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It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels,
pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal
is often deleterious and has been linked to each of the ‘cancer hallmarks’. Despite this, we do not yet have a
full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding
could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer
cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of
the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are
presented in this review. The potential of new methodologies is also discussed. This article is part of a Special
Issue entitled: Membrane channels and transporters in cancers.
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1. Introduction

Tightly controlled regulation of the calcium signal is essential for
appropriate cellular functioning, as evidenced by the role of changes
in cytosolic free Ca?™ in processes such as cell proliferation, gene

Abbreviations: ATP, adenosine triphosphate; EGF, epidermal growth factor; EMT, epi-
thelial-mesenchymal transition; IP3R2, inositol 1,4,5-triphosphate receptor, type 2; PMCA,
plasma membrane Ca®>* ATPase; SERCA, sarco/endoplasmic reticulum Ca?>* ATPase;
SOCE, store operated Ca?* entry; STIM1, stromal interaction molecule 1; TRP, transient re-
ceptor potential
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transcription and cell death [1-5]. Typically cells at rest maintain an in-
tracellular calcium concentration ([Ca®™];) of approximately 100 nM,
while extracellular calcium concentrations are much higher, generally
within the range of 1-2 mM [3-5]. Specialized calcium pumps, channels
and calcium binding proteins are used by cells to both maintain cellular
homeostasis and carry out specific cellular functions, and have been re-
ferred to as the “molecular toolkit” for calcium signaling [1,2] (Fig. 1).
Changes in cytosolic free Ca®>* can involve global increases that may
be transient or sustained, or highly localized such as calcium sparks
and puffs, or they may occur as waves or oscillations [1,5]. These changes
can be “decoded” by the cell, which allows the ubiquitous calcium signal
to specifically regulate cellular processes [1,2]. This complexity in
calcium signaling means that the deregulation of the calcium signal
can be a feature of certain pathological states, including cancer [5-7].
Much of the research assessing calcium signaling in cancer has focused
on determining changes in the expression levels of proteins responsible
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Fig. 1. Diagrammatic representation of major Ca>™ influx/efflux/release and resequestration pathways involved in the regulation of [Ca?*]; homeostasis in mammalian cells and their
associated proteins. Major Ca®* influx pathways include those mediated by the transient receptor potential (TRP) family of Ca>* permeable ion channels, voltage-gated Ca>* channels
(e.g. L-type), purinergic receptors (e.g. P2X), and the SOCE pathway components Orail and STIM1. Activation of plasma membrane localized G protein-coupled receptors (GPCRs)
leads to generation of inositol triphosphate (IPs) and subsequent stimulation of IP; receptors (IPsRs) located on the endoplasmic reticulum (ER), resulting in Ca>* store release. ER local-
ized ryanodine receptors (RYR) and mitochondrial Na*/Ca?* exchanger (NCLX) also regulate Ca>* in organelles. The sarco/endoplasmic reticulum Ca?* ATPase (SERCA), secretory
pathway Ca?* ATPase (SPCA), and mitochondrial uniporter (MCU) all sequester cytosolic Ca?* into intracellular organelles, while plasma membrane Ca®>*-ATPases (PMCA) actively
extrude Ca ™ from the cytosol into the extracellular space, and together with the Na*™/Ca®* exchanger (NCX) play a role in restoring resting [Ca® "], Ca®" signaling also regulates various

Ca®* dependent transcription factors (e.g. NFAT) and Ca>* binding proteins (e.g. calmodulin).

Adapted from references [8-10].

for regulating cytoplasmic free Ca®>™ concentrations. Following the
identification of aberrantly expressed calcium channels, pumps or ex-
changers, researchers often then rely on gene silencing approaches
and/or chemical inhibitors/activators to evaluate their role in calcium
signaling and cancer relevant processes (e.g. proliferation and migra-
tion). However, in the context of cancer, compared to some other dis-
ease states, there is a paucity of information regarding changes in the
nature of the calcium signal that occurs in cancer cells compared to
non-cancer derived cells. Elucidating such information would improve
our understanding of the mechanisms underlying cancer progression,
and may further help guide researchers to identify molecular targets
not associated with changes in expression. This review will discuss the
available evidence for the remodeling of the calcium signal in cancer,
and briefly describe studies in other disease states to highlight potential
approaches that could further improve our understanding of alterations
in calcium signaling in cancer cells.

2. Remodeling of the calcium signal in disease

The development of Ca® T sensitive indicators, such as the fluorescent
dyes Fura-2 and Fluo-4, and genetically encoded Ca?* indicators has
been integral to our understanding and interpretation of intracellular
calcium signaling by enabling quantitative analysis of Ca®™ in the
cytoplasm and in subcellular organelles [11-16]. These tools have
allowed a better understanding of how the nature of the calcium signal

is remodeled in some diseases. A relatively well studied example of
pathological remodeling of the calcium signal, reviewed in detail
elsewhere [17-20], is that which occurs in smooth muscle cells as a
consequence of vascular disease and injury, including pulmonary hyper-
tension [21,22], atherosclerosis [23,24] and arterial restenosis following
angioplasty [25,26].

