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A b s t r a c t - - T h e  Bergman kernel function is known to satisfy a certain boundary integral equation 
of the second kind. For boundaries that possess symmetrical qualities, the integral equation can 
be transformed into another integral equation that uses only a small part of the original boundary. 
This paper applies an iterative procedure known as the generalized minimum residual method for 
the computation of the Riemann mapping function via the Bergman kernel. The complexity of this 
procedure is O(n2), where n is the number of collocation points on the boundary of the region. 
Numerical implementation on some test regions is also presented. @ 2000 Elsevier Science Ltd. All 
rights reserved. 

K e y w o r d s - - C o n f o r m a l  mapping, Integral equation, Bergman kernel, GMRES. 

1. I N T R O D U C T I O N  

Conformal  maps  are indispensable tools in s tudying  flows, fields, and in solving boundary-va lue  
problems. Of  special impor tance  is the Riemann mapping  function which maps  a s imply con- 

nected domain  it onto  a disk (see, for example, [1]). Closely connected to  the R iemann  map  is 
the  Be rgman  kernel of  it. This  kernel is also related to  some or thonormal  polynomials  where 

the  o r thogona l i ty  is defined with respect to  an area integral. However, numerical  exper iments  

in conformal  mapping  via this kernel based on or thonormal  polynomials  show tha t  this me thod  
is general ly unstable  and demands  high accuracy  for numerical  purposes [2-5]. An al ternat ive 
me thod  of  comput ing  the  Bergman  kernel which tota l ly  avoids or thonormal iza t ion  is based on a 

cer tain integral equat ion  of  the  second kind [6]. For a region it whose b o u n d a r y  is smooth ,  the  
integral  equat ion ' s  kernel is the  real and smooth  Neumann  kernel. Numerical  conformal  mapp ing  
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for symmetric regions via the Bergman kernel is also treated in [6]. Another method of computing 
the Riemann map is by means of the Szeg5 kernel which also satisfies a certain integral equation 
of the second kind [7-9]. 

In [6] some of the integral equations involved are solved numerically by the Nystrhm's method. 
The solution as implemented there takes O(n 3) operation counts by means of the Gaussian 

elimination. In this paper, we apply an iterative procedure known as the generalized minimum 
residual method (GMRES) method which reduces this figure to O(n2). 

Organization of this paper is as follows. Section 2 contains a brief review of the Bergman kernel, 
its relationship with the Riemann mapping function, and a few results of the original work in [6]. 
Section 3 has the numerical implementation using the GMRES, and Section 4 contains numerical 

results. 

2. T H E  R I E M A N N  M A P  A N D  T H E  B E R G M A N  K E R N E L  

Let ~t C C be any simply connected bounded region whose boundary F is assumed to be of 
class C 2 Jordan curve, i.e., a simple closed curve that  is twice continuously differentiable. This 

means F admits a counterclockwise parameterization z(t), 0 <_ t <_ 8, z(O) = z(~), z'(O) = z'(/3), 
z"(0) = z"(/3), with z'(t) = dz # 0, for all t. Thus, the boundary F is smooth and possesses 
a continuously turning tangent. The unit tangent to F at the point z(t) will be denoted by 
T(z) = z'(t)/Iz'(t)l. 

Let a E ~ be a fixed point and let R be the Riemann mapping R : ~ --* Unit Disk normalized 
at a, that  is 

R(a) = O, R'(a) > 0. (2.1) 

The existence and uniqueness of this map is well known (a proof can be found, for example, 
in [1]). Since F is of class C 2, R ~ can be extended to a function that  is continuous on the closure 

= ~ U F, such that  R~(z) # 0 for z E F (Kellogg's theorem, see, e.g., [10]). 
Closely connected to the Riemann mapping function R is the Bergman kernel (briefly, B) 

of ~. For definition and basic properties of B, see, e.g., [11-13]. The Bergman kernel B(z,  a) is 
continuous with respect to z on (~, and 

R'(z )  = B ( z ,  a), z ~ ft. (2.2) 

It can also be shown (see [7]) that  the Riemann mapping function can be computed on the 
boundary F without any integration by means of 

R ' ( z )  
R(z) = T(Z) lR,(z)l, z e F. (2.3) 

Hence, to solve the conformal mapping problem it is sufficient to compute the Bergman kernel. 
This kernel can be computed as the solution of a second kind integral equation as given in the 
theorems below. 

