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Feedback Regulation in the Lactose Operon: A Mathematical Modeling
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ABSTRACT A mathematical model for the regulation of induction in the lac operon in Escherichia coli is presented. This
model takes into account the dynamics of the permease facilitating the internalization of external lactose; internal lactose;
b-galactosidase, which is involved in the conversion of lactose to allolactose, glucose and galactose; the allolactose interactions
with the lac repressor; and mRNA. The final model consists of five nonlinear differential delay equations with delays due to the
transcription and translation process. We have paid particular attention to the estimation of the parameters in the model. We
have tested our model against two sets of b-galactosidase activity versus time data, as well as a set of data on b-galactosidase
activity during periodic phosphate feeding. In all three cases we find excellent agreement between the data and the model
predictions. Analytical and numerical studies also indicate that for physiologically realistic values of the external lactose and the
bacterial growth rate, a regime exists where there may be bistable steady-state behavior, and that this corresponds to a cusp
bifurcation in the model dynamics.

INTRODUCTION

The operon concept (Beckwith, 1987b), introduced by Jacob

et al. (1960), has had a profound and lasting effect on the

biological sciences. Not long after the operon concept was

developed, Goodwin (1965) gave the first mathematical

analysis of operon dynamics. Griffith then put forward a more

complete analysis of simple repressible (negative feedback,

Griffith (1968a)) and inducible (positive feedback, Griffith

(1968b)) gene control networks, and Tyson and Othmer

(1978) have summarized these results. Extensions consider-

ing the stability of inducible operons were published by

Selgrade (1979, 1982) and Ji-Fa (1994), but none of these

treatments considered the role of the DNA transcription and

mRNA translation delays, though Tyson and Othmer pointed

out that both should be considered.

Bliss et al. (1982) were some of the first to explicitly

consider transcriptional and translational delays in their

modeling of the tryptophan operon. Many subsequent

workers studying tryptophan dynamics (Sinha, 1988; Sen

and Liu, 1989; Xiu et al., 1997) ignored these delays

although including other biological details, but the trypto-

phan delays were considered by Santillán and Mackey,

(2001a,b). Maffahy and Savev (1999) modeled lac operon

dynamics and included transcriptional and translational

delays, but Wong et al. (1997) failed to treat these elements

of the lac operon despite their inclusion of much of the

relevant biological detail. Recent work on gene network

regulation can be found in Tyson and Mackey (2001).

In this paperwe offer amodel of the induction process in the

lac operon, including much of the relevant biological detail

considered by Wong et al. (1997) (but neglecting catabolite

repression) as well as the transcriptional and translational

delays considered by Maffahy and Savev (1999). A more

complete mathematical analysis of a reduced version of the

model presented here is possible, and was considered by N.

Yildirim, D. Horike, andM.C.Mackey (unpublished results).

Section 2, ‘‘The Model’’, develops the model and gives a set

of realistic parameters estimated from the biological literature

(presented in detail in Appendix B). It also examines the

nature of the steady states (as deduced in Appendix C) and

briefly considers their stability (Appendix D). Section 3,

‘‘Comparison with Experimental Data’’, compares the

numerical predictions of the model temporal behavior with

three sets of data taken from the literature, and the paper ends

with a discussion in Section 4, ‘‘Conclusions’’.

THE MODEL

To develop our model for regulation of the lac operon, it will be helpful to

refer to Fig. 1. This control system functions in the following manner. In the

absence of glucose available for cellular metabolism, but in the presence of

external lactose (Le), lactose is transported into the cell by a permease (P).
Intracellular lactose (L) is then broken down into glucose, galactose, and

allolactose (A) by the enzyme b-galactosidase (B). The allolactose feeds

back to bind with the lactose repressor and enables the transcription process

to proceed.

In more detail, the lac operon consists of a promoter/operator region and

three larger structural genes, lacZ, lacY, and lacA. Preceding the lac operon

is a regulatory operon responsible for producing a repressor (R) protein. In
the absence of allolactose (A), the repressor R binds to the operator region

and prevents the RNA polymerase (which binds to the promoter region)

from transcribing the structural genes. However, if allolactose is present,

a complex is formed between allolactose and the repressor that makes

binding of the repressor to the operator region impossible. In that case, the

RNA polymerase bound to the promoter is able to initiate transcription of the

structural genes to produce mRNA.

Once the mRNA has been produced, the process of translation is initiated.
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The lacZ gene encodes for the mRNA responsible for the production of

b-galactosidase (B) and translation of the lacY gene produces mRNA

ultimately responsible for the production of a membrane permease (P). The

mRNA produced by transcription of the lacA gene encodes for the pro-

duction of thiogalactoside transacetylase, which is thought to not play a role

in the regulation of the lac operon (Beckwith, 1987a) and will not be further
considered here.

As shown in Appendix A, following Yagil and Yagil (1971), if the

amount of repressor R bound to the operator O is small, then in a large

population of cells the fraction of operators not bound by repressor (and

therefore free to synthesize mRNA) is given by

f ðAÞ ¼ 11K1A
n

K1K1A
n ; (1)

where n was interpreted as the number of molecules of allolactose required

to inactivate the repressor, K1 is the equilibrium constant for the repressor-

allolactose reaction, and K2 is the equilibrium constant for the operator-

repressor reaction, K¼ 11 K2 Rtot, and Rtot is the total amount of repressor.

Notice that there will be maximal repression when A ¼ 0, but even at

maximal repression there will still be a basal level of mRNA production

(‘‘leakage’’) proportional to K�1. We are now in a position to develop our

model for the lac operon regulation.