Calcium signaling in smooth muscle cells regulates numerous cellu-
lar processes including proliferation, contraction and gene transcription
[27-30]. During vascular injury (through mechanical stress and/or
growth factors/cytokine exposure), vascular smooth muscle cells can
undergo phenotypic switching from cells that are largely quiescent
and contractile, to those exhibiting a more synthetic and proliferative
phenotype [18,31,32]. This phenotypic switching [31], is associated
with corresponding changes in the nature of the calcium signal, for
example a transition from voltage-gated Ca®> ™ entry pathways typical
of contractile cells to one resembling store-operated and receptor-
operated Ca?™* entry (SOCE) in proliferating cells [20,33-35]. Kumar
et al. demonstrated an example of such remodeling using an in vivo
model of neointimal hyperplasia [25]. In this model, freshly isolated
periadventitial cuff injured mouse carotid artery displayed increased
[Ca®T]; in response to reintroduction of Ca® " following store depletion
using the sarco/endoplasmic reticulum ATPase (SERCA) inhibitor
thapsigargin, while K™ induced depolarization failed to significantly in-
crease [Ca®T]; relative to uninjured arterial tissue [25]. These findings
indicated a switch from a predominately voltage-gated calcium entry
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pathway to one resembling SOCE following vascular injury. This change
has been replicated in numerous in vitro models of vascular smooth
muscle cell remodeling [33-37]. Changes in calcium signaling associated
with neointimal hyperplasia are associated with increased expression of
the transient receptor potential family member TRPC1 [25], a protein im-
plicated in the SOCE pathway in some cells [38,39]. Subsequent papers,
relevant to this model, also identified roles for Orail and stromal interac-
tion molecule 1 (STIM1) [33,35,40,41], the canonical proteins involved in
SOCE [38,42-46]. These included the ability of Orail or STIM1 silencing
to reduce neointima formation following balloon-injury of rat carotid
artery [40,47,48].

Vascular smooth muscle injury clearly represents an example of
dynamic remodeling of calcium signaling in disease and how charac-
terization of these calcium signaling changes can lead to a better
understanding of disease mechanisms and/or help identify potential
therapeutic targets. In addition to pathologies involving vascular
smooth muscle cell remodeling, deregulated calcium homeostasis has
also been linked to remodeling of airway smooth muscle cells in asthma
[49-51], and various other conditions, including those of the brain
[52] such as Alzheimer's disease [53-56]. These studies have included
the use of advanced assessment of calcium signaling, such as in vivo
multiphoton fluorescence lifetime imaging microscopy of Ca®™ levels
in astrocytes in a mouse model of Alzheimer's disease versus wild
type/non-transgenic control animals [56].

Numerous studies have demonstrated altered expression of various
components of the “calcium signaling toolkit” [1,2] in cancer cell lines
and in clinical samples (reviewed in [10,57-61]). However, there have
arguably been less studies comparing how the nature of the calcium
signal is altered in cancer and/or changes with tumor progression, espe-
cially when compared to other disease states (such as those described
above). Although expression studies have identified specific Ca?* chan-
nels and pumps as drug targets for various cancer types including ovar-
ian [62], brain [63,64], prostate [65,66], breast [67,68], and esophageal
[69], calcium signaling could be altered in cancer progression through
other changes, such as altered calcium channel or pump localization or
activity via disrupted post-translational modification. Such changes
would be better identified through assessment of the calcium signal
rather than protein or mRNA levels. Indeed Ingueneau et al. reported
that oxidized low-density-lipoprotein induced Ca?* influx, and conse-
quent apoptosis in vascular smooth muscle cells requires translocation
of TRPC1 from an intracellular compartment to caveolae/caveolin-1
containing regions of the plasma membrane [70]. The cellular localiza-
tion and activity of other TRP family members are also altered in
response to various activation pathways in other cell types [71]. Post-
translational protein modifications may also mask alterations in cellular
calcium signaling if interpreted in the absence of functional studies. For
example, Sundivakkam et al. showed that phosphorylation of STIM1 in-
hibits SOCE in endothelial cells, and is potentially involved in regulating
blood vessel permeability responses [72]. Some studies have compared
calcium signaling in cancer derived and relevant non-cancer derived
cells and/or other models such as those involving cancer cell differentia-
tion. This review will provide a summary of such studies and their signif-
icance. We will also describe some of the experimental constraints and
challenges in characterizing calcium signaling changes associated with
cancer progression, before discussing some of the experimental ap-
proaches that may allow these challenges to be addressed.