THEOREM 1. (See [6].) Let F be of class C 2 and a e ~t be fixed. The Bergman kernel B(z,  a) is 
the unique continuous solution to the integrM equation 

+ [ M ( z , w ) B ( w , a ) ] d w t _  1 T(z) 2 B(z ,a)  ~r (5 - ~)2' z E F, (2.4) Jr 
where 

T(w) IT(z)  2 1 
27ri [ ffJ - 2 w - z ] '  

M ( z , w )  = 1 Im [z"(t)z'(t)] 
' 

z, w e F ,  z # w ,  

z = w E F .  



Numerical Conformal Mapping 159 

This integral equation for the Bergman kernel B, however, takes a more pleasant form if we 
multiply both sides by T(z) and let /~(z,  a) = T(z)B(z, a), to obtain the following statement.  

THEOREM 2. (See [6].) Let F be of class C 2 and a E f~ be fixed. The function [l(z, a) = 
T( z)B( z, a) is the unique continuous solution to the integral equation 

~ ( z , a ) +  frN(z,w)[~(w,a)ldw[ - 1 T(z) _ a ) 2 '  z • r ,  (2 .5 )  

where 

N(z ,w)  = (2.6) 
1 Im z"(t)z'(t) 

[z , ( t ) [3  , z = w r .  

The real kernel N is the familiar Neumann kernel which arises frequently in the integral equa- 
tions of potential theory and conformal mapping (see, e.g., [11]). The Neumann kernel N is 
continuous at all points (z, w) E F x F. Also note that  T(z)M(z,  w) = T(w)N(z,  w) for z, w c F. 

If the region ~t has symmetrical qualities, then the integral equation (2.5) for /~ can be trans- 
formed into another integral equation that  uses only a small part of the original boundary. 

THEOREM 3. (See [6].) Let F be a closed Jordan curve which is invariant under rotations about 
the origin with an angle 27r/m, where m is a positive integer. Denote the part of F with the 
angular domain 0 <_ argz  < 2~r/m by F1. Let a j :=e  i2~j/m, for j = 0 , 1 , . . . , m -  1. Then, 
[~(ajz, O) = aj[l(z, 0) and 

/ ~ ( z , 0 ) + g f  r gm(z,w)[l(w,O)[dwl_ 1 T(z) 1 ~r 2 ~ ' z e F 1 ,  ( 2 . 7 )  

where 

m "wzm-2T(z) win-IT(z)] 

Nm(z,w) = (2.8) 
1 ( 3 - m ) ~ ( z )  ( m - ~ ) T ( z ) ]  z = w e  Cl, 

N(z, z) + ~ i  z 
.J 

where N is the Neumann kernel as detined in (2.6). 

Theorem 3 numerically means that  it suffices to compute the solution/~ on the boundary F1, 
which is just  1/m of the original boundary F. Note that  the new kernel Nm in Theorem 3 is no 
longer a real kernel. However, for the case m -- 2 the kernel is real. 

Now, consider the case when the boundary F is symmetric with m axes of symmetry. Thus, 
the angle between any two adjacent axes of symmetry is 7c/m. Let the real axis be one of the axes 
of symmetry. This type of symmetry is actually a special case of rotational symmetry about  the 
origin with an angle 2~r/m. The only added feature here is that  the curve F1 is now symmetric 
with respect to the ray 0 = 7r/m. Let GI and G2 denote the curves, respectively, below and 
above the ray 0 = 7c/m. Thus, if z E G2, then a12 • G1. 

THEOREM 4. (See [6].) Let F be a closed Jordan curve with m axes of symmetry. Let the real axis 
be one of  the axes of symmetry. Denote the part of F with the angular domain 0 <_ arg z <_ 7r/m 

by G1. Then,/~(2, 0) = - /~(z ,  0) and 

[3(z,O) + /a  Nm(z,w)[~(w,O)]dwl -- /G ' 

where Nm is deigned as in (2.8). 