The dynamics of mRNA production are given by Eq. 2,

dM

dt
¼ aM

11K1ðe�mtMAtMÞn
K1K1ðe�mtMAtMÞn

1G0 � egMM; (2)

which is derived as follows. First, note that the production of mRNA from

DNA via transcription is not an instantaneous process but requires a period

of time, tM, for RNA polymerase to traverse the three structural genes. The

rate of change of M is a balance between a production term aM f and a loss

term egMM: The argument of f in the production term is e�mtMAtM ; where

AtM [Aðt � tMÞ; to account for the time, tM, required to produce the

mRNA. The factor e�mtM accounts for the growth dependent allolactose

dilution during the transcriptional period. In the total absence of allolactose,

on occasion repressor will transiently not be bound to the operator and RNA

polymerase will initiate transcription. G0 denotes this spontaneous rate of

mRNA production. The loss term in Eq. 2, egMM[ ðgM 1mÞM; is made up

of an mRNA degradation term (gMM) and an effective loss due to dilution

(mM).

The dynamics of b-galactosidase are described by Eq. 3,

dB

dt
¼ aBe

�mtBMtB� egBB: (3)

Again realize that b-galactosidase production through mRNA translation

is not instantaneous but requires a time, tB. We assume that the rate of

production of B is proportional to the concentration of M a time tB ago

ðaBe
�mtBMtB Þ; where again the exponential factor takes into account the

dilution of mRNA due to cell growth. The loss rate of B is given by egBB;

where as before egB ¼ ðgB1mÞB:
For the allolactose dynamics,

dA

dt
¼ aAB

L

KL1 L
� bAB

A

KA 1A
� egAA; (4)

the first term in Eq. 4 gives the b-galactosidase mediated gain in allolactose

from the conversion of lactose following the studies of Huber et al. (1976).

The second term accounts for allolactose loss via conversion to glucose and

galactose, again mediated by b-galactosidase (Martı́nez-Bilbao et al., 1991;

Huber et al., 1994). The last term takes into account the degradation and

dilution of allolactose.

The lactose dynamics are more complicated and given by Eq. 5:

dL

dt
¼ aLP

Le

KLe1 Le

� bLP
L

KL11 L

� bL2
B

L

KL21 L
� egLL: (5)

The first term in Eq. 5 accounts for the augmentation of intracellular lactose

L through the permease facilitated transport of Le. The proportionality

constant aL is a decreasing function of extracellular glucose (Saier, 1976).

The second term deals with intracellular lactose loss to the extracellular fluid

because of the reversible nature of the permease-mediated transport (Saier,

1976; Osumi and Saier, 1982; Postma et al., 1996; Saier et al., 1996). The

coefficient bL is not dependent on the external glucose levels. The third term

accounts for the conversion of lactose to allolactose as well as the hydrolysis

FIGURE 1 Schematic representation of the

lactose operon regulatory system.
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of lactose to glucose and galactose via b-galactosidase (B). The fourth term

accounts for the decrease in internal lactose concentration due to degradation

and dilution.

To describe the permease dynamics

dP

dt
¼ aPe

�mðtP1tBÞMtP 1 tB � egPP (6)

we have Eq. 6. There, the first term reflects the assumption that permease

production is directly proportional (proportionality constant aP) to the

mRNA concentration a time (tP 1 tB) in the past, where tP is the translation

time between mRNA and permease. The delay is taken to be the sum of the

b-galactosidase and permease translation times under the assumption that

permease production cannot start until b-galactosidase production is com-

plete. The exponential factor e�mðtP1tBÞ accounts for dilution of mRNA con-

centration due to cell growth. The second term accounts for the degradation

and dilution of permease.

We have carried out an extensive search of the existing literature for

data that would allow us to estimate the model parameters in Eqs. 2–6.

The results of our determinations are summarized inTable 1, and the details of

how we arrived at these parameter values are contained in Appendix B.

The full model as formulated in Eqs. 2–6 can have one, two, or three

steady states depending on the values of the parameters (m, Le). The details

of how these steady states are determined are contained in Appendix C. The

results of these considerations are presented in Fig. 2. There we show in

ðLe; �AAÞ space the region where a nonnegative steady state can exist. Note in

particular that for a range of Le values, there may be three coexisting steady-

state values of the intracellular allolactose levels, �AA and, consequently, of

ð �MM; �BB; �AA; �LL; �PPÞ:
Whether or not there can be coexisting steady states depends on the

growth rate m, and an examination of the dependence of the criteria for the

existence of steady states ð �MM; �BB; �AA; �LL; �PPÞ on (m, Le) reveals that in ðm;Le; �AAÞ
space there is a cusp bifurcation occurring that is dependent on the growth

rate m and extracellular lactose levels Le.

This cusp bifurcation in the model in ðm; Le; �AAÞ space is of the following
nature. There is a minimal growth rate mmin ’ 4:53 10�3 min�1 such that

for values of the growth rate m 2 [0, mmin], there is a unique steady-state

level of allolactose �AA for any given value of external lactose levels Le. At

m ¼ mmin, the concentration of external lactose required for induction is

Le ’ 4:5mM: However, as m becomes larger, m 2 [mmin, mmax, the sys-

tem may have three steady-state values of �AA at a given external lactose level

Le. This is the situation depicted in Fig. 2, where we used m ¼ �mm ¼
2:263 10�2 min�1: For this value ofm, the lactose concentration required for

induction (and marked with an asterisk in Fig. 2) is Le ’ 62mM; which

compares well with the results of a study using an artificial inducer of the

lac operon, isopropylthiogalactoside (IPTG) (Baneyx, 1999). There it was

found that 50–100 mM IPTG is sufficient as a lower bound to achieve full

induction.

