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SUMMARY

Overabundance of Slug protein is common in human
cancer and represents an important determinant
underlying the aggressiveness of basal-like breast
cancer (BLBC). Despite its importance, this tran-
scription factor is rarely mutated in BLBC, and the
mechanism of its deregulation in cancer remains un-
known. Here, we report that Slug undergoes acetyla-
tion-dependent protein degradation and identify the
deacetylase SIRT2 as a key mediator of this post-
translational mechanism. SIRT2 inhibition rapidly
destabilizes Slug, whereas SIRT2 overexpression
extends Slug stability. We show that SIRT2 de-
acetylates Slug protein at lysine residue K116 to
prevent Slug degradation. Interestingly, SIRT2 is
frequently amplified and highly expressed in BLBC.
Genetic depletion and pharmacological inactivation
of SIRT2 in BLBC cells reverse Slug stabilization,
cause the loss of clinically relevant pathological
features of BLBC, and inhibit tumor growth. Our re-
sults suggest that targeting SIRT2 may be a rational
strategy for diminishing Slug abundance and its
associated malignant traits in BLBC.

INTRODUCTION

Over the past decade, large-scale genomic profiling has re-

vealed the molecular landscape of breast cancers (Perou et al.,

2000; van’t Veer et al., 2002), identifying discrete subtypes as

well as underlying driver genes. For the majority of breast cancer

subtypes, tailored targeted therapies are now available and

have significantly improved patient survival (Cuzick et al., 2010;

Ignatiadis et al., 2012; Regan et al., 2011; Slamon et al.,

2001). The notable exception is one of the deadlier and more

aggressive subtypes, called basal-like breast cancer (BLBC)

and so-named for its molecular similarities to the basal mam-

mary epithelial cell differentiation program (Harris et al., 2012).
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Sharing an immunophenotype with triple-negative breast can-

cer, BLBC is identified clinically by the absence of estrogen

receptor, progesterone receptor, and HER2, and affects approx-

imately 20% of breast cancer patients (Fan et al., 2006; Rakha

et al., 2008). Unfortunately, analyses of somatic mutation profiles

of BLBC have not yet revealed promising targets for therapeutic

intervention (Foulkes et al., 2010; Gusterson, 2009).

Robust tumorigenic capacity, early dissemination and metas-

tasis, and frequent resistance to conventional chemotherapy

and radiotherapy regimens are central clinical features of

BLBC (Foulkes et al., 2010; Harris et al., 2012; Metzger-Filho

et al., 2012; Rakha et al., 2008). Recent studies have identified

the transcriptional repressor SNAI2/Slug as a critical determi-

nant underlying these malignant phenotypes (DiMeo et al.,

2009; Phillips and Kuperwasser, 2014; Proia et al., 2011; Sa-

manta et al., 2016; Storci et al., 2008). In cancer biology, Slug

is well known to promote tumor progression and metastasis

through the epithelial-mesenchymal transition (EMT), causing

loss of cell adhesion and polarity while conferring migratory

and invasive properties (Polyak and Weinberg, 2009; Yang and

Weinberg, 2008). In addition, studies onmammary gland biology

have outlined essential roles for Slug in orchestrating transcrip-

tional programs for stem cell self-renewal and basal mammary

epithelial cell differentiation (Cobaleda et al., 2007; Guo et al.,

2012; Nassour et al., 2012; Phillips et al., 2014). By suppressing

the luminal differentiation program while activating EMT, high

Slug expression levels bias tumor development toward stem/

basal-like phenotypes and enable the adoption of tumor-initi-

ating and invasive capabilities (DiMeo et al., 2009; Proia et al.,

2011; Samanta et al., 2016; Storci et al., 2008). Experi-

mental depletion of Slug diminishes these aggressive traits,

and SNAI2 knockout animals are resistant to mammary tumori-

genesis (Phillips et al., 2014).

Consistent with Slug playing a central role in the development

of BLBC, an overabundance of Slug protein is commonly

observed in BLBC tumors (Liu et al., 2013b; Proia et al., 2011).

However, despite its frequent overabundance, SNAI2 is rarely

mutated or amplified in BLBC. Although Slug is a shorted-lived

and rapidly degraded protein in normal tissue, we have previ-

ously observed extended Slug stability in BLBC caused by
ors.
commons.org/licenses/by/4.0/).

mailto:charlotte.kuperwasser@tufts.edu
http://dx.doi.org/10.1016/j.celrep.2016.10.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2016.10.006&domain=pdf
http://creativecommons.org/licenses/by/4.0/


B

C D

G

N
or

m
al

iz
ed

S
lu

g/
La

m
in

Time to CHX treatment (hrs)

Lamin
A/C

Slug

A
0 1 2 3 4  6

CHX
Time (hrs)

DMSO CHX

Lamin
A/C

Slug

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

T1/2 ~80min

Slug

Lamin
A/C

NaBu
- +

NAM
- +

MLN
- +

TSA
- +

Sirtinol
- +

HDACi
- +

Slug

β-Actin

0 0.5 1 2 3 4 0 0.5 1 2 3 4

Sirtinol
CHX
Time (hrs)

Slug

Lamin
A/C

0 0.5 1 2 3 4 0 0.5 1 2 3 4

Sirtinol Sirtinol +MG132
CHX
Time (hrs) 0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4

CHX
CHX+ Sirtinol
CHX+Sirtinol +MG132

Time to CHX treatment (hrs)

N
or

m
al

iz
ed

S
lu

g /
La

m
in

F

1.0    0.8    1.0     0.6    1.0   0.6    1.0    0.3    1.0     0.2   1.0    0.1

Benjamini p value
Acetylation 3.00E-54

Phosphoprotein 1.00E-17
Ribonucleoprotein 2.70E-14
Nucleotide-binding 2.80E-16

Ubiqutin/Proteasome 9.80E-08

* *

* **

0

1

2

S
N

A
I2

m
R

N
A

E

0 1 2 3 4  6

Acetylation
Phosphoprotein
Ribonucleoprotein
Nucleotide-binding
Ubiqutin/Proteasome

Figure 1. A Combinatorial Proteomic and Chemical Inhibitor Approach Identifies Acetylation in the Regulation of Slug Protein Turnover

(A) (Top) MCF10A cells were treated with cycloheximide (CHX) to prevent de novo protein synthesis at indicated time intervals. Immunoblots for Slug protein and

Lamin A/C loading control levels at the indicated time intervals following CHX treatment. (Bottom) Quantification of relative Slug levels from five independent

experiments, normalized to Lamin A/C levels. The half-life of Slug protein is indicated (red line). Data shown are mean ± SEM.

(B) Pie chart and table of major functional groups associated with Slug-interacting partners as identified by SLUG coIP/MS in HEK293T cells. False recovery rates

are represented as Benjamini-Hochberg p values in the table.

(C) MCF10A cells were treated with the indicated panel of chemical inhibitors or vehicle control, and Slug protein abundance was assessed by immunoblot.

Relative levels of Slug protein were quantified and are shown below the immunoblots.

(legend continued on next page)
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decreased proteasomal degradation of Slug (Proia et al., 2011).

Proteolytic turnover of Slug, like many labile transcription fac-

tors, is regulated by post-translational modifications (PTMs).