Nm(z, ff;)[~(w,O)ldw [ _ 1 T(z) ~r 52 ' z E F 1 ,  (2.9) 

Equation (2.9) numerically means that  it suffices to compute the solution /3 on the bound- 
ary G1, which is just 1/(2m) of the original boundary F. 
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3. N U M E R I C A L  I M P L E M E N T A T I O N  

In this section, we consider the numerical solution of the integral equation (2.9). Suppose F 
admits a counterclockwise parametrization z(t) ,  0 < t < /3, z(0) = z(/3) with 2(t) = dz 7 / ~ 0 ,  
for all t. Thus, G1 has the parametrization z(t), 0 < t _< ~/with 2m~/ = /3 and z(0) ~ z(~/). 
Then (2.9) can be rewritten as 

f0 /0 r ¢(t) + A m ( t , s ) ¢ ( s ) d s  - V m ( t , s ) ¢ ( s ) d s  = ¢(t) ,  0 < t < 7, (3.1) 

where 

¢(t) -- fz'(t)lB(z(t), 0), 
Am(t, s) = Jz'(t)JNm(z(t), z(s)), 

vm(t,s) = Iz'(t)lNm (z(t) ,z(s))  , 

1 z ' ( t )  
¢ ( t )  - 

. z ( t )2  

The Nystr6m algorithm associated with an n-point midpoint rule replaces the integral equa- 

tion (3.1) with 

n n 

¢(t~) + "y E Am(ti,  tk)¢(tk) -- -~ E Vm(ti, t k )¢( tk )  ---- ¢(t i) ,  (3.2) 
n n 

k = l  k = l  

for i = 1 , . . . ,  n, ti -- ~/(2i - 1)/(2n).  This gives rise to a complex system of n linear equations 
in n unknowns 

(I  + E ) x  - F ~  -- y, (3.3) 

where x~ = ¢(ti), y~ -- ¢(t i) ,  Eik = ~/Am(t i , tk) /n ,  and Fik = ")'vm(t~,tk)/n. The complex 
system (3.3) can be rewritten as a 2n by 2n real system. To see this, we write x = Nx + i~x ,  
y = Ny + i~y .  Upon substituting and comparing the real and imaginary parts, (3.3) becomes 

(I  + J ) u  = p, (3.4) 

where 

E + F  ' u =  ~ x  ' P =  ~ y  " 

If m = 2, then the matrices E and F are real. 
After we obtain the computed solution vector x at the collocation points ti of the boundary G1, 

the solution vector on the entire boundary F is given by 

[X*TI~ lX*TI . . .  J~m_lX*T] T , (3.5) 

which consists of m partitions and where 

X * T  = [ X l , . . . , X n + l , - - ~ l X n , . . . , - - ~ l X 2 ]  (3.6) 

represents the solution vector on F1 = G1 U G2. 
We solve the system (3.4) using an iterative method based on the restarted version of the 

generalized minimal residual (GMRES) method of Saad and Schultz [14]. The GMRES method 
is formulated in such a way that  it is directly applicable to linear systems whose coefficient 
matrices are not symmetric and/or  positive definite. In [15], the performance of GMRES was 
found to be quite efficient in a test case involving four different integral equations arising in 
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potential theory. The fundamental idea of GMRES is to minimize the norm of the computed 
residual vector, ri (ri --- p - (I + J)ui)  at each iteration. We describe next the restarted version 
of GMRES denoted by GMRES(p), where p is some fixed positive integer parameter. 
GMRES(p). 

(1) Start. Choose initial solution u0 and compute r0 = p - (I + J)u0 and Vl = r0/l[r01[, 
where I1" ]1 = (', "/1/2, with (-,-) being the usual dot product. 