A full stability analysis of the steady states of this model is impossible,

since the eigenvalue equation determining local stability is a fifth order

quasipolynomial containing three delays. Consequently, we have contented

ourselves with a numerical examination of the stability properties of the

steady states. Briefly, the results of our numerical stimulations presented in

Appendix D are as follows. When a single steady state exists, we have found

that the numerical behavior is such that the model solutions always converge

to that steady state at large times. When there are three coexisting steady

states, the numerical solutions to the model either converged to the lower or

upper branch of the S-shaped curve for various initial conditions. These

results, as well as numerous others that are not shown, lead us to conclude

that the middle branch of the S-shaped steady-state curve (see Fig. 2)

corresponds to a steady state that is globally unstable. The nature of the

boundary between initial conditions leading to the convergence to the upper

or lower branch solution appears to be complicated, and it may well be

a fractal basin boundary (Losson and Mackey, 1993).

COMPARISON WITH EXPERIMENTAL DATA

Given the parameter values determined in Table 1, we num-

erically solved the model equations to compare the predicted

behavior with three distinct experimental data sets.

The first data set is fromKnorre (1968), inwhich changes of

the specific b-galactosidase concentration after a step change
from glucose to lactose growth for Escherichia coli ML30

were measured. The second data set is from Pestka et al.

(1984). In this paper, Pestka et al. studied specific inhibition of

translation of single mRNA molecules and gave data for the

specific activity of b-galactosidase versus time for E. coli 294
in the presence of IPTG. These two data sets and the model

simulation determined using MATLAB’s dde23 (Shampine

and Thompson, 2000) routine are shown in Fig. 3.

For this simulation, initial values for the variable were

chosen as A0¼ 3.803 10�2,M0¼ 6.263 10�4, L0¼ 3.723
10�1, P0 ¼ 1.493 10�2, and B0 ¼ 0.0 mM, all of which are

close to the steady-state values given in Table 2when Le¼ 8.0

3 10�2 mM. (With this value of Le, there is a single unique
steady state). To compare these two sets of experimental data

with themodel simulation predictions, the data were scaled so

the steady-state values of measured b-galactosidase activities
and those produced by the simulation were equal. As seen in

Fig. 3, there is relatively good agreement between both sets

of experimental data and the model-predicted temporal

approach of b-galactosidase activity to its steady-state value.
As a third test of the model, a data set from Goodwin

(1969) was used. In this paper, the dynamic behavior of

b-galactosidase was studied in chemostat cultures of E. coli
synchronized with respect to cell division by periodic phos-

phate feeding at a period equal to the bacterial doubling time.

Experimentally, oscillations in b-galactosidase concentra-

tion were observed with a period equal to the feeding period.

To mimic the periodic phosphate feeding in our simula-

tion, we assumed that the bacterial growth rate varies as

a function of time in manner given by

mðtÞ ¼ �mm� amodðt;TÞ: (7)

Here, �mm is the maximal growth rate for the bacteria, T is the

period of the feeding and a is a positive parameter with

TABLE 1 The estimated parameters for the model as

determined in Appendix B

n 2 mmax 3.47 3 10�2 min�1

gM 0.411 min�1 gB 8.33 3 10�4 min�1

gA 0.52 min�1 G0 7.25 3 10�7 mM/min

K 7,200 aM 9.97 3 10�4 mM/min

tB 2.0 min aA 1.76 3 104 min�1

KL1 1.81 mM aB 1.66 3 10�2 min�1

KA 1.95 mM bA 2.15 3 104 min�1

tM 0.1 min KL 9.7 3 10�4 M

gL 0.0 min�1 gP 0.65 min�1

aL 2880 min�1 aP 10.0 min�1

tP 0.83 min bL1 2.65 3 103 min�1

KLe 0.26 mM K1 2.52 3 10�2 (mM)�2
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dimension min�2. mod(t, T) is a function that gives the re-

mainder on division of t by T. Selection of this type of

function is motivated by the observation that growth rates

decrease as nutrient levels fall and sharply increase after the

addition of nutrient.

m(t) takes its maximal value of �mm when t ¼ T 3 k, (k ¼ 1,

2, 3, . . .), which corresponds to the times that phosphate was

added. The minimal value of this function, �mm� aðT� eÞ at
t ¼ T3 k � e; ðe$ 0; k ¼ 1; 2; 3; . . .Þ; represents the mini-

mal amount of nutrient left in the vessel. Assuming no

nutrient is left eminutes before the addition of phosphate and

letting e ! 0; a can be estimated if the doubling time (T ) is
known: a ’ �mm=T:
With a feeding period of T ¼ 100 min, we have a ’

2:263 10�4 min�2 for �mm ¼ 2:263 10�2 min�1, which is the

value we have estimated for our model (cf. Appendix B). In

Fig. 4, we compare the data on b-galactosidase activity

from the forced culture as a function of time with the model

predictions.

With respect to the predicted bistability at sufficiently

large growth rates, illustrated in Fig. 2, evidence presented

by Novick andWiener (1957) and Cohn and Horibata (1959)

qualitatively substantiate the existence of this behavior for

values of the growth rate exceeding mmin. However, we are

unable to determine if the quantitative ranges of Le for which
we have predicted bistability correspond to the conditions

under which it was seen in Novick and Wiener (1957) and

Cohn and Horibata (1959).

CONCLUSIONS

Here we have developed, and analytically and numerically

analyzed, a mathematical model for the regulation of the lac
operon in E. coli. The final model consists of five nonlinear

differential delay equations with delays due to the DNA

transcription and mRNA translation processes. The model

equations describe the dynamics of the permease (P) facil-
itating the internalization of external lactose (Le); internal
lactose (L); b-galactosidase (B), which is involved in the

conversion of lactose to allolactose, glucose, and galactose;

the allolactose (A) interactions with the lac repressor, and

mRNA (M). We have gone to considerable effort to make

valid and reasonable estimates of the 24 parameters in the

model. We were successful in identifying 22 of these param-

eters from published data, but were forced to determine the

growth rate m and gA by fitting the model to the data of

Knorre (1968).