2.1. Remodeling of the calcium signal in tumor derived cells versus
normal cells

The nature of the calcium signal plays an important role in regulating
cellular functions [1,3] including those defined as the “hallmarks of
cancer” [59,73]. One way to identify and understand the possible
remodeling of calcium homeostasis in some cancers is to compare the
nature of the calcium signal in cells or cell lines derived from cancers
with those derived from non-cancer tissue. Table 1 provides a summary

of studies that have assessed differences in calcium homeostasis in
tumor derived versus non-tumor derived cells. As discussed below,
many of the changes between tumor and non-tumor derived cells are
reflected in very specific changes in aspects of the calcium signal, such
as the nature of Ca®* influx or the rate of recovery of [Ca®*]; after stim-
ulation. Some of these changes are illustrated in Fig. 2.

Since the identification of the key molecular components of SOCE,
namely STIM1 and Orail, there has been a keen interest in determining
the role of this calcium influx pathway in pathophysiology [88-91].
Indeed, altered expression of STIM1 and/or Orail has been reported in
various cancer types including breast [67], cervical [92], and esophageal
[81]. Prior to the identification of the STIM and Orai proteins, Baldi et al.
conducted studies looking into the nature and remodeling of capacitative
Ca?™ entry (a term used synonymously with SOCE) in the tumorigenic
(luminal human epidermal growth factor receptor 2 positive) SKBR3
cell line, and HBL100, which they used to represent non-tumorigenic
breast epithelial cells [78]. While both cell lines demonstrated classic
SOCE in response to thapsigargin mediated store depletion in the
absence of extracellular Ca®*, the nature of store release and Ca®™ re-
entry (influx) noticeably differed between the two cell lines. While the
peak amplitude and initial rate of calcium influx was similar in both
cell lines, Baldi et al. reported a more sustained and slower return to
baseline [Ca?*]; levels following SOCE in SKBR3 cells. Also, the amplitude
of the initial peak representing store depletion appeared to be higher in
HLB100 cells. The contribution of SOCE and the potential role of other
Ca?" entry pathways were also assessed using various surrogate diva-
lent cations (Ba®>*, Mn?* and Sr>*), which demonstrate different
permeabilities, and the lanthanide Gd®™, which is known to block
SOCE at low concentrations. From their studies, Baldi et al. characterized
two main calcium influx pathways in both cell lines; however, their rel-
ative contributions to SOCE differed between the tumorigenic SKBR3 and
non-tumorigenic HLB100 cell lines. These findings raised the question of
whether differences in the nature of SOCE between both cell lines could
be a function of tumorigenic remodeling, or merely due to other differ-
ences between these cell lines [78]. Interestingly, later studies by
McAndrew et al. quantified the expression levels of Orail, STIM1 and
STIM2 in a panel of non-malignant and breast cancer cell lines [67].
Of the six breast cancer cell lines assessed, SKBR3 cells expressed
the lowest levels of Orail mRNA (relative to the non-tumorigenic
cell line 184A1), and an altered STIM1/STIM2 ratio compared to
other tumorigenic cell lines. Unfortunately, while mRNA expression
levels of the STIM and Orai family members were comprehensively
characterized, a comparison of calcium signaling dynamics in all
cell lines was not performed. Such a study may provide insight into
the functional consequences of altered Orail, STIM1 and STIM2
expression not only between non-tumorigenic and tumorigenic cell
lines, but also between breast cancer cell lines representing different
molecular subtypes.

Investigation into the contribution of SOCE, this time in glial cells,
revealed a remodeling of this Ca? ™ entry pathway in the form of a
two-fold increase in the amplitude of SOCE in cultured human primary
malignant glioblastoma multiforme cells relative to a non-malignant
human primary astrocyte control [63]. Further investigation revealed
an increase in Orail mRNA levels in only two of the three glioblastoma
multiforme cell lines assessed, despite SOCE being increased in all three
malignant cell lines. This further supports the importance of comparing
functional calcium signaling in cancer and non-cancer control cells in
addition to assessment of gene expression. Enhanced SOCE indicated
by significantly increased [Ca® T ]; peak amplitude following store deple-
tion, and corresponding to increased Orail protein expression, was also
shown in four metastatic melanoma cell lines relative to a control mela-
nocyte cell line [82]. Zhu et al. recently identified a remodeling of the
SOCE pathway in an esophageal squamous cell carcinoma derived cell
line KYSE-150, relative to a non-tumorigenic esophageal epithelial cell
line HET-1A [81]. In addition to assessing SOCE specifically, the authors
also evaluated differences in global calcium signaling using live cell
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Table 1
Examples of differences in Ca? homeostasis from studies comparing tumor versus non-tumor models.
Model studied® Observed change in Ca?* signaling in Potential consequence(s) of References

tumor model(s) relative to control(s)®

altered Ca®* signaling

Human J82, RT24, T24 and 5637 bladder urothelial carcinoma cell ~ Absence of carbachol stimulated [Ca?®"]; Possible alterations in cell adhesion [74]
lines vs. normal bladder urothelial cells from healthy human increases
subjects

Human 5367 bladder urothelial carcinoma cell line vs. normal | mechanically stimulated Ca®* wave Altered intercellular communication via [75]
human urothelial primary cell lines from healthy controls propagation gap junctions