Phosphorylation mediated by GSK3b primes Slug for ubiquitina-

tion (Kao et al., 2014; Wu et al., 2012), and several E3 ligases

(FBXL14, b-Trcp1, and CHIP) are involved in the ubiquitin-medi-

ated degradation of Slug (Kao et al., 2014; Vernon and LaBonne,

2006; Wu et al., 2005, 2012). However, GSK3b inactivation does

not strongly correlate with Slug overabundance in cancer, and

prior studies have demonstrated that Slug undergoes proteaso-

mal degradation independent of GSK3b-mediated phosphoryla-

tion (Lander et al., 2011; Viñas-Castells et al., 2010). Therefore,

the mechanism by which Slug escapes proteasomal degrada-

tion in BLBC remains unknown.

We reasoned that elucidating the molecular mechanism

underlying the phenomenon of extended Slug stability could

provide a new target for BLBC therapeutic intervention. Thus,

in this study, we endeavored to identify the post-translational

mechanism by which Slug protein stability is regulated in breast

epithelial cells and evaluate whether components of this mecha-

nism are altered in breast cancer. We found that Slug acetyla-

tion represents a major determinant governing its abundance,

and deacetylation of the SLUG domain by the mammalian sirtuin

SIRT2 regulates Slug stability. Notably, SIRT2 is frequently

amplified in BLBC, and experimental manipulation of SIRT2 in

BLBC cells antagonized the cancer-associated phenotypes

mediated by Slug. Together, these findings unravel an intricate

molecular interplay between SIRT2 amplification, Slug stability,

and the BLBC phenotype.

RESULTS

A Combined Proteomic and Chemical Inhibitor
Approach Identifies Acetylation in theRegulation of Slug
Protein Turnover
We have previously shown that Slug protein is abundantly

expressed yet undergoes rapid turnover in normal mammary

epithelial cells (Phillips et al., 2014; Proia et al., 2011). Indeed,

in immortalized, non-transformed MCF10A human breast

epithelial cells, Slug is rapidly degraded upon cycloheximide

(CHX) blockade of de novo protein synthesis, exhibiting a half-

life of �80 min (Figure 1A). In addition, proteasomal inhibition

byMG132 treatment completely prevented Slug protein turnover

(Figure S1B). To identify proteins that may contribute to the regu-

lation of Slug protein levels, we performed immunoprecipitation

of Slug followed by mass spectrometry (coIP/MS). This proteo-

mic approach identified 287 unique Slug-binding partners (Table

S1), several of which have been previously validated (Kao et al.,

2014; Phillips et al., 2014; Wu et al., 2012). We interrogated

this list of Slug-binding partners for commonmolecular functions
(D) MCF10A cells were treated with sirtinol (25 mM) for 4 hr, and Slug protein leve

(E) MCF10A cells were treated with sirtinol (25 mM) for 4 hr, and SNAI2 transcript e

p = 0.08.

(F) MCF10A cells were pre-treated with sirtinol alone (top) or sirtinol plus the prot

prevent de novo protein synthesis at indicated time intervals. Immunoblots of Sl

(G) Quantification of relative Slug protein levels from three independent experimen

of Slug protein are plotted for CHX only (blue), CHX plus sirtinol (red), and CHX p
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using the DAVID functional annotation tool (Figures 1B and S1A)

(https://david.ncifcrf.gov/). Consistent with the function of Slug

as a DNA-binding transcriptional co-repressor, a significant

number of binding partners were nuclear proteins. However,

proteins involved in PTM were also highly represented, and sur-

prisingly, acetylation was the most statistically significant func-

tionality associated with Slug binding partners (Figure 1B; false

discovery rate [FDR] = 3.0 3 10�54).

Based on these findings, we examined whether acetylation

might affect Slug protein levels. Indeed, we observed that

small-molecule inhibitors of deacetylation, targeting class I, II,

or III HDACs (TSA, sirtinol, and HDACi), resulted in dramatic re-

ductions of Slug protein in MCF10A cells, whereas other HDAC

inhibitors such as sodium butyrate and a cullin/E3 ligase inhibitor

(MLN4924) failed to appreciably affect Slug levels (Figure 1C).

Interestingly, the most selective of these HDAC inhibitors—sirti-

nol, a selective inhibitor of sirtuin 1 and 2—led to marked Slug

depletion in a dose- and time-dependent manner (Figures S1C

and S1D). Furthermore, Slug protein depletion was not a result

of transcriptional repression (Figure 1D), as SNAI2 mRNA levels

were slightly increased following sirtinol treatment (Figure 1E).

Consistent with the post-translational nature of this regulation,

sirtinol treatment drastically accelerated Slug protein turnover

and led to substantial shortening of Slug protein half-life (Figures

1F and 1G, *p < 0.05). Moreover, the sirtinol-induced loss of Slug

protein also correlated with de-repression of EPCAM andCDH1,

two canonical Slug target genes (Figure S1E, **p < 0.01). Taken

together, these data identify acetylation as a potential regulator

of Slug protein level, and show that combined pharmacological

inhibition of the deacetylases SIRT1 and SIRT2 by sirtinol is

sufficient to reduce Slug protein half-life and activity.

Protein Deacetylase SIRT2 Regulates Slug Protein
Abundance, Stability, and Function
Mammalian sirtuins (SIRT1–7) are a class of NAD+-dependent

type III histone and protein deacetylases classically known for

their regulatory roles in cellular metabolism and aging (Guarente,

2011). Interestingly, a growing body of literature highlights a

novel function of the sirtuin family in regulating the stability of

short-lived transcriptional factors, including several cancer-

relevant substrates such as p53 and FOXO3 (Liu et al., 2013b;

Hoffmann et al., 2014). Given our finding that sirtinol substantially

reduces Slug protein abundance, we investigated whether regu-

lation of Slug protein stability requires either SIRT1 or SIRT2, or

both. To this end, we individually perturbed SIRT1 and SIRT2

expression in MCF10A cells and examined the ensuing effect

on Slug. We found that neither overexpression nor depletion of

SIRT1 resulted in a significant change in Slug protein levels or

stability (Figures S2A and S2B). In contrast, overexpressing

SIRT2 resulted in a striking increase in Slug protein abundance
l was assessed by immunoblot.

xpression was assessed by qRT-PCR. Data are shown as mean ± SEM (n = 3);

easome inhibitor MG132 (bottom), and then subsequently treated with CHX to

ug and Lamin A/C protein levels are shown at the indicated time intervals.

ts performed as in (F), normalized to Lamin A/C levels. The degradation curves

lus sirtinol plus MG132 (green). Data shown are mean ± SEM. *p < 0.05.

https://david.ncifcrf.gov/
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Figure 2. SIRT2 Regulates Slug Protein

Abundance and Activity

(A) (Left) Immunoblots showing levels of Slug, V5-

tagged SIRT2 (SIRT2-V5), and Lamin A/C in

MCF10A cells ectopically expressing SIRT2-V5

or control lacZ. (Right) Quantification of relative

Slug levels from five independent experiments,

normalized to Lamin A/C. Data are shown as

mean ± SEM. *p < 0.05.

(B) (Left) Immunoblots showing levels of Slug,

SIRT2, acetylated tubulin (a bona fide SIRT2 sub-

strate), and Lamin A/C inMCF10A cells expressing

two different hairpins targeting SIRT2. (Right)

Quantification of relative Slug levels from three

independent experiments, normalized to Lamin

A/C. Data are shown as mean ± SEM. **p < 0.01.