We have tested our model against two sets of b-galac-
tosidase activity versus time data. These data came from

the experimental work presented in Knorre (1968), in which

changes of the specific b-galactosidase concentration after a

step change from glucose to lactose growth for E. coliML30

were measured, and the work of Pestka et al. (1984). In this

latter paper, data were presented for the specific activity

of b-galactosidase versus time for E. coli 294 in the presence
of IPTG. These two data sets and the model simulation

are shown in Fig. 3, and there is a remarkable degree of

concordance between the data and the model predictions.

As a third test of the model, data from Goodwin (1969)

giving the dynamic behavior of b-galactosidase was studied
in chemostat cultures of E. coli synchronized with respect to

cell division by periodic phosphate feeding at a period equal

to the bacterial doubling time. Experimentally, oscillations in

b-galactosidase concentration were observed with a period

equal to the feeding period. Fig. 4 shows the b-galactosidase
activity data as well as the model predictions. Again, there is

a satisfying degree of agreement.

Analytical and numerical studies of the model also predict

FIGURE 2 The region in the ðLe; �AAÞ space where

a nonnegative steady state can exist as a function of external

lactose levels Le for the model when all parameters are held

at the estimated values in Table 1 and when �mm ¼ 2:263
10�2 min�1: The shaded area shows the region where a

steady state is not defined, whereas the solid line is the locus

of ðLe; �AAÞ values satisfying the steady state. The inset box

shows that at large values of Le, there is still a separation of

the line for the steady state from the region where steady

states are not defined. Notice that for these values of the

parameters, there is a range of Le values for which there are

three coexisting steady-state values of allolactose A. The

asterisk located at the right-most kink locates the minimal

concentration of extracellular lactose required for in-

duction, and our calculations indicate that it should be on

the order of 62.0 mM.
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that for physiologically realistic values of external lactose

and the bacterial growth rate, a regime exists where there

may be bistable steady-state behavior, and that this cor-

responds to a cusp bifurcation in the model dynamics. This

prediction is qualitatively confirmed by the observations

of Novick andWiener (1957) and Cohn and Horibata (1959).

Although a full analysis of the stability properties of the

model is not possible due to its complexity, we have found

that the basic properties contained in a reduced version of

this model N. Yildirim, D. Horike, and M. C. Mackey

(unpublished results) (2002) (which considered only the

dynamics of M, B, and A) are apparently retained in this

much more complicated model as far as we are able to as-

certain analytically and numerically.

This agreement between the model predictions for the

lactose operon and existing data, and similar agreement

between a mathematical model for the tryptophan operon

(Santillán and Mackey, 2001a,b), highlight the desirability

and necessity of closer cooperation between experimentalists

and modelers to further validate and refine mathematical

models of simple and more complicated gene regulatory

networks.

To close, we wish to touch on the nature of the mathe-

matical model presented here. The model considered in this

paper is formulated with the explicit assumption that one is

dealing with large numbers cells (and hence of large numbers

of molecules) so that the law of large numbers is operative.

However, the situation is quite different if one is interested in

the dynamics of small numbers (or single) prokaryotic or

eukaryotic cells, for then the numbers of molecules are small.

Adequate means to analytically treat such problems do not

exist in a satisfactory form as of now (Gillespie, 1992;

Kepler and Elston, 2001; Swain et al., 2002), and one is often

reduced to mostly numerical studies (Gillespie, 1977;

McAdams and Shapiro, 1995; Arkin et al., 1998). The sit-

uation is analogous to examining the interactions between

small numbers of interacting particles (where the laws of

mechanics or electrodynamics hold), and then deriving from

these formulations the behavior of large numbers of identical

units as is done (not completely successfully even at this

point) in statistical mechanics. We view this connection

between the ‘‘micro’’ and ‘‘macro’’ levels as one of the

major mathematical challenges facing those interested in the

understanding of gene control networks.

APPENDIX A: REPRESSOR DYNAMICS

Let R be the repressor, E the effector (allolactose in our case), and O the

operator. The effector is known to bind with the active form R of the

repressor. We assume, as do Yagil and Yagil (1971), that this reaction is of

the form

R1 nE �
K1

REn K1 ¼ REn

R � En ; (8)

where they took n to be the effective number of molecules of effector

required to inactivate the repressor R. Furthermore, the operator O and

repressor R are assumed Yagil and Yagil (1971) to interact according to

O1R �
K2

OR K2 ¼ OR

O � R : (9)

FIGURE 3 b-galactosidase activity versus time when Le
¼ 8.0 3 10�2 mM. The experimental data sets were taken

from Knorre (1968) for E. coli ML30 (�) and from Pestka

et al. (1984) for E. coli 294 (¤). The model simulation

(solid line) was obtained using the parameters of Table 1

with a growth rate �mm ¼ 2:263 10�2 min�1: The selection

of initial conditions is described in the text.

TABLE 2 Steady-state values when Le 5 8.0 3 1022 mM

�AA ¼ 5:063 10�1 mM
�MM ¼ 1:083 10�3 mM
�BB ¼ 7:353 10�4 mM
�LL ¼ 3:643 10�1 mM
�PP ¼ 1:513 10�2 mM
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Let the total operator be Otot:

Otot ¼ O1OR ¼ O1K2O � R ¼ Oð11K2RÞ; (10)

and the total level of repressor be Rtot:

Rtot ¼ R1K1R � En 1K2O � R: (11)

The fraction of operators not bound by repressor (and therefore free to

synthesize mRNA) is given by

f ðEÞ ¼ O

Otot

¼ 1

11K2R
: (12)

If the amount of repressor R bound to the operator O is small

Rtot ’ R1K1R � En ¼ Rð11K1E
nÞ (13)

so

R ¼ Rtot

11K1E
n ; (14)

and consequently

f ðEÞ ¼ 11K1E
n

11K2Rtot 1K1E
n ¼

11K1E
n

K1K1E
n ; (15)

where K ¼ 1 1 K2Rtot. Notice that there will be maximal repression when

E ¼ 0 but even at maximal repression there will still be a basal level of

mRNA production proportional to K�1.