Human breast lobular infiltrating carcinoma derived endothelial 1 4aPDD (a selective TRPV4 agonist) and Role in tumor angiogenesis and tumor [76,77]
cells vs. adult human dermal microvascular endothelial cells arachidonic acid mediated [Ca®*]; influx derived endothelial cell migration

Human SKBR3 breast cancer cell line vs. non-tumorigenic HBL100  Remodeled SOCE and store depletion kinetics ~ Different contribution of calcium influx [78]
mammary epithelial cell line pathways and hence altered cellular

responses to stimuli

Murine RAW 264.7 monocytic cell line treated with human MDA-  Induction of sustained [Ca?*]; oscillations Potential role in osteoclast formation and ~ [79]
MB-231 metastatic breast cancer cell line conditioned media vs.  following treatment of RAW 264.7 cells with bone metastases
non-tumorigenic MCF-10A breast cell line conditioned media MDA-MB-231 conditioned media

Rat colonocytes from DMH procarcinogen treated animals vs. | basal [Ca®T]; in colonocytes from DMH Reduced apoptosis [80]
colonocytes from vehicle treated animals treated rats

Human KYSE-150 esophageal squamous cell carcinoma cell line vs. 1 SOCE and spontaneous Ca?*; oscillations May promote cell proliferation, migration ~ [81]
non-malignant HET-1A esophageal epithelial cell line and invasion

Human U251 glioblastoma cell line, GBM1 and GBM8 primary 1 SOCE Promotion of cell invasion [63]
glioblastoma multiforme cell lines vs. non-malignant human
primary astrocytes

Human SK-Mel-2, SK-Mel-24, C8161 and UACC257 metastatic 1 SOCE Promotion of cell proliferation and [82]
melanoma cell lines vs. control HEMA-LP melanocyte cell line migration

Rat pancreatic acinar carcinoma cells vs. normal acinar cells 1 rate of [Ca® "] recovery following stimulation ~Altered cellular responses to some stimuli ~ [83]

by carbamylcholine and peptidergic agonist and possible reduced apoptosis sensitivity
cholecystokinin octapeptide via enhanced Ca?* efflux

Human endothelial progenitor cells from renal cellular carcinoma 1 SOCE Enhanced proliferation and tubulogenesis  [84]
patients vs. control endothelial progenitor cells

Human peripheral blood lymphocytes from CLL patients vs. normal 1 ATP stimulated [Ca?"]; in some CLL Altered response to ATP effect [85]
peripheral blood lymphocytes from healthy controls patient samples

Human peripheral blood leukocytes from CML patients vs. normal | IPs, ATP and ionomycin stimulated [Ca®*]; Altered oxidative stress response [86]
peripheral blood leukocytes from healthy controls

Human CEM and Jurkat malignant T cell lines vs. normal human 1 [Ca%"]; in response to L-type Ca?™ channel Altered sensitivity to apoptotic inducing [87]

peripheral blood T cells

activation by BAYK8644 and ionomycin
stimulation

agents and/or differential regulation of
Ca®™ sensitive pathways

Abbreviations: 40.PDD, 4cx-phorbal 12,13-didecanoate; ATP, adenosine triphosphate; CLL, chronic lymphocytic leukemia; CML, chronic myeloid leukemia; DMH, 1,2-dimethylhydrazine
dihydrochloride; IPs, inositol 1,4,5-trisphosphate; SOCE, store operated calcium entry; TRPVA4, transient receptor potential cation channel, subfamily V, member 4.

2 Includes human and/or animal models of both solid and hematological cancers as well as those using conditioned media treatments.

b Arrows indicate either an increase (1) or decrease (|) in the nature of the Ca®* signal in tumor model(s) relative to the non-tumor control(s).

imaging in the absence of a specific stimulus. Esophageal squamous cell
carcinoma cells displayed a significantly higher degree of spontaneous
intracellular Ca®™* oscillations compared to normal cells, 76% versus

26%, respectively [81]. These oscillations could be inhibited by pharma-
cologically mediated SOCE blockade with SKF96365 and Orail silencing
[81]. This is significant because of the importance of the nature of
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Fig. 2. Examples of hypothetical remodeling of the Ca> ™ signal in tumorigenic versus non-tumorigenic cells. Each stylized Ca®* trace depicts a remodeling of various aspects of intracellular
Ca®™ signaling pathways, including (a) Ca?* influx pathways, (b) Ca?* efflux pathways, and (c) intracellular Ca®* oscillatory behavior.
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calcium oscillations in the regulation of the transcription factors that
regulate genes important in cell proliferation and/or migration [93-96].

