Some properties of the c-nilpotent multiplier of Lie algebras

Ali Reza Salemkar *, Zahra Riyahi

Faculty of Mathematical Sciences, Shahid Beheshti University, G.C., Tehran, Iran

A R T I C L E I N F O

Article history:
Received 27 July 2011
Available online 17 August 2012
Communicated by Alberto Elduque

M S C:
17B60
17B99

K e y w o r d s:
Lie algebra
c-Nilpotent multiplier
c-Capable
Non-abelian exterior product

A B S T R A C T

In this article, we give a sufficient condition for the c-nilpotent multiplier of a Lie algebra to be finite dimensional. Also, we show that the c-nilpotent multipliers of perfect Lie algebras are isomorphic.

© 2012 Published by Elsevier Inc.

1. Introduction and preliminary

Throughout this article, all Lie algebras are considered over some fixed field Λ and $[,]$ denotes the Lie bracket. Let L be a Lie algebra presented as the quotient of a free Lie algebra F by an ideal R. Then the c-nilpotent multiplier of L, $c \geq 1$, is defined to be the abelian Lie algebra $M^{(c)}(L) = (R \cap \gamma_{c+1}(F))/\gamma_{c+1}(R, F)$, where $\gamma_{c+1}(F)$ denotes the $(c+1)$-th term of the lower central series of F and $\gamma_1(R, F) = R$, $\gamma_{c+1}(R, F) = [\gamma_c(R, F), F]$ (see [7]). The Lie algebra $M^{(1)}(L) = M(L)$ is more known as the Schur multiplier of L (see [2,3,6] or [8] for more information on the Schur multiplier of Lie algebras). One may check that $M^{(c)}(L)$ is independent of the choice of the free presentation of L. Furthermore, if we set $\gamma_{c+1}^*(L) = \gamma_{c+1}(F)/\gamma_{c+1}(R, F)$, then it is readily deduced from the short exact sequence

$$0 \longrightarrow M^{(c)}(L) \longrightarrow \gamma_{c+1}^*(L) \longrightarrow \gamma_{c+1}(L) \longrightarrow 0$$

* Corresponding author.
E-mail address: salemkar@sbu.ac.ir (A.R. Salemkar).

0021-8693/$ – see front matter © 2012 Published by Elsevier Inc.
http://dx.doi.org/10.1016/j.jalgebra.2012.07.041
and the invariance of $\mathcal{M}^{(c)}(L)$ that $\gamma_{c+1}^*(M)$ is an invariant of L. It is obvious that the image of the canonical homomorphism $\gamma_{c+1}^*(M) \rightarrow \gamma_{c}^*(M)$ is ideal in $\gamma_{c}^*(M)$, and $\gamma_{c+1}^*(M) = 1$ if and only if M is nilpotent of class c and $\mathcal{M}^{(c)}(L) = 0$.

A Lie algebra L is said to be c-capable if there exists a Lie algebra K with $L \cong K/Z_c(K)$, where $Z_c(K)$ is the c-th centre of K. Evidently, L is 1-capable if and only if it is an inner derivation Lie algebra, and L is c-capable ($c \geq 2$) if and only if it is an inner derivation Lie algebra of a $(c-1)$-capable Lie algebra. Now, we define $Z^*_c(L)$ to be the smallest ideal T of L such that L/T is c-capable. It is obvious that $Z^*_c(L)$ is a characteristic ideal of L contained in $Z_c(L)$, and $Z^*_c(L/Z^*_c(L)) = 0$.

It has been shown in [7] that the dimension of c-nilpotent multiplier of an arbitrary Lie algebra are not necessary isomorphic. For example, if L is a finite dimensional abelian Lie algebra then $\mathcal{M}^{(c)}(L) \not\cong \mathcal{M}^{(d)}(L)$ whenever $c \neq d$. In the next result, we prove that c-nilpotent multipliers of perfect Lie algebras are indeed isomorphic to the Schur multipliers.

Theorem A. Let L be a Lie algebra.

(i) If $L/Z^*_c(L)$ is finite dimensional, then both Lie algebras $\gamma_{c+1}^*(M)$ and $\mathcal{M}^{(c)}(L)$ are finite dimensional.

(ii) If $L/Z^*_c(L)$ is nilpotent (resp. solvable), then $\gamma_{c+1}^*(M)$ is nilpotent (resp. solvable).

In general, the c-nilpotent multipliers of an arbitrary Lie algebra are not necessary isomorphic. For example, if L is a finite dimensional abelian Lie algebra then $\mathcal{M}^{(c)}(L) \not\cong \mathcal{M}^{(d)}(L)$ whenever $c \neq d$. In the next result, we prove that c-nilpotent multipliers of perfect Lie algebras are indeed isomorphic to the Schur multipliers.