APPENDIX B: PARAMETER ESTIMATION

In the model given by Eqs. 2–6, there are 24 parameters in total that must be

estimated to characterize the system completely. In this section, we give the

estimation of each of these parameters.

m: The maximal value of the dilution rate m can be estimated from the

shortest interdivision time of E. coli, which is ;20 min (Watson,

1977). Given this, mmax ¼ ln 2/20 min�1 ¼ 3.47 3 10�2 min�1. We

have also estimated a value of m, denoted by �mm; together with

the value of gA by least-square fitting of the experimental

b-galactosidase concentration data given in Knorre (1968) using the

fminsearch and dde23 (Shampine and Thompson, 2000) routines in

MATLAB. We found �mm ’ 2:263 10�2 min�1, indicating that these

cultures were growing with a doubling time of 30 min. The results of

this estimation were tested for several initial starting points for m and

gA, and the estimation procedure always converged to the same values

of �mm and gA.

gA: The value of gA was estimated as 5.2 3 10�1 min�1 together with

the value of m by using least-square fitting of the experimental

b-galactosidase activity data given in Knorre (1968) as above.

gM: Leive and Kollin (1967) found that the t1=2 of b-galactosidase

mRNA was 2 min to give a value of gM ’ ln 2=2 ¼ 0:347min�1: In

a comparable experiment, Blundell and Kennell (1974) found t1=2 ¼
1:47min to give gM ’ 0:475min�1: We have taken the average of

these two figures to give gM ’ 0:411min�1:

gB: The rate of breakdown of b-galactosidase was measured by

Mandelstam (1957) and found to be 0.05 per h corresponding to

8.333 10�4 min�1. Rotman and Spiegelman (1954) also reported that

the maximal rate of breakdown of b-galactoside is 0.005 min�1, and

noted that it is possibly much smaller than this value. We have taken

the Mandelstam value.

K: Yagil and Yagil (1971) analyzed a number of published data sets, and

from their calculations we find the average value is K ’ 7200:

n: Again from Yagil and Yagil (1971), we have an average Hill coeffi-

cient of 2.09. We have taken n ¼ 2.

K1: The average dissociation constant of effector-repressor complex

was K1 ’ 2:523 10�2ðmMÞ�2
from the results of Yagil and Yagil

(1971).

aM: The steady-state value of lac mRNA in the absence of induction

is thought to be one molecule per cell. This corresponds to a

‘‘concentration’’ of 2.08 3 10�6 mM if we take the E. coli volume to

be 8 3 10�16 liter. When the cells are maximally induced, the lac

mRNA level is raised a thousand times compared to this uninduced

steady-state value (Savageau, 1999). From Eq. 2 at a steady state,

lim
�AA!0

G0 ¼ egM
�MM � aM

K
(16)

FIGURE 4 Oscillation in b-galactosidase activity in res-

ponse to periodic phosphate feeding with period T ¼ 100

min, which is the culture doubling time. The experimental

data (*) together with the model simulation (solid line)
using the parameters of Table 1 and �mm ’ 2:263 10�2

min�1 are presented. The experimental data are taken from

Goodwin (1969). In the numerical simulation, periodic

phosphate feeding was imitated by choosing a periodic

function given by Eq. 7. The simulation was calculated by

numerically solving the system of delay differential

equations given by Eqs. 2–6. The initial conditions are

the same as those values given in Table 2 for Le ¼ 8.0 3
10�2 mM.
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lim
�AA!‘

G0 ¼ egM1000 �MM � aM: (17)

From Eqs. 16 and 17, aM is 9.97 3 10�4 mM–min�1.

G0: The term G0 was included in our model for the following reason.

Assume that the term in question is not there, which is equivalent to

taking G0 [ 0. An examination of Eq. 2 in a steady state yields

aM f ð�AAe�mtM Þ ¼ egM
�MM: Let the level of lac mRNA in the maximally

induced state be given by �MMmaxinduced ¼ Q �MMuninduced. The maximally

induced state corresponds to �AA ! ‘ and lim�AA!‘ f ð�AAe�mtM Þ ¼ 1: The

uninduced state corresponds to �AA ! 0 and lim�AA!0 f ð�AAe�mtM Þ ¼ 1=K:

Thus we have two relations,

egM
�MMmaxinduced [ egMQ �MMuninduced ¼ aM

and

egM
�MMuninduced ¼ aM

K
:

Taking the ratio of these two relations gives Q [ K and from above,

K ¼ 7200, which would imply a value for Q which is 7.2 times larger

than what is experimentally observed (Q ¼ 1000). Thus the inclusion

of the term G0.