Altered expression of other Ca?™ entry pathways, in particular
certain members of the transient receptor potential (TRP) family of
Ca?* permeable ion channels has also been identified in various cancer
types including breast [68,97,98], prostate [61,99], ovarian [62], esoph-
ageal [69], and brain [64] (reviewed in [61,100]). Studies comparing
cancer and non-cancer derived cells have also shown changes in calci-
um signaling mediated by some members of the TRP channel family.
Early studies by Fiorio Pla et al. investigating mechanisms of endothelial
cell migration, a process important in angiogenesis in tumors, showed
that the second messenger arachidonic acid induced a significantly
higher Ca?* response in breast tumor derived endothelial cells relative
to normal dermal endothelial cells [76]. This difference appears to be
mediated by the TRP channel family member TRPV4, since arachidonic
acid and the TRPV4 agonist 4aPDD stimulated Ca?™ entry in tumor
derived endothelial cells are attenuated by TRPV4 silencing [77].
Another TRP family member showing altered activity in certain cancer
types is the cold stimulus activated TRPMS, which mediated significantly
greater current density (pA/pF) (determined via whole cell patch clamp)
in an androgen sensitive primary prostate cancer cell line relative to
normal primary prostate epithelial cells in response to icilin stimulation
[66].

It is now well recognized that tumor cells do not exist in isolation but
are rather part of a larger microenvironment comprising multiple cell
types, including immune, endothelial and other supporting stromal
cells, which together act to maintain and promote tumor growth and
progression (reviewed in [101-104]). There is increasing evidence to
suggest that the recruitment of endothelial progenitor cells from the
bone marrow plays an important role in tumoral neoangiogenesis
(reviewed in [105,106]), which is essential for sustaining tumor growth
and facilitating metastatic spread [107]. Remodeling of calcium signaling
was recently identified in endothelial progenitor cells derived from pa-
tients with renal cell carcinoma relative to healthy controls [84]. Lodola
et al. showed that the amplitude of SOCE was significantly higher in en-
dothelial progenitor cells derived from renal cell carcinoma patients
compared to those derived from healthy controls. This finding was sup-
ported by a corresponding increase in the transcript and protein levels of
STIMT1, Orail and TRPC1 in endothelial progenitor cells derived from
renal cell carcinoma patients. Through a series of experiments, the au-
thors provided evidence to support the hypothesis that the increase in
SOCE in endothelial progenitor cells derived from renal cell carcinoma
patients increased proliferation and tubulogenesis, processes important
in endothelial progenitor cell mediated neoangiogenesis [84].

Another example of the importance of calcium signaling in cells of
the tumor microenvironment was shown by Tiedemann et al. when
they demonstrated significantly increased intracellular Ca>* oscillatory
behavior in osteoclast (bone resorbing) precursor cells following stim-
ulation with conditioned media from tumorigenic breast cancer cells,
but not non-tumorigenic breast epithelial cells [79]. This increase in
conditioned media stimulated Ca® " oscillations was associated with a
significant increase in osteoclast number and size, an effect that was
effectively inhibited by treatment with the Ca>* chelator BAPTA (1,2-
bis(0-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid). This further
supported a role for Ca? ™" in the process of breast cancer cell induced
osteoclastogenesis [79]. This finding is significant as increased osteo-
clast activity mediated by metastatic breast cancer cells in the bone
microenvironment can lead to bone destruction, increased fracture
risk and pain in cancer patients [79,108].

The studies described above provide evidence for the value of com-
paring calcium signaling in tumor-derived cells with those derived from
non-diseased tissue. However, in some cases experimental limitations
make it difficult to determine how well these changes in calcium signaling
actually reflect the changes associated with tumor development. In
Section 4 we will describe some of the methodological advancements
that may address these limitations.

3. Differentiated cell lines as a model to study remodeling of calcium
signaling in cancer cells

In order to overcome some of the difficulties associated with
matching cancer cells to suitable normal control cells, a number of re-
searchers have turned to tumorigenic cell lines in which a differentiated
phenotype can be induced as a surrogate for ‘normal’ or at least less tu-
morigenic cells. The use of specific cell culture methods and/or stimula-
tion with selected growth factors/pharmacological agents to induce a
different cellular phenotype is not unique to cancer cell line models. Re-
searchers investigating methods of culturing primary vascular smooth
muscle cells observed that under certain culture conditions, smooth
muscle cells can transition between a differentiated contractile and
typically quiescent phenotype to a dedifferentiated and synthetic pheno-
type, characterized by a loss of contractile response, altered morphology
and increased proliferative and migratory potential [109-114]. The phe-
notypic switching of vascular smooth muscle cells in culture is associated
with changes in the nature of the calcium signal [33-35]. These changes
include an increase in Ca?™ influx via SOCE. Any in vitro model cannot
be expected to fully recapitulate conditions and remodeling events that
occur in vivo. However, similar calcium signaling remodeling has been
reported using an in vivo model of vascular injury [25]. Such agreement
between in vivo and in vitro models of smooth muscle injury suggests
that the differentiation or dedifferentiation of cell lines may be a useful
approach to study the remodeling of calcium signaling in other disease
states, including cancer. As described below, alterations in calcium signal-
ing with differentiation have been reported in a variety of cancer cell lines
including those of the breast, colon and lung.