(2) Iterate. For j = 1 , 2 , . . . , p  do 

hi,j = ((I + J)v j , v i )  , i = 1,2 . . . .  ,j ,  
J 

vj+1 = (I + J )v j  - E h i jv i ,  
i=l 

hj+l,j = []~'j+ll[, and 

~'j-{- 1 
Vj+l -- h j + 1 , j "  

(3) Form the approximate solution Up = uo-bVpyp, where the vector yp minimizes II(l[r0[[)el - 
Hpy H and where the vector el is the first column of the (p + 1) × (p + 1) identity matrix, 
and 

= ( v i  

has orthogonal columns, and 

= 

V2 . •.  V p  ) 

hll h12 . . .  hip I 

i .,• 

1 •'. ' '• 

"- hp,p-1 hpp ] 
•.. 0 hp+ l,p / 

is a (p + 1) x p upper Hessenberg matrix of full rank p. 
(4) Restart. Compute rp -- p - (I + J)up; if satisfied then stop, else compute u0 :---Up, 

Vl := Up/[[Upl I and go to Step 2. 

Step 2 of this algorithm is commonly known as the Arnoldi's process which uses the Gram- 
Schmidt method for computing an 12-orthonormal basis Vl,V2,. . .  ,vp of the Krylov subspace 
Kp = span{r0, ( I + J ) r 0 , . . . ,  ( I+J)p- lro} .  In our numerical implementation we have replaced the 
Gram-Schmidt algorithm of Step 2 by the modified Gram-Schmidt algorithm [16]. As for Step 3, 
a common procedure of solving yp is to perform the QR factorization of Hp, i.e., QpHp = Rp, and 
then use the upper-triangular matrix Rp to solve a system of the type Rpyp = gp. For a detailed 
description of GMRES(p) algorithm, we refer the reader to [14]• In our numerical examples we 
have used GMRES(p) with p = 5, 10, 15, and 20. It is observed that  the process GMRES(p) 
improved substantially as p increased. For GMRES(20), the number of iterations is at most 2. 

After we obtain the computed solutions ¢ at the collocation points ti, discretization of (3.1) 
provides us with an interpolation formula 

n n 
¢ ( t )  = - Z A m ( t ,  + Z  m(t, tk) (tk). (3.7) 

n n 
k = l  k=l 

We start the iteration for solving (3.4) with the right-hand side p for small n, and then use the 
interpolation formula (3.7) to provide good starting vectors for large n. 

Finally, the boundary correspondence function 0(t) to any representation z = z(t), 0 < t </3, 
of F, defined by 

R(z(t) ) = e iO(t), (3.8) 

may be computed (without integration) by the formula [6] 

O(t) = arg(- i¢( t ) ) .  (3.9) 
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4. S O M E  N U M E R I C A L  R E S U L T S  

In this section, the numerical scheme discussed in Section 3 is applied to several two-fold 
symmetric regions (i.e., m = 2) with the usual normalization R(O) = O, R'(O) > 0. The stopping 
criterion employed in the iterative process of the GMRES is IIr(i)ll~ < 10 -13. The computer 
programming was entirely done using the MATHEMATICA package [17] in single precision (16 
digit machine precision). 

Following [9], we list the sup-norm error []0(t) - ~M(t)llc~ , where ~(t) is the exact boundary 
correspondence function and OM(t) is the approximation obtained by means of (3.4) and the 
interpolation formula (3.7) using M equally spaced points in the parameter interval, most of 
which are not the original collocation points. In all our experiments, we have chosen M = 30. 
This allows exact comparisons with some of the numerical results given in [8,9]. Tables 1-4 show 
the numerical results. 

EXAMPLE 1. Ellipse (0 _< e < 1, axis ratio = (1 + e)/(1 - e)). 

z ( t )  -~ e it -t- ee - i t ,  

O(t) =-t + 2 E ~ 1 + e2k sin(2kt). 
k = l  

T a b l e  1. E l l ipse .  E r r o r  n o r m  110(t) - OM(t)Hco. 

A x i s  R a t i o  

n 1.2 1.5 2.0 3.0 5.0 10.0 

1 1 . 0 ( - 0 2 )  1 . 3 ( - 0 1 )  . . . .  