(C) (Top) Immunoblots showing levels of Slug,

SIRT2-V5, Cyclin D1, and Lamin A/C in CHX-

treatedMCF10A cells overexpressing SIRT2-V5 or

control LacZ. (Bottom) Quantification of relative

Slug levels from three independent experiments,

normalized to Lamin A/C. Data are shown as

mean ± SEM. *p < 0.05.

(D) (Top) Immunoblot showing levels of Slug,

SIRT2-V5, and Lamin A/C in CHX-treatedMCF10A

cells expressing either shSIRT2 or a non-silencing

shRNA control (shCtrl). (Bottom) Quantification

of relative Slug levels from three independent

experiments, normalized to Lamin A/C. Data are

shown as mean ± SEM. *p < 0.05.

(E) Expression of Slug target genes EPCAM and

CDH1 in MCF10A cells overexpressing SIRT2 or

LacZ (n = 3) as determined by qRT-PCR. Data are

shown as mean ± SEM. *p < 0.05.

(F) Expression of Slug target genes EPCAM and

CDH1 in MCF10A cells expressing shSIRT2 or

shCtrl (n = 3) as determined by qRT-PCR. Data are

shown as mean ± SEM. **p < 0.01.
(Figure 2A, *p < 0.05), without an observable change in SNAI2

mRNA levels (Figure S2D, *p = 0.03). Conversely, knockdown

of SIRT2 by two independent short hairpin RNAi constructs

(shRNAs) led to significantly diminished Slug protein levels (Fig-

ure 2B, **p < 0.01), without significant decrease in SNAI2mRNA

levels (Figure S2E).

We next examined whether SIRT2 regulates Slug protein

turnover. MCF10A cells overexpressing SIRT2 exhibited pro-

longed Slug stability, with high protein levels up to 4 hr following

CHX treatment (Figure 2C, *p < 0.05). By contrast, Slug pro-

tein abundance was rapidly reduced and became minimally

detectable after 4 hr in control LacZ-expressing MCF10A cells
Cell Repo
(Figure 2C). In addition, SIRT2 knock-

down promoted rapid destabilization of

Slug, such that Slug protein promptly dis-

appeared by 1 hr post-CHX treatment

(Figure 2D, *p < 0.05). We observed that

the half-life of Slug was prolonged from

80 to 240 min in SIRT2-overexpressing

MCF10A cells, and shortened to 40 min

in SIRT2-depleted MCF10A cells (Figures

2C and 2D). Importantly, the differences
in Slug stability were specific to genetic manipulation of SIRT2

levels, and not due to a general effect on protein degradation

because cyclin D1 was still degraded normally (Figure 2C).

To determine whether Slug repressor activity is affected by the

changes in Slug protein levels mediated by SIRT2, we examined

the expression of Slug target genes following SIRT2 perturba-

tion. Elevated Slug protein caused by SIRT2 overexpression

corresponded to stronger repression of the Slug transcriptional

targets, EPCAM and CDH1 (Figure 2E, *p < 0.05). Likewise, in

SIRT2-knockdown cells where Slug protein levels were dimin-

ished, de-repression of these Slug target genes was observed

(Figure 2F, **p < 0.01). Thus, the ability of SIRT2 to regulate
rts 17, 1302–1317, October 25, 2016 1305
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Figure 3. SIRT2 Binds to and Deacetylates Slug

(A) (Top) Lysates from HEK293T cells transfected with Flag-tagged Slug (Slug-Flag) and V5-tagged SIRT2 (SIRT2-V5) were subjected to anti-Flag immuno-

precipitation. Immunoblots of Flag-Slug and SIRT2-V5 are shown. (Bottom) Lysates from MCF10A were subjected to anti-Slug immunoprecipitation (left) and

anti-SIRT2 immunoprecipitation (right). Immunoblots of endogenous Slug and SIRT2 are shown.

(B) Immunofluorescence of Slug (red) and SIRT2 (green) in MCF10A cells. DAPI (blue) was used to visualize nuclei.

(legend continued on next page)
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Slug abundance directly influences the bioavailability of Slug

protein and the expression of its downstream transcriptional

targets. Taken together, these data demonstrate that SIRT2

regulates Slug protein abundance, stability, and function.

SIRT2 Interacts with and Deacetylates Slug
Because experimental manipulation of SIRT2 expression levels

alters Slug protein stability, we next sought to determine

whether Slug might directly interact with and be a substrate of

SIRT2. Accordingly, reciprocal co-immunoprecipitation (coIP)

was performed in HEK293T cells that ectopically expressed

Flag-tagged Slug and V5-tagged SIRT2. Indeed, Slug co-immu-

nopurified with SIRT2 (Figure 3A). Likewise, reciprocal coIPs

between endogenous SIRT2 and endogenous Slug in MCF10A

were also observed (Figure 3A). We further ruled out the possibil-

ity of non-specific interaction between SIRT2 and Slug mediated

through chromatin by performing the coIP in the presence of

DNase (Figures S3A and S3B). Notably, Slug failed to co-immu-

noprecipitate with SIRT1, indicating a specific interaction with

SIRT2 (Figure S2C). Consistent with these findings, dual-immu-

nofluorescence (IF) staining of endogenous Slug and SIRT2

proteins revealed their nuclear co-localization in MCF10A cells

(Figure 3B). Together, these results show that SIRT2 physically

interacts with Slug protein, suggesting that Slug may be a sub-

strate for the enzymatic activity of the deacetylase SIRT2.

SIRT2, like other members of the mammalian sirtuin family,

regulates its substrate proteins by directly modulating their acet-

ylation state. Given our finding that acetylation targets Slug

protein for degradation (Figure 1), we asked whether SIRT2 con-

stitutes an integral component of this regulatory mechanism. To

determine whether SIRT2 deacetylates Slug, we first examined

Slug acetylation status following SIRT2 inhibition by sirtinol.

This treatment resulted in the hyper-acetylation of Slug relative

to untreated cells (Figure 3C). Similarly, SIRT2 depletion using

two independent shRNAs promoted acetylation of Slug protein

(Figure S4B). By contrast, when we overexpressed SIRT2 in un-

treated cells, a marked decrease in Slug acetylation was evident

(Figure 3C, p < 0.01). However, treatment of SIRT2-overexpress-

ing cells with sirtinol restored the hyper-acetylated status of

Slug (Figure 3C, p < 0.01). Because protein acetylation and

ubiquitination are often linked and act in concert to influence pro-

tein degradation (Jiang et al., 2011; Wang et al., 2012), we next

examined whether de-acetylation of Slug by SIRT2 could

affect Slug ubiquitination and degradation. Indeed, SIRT2 over-

expression markedly reduced Slug ubiquitination (Figure S3C).

Conversely, enzymatic inhibition of SIRT2 by sirtinol treatment

promoted Slug ubiquitination (Figure S3C).