In a similar way to groups culturing vascular smooth muscle cells to
induce a ‘switch’ from a contractile to a synthetic phenotype [33,35,41],
Bidaux et al. developed a model of prostate epithelial cell dedifferentia-
tion to aid in characterizing expression and activity of the TRP family
member, TRPMS, during prostate cancer progression [66]. The Na™*
and Ca®* permeable TRPMS channel has been identified as a potential
diagnostic/prognostic marker in prostate cancer [99,115-118]. Pro-
longed culture of primary prostate epithelial cells led to a less differen-
tiated phenotype corresponding with a loss of androgen receptor
expression, which was associated with decreased TRPM8 activity in
response to stimulation with the TRPM8 activator menthol. Confocal
imaging of TRPMS localization demonstrated a loss of TRPMS8 from the
plasma membrane as a consequence of dedifferentiation [66]. Other
changes in Ca? " influx pathways as a consequence of differentiation
are reflected by the effects of the differentiating agent 9-cis retinoic
acid on N- and S-type neuroblastoma cells derived from the SH-SY5Y
neuroblastoma cell line [119]. Differentiation of the more malignant
N-type cells is associated with the downregulation of SOCE, leading
the authors to propose the utility of therapeutically targeting SOCE as
a means for promoting neuroblastoma cell differentiation [119]. In the
A549 lung cancer cell line, differentiation via all-trans-retinoic acid is as-
sociated with enhanced Ca?™ influx following trypsin-mediated Ca® ™"
store depletion [120], demonstrating that the downregulation of Ca®™*
influx is not a ubiquitous feature of the differentiation of cancer cell
lines.

Pharmacologically induced differentiation of cancer cells using
agents such as those acting on histone deacetylase, including short
chain fatty acids and their derivatives, and the protein kinase C activator
phorbal 12-myristate 13-acetate (PMA) is another method used to
study altered calcium signaling and homeostasis in cancer cells
[121-125]. Recently, Varga et al. showed that short chain fatty acid
and/or PMA induced differentiation of the MCF-7 breast cancer cell
line correlates with an increase in plasma membrane Ca®* ATPase iso-
form 4b (PMCA4b) protein and mRNA expression [121]. PMCA4 was
also detected in normal breast tissue sections following immunohisto-
chemical staining [121]. These findings are in agreement with an earlier
study, which showed decreased PMCA4 mRNA expression in a panel of
breast cancer cell lines relative to non-tumorigenic breast epithelial cell
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lines [126]. In order to further investigate the effect of differentiation on
the nature of the calcium signal, Varga et al. developed an MCF-7 cell
line stably expressing the genetically encoded Ca?* indicator GCaMP2
[121]. Valerate and/or the combination of valerate and PMA induced dif-
ferentiation resulted in a remodeling of the calcium signal characterized
by reduced peak [Ca? T]; following adenosine triphosphate (ATP) medi-
ated store depletion, as well as a much faster recovery of [Ca?*]; to base-
line, relative to undifferentiated control cells. Peak [Ca®*]; was also
greatly reduced in differentiated cells following calcium ionophore
treatment. The authors proposed a role for PMCA4b in maintaining
Ca®™ homeostasis in normal mammary epithelial cell physiology, a
function that may be lost as cells progress to a tumorigenic phenotype
[121].

Breast cancer cells are not the only cancer cell type demonstrating a
differentiation induced remodeling of the calcium signal corresponding
to altered PMCA expression and function. Indeed, Ribiczey et al. showed
increased PMCA4b expression following short chain fatty acid induced
differentiation of a gastric and colon carcinoma cell line, corresponding
to a two to three fold increase in PMCA transport activity in isolated
microsomal membrane vesicles [123]. Pharmacologically induced dif-
ferentiation also resulted in increased PMCA2, PMCA3 and PMCA4
isoform expression in a human neuroblastoma cell line, which is associ-
ated with a faster recovery rate of [Ca?]; to baseline after depolariza-
tion [127].

In addition to plasma membrane localized Ca?* efflux pathways,
evidence of remodeling of intraorganellar Ca® * sequestration pathways
and homeostasis, specifically those involving the sarco/endoplasmic re-
ticulum Ca®* ATPases (SERCAs), has also been demonstrated following
differentiation of cancer cells. SERCAs play an important role in the reg-
ulation of endoplasmic reticulum Ca®* homeostasis and altered expres-
sion of the SERCA isoforms, particularly SERCA3, has been identified in
various cancer subtypes [124,128-130]. Arbabian et al. demonstrated
an increase in SERCA3 protein expression upon short chain fatty acid in-
duced differentiation in a panel of lung adenocarcinoma cell lines [122].
Using A549 lung carcinoma derived cell lines stably expressing the
genetically encoded calcium indicator GCaMP2, the authors reported
significantly decreased Ca?™ store release induced by the SERCA in-
hibitor thapsigargin in phenylbutyrate differentiated cells relative to
untreated control, whereas subsequent SOCE was essentially unaltered
[122]. This finding was partially attributed to increased levels of the
lower Ca* affinity SERCA3 isoform relative to that of the higher Ca®>*
affinity SERCA2 isoform in differentiated cells [122]. Increased SERCA3
expression and altered Ca? " homeostasis were also shown in the gastric
carcinoma cell line, KATO-III, following butyrate induced differentiation
[124]. Differentiation of KATO-III cells was associated with increased
basal cytosolic Ca®* relative to non-differentiated cells, and decreased
thapsigargin induced endoplasmic reticulum Ca?™ store release [124],
as was reported by Arbabian et al. in differentiated A549 cells [122].