To determine G0, note that at a steady state when �AA ’ 0; from Eq. 2

we have

G0 ¼ egM
�MM � aM

K
¼ 7:253 10

�7
mMmin

�1
:

aB: At a steady state, from Eq. 3 we have

aB ¼ egB
�BB
�MM

e
mtB : (18)

Kennell and Reizman (1977) reported that steady-state value of

b-galactosidase is ;20 molecules per cell, which means that
�BB= �MM ¼ 20: Using the value of gB reported by Mandelstam (1957)

for nongrowing bacteria, aB ’ 1:663 10�2 min�1:

aA: Huber et al. (1975) studied the kinetics of b-galactosidase and

found Vmax ¼ 32.6 U/mg of b-galactosidase and KM ¼ 0.00253 M

when lactose was the substrate. whereas Vmax ¼ 49.6 U/mg of

b-galactosidase and KM ¼ 0.00120 M when allolactose is the

substrate. (U is defined as mM of glucose or galactose produced per

minute.) Given that the molecular mass of b-galactosidase is 540,000

Da, and 1 Da ¼ 1.66 3 10�21 mg, 1 mol of b-galactosidase is

equivalent to 6.023 1023 3 5.43 105 3 1.663 10�21 ¼ 5.393 108

mg of b-galactosidase, so 1 mg of b-galactosidase is equivalent to

1.85 3 10�3 mmol. Therefore,

aA ’ 32:6mmol

1:853 10
�3
mmolmin

¼ 1:763 10
4
min

�1
:

bA: From the data of Huber et al. (1975), we have bA ’ 2:73 104 min�1;

whereas Martı́nez-Bilbao et al. (1991) gives bA ’ 1:83 104 min�1:

We have taken the average of bA ’ 2:153 104 min�1:

KL: The volume of one E. coli is ;8.0 3 10�16 liter and its mass is ;1.7

3 10�12 g to yield a density of 2.1 3 103 g/liter. The parameter KL in

our model corresponds to the parameter Km,Lac/r in Wong et al.

(1997) model and the values and the units of these two parameters

reported in this paper are r ¼ 3.0 3 102 g of dry cell weight per liter

and Km,Lac ¼ 1.4 3 10�4 M, which gives

Km;Lac=r ¼ 1:43 10
�4

3:03 10
2 ¼ 4:63 10

�7
mol=g:

To obtain an estimate for KL in M, we can multiply this value by the

density of the cell, which gives KL ’ 9:73 10�4 M; in agreement

with the value of 1.4 6 0.3 3 10�3 M estimated by Martı́nez-Bilbao

et al. (1991). We have taken the latter value.

KA: This parameter in our model corresponds to Km,Allo/r in the Wong

et al. (1997) model, and they took Km,Allo F2.8 3 10�4 M. Hence,

Km;Allo=r ¼ ð2:83 10�4Þ= ð3:03 102Þ ¼ 9:33 10�7 mol=g: Using

the procedure followed in the estimation of KL, the value of KA

is calculated to be 1.95 mM.

tM: In this model, we are considering the transcription and translation of

two genes, lacZ and lacY. Translation of lacZ starts shortly after

transcription initiation. For the translation of lacY to begin, lacZ must

be completely transcribed. Knowing that lacZ has 1022 amino acids

and DNA chain elongation rate is at least 490 nucleotides per second,

which is equivalent to 9800 amino acids per minute, according to

Bremmer and Dennis (1996), the time for lacZ to be completely

transcribed is at most

tM ’ 1022

9800
¼ 0:1min:

This is an upper bound on tM.

tB: lacZ is 1022 amino acids long and the mRNA elongation rate varies

between 12 and 33 amino acids per second (Monar et al., 1969;

Kennell and Reizman, 1977). Talkad et al. (1976) also reported the

translation rate is between 8 and 15 amino acids per second. If we take

the mRNA elongation rate as 8 amino acids per second to estimate an

upper bound value for tB, we obtain

tB ’ 1022

83 60
¼ 2:12min:

If the elongation rate is 33 amino acids per second, then tB ’
1022=ð333 60Þ ¼ 0:51min: Sorensen et al. (1989) estimated an aver-

age value for tB of 82 s experimentally, which is 1.37 min. We have

taken the upper bound as tB ’ 2:21min but used tB ¼ 2:0min.

gL: We assumed gL ’ 0; implying that the degradation rate for intra-

cellular lactose is negligible when compared with the bacterial growth

rate, as did Wong et al. (1997).

gP: West and Stein (1973) studied the kinetics of induction of

b-galactosidase permease in E. coli and estimated the mean half life

of permease ranges from 1.3 min to 1.9 min, which yields a range for

0.53–0.78 min�1 for the degradation rate of permease gP. We have

taken an average of these two estimates to give gP ’ 0:65min�1:

aL: Wright et al. (1981) studied on lactose carrier protein of E. coli and
measured the active transport turnover number as 48 3 60 ¼ 2880

min�1 in EDTA-treated cells of the strain ML308-225. We have taken

the same value aL ¼ 2880 min�1.

aP: Eq. 6 gives

aP ¼
�PP
�MM
egPe

mðtP 1 tBÞ

at a steady state. From Kennell and Reizman (1977), we know that
�BB= �MM ’ 20: The steady-state molar ratio of b-galactosidase to

permease was given as �BB=�PP ¼ 2 by in Maloney and Rotman

(1973). >From this we estimate aP ’ 7:52min�1:

Lee and Bailey (1984) studied the growth rate effects on productivity

of recombinant E. coli populations and obtained an empirical relation

for the transcription rate as a function of the bacterial growth rate.

From this relation, we have aP ¼ 17.37 min�1 when m ¼ 2.21 3
10�2 min�1, which is the value we have estimated. We have taken an

intermediate value between these two estimates: aP ’ 10:0min�1:

bL1: FromWong et al. (1997), we have bL1 ¼ 2148 min�1. Lolkema et al.

(1991) gave a range for bL1 as 840–3000 min�1. We have chosen as

bL1 ¼ 2650 min�1.

KLe
: From Wong et al. (1997), we have
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KLe ¼ 2:63 10
�4
M;

based on the data of Lolkema et al. (1991), Huber et al. (1980), Page

and West (1984), and Wright et al. (1981).