To specifically determine whether the deacetylase activity

of SIRT2 is necessary for regulating Slug protein levels, we

created single amino acid substitutions within the catalytic
(C) (Left) Anti-Flag immunoprecipitation of lysates fromHEK293T cells, overexpres

were immunoblotted for pan-acetylated lysine, Flag-Slug, and SIRT2-V5. (Right)

normalized to immunoprecipitated Flag-Slug. Data are shown as mean ± SEM. *

(D) (Left) Immunoblots showing levels of Slug, Cyclin D1, and Lamin A/C in CHX-tre

SIRT2 mutants H187Y (top) and S368D (bottom). (Right) The degradation curves

Lamin A/C and plotted for cells overexpressing LacZ (black), WT SIRT2 (blue), or S

mean ± SEM. *p < 0.05.
domain of SIRT2 to produce deacetylase-defective mutants

(North and Verdin, 2007; North et al., 2003). In cells overexpress-

ing these mutant proteins, Slug acetylation was significantly

higher than in cells overexpressing wild-type (WT) SIRT2 (Fig-

ure S3D). Importantly, overexpression of the deacetylase-

defective SIRT2 H187Y and S368D mutants failed to stabilize

Slug (Figure 3D, *p < 0.05). Consistently, overexpression of WT

SIRT2, but not the deacetylation-defective mutants, resulted in

increased Slug abundance at the steady state (Figure S3E).

Furthermore, the SIRT2 mutants failed to appreciably alter Slug

target gene expression (Figure S3F). Collectively, these data

show that SIRT2 deacetylase activity can alter the acetylation

state of Slug and coordinate its ubiquitination, thereby control-

ling Slug stability and activity.

Identification of K116 as an Acetylated Slug Substrate
of SIRT2
To further validate our findings, we searched for acetylated

residues of Slug by immunoprecipitating and subjecting Slug

protein to proteolytic digestion and liquid chromatography-

tandem mass spectrometry analysis (LC-MS/MS) (Figures 4A

and S4A). Using this approach, we identified acetylated residues

at K8, K116, and K166 in the SNAG, SLUG, and zinc finger

domains, respectively (Figures 4A–4C). Sequence alignment re-

vealed that all three acetylation sites are highly conserved across

species (Figure 4B).

By virtue of their locations in the regulatory SNAG and func-

tionally unknown SLUG domains, we decided to focus our

investigation on whether K8 or K116 are substrates of SIRT2.

We deemed that K166, found in the zinc finger domain that func-

tions in DNA binding, would be unlikely to affect Slug protein

degradation. To investigate whether K8 or K116 are substrates

of SIRT2, we constructed acetyl-lysine mimic (KQ) Slug mutants

at these sites and assessed their impact on Slug stability medi-

ated by SIRT2 in MCF10A cells. SIRT2 overexpression stabilized

the K8Q Slug mutant in a similar fashion to WT Slug (Figure 4D,

*p < 0.05), suggesting that K8 acetylation is not required for the

SIRT2-dependent regulation of Slug. In contrast, SIRT2 overex-

pression failed to stabilize the K116Q Slug mutant (Figure 4E,

*p < 0.05). Furthermore, SIRT2 knockdown failed to destabilize

a non-acetyl-lysine mimic (K116R) Slug mutant (Figure S4C,

*p < 0.05). Together, these data suggest that the K116 residue

in the SLUG domain represents a critical deacetylation target

required for mediating SIRT2-driven Slug stabilization.

To further corroborate this finding, we studied the direct

effect of reversible acetylation at K116 on Slug protein sta-

bility using acetyl-lysine mimic (K116Q) and non-acetyl-lysine

mimic (K116R) Slug mutants, without altering WT SIRT2

levels. Compared to WT Slug, the acetylation-mimic K116Q

mutant was rapidly degraded, whereas the degradation of the
sing Slug-Flag and/or SIRT2-V5 that were treatedwith sirtinol or vehicle control

Relative levels of acetylated Slug protein from three independent experiments,

*p < 0.01.

atedMCF10A cells expressing control LacZ,WT SIRT2, or catalytically inactive

of relative Slug protein from three independent experiments are normalized to

IRT2mutants H187Y and S368D (red and green, respectively). Data shown are
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acetylation-resistant K116R mutant was attenuated in MCF10A

cells (Figure 4F, *p < 0.05). Thus, the mutational analysis of the

K116 residue of Slug partially phenocopies the Slug stability re-

sults generated using acetylation inhibitors and the genetic

manipulation of SIRT2. Taken together, these results suggest

that reversible acetylation of K116 is sufficient to regulate Slug

proteolytic turnover, and further elucidate the mechanistic

framework of how SIRT2 regulates Slug.

SIRT2 Is Highly Amplified andExpressed in HumanBLBC
Given our discovery that SIRT2 is an essential regulator of

Slug homeostasis in the normal breast epithelium, we evalu-

ated the relevance of this regulation to human breast cancer.

Clinically, breast tumors are commonly classified into distinct

subtypes based on their intrinsic molecular or histological fea-

tures. Slug protein overabundance is frequently observed in

the BLBC molecular subtype, which histologically exhibits basal

differentiation with infiltrating ductal features and is predomi-

nantly associatedwith triple-negative tumors (estrogen receptor,

progesterone receptor, andHER2 negative) (Foulkes et al., 2010;

Proia et al., 2011; Rakha et al., 2008; Storci et al., 2008). We

therefore assessed whether SIRT2 expression is altered in spe-

cific breast cancer subtypes.

Analyzing The Cancer Genome Atlas (TCGA) dataset, we first

examined SIRT2 somatic copy number status and gene expres-

sion in tumor samples from nearly 1,000 breast cancer cases

(Cerami et al., 2012). Molecular subtype classification revealed

that SIRT2 is frequently amplified in BLBCs (23%) compared to

luminal A and luminal B tumors (9% and 16%, respectively) (Fig-

ure 5A, ****p < 0.001). In addition, SIRT2 mRNA was markedly

elevated in basal-like tumors when compared to other subtypes

of breast cancer (Figure 5B, ****p < 0.001).

To corroborate to these findings, we examined SIRT2 protein

levels in 192 breast cancer cases by immunohistochemistry

(IHC). Patient stratification based on receptor status revealed

that SIRT2 levels were higher in triple-negative breast cancer

cases, when compared to the non-triple-negative breast cancer

cases (estrogen receptor-, progesterone receptor-, and/or

HER2-positive tumors) (Figures 5C and 5D, ****p < 0.001). Inter-

estingly, among the triple-negative cohort, further stratification

based on histological subtypes revealed a striking difference in
Figure 4. Identification of K116 as an Acetylated Slug Substrate of SIR

(A) Anti-FLAG immunoprecipitation of HEK293T cells overexpressing FLAG-Slug,

digested and analyzed by mass spectrometry.

(B) Schematic summarizes the three identified acetylated residues in relationship t

acetylated residues are highly conserved across different species.

(C) LC-MS/MS spectrums are displayed for each of the three acetylated Slug re

(D) (Top) Immunoblots comparing the effect of SIRT2 overexpression on WT Slug

SIRT2-V5 is included to show SIRT2 overexpression. (Bottom) The degradati

normalized to Lamin A/C and plotted for cells overexpressing WT Slug plus LacZ

(red). Data shown are mean ± SEM. *p < 0.05.

(E) (Top) Immunoblots comparing the effect of SIRT2 overexpression in WT vers

V5-SIRT2 is included to show SIRT2 overexpression. (Bottom) The degradati

normalized to Lamin A/C and plotted for cells overexpressing WT Slug plus LacZ

(red). Data shown are mean ± SEM. *p < 0.05.

