
dynamic. The functional derivative sensitivity density function 9y(t∗)=9u(t) is shown in Fig. 4 as a
function of t for t∗ = 2�.

Fig. 5 shows the plot of the sensitivity coeBcient 9y(t)=9p1. We note that 9y(t)=9p1 is positive
and increases as t increases. Fig. 6 shows the sensitivity of the state variable to the lag �, 9y(t)=9�.
We note that 9y(t)=9� is negative, and as expected y(t) is very sensitive to a change in � in the
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2ττ0
t 

y(t) 

y(t) 

Fig. 1. Analytical solution of DDE (25) in the interval 06 t6 2� with p1 = −2, p2 = 4, and p3 = 1.

t*-τ-τ 0

∂y(t*)/∂ψ(t) 

p
2
W(t+τ ) 

Fig. 2. Functional derivative sensitivity density function 9y(t∗)=9 (t), (30), when 0¡t∗6 �.



458 F.A. Rihan / Journal of Computational and Applied Mathematics 151 (2003) 445–462

-τ t*-2τ 0

∂y(t*)/∂ψ(t) 

p
2
W(t+τ) 

Fig. 3. Functional derivative sensitivity density function 9y(t∗)=9 (t), (31), when �¡ t∗6 2�.

0 τ 2τ
t

W(t) 

∂y(t*)/∂u(t) 

Fig. 4. Functional derivative sensitivity density function 9y(t∗)=9u(t), (32), for t∗ = 2�.
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2ττ0

∂y(t)/∂p
1

∂y(t)/∂p
1

t

Fig. 5. Sensitivity function 9y(t)=9p1, (33).

2ττ0

∂y(t)/∂τ

Fig. 6. Sensitivity function 9y(t)=9�, (38).
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Fig. 7. Numerical results for (25). The /rst graph (from the left to right, up to down) plots the numerical solution. The
second shows the sensitivity function 9y(t)=9p1, the third 9y(t)=9p2, and the fourth 9y(t)=9�.

time interval �¡ t6 2� and is insensitive to changes in the constant lag � in the time interval [0; �].
The plots have a kink at t = � as a result of existence of the delay in the system state.

Second, if we apply the direct approach in the example being considered (25), we can simply use
the results obtained in Remark 1 to get a variational system of NDDEs in the unknown functions of
the sensitivity coeBcients. We solve this system numerically, as discussed in the previous section,
using Archi code [18] together with the original equations. The numerical results are displayed in
Fig. 7. We note that this approach provides the same results provided by the variational approach.

7. Conclusion

In this paper, we have investigated the sensitivity of model solutions due to perturbing the pa-
rameters appearing in delay di*erential systems, using variational and direct approaches. The theory
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is applied to a linear DDE. Either of the two approaches is capable, in principle, of providing the
same information concerning the system. It has been shown that adjoint equations need to be solved
to estimate the sensitivity coeBcients via the variational approach. In models consisting parameters
that are varying or temporally varying, the functional derivative sensitivity coeBcients can only be
computed by using the variational method. The direct method is based only on considering all pa-
rameters as constants (those independent of time or location) and then the sensitivity coeBcients are
estimated by solving a variational system simultaneously with the original system. The variational
approach can provide a rigorous sensitivity measure that gives a precise interpretation of the results,
because sensitivity density functions contain more information than the sensitivity coeBcients.

We have discussed how the sensitivity analysis can be used to evaluate which parameters have
a signi/cant e*ect on uncertainty. Sensitivity functions of the solution y(t) for the given DDE
model are shown in Figs. 2–6 (by using the variational approach) and in Fig. 7 (by using the direct
method). These functions are useful in simulation studies for assessing the sensitivity of the solutions
with respect to assigned model parameters. We have seen how the sensitivity functions enable one
to assess the relevant time intervals for the identi/cation of speci/c parameters and improve the
understanding of the role played by speci/c model parameters in describing experimental data. We
noted, for example, from Figs. 6 and 7, that the experimental points in the subinterval [�; 2�] are
informative data points for the estimation of parameter �, while the state variable is insensitive to
a change in the constant parameter � through the time interval [0; �]. The oscillation accompanied
by the sensitivity of y(t) to � (in Fig. 7) means that the solution is sensitive to changes in the
parameter � and this parameter plays an important role in the model.
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