The findings from the various models of differentiation described
above provide further evidence of a remodeling of calcium signaling
during the process of tumorigenesis. They also provide a rationale for
future in vitro investigations using matched normal and tumorigenic
primary and/or immortalized cell lines, as well as carefully designed
in vivo experiments, to further study remodeling of the calcium signal
in the context of cancer.

4. Modulation of the calcium signal during processes associated with
invasion and metastasis

The transformation from benign to malignant disease is a leading
cause of cancer related death [131,132], and therapies targeted towards
inhibiting processes important in the invasion-metastasis cascade are a
major focus of current cancer research [131-136]. Therefore under-
standing the remodeling of the calcium signal in invasion and metasta-
sis could aid in the identification of novel therapeutic targets. Recently,
researchers have used various models to replicate processes important

in invasion and metastasis in order to help define changes in calcium
signaling that may be important in tumor progression.

In order for cancer cells to successfully metastasize they must first
acquire the ability to invade and migrate into their surrounding micro-
environment and local vasculature before disseminating to a distant site
[137-140]. A functional role for Ca®* in the directional migration of
lung fibroblasts was elegantly demonstrated using real time confocal
Ca?™ imaging, where highly organized Ca?™* signals known as “calcium
flickers”, which are tightly regulated in both space and time were visu-
alized in response to a chemotactic agent [141]. The stretch activated
Ca%™ permeable TRP family member, TRPM7, together with inositol
1,4,5-triphosphate receptor, type 2 (IPsR2) stimulated Ca®™ release
was implicated in mediating these calcium flickers. Subsequent studies
have shown a role for TRPM7 in the migration of both nasopharyngeal
[142] and pancreatic carcinoma cell lines [143]. For a detailed review
of the role of calcium in cancer metastasis refer to [59].

The SOCE pathway appears to play an important role in migration
and invasion in various cancer cell types [63,81,82,144-146]. Indeed,
evidence of a role for Orail and/or STIM1 in cell migration and invasion
has been shown both in vitro and in vivo [81,82,92,144]. Recently,
Umemura et al. showed pharmacological inhibition of SOCE and/or
gene silencing of either STIM1 or Orail significantly decreased melanoma
cell line migration in vitro, and the formation of lung metastasis in vivo
[82]. Some studies have also provided important evidence that some
cancer cell lines are more sensitive to silencing of SOCE components
than their appropriate non-malignant cell line controls. Indeed, Motiani
et al. showed that the silencing of STIM1 and Orail significantly reduces
serum stimulated invasion of glioblastoma cells relative to normal
human primary astrocytes [63].

Vascularization of tumoral tissues via induction of angiogenesis
represents one of the original cancer hallmarks [73] and intracellular
calcium signaling plays an important role in regulating this process
[147-149]. Using live cell imaging Fiorio Pla et al. showed that migrating
breast tumor endothelial cells, located at the wounded edge of a
scratched cell monolayer, responded with a significantly higher Ca®*
influx with TRPV4 activation compared to non-migrating endothelial
cells located away from the wound edge [77]. These studies suggest
that migrating endothelial cells, which are important in tumor angio-
genesis, undergo a remodeling of their calcium signaling and this is
associated with increased responsiveness to TRPV4 activators. This
remodeling may be due to dynamic changes in TRPV4 localization,
since arachidonic acid (an effector in the angiogenic growth factor
signaling pathway) caused redistribution of TRPV4 to the plasma
membrane in endothelial cells, a function related to remodeling of the
actin cytoskeleton. TRPV4 gene silencing abolished the migratory
response of breast tumor endothelial cells to arachidonic acid [77],
providing further evidence of a role for TRPV4 mediated Ca?* influx in
arachidonic acid stimulated breast tumor endothelial cell migration.