Theorem B. Let L be a prefect Lie algebra. Then the canonical homomorphisms

$$\gamma_{c+1}^*(M) \xrightarrow{\cong} \gamma_{c}^*(M) \quad \text{and} \quad \mathcal{M}^{(c)}(L) \xrightarrow{\cong} \mathcal{M}(L)$$

are isomorphisms for $c \geq 1$.

To prove the above results we need to recall and develop some details on crossed modules and exterior products. A crossed module is a homomorphism of Lie algebras $\lambda : M \rightarrow L$ with a Lie algebra action $(l, m) \mapsto lm$ of L on M satisfying (i) $\lambda(lm) = [l, \lambda(m)]$, (ii) $\lambda(m)m' = [m, m']$, for all $m, m' \in M$, $l \in L$. If M is an ideal of L, then the inclusion map $M \hookrightarrow L$ is a crossed module. Given a free presentation $L \cong F/R$, one readily verifies

Lemma 1.1. The canonical homomorphism $\mu_c : \gamma_c^*(L) \rightarrow L$ is a crossed module in which an element l acts on an element $\bar{f} = f + \gamma_c(R, F)$ in $\gamma_c^*(L)$ by $l \bar{f} = [l, \bar{f}]$, where l is any lift of l in $F/\gamma_c(R, F)$.

Let $\lambda : M \rightarrow K$ and $\mu : L \rightarrow K$ be two crossed modules. There are actions of M on L and of L on M given by $m l = \lambda(m)l$ and $l m = \mu(l)m$. We take M (and L) to act on itself by Lie multiplication. The non-abelian exterior product $M \wedge L$ is defined in [4] as the Lie algebra generated by the symbols $m \wedge l$ $(m \in M, l \in L)$ subject to the relations

$$c(m \wedge l) = cm \wedge l = m \wedge cl, \quad mm' \wedge l = m \wedge m' l - m' \wedge m l,$$

$$(m + m') \wedge l = m \wedge l + m' \wedge l, \quad m \wedge l' = l m \wedge l - l m \wedge l',$$

$$m \wedge (l + l') = m \wedge l + m \wedge l', \quad [(m \wedge l), (m' \wedge l')] = -l m \wedge m' l'$$

for all $c \in A$, $m, m' \in M$ and $l, l' \in L$.

Any Lie algebra L acts on itself by Lie multiplication and so we can always form the exterior product $L \wedge L$. In [5], it is shown that the commutator map $\kappa_L : L \wedge L \rightarrow L$ defined on generators by
\(l_1 \wedge l_2 \longmapsto [l_1, l_2] \), together with the action of \(L \) on \(L \wedge L \) given by \(\lambda (l_1 \wedge l_2) = [\lambda l_1, l_2] + l_1 \wedge [\lambda l_2, l_1] \), is a crossed module. One thus gets the triple exterior product \((L \wedge L) \wedge L\), and applying this process gives \(\bigwedge^{c+1} L = \cdots \cdot \cdot \cdot (L \wedge L) \wedge \cdots \cdot \cdot \cdot L \), \(c \geq 1 \), involving \((c + 1)\) copies of \(L \). Note that the image of \(\kappa \) is equal to the derived subalgebra of \(L, L^2 \), and its kernel is a central subalgebra of \(L \wedge L \), which is isomorphic to \(\mathcal{M}(L) \).

The following results are useful in our investigation.

Lemma 1.2. Let \(L \) be a Lie algebra and \(c \geq 1 \). Then:

(i) There is an epimorphism

\[
\kappa : \gamma_c^s(L) \wedge L \longrightarrow \gamma_{c+1}^s(L), \quad x \wedge y \longmapsto [\tilde{x}, \tilde{y}]
\]

where \(\tilde{x} \) and \(\tilde{y} \) are lifts in \(F/\gamma_{c+1}(R, F) \) of \(x \in \gamma_c^s(L) \) and \(y \in L \).

(ii) The Lie algebra \(\gamma_{c+1}^s(L) \) is a homomorphic image of \(\bigwedge^{c+1} L \).

Proof. The part (i) is clear and the part (ii) is a straightforward consequence of [7, Proposition 1.4(i)]. \(\square \)

Proposition 1.3. (See [4]) For any Lie algebra \(L \), the exterior product \(L \wedge L \) is isomorphic to \(\gamma_2^s(L) \).

2. Proof of theorems

To prove Theorem A, we first present some different forms for the ideal \(Z_c^s(L) \) of a Lie algebra \(L \).