(F) (Left) Immunoblots showing the stability of the acetylation-mimic K116QSlugm

The degradation curves of relative Slug protein from three independent experime

(blue), K116R Slug mutant (green), and K116Q Slug mutant (red). Data shown ar
SIRT2 protein level among invasive lobular carcinoma (ILC)

and invasive ductal carcinoma (IDC) (Figures 5E and 5F, ****p <

0.001). SIRT2 protein was abundantly expressed in triple-nega-

tive tumors with IDC features, a poorly differentiated histological

subtype most commonly associated with highly expressed Slug

(Martin et al., 2005; Prasad et al., 2009). In contrast, triple-nega-

tive tumors with ILC features showed lower SIRT2 protein

expression, at levels comparable to non-triple-negative tumors

(Figures 5E and 5F). Consistent with the SIRT2 protein level re-

sults, further analysis of TCGA data revealed that SIRT2 copy

number amplification most frequently occurs in IDC, especially

in the basal subtypes (49%) (Figure 5G, p = 0.001). Furthermore,

SIRT2 gene expression is overall highly expressed in IDC

compared to ILC (Figure 5H, ****p < 0.001).

SIRT2 Is Necessary for Slug Overabundance
in BLBC Cells
Considering the frequent overexpression of SIRT2 in invasive

ductal BLBCs, we asked whether inhibiting SIRT2 would cause

Slug protein levels to diminish in BLBC cell lines. For these ex-

periments, we identified two BLBC cancer cells (SUM149 and

SUM1315) derived from IDCs that exhibit robust Slug expression

and stability (Proia et al., 2011). Indeed, targeting SIRT2 by two

independent shRNAs greatly diminished Slug protein levels in

both cell lines (Figures 6A and 6B).

Notably, the half-lives of Slug in these BLBC cells are longer

than those in normal epithelial cells (Proia et al., 2011) (Figures

1A, 6E, and 6F); we therefore investigated whether SIRT2 is

necessary for the aberrant stabilization of Slug protein using

these BLBC cells. SIRT2 knockdown caused rapid degradation

of Slug protein, effectively abolishing extended Slug stability

(Figures 6C and 6E). Similarly, pharmacological inhibition of

SIRT2 also led to higher degradation rates for Slug, resembling

the normal Slug turnover kinetics in MCF10A cells (Figures 1A,

6D, and 6F). Collectively, these results demonstrate that SIRT2

is necessary for Slug overabundance in BLBC.

Silencing SIRT2 Causes the Loss of Aggressive BLBC
Features and Inhibits Tumor Growth
Through regulation of transcriptional programs that orchestrate

basal differentiation, stem cell activity, cellular motility, and
T2

followed by pan-acetylated lysine blotting detects acetylated Slug, which was

o functional domains of Slug. Sequence alignment analysis shows that all three

sidues.

versus an acetylation-mimic K8Q Slug mutant in MCF10A cells. Immunoblot of

on curves of relative Slug protein from three independent experiments are

control (blue), WT Slug plus SIRT2 (green), and K8Q Slug mutant plus SIRT2

us an acetylation-mimic K116Q Slug mutant in MCF10A cells. Immunoblot of

on curves of relative Slug protein from three independent experiments are

control (blue), WT Slug plus SIRT2 (green), and K116Q Slug mutant plus SIRT2

utant and the acetylation-resistant K116R Slugmutant inMCF10A cells. (Right)

nts are normalized to Lamin A/C and plotted for cells overexpressing WT Slug

e mean ± SEM. *p < 0.05.
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Figure 5. SIRT2 Expression Is Elevated in BLBCs

(A) SIRT2 somatic copy number analysis by TCGA across the molecular subtypes of breast cancer. Data were analyzed using two-tailed unpaired

Student’s t tests, p values for basal versus luminal A = 0.011, basal versus luminal B = 0.031, basal versus Luminal A/B = 0.488, basal versus HER2+ =

0.040.

(B) SIRT2 gene expression across the molecular subtypes of breast cancer from the TCGA dataset. Data were analyzed using one-way ANOVA. Data shown are

mean ± SEM. ****p < 0.0001.

(C) Immunohistochemical analysis of SIRT2 protein expression in tissue microarrays containing 192 breast tumor samples. Shown is the comparison of

SIRT2 expression between triple-negative and non-triple-negative breast cancer cases. Data were analyzed using two-tailed unpaired Student’s t test.

****p < 0.0001.

(D) Representative SIRT2 immunohistochemical staining from triple-negative and non-triple-negative breast cancer cases are shown.

(E) Triple-negative (TN) cases were further stratified by histological classification, and shown is the comparison of SIRT2 expression between TN-ILC and TN-IDC.

Data were analyzed using two-tailed unpaired Student’s t test. ****p < 0.0001.

(F) Representative SIRT2 immunohistochemical staining from TN-invasive lobular carcinoma and TN-IDC are shown.

(legend continued on next page)
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invasiveness, Slug enables aggressive malignant characteris-

tics manifested by BLBCs (Kao et al., 2014; Phillips et al.,

2014; Proia et al., 2011; Samanta et al., 2016). We hypothe-

sized that SIRT2 may also regulate the BLBC phenotype

through its effect on Slug. Given the importance of high Slug

expression as a determinant of basal differentiation status (Phil-

lips et al., 2014; Proia et al., 2011; Storci et al., 2008), we first

examined whether perturbation of SIRT2 might alter the differ-

entiation status of BLBC. Following SIRT2 depletion in the

BLBC cell lines SUM149 and SUM1315, we interrogated the

expression levels of luminal and basal differentiation genes.

Increased expression of several luminal differentiation markers,

including GATA3, KRT18, and CD24 were observed upon

SIRT2 inhibition, and concomitant repression of basal- and

stem cell-associated markers was also apparent (Figure 7A,

*p < 0.05).

The predilection to early metastasis is a key aspect of the poor

prognosis in BLBC (Anders and Carey, 2009; Kennecke et al.,

2010). Slug is a well-recognized inducer of the EMT, enabling

the dissemination and invasion of cancer cells (Bolós et al.,

2003; DiMeo et al., 2009; Kim et al., 2014; Taube et al.,

2010). We therefore examined whether SIRT2 perturbation

alters the invasive phenotypes of BLBC. Matrigel invasion as-

says were performed using SUM149 and SUM1315 cells that

were depleted of SIRT2. SIRT2-depleted cells exhibited signifi-

cantly reduced invasive capabilities (Figure 7B, ***p < 0.001),

correlating with the diminished Slug protein levels in these cells

(Figure 6). Importantly, the dampening of invasion in SIRT2-

depleted cells can be rescued by overexpressing WT Slug or

its non-acetyl-lysine K116R variant (Figures S5A and S5B).

Surprisingly, we observed that overexpression of the acetyl-

lysine mimic K116Q variant also rescues invasion (Figures S5A

and S5B), but one caveat is that driving overexpression of the

K116Q variant may outweigh its decrease in stability. At the

molecular level, the reduction in invasion in SIRT2-deficient cells

was accompanied by an upregulation of E-Cadherin and down-

regulation of Vimentin, two Slug targets that are canonical EMT

markers associated with cancer metastasis (Figures S5C and

S5D) (Hajra et al., 2002; Thiery, 2002). Indeed, high SIRT2

expression clinically correlates with metastatic recurrence (van

de Vijver et al., 2002) (Figure S5E, *p < 0.05).