KL1
: From Wong et al. (1997), we have

KL1 ¼
Kt;lac

r
;

wherein

Kt;lac ¼ 2:63 10
�4
M

from Lolkema et al. (1991), Huber et al. (1980), Page and West

(1984), and Wright et al. (1981), and r is as given before. Thus

KL1 ¼
Kt;lac

r
¼ 8:63 10

�7
mol=g:

Multiplying by the density of the cell (2.1 3 103 gm/L) gives us

KL1 ¼ 1:813 10
�3
M:

tP: lacY is 399 amino acids long and the mRNA elongation rate varies

between 8 and 33 amino acids per second (Monar et al., 1969; Kennell

and Reizman, 1977; and Talkad et al., (1976). If we take the mRNA

elongation rate to be 8 amino acids per second to estimate an upper

bound value for tP, we obtain

tP ’ 399

83 60
¼ 0:83min:

If the elongation rate is 33 amino acids per second, then

tP ’ 399=ð333 60Þ ¼ 0:20min: We have taken the maximal value

to be tP ’ 0:83min:

APPENDIX C: STEADY-STATE ANALYSIS
OF THE MODEL

In this section, the steady-state analysis of the system is investigated and

a necessary condition derived for existence of positive steady state(s). Let

ð �MM; �BB; �AA; �LL; �PPÞ 2 R1
5 be the steady state of the system given by Eqs. 2–6. At

a steady state, by definition, there are no temporal changes and thus the

steady state(s) are defined implicitly by

0 ¼ aM f1ð�AAÞ1G0 � egM
�MM (19)

0 ¼ aB0
�MM � egB

�BB (20)

0 ¼ aAg1ð�LLÞ�BB� bA
�BBf2ð�AAÞ � egA

�AA (21)

0 ¼ aL
�PPh� bL1

�PPg2ð�LLÞ � bL2
�BBg1ð�LLÞ � egL

�LL (22)

0 ¼ aP0
�MM � egP

�PP; (23)

where aB0
¼ aBe

�mtB and aP0 ¼ aPe
�mðtB1tPÞ: Moreover, f1, f2, g1, and g2

are all monotone increasing functions given by

f1ð�AAÞ ¼ 11K1E�AA
2

K0 1K1E�AA
2 ; f2ð�AAÞ ¼

�AA

KA 1 �AA
(24)

g1ð�LLÞ ¼
�LL

KL 1 �LL
; g2ð�LLÞ ¼

�LL

KL1 1 �LL
; (25)

where E ¼ e�2mtM :

For a steady state to make sense in a biological context, it is necessary

that it be nonnegative. Now from Eqs. 20 and 23, we easily have

�BB ¼ aB0

egB

�MM (26)

�PP ¼ aP0

egP

�MM: (27)

Furthermore, from Eq. 19, �MM can be written in terms of �AA as,

�MM ¼ aM f1ð�AAÞ1G0

�ggM

: (28)

Note that �BB and �PP are nonnegative whenever �MM is nonnegative, and from Eq.

28 we always have �MM$ 0: Further, from Eq. 21 we can write �LL in terms of �AA:

�LLð�AAÞ ¼ KL f3ð�AAÞ
1� f3ð�AAÞ ; (29)

FIGURE 5 Semilog plot of b-galactosidase activity

versus time (min) showing bifurcation in the numerical

simulation with the parameters of Table 1 for five initial

conditions and �mm ’ 2:263 10�2 min�1 when Le ¼ 3.03
10�2 mM, which is in the range of lactose concentration

for the existence of three steady states. The selection of

the five initial conditions is described in the text.
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where

f3ð�AAÞ ¼ bAaB0
f2ð�AAÞðaM f1ð�AAÞ1G0Þ1 egAegMegB

�AA

aAaB0
ðaM f1ð�AAÞ1G0Þ : (30)

Condition I for a nonnegative steady state

From Eq. 29, to have a nonnegative steady-state value of �LL,

0 # f3ð�AAÞ\1 (31)

must be satisfied.

Now consider Eq. 22, and substitute Eqs. 26 and 27. After rearrangement,

we obtain

aM f1ð�AAÞ1G0 ¼
�LLegL

}1 � }2g2ð�LLÞ � }3g1ð�LLÞ ; (32)

where

}1 ¼ aLaP0h

egMegP

(33)

}2 ¼ bL1aP0

egMegP

(34)

}3 ¼ bL2aB0

egMegB

(35)

h ¼ Le

KL 1 Le

: (36)

The left side of Eq. 32 is always positive for all nonnegative values of �AA,
which leads to the following second condition for a biologically sensible

steady state:

Condition II for a nonnegative steady state

Since the left side of Eq. 32 is always nonnegative, the condition

H0ð�AAÞ ¼ }1 � }2g2ð�LLð�AAÞÞ � }3g1ð�LLð�AAÞÞ$ 0; (37)

must be satisfied.

Theorem 1

(Necessary condition for existence of a positive steady state.) For the

existence of a positive steady state for the model given by Eqs. 2–6,

f 93ð�AAÞ[0 (38)

is a necessary condition for �AA in an interval defined by the intersection of the

intervals for which Eqs. 31 and 37 are satisfied.