Proposition 2.1. The ideal \(Z_c^s(L) \) of a Lie algebra \(L \) is the intersection of all subalgebras of the form \(\theta(Z_c(K)) \), where \(\theta : K \longrightarrow L \) is an epimorphism with \(\ker \theta \subseteq Z_c(K) \).

Proof. Set \(A = \bigcap \{ \theta(Z_c(L)) \mid \theta : K \longrightarrow L \} \) is an epimorphism with \(\ker \theta \subseteq Z_c(K) \). By the definition of \(Z_c^s(L) \), there exists a Lie algebra \(K \) together with an epimorphism \(\theta : K \longrightarrow L/Z_c^s(L) \) such that \(\ker \theta = Z_c(K) \). Suppose \(H = \{ (l, k) \in L \oplus K \mid \theta(k) = l + Z_c^s(L) \} \) and \(\phi : H \longrightarrow L \) denotes the projective map. It is readily verified that \(\phi \) is an epimorphism with \(\ker \phi \subseteq Z_c(H) \) and \(\phi(Z_c(H)) \subseteq Z_c^s(L) \). It therefore follows that \(A \subseteq Z_c^s(L) \). To prove the reverse containment, we first show that if \(\{ N_i \mid i \in I \} \) is a family of ideals of \(Z_c^s(L) \) such that each \(L/N_i \) is \(c \)-capable, then so is \(L/\bigcap_{i \in I} N_i \). For each \(i \in I \), let \(0 \longrightarrow Z_c(K_i) \longrightarrow K_i \longrightarrow L/N_i \longrightarrow 0 \) indicate the assumption that \(L/N_i \) is \(c \)-capable. Put \(N = \bigcap_{i \in I} N_i \) and \(K = \{ (k_i) \in \prod_{i \in I} K_i \mid \exists \eta \in L \) such that \(\theta_i(k_i) = l + N_i \forall i \in I \} \), where \(\prod_{i \in I} K_i \) denotes the Cartesian product of the Lie algebras \(K_i \). One may see that \(Z_c(K) = \prod_{i \in I} Z_c(K_i) \). For each \(i \in I \), we can choose elements \(k_{i, i} \in K_i \) such that \(\delta_i(k_{i, i}) = l + N \). Consequently, \(k_i = (k_{i, i}) \in K \) and the map \(L/N \longrightarrow K/Z_c(K) \) given by \(l + n \longmapsto k_i + Z_c(K) \) is an isomorphism. The conclusion is that \(L/N \) is \(c \)-capable.

Now, let \(\eta : B \longrightarrow L \) be an epimorphism with \(\ker \eta \subseteq Z_c(B) \). Using the isomorphism \(L/\eta(Z_c(B)) \cong B/Z_c(B) \) and the assertion above, we conclude that \(L/A \) is \(c \)-capable and thus \(Z_c^s(L) = A \), as required. \(\square \)

Using the above proposition, we obtain another representation of \(Z_c^s(L) \) by free presentations as follows:

Corollary 2.2. Let \(0 \longrightarrow R \longrightarrow F \xrightarrow{\pi} L \longrightarrow 0 \) be a free presentation of a Lie algebra \(L \). Then \(Z_c^s(L) = \pi(Z_c(F/\gamma_{c+1}(R, F))) \), where \(\pi \) is the natural epimorphism induced by \(\pi \).
Proof. Let \(\phi : K \to L \) be an epimorphism with \(\ker \phi \subseteq Z_c(K) \). As \(F \) is free, there exists a homomorphism \(\beta' : F \to K \) such that \(\phi \beta' = \pi \). It is easily checked that \(\beta'(R) \subseteq \ker \phi \) and \(\beta'(\gamma_{c+1}(R, F)) = 0 \). Hence \(\beta' \) induces a homomorphism \(\beta : F/\gamma_{c+1}(R, F) \to K \) such that the following diagram is commutative:

\[
\begin{array}{c}
0 \to R/\gamma_{c+1}(R, F) \to F/\gamma_{c+1}(R, F) \xrightarrow{\pi} L \to 0 \\
\beta_1 \downarrow \quad \beta \downarrow \quad 1_1 \downarrow \\
0 \to \ker \phi \to K \to L \to 0,
\end{array}
\]

where \(\beta_1 \) is the restriction of \(\beta \) to \(R/\gamma_{c+1}(R, F) \). Obviously, \(K = \ker \phi + \Im \beta \) and hence \(\beta((Z_c(F/\gamma_{c+1}(R, F)))) \subseteq Z_c(K) \). One deduces that \(\pi((Z_c(F/\gamma_{c+1}(R, F)))) \subseteq \phi(Z_c(K)) \). Now, the result follows from Proposition 2.1 \(\Box \)

In the following, we show that \(Z^*_c(L) \) is the largest ideal of \(L \) such that the Lie algebras \(\gamma^*_c(L) \) and \(\gamma^*_c(L/Z^*_c(L)) \) are isomorphic.