Another essential feature underlying the aggressiveness of

BLBC is robust self-renewal and tumor-initiating capability,

contributing to therapeutic resistance and early recurrence (Fill-

more and Kuperwasser, 2008; Foulkes et al., 2010; Metzger-

Filho et al., 2012; Rakha et al., 2008). Because Slug is a major

regulator of the stem cell state and contributes to the genesis

and progression of BLBC, we examined whether the loss of

SIRT2 might affect Slug-associated, stem-like features in

BLBC (Guo et al., 2012; Proia et al., 2011; Samanta et al.,

2016). Indeed, SIRT2 silencing in SUM1315 and SUM149 cells

markedly inhibited their ability to form tumor spheres in suspen-

sion, a phenotypic assay commonly employed to assess the
(G) SIRT2 somatic copy number analysis by TCGA in ILC and IDC subclasses. Da

versus IDC (basal) = 0.001, ILC versus IDC (luminal A) = 0.001, ILC versus IDC (l

(H) SIRT2 gene expression from the TCGA dataset for the ILC and IDC subclass

****p < 0.0001.
self-renewal and tumor-initiating characteristics of cancer cells

(Ponti et al., 2005) (Figure 7C, ***p < 0.001).

We have previously shown thatSNAI2/Slug knockout mice are

highly resistant to mammary tumorigenesis (Cobaleda et al.,

2007; Guo et al., 2012; Nassour et al., 2012; Phillips et al.,

2014). Given our finding that SIRT2 depletion and the conse-

quent abrogation of Slug stabilization causes the loss of tumor

sphere-forming capability of BLBC cells, we addressed the

in vivo relevance of SIRT2 inhibition in BLBC by examining

tumorigenesis. SIRT2-depleted BLBC cancer cells (SUM149)

were orthotopically implanted into the mammary fat pad of fe-

male NOD/SCID mice, and tumor growth was monitored over a

16-week time span. Over this period, SIRT2 inhibition signifi-

cantly impaired the growth of tumor xenografts (Figure 7D,

***p < 0.001). In aggregate, these data demonstrate that SIRT2

inhibition dampens the cancer-associated activities mediated

by Slug in BLBC.

DISCUSSION

Slug/SNAI2 is a labile protein that is strictly regulated in normal

tissues; however, disruption of this regulation appears to be a

widespread phenomenon in human epithelial malignancies and

manifests as Slug overabundance in BLBC. In this study, we

identified acetylation as a regulatory mechanism that governs

Slug stability in human mammary epithelial cells. We elucidated

the role of SIRT2 as a major regulator of Slug stability via its abil-

ity to deacetylate the K116 residue of the SLUG domain.

Together with frequent SIRT2 overexpression in human BLBC,

our findings describe a molecular pathway that contributes to

the abnormal Slug stabilization frequently observed in this

aggressive subtype of breast cancer and therefore may provide

a rational therapeutic avenue for targeting BLBC tumors.

Our study has shown that Slug is acetylated and that post-

translational acetylation of Slug acts to promote degradation

and thereby limit Slug abundance. Although the paralogous

protein Snail has been shown to be acetylated in the zinc finger

region to limit its transcriptional activity (Hsu et al., 2014), acety-

lation has not been reported for Slug. Interestingly, our muta-

tional analysis pinpointed the K116 residue of the SLUG domain,

a region not shared with Snail, as the principle regulatory site for

Slug stability and SIRT2-mediated deacetylation. Thus, our re-

sults elucidate an important functionality of the SLUG domain.

Accordingly, we speculate that other factors such as acetyl-

transferases might also be involved in, and cooperate with,

SIRT2 to regulate Slug protein stability. Collectively, these data

expand upon the known regulatory repertoire by which phos-

phorylation and ubiquitination coordinately regulate Slug protein

stability (Wu et al., 2012; Kao et al., 2014), raising intriguing ques-

tions regarding the complex interplay among these PTMs and

how they collectively regulate Slug protein abundance. For

example, do acetylation and multiple PTMs operate in a serial

or parallel fashion? Is the interaction between acetylation and
ta were analyzed using two-tailed unpaired Student’s t tests; p values for: ILC

uminal B) = 2.72 3 10�6, ILC versus IDC (HER2+) = 0.001.

es. Data were analyzed using one-way ANOVA. Data shown are mean ± SEM.
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Figure 6. SIRT2 Is Required for Slug Stability in BLBCs

(A) Immunoblots showing the effect of SIRT2 knockdown on Slug protein abundance in SUM149 BLBC cells, compared to a non-targeting hairpin control (shCtrl).

Acetylated-tubulin levels are also shown to assess SIRT2 deacetylation activity.

(B) Immunoblots showing the effect of SIRT2 knockdown on Slug protein abundance in SUM1315 BLBC cells, compared to a non-targeting hairpin control

(shCtrl). Acetylated-tubulin levels are also shown to assess SIRT2 deacetylation activity.

(C) (Top) Immunoblots showing Slug degradation in SIRT2-depleted SUM149 cells, compared to a non-targeting hairpin control (shCtrl). (Bottom) Immunoblots

showing the effect of SIRT2 inhibition by sirtinol on Slug degradation in SUM149 cells, compared to DMSO vehicle treatment.

(D) Quantification from three separate experiments shows the effect of genetic silencing or pharmacological inhibition of SIRT2 in SUM149 cells. Data shown are

mean ± SEM. *p < 0.05.

(E) (Top) Immunoblots showing Slug degradation in SIRT2-depleted SUM1315 cells, compared to a non-targeting hairpin control (shCtrl). (Bottom) Immunoblots

showing the effect of SIRT2 inhibition by sirtinol on Slug degradation in SUM1315 cells, compared to DMSO vehicle treatment.

(F) Quantification from three separate experiments shows the effect of genetic silencing or pharmacological inhibition of SIRT2 in SUM1315 cells. Data shown are

mean ± SEM. *p < 0.05.
other PTMs cooperative or antagonistic in nature? Previouswork

has shown that acetylation can promote E3 ligase-mediated

ubiquitination inmultiple proteins subject to rapid turnover (Jiang

et al., 2011; Liu et al., 2013a; Wang et al., 2012). In some con-

texts, acetylation also regulates subcellular localization to facili-

tate proteasomal degradation of the target protein (Fujita et al.,
1312 Cell Reports 17, 1302–1317, October 25, 2016
2015; Song et al., 2015). Future studies are needed to fully

understand how acetylation is integrated into the regulatory

network regulating Slug abundance and its downstream biolog-

ical effects.

The transcriptional repressor Slug/SNAI2 is frequently deregu-

lated in tumor cells, resulting in extended Slug stability. Although
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Figure 7. Silencing SIRT2 Causes the Loss of Aggressive BLBC Features in Cancer Cells
(A) qRT-PCR analysis of expression levels of Slug target genes as well as luminal and basal differentiation markers following SIRT2 silencing in SUM149 (red) and

SUM1315 (blue) BLBCs. Genes differentially expressed are represented as a log2 fold change over the non-targeting shCtrl cell lines. Data shown are mean ±

SEM. *p < 0.05.