Proof

The left side of Eq. 32 is a monotone increasing function of �AA when K1[0,

and has a minimal value of (aM/K0) 1 G0 when �AA50: Further, it reaches its

maximal value of aM 1 G0 as �AA becomes large. Furthermore, the right side

FIGURE 6 Semilog plot of b-galactosidase activity

versus time showing effects of selection of the initial

condition for t 2 [�t, 0] in the numerical simulation with

the parameters of Table 1 and various initial values of

mRNA and allolactose oscillating around the unstable

steady-state values corresponding to the middle branch of

Fig. 2 when �mm ’ 2:263 10�2 min�1 and Le ¼ 4.0 3 10�2

mM (which is in the range of lactose concentration for

coexistence of three steady states). The solid lines show

the b-galactosidase activity when the initial allolactose

functions are AðtÞ ¼ �AA1 ð�AA=nÞsinð2pt=tMÞ (n ¼ 1,

2, . . .10), t 2 [�tM, 0], and the other variables are at the

steady-state values on the middle branch. (Here �AA is the

unstable steady-state value of A on the middle branch).
The dotted lines depict the temporal changes in b-gal-

actosidase activity when MðtÞ ¼ �MM1 ð �MM=nÞsinð2pt=
ðtB 1 tPÞÞ (n ¼ 1, 2, . . .10) for t 2 [�(tB 1 tP), 0]. Again

all the other variables are at the steady-state values when

Le¼ 4.03 10�2 mM and �MM is also the steady-state value of

A on the middle branch. The steady-state values are
�AA ¼ 3:753 10�2 mM, �MM ¼ 1:323 10�5 mM, �BB ¼ 8:973
10�6 mM, �LL ¼ 1:743 10�1 mM, and �PP ¼ 1:843 10�4

mM, when Le ¼ 4.0 3 10�2 mM.

TABLE 3 Multiple steady states and their numerical values when Le 5 3.0 3 1022 mM

Steady states �AA �MM �BB �LL �PP

I 4.31 3 10�3 2.14 3 10�6 1.44 3 10�6 1.01 3 10�1 2.98 3 10�5

II 6.43 3 10�2 3.46 3 10�5 2.34 3 10�5 1.36 3 10�1 4.83 3 10�4

III 1.42 3 10�1 1.54 3 10�4 1.04 3 10�4 1.39 3 10�1 2.16 3 10�3
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of Eq. 32 is zero when �AA50: Therefore, for the existence of a positive root, it

is trivial that the right of Eq. 32 must be an increasing function of �AA for

values of �AA and �LL satisfying Eqs. 31 and 37.

To prove that the condition f 93ð�AAÞ[0 is a necessary condition for the

right side of Eq. 32 to be an increasing function of �AA; let

H1ð�AAÞ5
�LLegL

}12}2g2ð�LLÞ2}3g1ð�LLÞ (39)

so that

dH1ð�AAÞ
d�AA

5
�LL9egLfH0ð�AAÞ1�LLð}2g92ð�LLÞ1}3g91ð�LLÞÞg

H0ð�AAÞ2
: (40)

g1ð�AAÞ and g2ð�AAÞ are Michaelis-Menten type functions and g91ð�LLÞ and g92ð�LLÞ
are positive. Since H0ð�AAÞ[0 the condition

dH1ð�AAÞ
d�AA

[0

is satisfied whenever

�LL9[
d�LL

d�AA
[0

holds.

Further, from Eq. 29 we have

d�LL

d�AA
5

KL f3ð�AAÞð12f3ð�AAÞÞ1f 93ð�AAÞKL f3ð�AAÞ
ð12f3ð�AAÞÞ2

; (41)

and from Condition I, 12f3ð�AAÞ[0 must be satisfied for nonnegative steady

states. Thus the right side of Eq. 41 is always positive when f 93ð�AAÞ[0:

Therefore, H1ð�AAÞ is an increasing function when f 93ð�AAÞ[0 in an interval

defined by the intersection of the intervals for which Eqs. 31 and 37 are

satisfied. This completes the proof.

APPENDIX D: NUMERICAL STABILITY
OF THE MODEL

A full stability analysis of the steady states of this model is impossible, since

the eigenvalue equation determining local stability is a fifth order quasi-

polynomial containing three delays. Consequently, we have contented our-

selves with a numerical examination of the stability properties of the steady

states.

Briefly, the results of our numerical stimulations are as follows. When

a single steady state exists, we have found that the numerical behavior is

such that the model solutions always converge to that steady state at large

times.

When there are three coexisting steady states as illustrated in Fig. 2, the

behavior is slightlymore complicated and is illustrated in Fig. 5whenLe¼ 3.0

3 10�2. At this value, the system has the three steady states given in Table 3.

As seen from the results in Fig. 5, the numerical model solutions either

converged to the lower or upper branch of the S-shaped curve (see Fig. 2) for

various initial conditions. These results, as well as numerous others that are

not shown, lead us to conclude that the middle branch of the S-shaped steady-
state curve corresponds to a steady state that is globally unstable.

For this simulation, we choose five equally distributed initial b-galac-

tosidase levels between 0.24 3 10�4 and 0.32 3 10�4 mM and kept all

other variables at their steady-state values corresponding to the values on the

middle branch of the S-shaped curve in Fig. 2 when Le ¼ 3.0 3 10�2 mM,

and computed the temporal evolution of the model variables. For initial

b-galactosidase values equal to or greater than 3.0 3 10�5, the simulated

curves converged to 1.043 10�4, which is the value on the upper branch of

the steady-state curve, whereas for the other initial values, the b-galac-

tosidase values converged to 1.44 3 10�6, which is the steady-state value

on the lower branch.

However, the relatively simple behavior shown in Fig. 5 is deceptive, as

shown in Fig. 6. There we present numerical evidence that the attractor

boundary in initial function space separating behaviors where one

approaches the lower or upper locally stable steady state of Fig. 2 is not

totally straightforward. The potentially rich nature of the boundary is

revealed by taking initial functions that oscillate about the unstable branch of

the steady-state curve. The ensuing dynamical behavior is highly reminis-

cent of the existence of a fractal basin boundary that has been noted in other,

simpler, differential delay systems (Losson and Mackey, 1993).
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