Proposition 2.3. Let \(L \) be a Lie algebra with an ideal \(N \). Then \(N \subseteq Z^*_c(L) \) if and only if the quotient homomorphism \(L \to L/N \) induces an isomorphism \(\gamma^*_c(L) \cong \gamma^*_c(L/N) \).

Proof. Let \(\gamma^*_c(L) \) and \(\gamma^*_c(L/N) \) be defined in terms of free presentations \(L \cong F/R \) and \(L/N \cong F/S \) in which \(S \) is the preimage of \(N \) in \(F \). The kernel of the natural map \(\gamma^*_c(L) \to \gamma^*_c(L/N) \) is then \(\gamma^*_c(S/F)/\gamma^*_c(R,F) \). Therefore, it suffices to verify that \(\gamma^*_c(S,F) = \gamma^*_c(R,F) \) if and only if \(N \subseteq Z^*_c(L) \). Set \(\bar{F} = F/\gamma^*_c(R,F) \), \(\bar{R} = R/\gamma^*_c(R,F) \) and \(\bar{S} = S/\gamma^*_c(R,F) \). Then \(\gamma^*_c(S,F) = \gamma^*_c(R,F) \) is equivalent to \(\bar{S} \subseteq \bar{Z}_c(\bar{F}) \). Invoking Corollary 2.2, \(\bar{\pi}(\bar{Z}_c(\bar{F})) = Z^*_c(L) \). Consequently, it may be inferred that \(\bar{\pi}(\bar{S}) \subseteq Z^*_c(L) \) if and only if \(\bar{S} \subseteq \bar{Z}_c(\bar{F}) \). Taking into account that \(\bar{\pi}(\bar{S}) = N \), the result follows. \(\Box \)

As an immediate consequence of Proposition 2.3 and [7, Corollary 2.2], we have

Corollary 2.4. Let \(N \) be an ideal of a finite dimensional Lie algebra \(L \) which lies in \(Z_c(L) \). Then \(N \subseteq Z^*_c(L) \) if and only if \(\dim(M^O(L/N)) = \dim(M^O(L)) + \dim(N \cap \gamma^*_c(L)) \).

Now, we are ready to prove Theorem A.

Proof of Theorem A. (i) By Lemma 1.2(ii) and Proposition 2.3, we obtain an epimorphism \(\wedge^{c+2}(L/Z^*_c(L)) \to \gamma^*_c(L/Z^*_c(L)) \cong \gamma^*_c(L) \). It is shown in [5] that the exterior product \(M \wedge N \) of two crossed modules is finite dimensional if both \(M \) and \(N \) are finite dimensional. Consequently, if \(L/Z^*_c(L) \) is finite dimensional then so is \(\wedge^{c+2}(L/Z^*_c(L)) \). The result follows.

(ii) It follows from [9, Theorem 2.2] and an argument similar to that used in the proof of part (i). \(\Box \)

In readiness for the proof of Theorem B, we recall from [8] the concept of the universal central extension of a Lie algebra.

Let \(e_i : 0 \to M_i \to K_i \xrightarrow{\theta_i} L \to 0 \), \(i = 1, 2 \), be central extensions of a Lie algebra \(L \). Then we say that the extension \(e_1 \) covers (uniquely covers) the extension \(e_2 \) if there exists a homomorphism (or a unique homomorphism) \(\phi_1 : K_1 \to K_2 \) such that \(\theta_2 \phi_1 = \theta_1 \). Now, the central extension \(e_1 \) is called universal if it covers uniquely any central extension of \(L \).

We have the following results regarding the universal central extension of perfect Lie algebras.
Lemma 2.5. (See [8].) Using the above notations, the following statements hold:

(i) If the central extensions \(e_1 \) and \(e_2 \) are universal, then there is an isomorphism \(K_1 \rightarrow K_2 \) that carries \(M_1 \) onto \(M_2 \).
(ii) If \(e_1 \) is universal, then \(K_1 \) and \(L \) are both perfect.
(iii) If \(K_1 \) is perfect, then \(e_1 \) covers \(e_2 \) if and only if \(e_1 \) uniquely covers \(e_2 \).

Proposition 2.6. (See [8].) Let \(L \) be a perfect Lie algebra. Then

\[
0 \rightarrow \mathcal{M}(L) \rightarrow \gamma_2^*(L) \xrightarrow{\mu_2} L \rightarrow 0
\]

is the universal central extension of \(L \).