(B) (Left) Representative images showing the effect ofSIRT2 silencing on the invasive capacity of SUM149 and SUM1315 cancer cells, compared to non-targeting

hairpin control (shCtrl). (Right) The total number of cells invading through the Matrigel-coated transwell were quantified (n = 3 per cell line). Data are shown as

mean ± SEM. ***p < 0.001.

(C) Tumor sphere-forming ability of SUM149 and SUM1315 cells following SIRT2 depletion, compared to a non-targeting hairpin control (shCtrl). Quantification is

from three independent experiments. Data are shown as mean ± SEM. ***p < 0.001.

(D) Quantification of tumor mass (left panel) and photograph (right panel) of SUM149 cells grown as orthotopic xenografts in NOD/SCID mice. Tumors with two

different hairpins targeting SIRT2 or a non-targeting hairpin control (shCtrl) are indicated. Data are plotted as individual data points from the five animals of each

group. The mean ± SEM are shown, and comparisons between groups were performed using two-tailed Student’s t tests. ***p < 0.001.
this ultimately drives transcriptional programs that confer tumor-

initiating and invasive capabilities, resistance to apoptosis, and

therapeutic failure (Chang et al., 2011; Guo et al., 2012; Kurrey

et al., 2009; Wang et al., 2009; Wu et al., 2005), the molecular

basis of Slug protein stabilization in cancer has remained

unclear. Here, we have elucidated a mechanism by which the
protein deacetylase SIRT2 acts as a critical mediator of Slug

protein stability. Although the oncogenic role of SIRT2 remains

controversial and earlier evidence showed that SIRT2 loss mildly

predisposed aged animals to mammary tumors (Kim et al.,

2014), SIRT2 is highly expressed in multiple types of human can-

cer, and inhibition of SIRT2 generally exhibits anti-cancer effects
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(Zhang et al., 2009; Rotili et al., 2012; McCarthy et al., 2013;

Hoffmann et al., 2014; Heltweg et al., 2006; Chen et al., 2013;

Dan et al., 2012; Grbesa et al., 2015; Singh et al., 2015). Our

data support this latter evidence, as we have found that SIRT2

is frequently overexpressed in the aggressive basal subtype of

breast cancer, which is most strongly associated with the phe-

nomenon of Slug overabundance. Notably, when we destabi-

lized Slug by genetic depletion or pharmacological inhibition of

SIRT2 in Slug-stabilizing BLBC cells, the cancer cells lost key

aspects of BLBC character, including basal differentiation genes

expression, tumor sphere-forming ability, and invasion. Collec-

tively, these data connect the basic mechanistic regulation of

Slug by SIRT2 to the context of Slug overabundance in BLBC tu-

mors. Furthermore, in line with the emerging role of sirtuins in the

proteolytic turnover of labile proteins (Jiang et al., 2011; Liu et al.,

2013a; Wang et al., 2012), co-opting this molecular mechanism

to aberrantly stabilize cancer drivers could be a general feature

of cancer cells for adopting malignant behaviors.

From a therapeutic standpoint, our work presents important

insights into molecular strategies to dampen Slug stabilization

in BLBC. We provide evidence that SIRT2 inhibition accelerates

proteasomal degradation of Slug, even in BLBC cells that exhibit

extended Slug stability (Proia et al., 2011). Importantly, SIRT2

inhibition in these BLBC cells caused the loss of the basal

differentiation gene expressions, colony-forming ability, and

invasiveness characteristic of aggressive BLBC, ultimately re-

sulting in diminished tumorigenic capability. Interestingly, a

recent study demonstrated that selective SIRT2 inhibition has

broad anti-cancer effects, in part by promoting the proteasomal

degradation of the c-Myc oncoprotein (Jing et al., 2016).

Notably, in this study, several BLBC cancer cells also exhibited

sensitivity to SIRT2 inhibition despite no observable decrease

of c-Myc, suggesting that destabilization of other cancer-rele-

vant substrates of SIRT2, such as Slug, may contribute to this

anti-cancer effect in BLBCs. Taken together with our findings,

the pharmacological inhibition of SIRT2 may owe its remarkable

anti-cancer property in BLBCs to its potent effect on essential

tumorigenic substrates such as Slug and c-Myc. Overall, these

findings motivate future preclinical studies to more rigorously

address the in vivo efficacy of SIRT2 inhibition against BLBC

formation and progression. Because SIRT2 regulates a number

of protein substrates involved in diverse biological processes

(Black et al., 2008; Liu et al., 2013a; North et al., 2003; Zhang

et al., 2016; Zhao et al., 2014), an alternative targeting strategy

such as peptide inhibitors that selectively block SIRT2 and

Slug interaction may be more useful for these purposes. This

rational approach, if successful, would significantly reshape

our abilities to combat BLBC and improve the associated poor

disease prospects.

EXPERIMENTAL PROCEDURES

Cell Lines, Tissue Cultures, and Chemical Treatments

Cell lines used in this study were purchased from ATCC (MCF10A and

HEK293T) or obtained from Dr. Stephen Ethier (SUM149 and SUM1315).

Additional tissue culture details are provided in Supplemental Experimental

Procedures. For analysis of protein stability, cells were treated with the protein

synthesis inhibitor CHX (4 mg/ml; Sigma-Aldrich) followed by pulse-chase at

indicated time points. Deacetylation inhibitors sodium butyrate (10 mM;
1314 Cell Reports 17, 1302–1317, October 25, 2016
Sigma-Aldrich), nicotinamide (5 mM; Sigma-Aldrich), trichostatin A (10 mM;

Sigma-Aldrich), sirtinol (12.5 mM; Sigma-Aldrich), deacetylation inhibitor

cocktail (Santa Cruz), and Nedd8-activating enzyme inhibitor MLN4924

(10 mM; Calbiochem) were added to cells 6 hr before harvest.

Cell Transfections, Immunoblotting, and Immunoprecipitation

Full-length SIRT1, SIRT2, and SNAI2 were cloned into plenti6.2-V5/DEST

destination vector or pPGS-Flag vector. Point mutations for SIRT2 and Slug

were generated by site-directed mutagenesis. Plasmid transfections were

carried out using Fugene HD (Promega) according to the manufacturer’s pro-

tocol. To isolate protein from whole-cell lysis for immunoblotting, cells were

lysed in RIPA buffer (10 mM Tris, 150 mM NaCl, 1 mM EDTA, 0.1% SDS) sup-

plemented with protease inhibitor cocktail (Roche). For immunoprecipitation

experiments, whole-cell protein lysates were pre-cleared by incubating with

either Dynabeads (Life Technologies) or FLAG-M2 agarose beads (Sigma-

Aldrich) for 1 hr, and then incubated with antibodies overnight. Complexes

were then bound to beads for 2 hr, washed three times with lysis buffer, and

eluted by boiling in SDS loading buffer. Protein samples were separated by

SDS-PAGE according to standard procedures, transferred onto a nitrocellu-

lose membrane, and blocked with 5% milk. Immunoblotting was performed

according to standard procedures, and membranes were developed with

either West Pico or West Dura ECL substrate (Pierce).