The ability of polarized cancer epithelial cells to transition to a mes-
enchymal and migratory state via epithelial-mesenchymal transition
(EMT), a process thought to play a role in cancer metastasis [150-
152], has recently been linked to calcium signaling [153]. Davis et al.
demonstrated that mechanical wounding of an MDA-MB-468 breast
cancer epithelial cell monolayer, a process shown to induce expression
of the EMT marker vimentin in other tumorigenic and non-tumorigenic
breast epithelial cell lines [154,155], resulted in the propagation of a cal-
cium wave from the site of wounding [153]. In addition, treatment of
MDA-MB-468 breast cancer cells with exogenous epidermal growth
factor (EGF) (another inducer of EMT in this model) also resulted in in-
creases in cytosolic free Ca®*. Although the buffering of intracellular
Ca?™ inhibited EMT induction by EGF, the nature of the calcium signal
was critical to the ability of agents to induce EMT, and the Ca®* perme-
able ion channel TRPM7 was identified as a key regulator of EGF-
induced EMT in MDA-MB-468 breast cancer cells [153]. Further remod-
eling of the calcium signal was also demonstrated in this model of EMT,
whereby cells induced to undergo EMT exhibited decreased Ca?* influx
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induced by the purinergic receptor agonist ATP and the protease
activated receptor 2 activator trypsin, as well as reduced SOCE [156].
In addition, cells in the more invasive mesenchymal state displayed
significantly faster recovery of [Ca®"]; after ATP stimulation [157].
Hence, EMT at least in this breast cancer cell line model is associated
with a remodeling of the calcium signal [156]. A different remodeling
of Ca™ signaling as a consequence of EMT has been reported by Hu
et al., who used TGFp to induce EMT in MCF-7 breast cancer cells,
where EMT was associated with an increase in SOCE [158]. Further
studies in these and other models of changes implicated in metastasis
are required to fully understand how Ca?™ signaling may be altered in
cells undergoing changes associated with the acquisition of a more
invasive phenotype.

5. Novel methods for studying changes in the nature of the calcium
signal in cancer

While valuable in contributing to our understanding of the remodel-
ing of the nature of the calcium signal in tumorigenesis, findings from
studies such as those presented above can suffer limitations by virtue of
the low throughput nature of the methods used. Methods often restrict
the number of tumorigenic and normal (or non-tumorigenic) cell lines
that can be compared. This may be particularly important in research
using breast cancer cell lines, which are commonly classified according
to molecular subtype [159-162] and represent an example where the
use of multiple controls, both tumorigenic and non-tumorigenic, is
often desirable in order to represent the heterogeneity seen in breast can-
cer [163-165]. This limitation can be partially addressed through use of
high throughput devices, such as the fluorometric imaging plate reader
(FLIPR®, Molecular Devices), which could enable the simultaneous anal-
ysis of multiple cell lines in microplates of 96, 384 or 1536 wells [166].
Although such instrumentation has been used to assess Ca®>* signals in
breast cancer cells [67,68,153,156,157], their potential in fully character-
izing many tumorigenic and non-tumorigenic cell lines has not been fully
utilized.

Development of the Ca?™ sensitive fluorescent dyes (e.g. Fura-2 and
Fluo-4) has been integral to our current understanding of intracellular
calcium signaling in both physiology and pathophysiology. However,
as discussed in Section 2.1, there is an increasing interest in the remod-
eling of the calcium signal as a consequence of the interaction between
tumor cells and cells of their microenvironment. The assessment of
calcium signaling in vivo using advanced imaging techniques such as
multi-photon microscopy is increasing, and enables investigation of
calcium signaling in the context of the cellular microenvironment |56,
167-169]. While the development of the acetoxymethyl ester forms of
the fluorescent dyes (e.g. Fura-2/AM), has provided a relatively non-
invasive means of measuring intracellular calcium signaling in living
cells [170], their ability to become sequestered into Ca®™ containing
intracellular organelles and/or extruded by multidrug transporters, in-
cluding MDR1 (also known as P-glycoprotein) [171-173] (up-regulated
in many cancer cells [174]), can limit their utility in long term studies of
calcium signaling in vivo. The range of genetically encoded Ca?* indica-
tors now available (reviewed in [175-177]), which can be stably
transfected into living cells, allows the measurement of calcium events
over extended periods [176]. In vivo Ca®* imaging has provided enor-
mous insight into the role of calcium signaling in living systems
(reviewed in [178]). While this method is predominately currently
used to study calcium signaling in neuronal networks [179-181], the
potential exists for these tools to provide insight into the remodeling
of the calcium signal during tumorigenic processes such as invasion
and metastasis in vivo.

6. Conclusion

While expressional changes in proteins responsible for regulating in-
tracellular calcium signaling, such as channels, pumps and exchangers,

have been characterized in various cancer cell lines and tissues, specific
alterations in the nature of the calcium signal as a cause and/or conse-
quence of tumorigenesis are less well described. Remodeling of the
calcium signal is a feature of various disease states, and has been well
characterized in models of vascular injury and disease. The important
role of calcium signaling in proliferation, cell death, and invasion and
metastasis, represents multiple opportunities for targeting altered calci-
um signaling during the course of tumorigenesis. Models enabling
comparison of the calcium signal between tumorigenic and non-
tumorigenic phenotypes combined with the use of high throughput
and/or advanced Ca®™" imaging methodologies may further aid in the
translation of altered calcium signaling assessment into the develop-
ment of targeted cancer therapeutics.
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