From the above conclusions and Proposition 1.3, we deduce that

Corollary 2.7. For any perfect Lie algebra \(L \), \(0 \rightarrow \mathcal{M}(L) \rightarrow L \wedge L \xrightarrow{K_2} L \rightarrow 0 \) is the universal central extension of \(L \).

Now we are able to prove Theorem B.

Proof of Theorem B. By virtue of Lemma 2.5(i), it is enough to show that the exact sequence

\[
0 \rightarrow \mathcal{M}^{(i)}(L) \rightarrow \gamma_{c+1}^*(L) \xrightarrow{\mu_{c+1}} L \rightarrow 0
\]

is the universal central extension of \(L \). Put \(\delta = \mu_{c+1}^{\kappa_{c+1}} \) and \(B = \ker \delta \). We claim that the exact sequence \(0 \rightarrow B \rightarrow \gamma_{c+1}^*(L) \wedge \gamma_{c+1}^*(L) \xrightarrow{\delta} L \rightarrow 0 \) is the universal central extension of \(L \). For any \(b \in B \), \(\kappa_{c+1}(b) \in Z(\gamma_{c+1}^*(L)) \) and then the image of the inner derivation map \(ad_{\gamma_{c+1}^*(L) \wedge \gamma_{c+1}^*(L)}(b) \) is central, whence the map is a homomorphism. As the central extension \(e \) is universal, Lemma 2.5(ii) indicates that the Lie algebra \(\gamma_{c+1}^*(L) \wedge \gamma_{c+1}^*(L) \) is perfect. Hence the map \(ad_{\gamma_{c+1}^*(L) \wedge \gamma_{c+1}^*(L)}(b) \) must be zero, implying \(b \in Z(\gamma_{c+1}^*(L) \wedge \gamma_{c+1}^*(L)) \). We therefore conclude that \(B \) is contained in the centre of \(\gamma_{c+1}^*(L) \wedge \gamma_{c+1}^*(L) \). Now, assume that \(0 \rightarrow C \rightarrow P \xrightarrow{\alpha} L \rightarrow 0 \) is an arbitrary central extension of \(L \). Evidently, \(T = \{(x, p) \in \gamma_{c+1}^*(L) \oplus P \mid \mu_{c+1}(x) = \sigma(p)\} \) is a subalgebra of \(\gamma_{c+1}^*(L) \oplus P \) and \(0 \rightarrow 0 \oplus C \rightarrow T \xrightarrow{\lambda} \gamma_{c+1}^*(L) \rightarrow 0 \) a central extension of \(\gamma_{c+1}^*(L) \), in which \(\lambda \) denotes the natural projection. Thanks to the universality of the extension \(e \), we can find a homomorphism \(\alpha : \gamma_{c+1}^*(L) \rightarrow T \) with \(\kappa_{c+1} = \lambda \alpha \). If \(\gamma : T \rightarrow P \) is the natural projection, then \(\sigma(\gamma \alpha) = \delta \) and this proves our claim.

Therefore, by the induction hypothesis and Lemma 2.5(i), there exists an isomorphism \(\varphi : \gamma_{c+1}^*(L) \wedge \gamma_{c+1}^*(L) \rightarrow \gamma_{c+1}^*(L) \) such that \(\mu_{c+1} \varphi = \delta \). It is readily verified that the following diagram is commutative:

\[
\begin{array}{ccc}
\gamma_{c+1}^*(L) \wedge \gamma_{c+1}^*(L) & \xrightarrow{1_{\gamma_{c+1}^*(L) \wedge \gamma_{c+1}^*(L)}} & \gamma_{c+1}^*(L) \wedge L \\
\varphi & & \kappa \\
& & \\
\gamma_{c+1}^*(L) & & \gamma_{c+2}^*(L)
\end{array}
\]
where β is the canonical homomorphism and κ is homomorphism due to Lemma 1.2. As L is perfect, the crossed module μ is surjective. Consequently both $1_{\gamma_{c+1}^*}(L) \wedge \mu_{c+1}$ and κ are isomorphisms, implying that $\gamma_{c+2}^*(L)$ is isomorphic to $\gamma_{c+1}^*(L)$. This completes the induction and the proof of the theorem. \square

In [1], it is proved that the multiplier of a cover of a finite dimensional perfect Lie algebra is zero (also see [8]). Now, Theorem B shows this result for c-nilpotent multipliers of covers of finite dimensional perfect Lie algebras.

Acknowledgment

The authors would like to thank the referee for his/her valuable suggestions, which was made the improvement of the paper.

References