Acetylation Assay and Mass Spectrometry Analysis

Cultured cells were treated with 10 mM MG132 proteasome inhibitor (Sigma-

Aldrich) and 1:100 dilution of deacetylation inhibitor cocktail (Santa Cruz) for

4 hr before harvest, and then cells were lysed and washed in RIPA buffer

supplementedwith protease inhibitor cocktail (Roche), MG132 proteasome in-

hibitor, and deacetylation inhibitor cocktail. Flag-Slug or endogenous Slug

immunoprecipitation was performed and analyzed for acetylation by anti-acet-

ylated lysine antibodies (Cell Signaling). For protein mass spectrometry, Slug

IP lysates were separated by SDS-PAGE, fixed in the gel, and stained with

Coomassie Blue. To identify acetylated residues in Slug protein, the gel slice

containing the full-length Slug protein was excised, trypsin digested, and

analyzed by liquid chromatography-tandem mass spectrometry (Taplin

Mass Spectrometry Facility, Harvard Medical School). For the identification

of Slug-binding partner proteins, the gel was partitioned into five sections for

trypsin digestion and downstream analysis.

Patient Tumor Arrays Analysis

The breast cancer tissue microarrays (TMAs) containing 192 cases of pri-

mary breast tumors with annotated receptor status were purchased from US

Biomax (BR1921 and BR487). Each specimen consisted of a 5-mm-thick

core section, which was immunostained with anti-SIRT2 antibodies (Sigma).

IHC was performed using the avidin-biotin complex method (Vector Labora-

tories). Additional IHC details are provided in Supplemental Experimental Pro-

cedures. IHC staining was analyzed in a pathologist-blinded fashion using

automated quantitative imaging method (Panoramic scanner; 3D HISTECH).

The two-tailed unpaired Student’s t test was used for statistical analysis of

SIRT2 expression between patient cohorts.

Tumor Sphere, Invasion, and Orthotopic Tumor Xenograft Assays

For tumor sphere assays, 1 3 103 cells each of SUM149 and SUM1315 were

seeded in six-well Ultra-Low Attachment Surface tissue culture plates (Corn-

ing Life Sciences) and cultured for 1 week. Floating tumor spheres were

collected and diluted in Isoton II (Beckman Coulter) and glycerol, and analyzed

using Multisizer 3 cytometer (Beckman Coulter). Invasion assays were carried

out in 24-well plate with 8-mm pre-coated Matrigel chamber inserts (Corning

Life Sciences). A total of 2 3 105 SUM cells was plated in serum-free medium

on top of the insert with SUM media containing 10% FBS at the bottom of the

insert, and cultured for 24 hr. Chamber inserts were then washed, scraped,

methanol fixed, and stained with Crystal Violet. Invaded cells were visualized

under the microscope and counted using ImageJ software (NIH). The invaded

cells were normalizedwith 24-hr cell proliferation asmeasured by the CellTiter-

Glo assay (Promega). For orthotopic tumor xenograft assays, all procedures

were performed in accordance with the animal protocol approved by the

Tufts University Institutional Animal Care and Use Committee. Prior to



surgery, 10-week-old, female NOD/SCID mice (The Jackson Laboratory) were

anesthetized by isoflurane. An incision was made along the right flank to

expose the inguinal mammary gland, and 2.0 3 106 cells in a total volume of

50 mL of 1:1 Matrigel: PBS was injected into the gland. Post-operative

analgesic and monitoring were provided. Animals were sacrificed 16 weeks

after the surgery, and tumors were dissected and weighted. All experiments

involving animal subjects were performed in accordance with the animal

protocol approved by the Tufts University Institutional Animal Care and Use

Committee. The approval number for animal research is B2016-67.

Statistical Analysis

Data were analyzed and compared between groups using two-tailed Stu-

dent’s t tests and one-way ANOVA, and p < 0.05 was considered statistically

significant.
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Bolós, V., Peinado, H., Pérez-Moreno, M.A., Fraga, M.F., Esteller, M., and

Cano, A. (2003). The transcription factor Slug represses E-cadherin expression

and induces epithelial to mesenchymal transitions: a comparison with Snail

and E47 repressors. J. Cell Sci. 116, 499–511.

Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A.,

Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., et al. (2012). The cBio can-

cer genomics portal: an open platform for exploring multidimensional cancer

genomics data. Cancer Discov. 2, 401–404.

Chang, T.-H.H., Tsai, M.-F.F., Su, K.-Y.Y., Wu, S.-G.G., Huang, C.-P.P., Yu,

S.-L.L., Yu, Y.-L.L., Lan, C.-C.C., Yang, C.-H.H., Lin, S.-B.B., et al. (2011).

Slug confers resistance to the epidermal growth factor receptor tyrosine ki-

nase inhibitor. Am. J. Respir. Crit. Care Med. 183, 1071–1079.

Chen, J., Chan, A.W., To, K.-F.F., Chen, W., Zhang, Z., Ren, J., Song, C.,

Cheung, Y.-S.S., Lai, P.B., Cheng, S.-H.H., et al. (2013). SIRT2 overexpression

in hepatocellular carcinoma mediates epithelial to mesenchymal transition by
protein kinase B/glycogen synthase kinase-3b/b-catenin signaling. Hepatol-

ogy 57, 2287–2298.

Cobaleda, C., Pérez-Caro, M., Vicente-Dueñas, C., and Sánchez-Garcı́a, I.

(2007). Function of the zinc-finger transcription factor SNAI2 in cancer and

development. Annu. Rev. Genet. 41, 41–61.

Cuzick, J., Sestak, I., Baum, M., Buzdar, A., Howell, A., Dowsett, M., and

Forbes, J.F.; ATAC/LATTE investigators (2010). Effect of anastrozole and

tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year anal-

ysis of the ATAC trial. Lancet Oncol. 11, 1135–1141.

Dan, L., Klimenkova, O., Klimiankou, M., Klusman, J.-H.H., van den Heuvel-

Eibrink, M.M., Reinhardt, D., Welte, K., and Skokowa, J. (2012). The role of

sirtuin 2 activation by nicotinamide phosphoribosyltransferase in the aber-

rant proliferation and survival of myeloid leukemia cells. Haematologica 97,

551–559.

DiMeo, T.A., Anderson, K., Phadke, P., Fan, C., Perou, C.M., Naber, S., and

Kuperwasser, C. (2009). A novel lung metastasis signature links Wnt signaling

with cancer cell self-renewal and epithelial-mesenchymal transition in basal-

like breast cancer. Cancer Res. 69, 5364–5373.

Fan, C., Oh, D.S., Wessels, L., Weigelt, B., Nuyten, D.S., Nobel, A.B., van’t

Veer, L.J., and Perou, C.M. (2006). Concordance among gene-expression-

based predictors for breast cancer. N. Engl. J. Med. 355, 560–569.

Fillmore, C.M., and Kuperwasser, C. (2008). Human breast cancer cell lines

contain stem-like cells that self-renew, give rise to phenotypically diverse

progeny and survive chemotherapy. Breast Cancer Res. 10, R25.

Foulkes, W.D., Smith, I.E., and Reis-Filho, J.S. (2010). Triple-negative breast

cancer. N. Engl. J. Med. 363, 1938–1948.

Fujita, Y., Fujiwara, K., Zenitani, S., and Yamashita, T. (2015). Acetylation of

NDPK-D regulates its subcellular localization and cell survival. PLoS One 10,

e0139616.

Grbesa, I., Pajares, M.J.J., Martı́nez-Terroba, E., Agorreta, J., Mikecin,
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