2 1 . 6 ( - 0 4 )  9 . 6 ( - 0 3 )  2 . 1 ( - 0 1 )  - - - 

4 2 . 1 ( - 0 8 )  3 . 0 ( - 0 5 )  4 . 6 ( - 0 3 )  7 . 1 ( - 0 1 )  - - 

8 8 . 9 ( - 1 6 )  1 . 5 ( - 1 0 )  1 . 4 ( - 0 6 )  5 . 7 ( - 0 3 )  - - 

16 - 8 . 9 ( - 1 6 )  6 . 6 ( - 1 4 )  1 . 7 ( - 0 7 )  9 . 6 ( - 0 2 )  - 

32 - - 2 . 0 ( - 1 5 )  2 . 5 ( - 1 5 )  4 . 4 ( - 0 7 )  - 

64 . . . .  2 . 4 ( - 1 2 )  7 . 3 ( - 0 2 )  

128 . . . .  4 .1 ( - -13)  7 .3( - -08)  

256 . . . . .  9 . 1 ( - 0 8 )  

EXAMPLE 2. Inverted ellipse (0 < p < 1). 

z(t) = V/1 - (1 - p2) cos2(t)eit, 

tan t?(t) = p-1 tan t. 

T a b l e  2. I n v e r t e d  e l l ipse .  E r r o r  n o r m  IlO(t) - O M ( t ) l l ~ .  

Values  of p 

n 0.8 0.5 0.2 0.1 0.05 

1 4 . 0 ( - - 0 3 )  1 . 1 ( - - 0 1 )  - -  - -  - -  

2 3 . 7 ( - - 0 6 )  7 . 7 ( - - 0 3 )  - -  - -  - -  

4 5 . 0 ( - - 0 8 )  9 . 6 ( - - 0 4 )  - -  - -  - -  

8 1 . 0 ( - - 1 4 )  2 . 3 ( - - 0 6 )  1 . 3 ( - - 0 1 )  - -  - -  

1 6  5 . 6 ( - - 1 6 )  3 . 6 ( - - 1 2 )  5 . 9 ( - - 0 3 )  - -  - -  

3 2  - -  4 . 2 ( - -  1 5 )  4 . 0 ( - - 0 5 )  2 . 9 ( - - 0 1 )  - -  

6 4  - -  - -  1 . 7 ( - - 0 9 )  8 . 7 ( - - 0 3 )  - -  

1 2 8  - -  - -  4 . 4 ( - - 1 5 )  3 . 9 ( - - 0 5 )  - -  

2 5 6  - -  - -  - -  1 . 1 ( - - 0 9 )  2 . 0 ( - - 0 2 )  



EXAMPLE 3. 
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Oval of Cassini ([z - a I [z + a[ = 1, 0 __ a < 1). 

z(t) = ( a  2 cos2t + V / 1 -  a4 sin2 2t)1/2 

1 
O(t) = t - -~ a rg (~ ( t ) ) ,  

~(t)  = X/1 - a 4 sin 2 2t + i a  2 sin 2t. 

e it , 
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Table 3. Oval of Cassini. Error norm H0(t) - OM(t)l l~.  

Values of a 

n 0.2 0.5 0.8 0.9 0.99 0.999 0.9999 

1 2.4(-05) 6.5(-03) . . . . .  

2 4.0(-09) 4.2(-05) 8.0(-03) 4.5(-02) - - - 

4 1.3(--15) 6.0(-09) 7.6(-05) 1.8(-03) - -- -- 

8 - 1.6(-15) 1.4(-08) 4.9(-06) 2.2(-02) 1.7(-01) - 

16 - - 2.2(-15) 6.8(-11) 5.5(-04) 7.1(-02) - 

32 - - - 1.8(-15) 5.5(-07) 8.1(-03) 1.1(-01) 

64 . . . .  9.2(-13) 8.9(-05) 3.8(-02) 

128 . . . .  3.6(-14) 1.7(-08) 2.4(-03) 

256 . . . . .  2.0(-13) 8.9(-06) 

EXAMPLE 4. Square. 

1 
z ( t )  = ~ [ 1  - (1 - i)t] ,  

cosO(t) = 1 + cn~1t,(~) 

0 < t < 1, (first quadrant) ,  

/(1)1 1 2 
cn (Kt  , K = ~ F , 

w h e r e  cn  is o n e  o f  t h e  J a c o b i a n  e l l ip t ic  f u n c t i o n s  a n d  F( . )  is t h e  g a m m a  func t ion .  No t i ce ,  t h a t  

for t h i s  reg ion ,  t h e  s m o o t h n e s s  c o n d i t i o n  for t h e  b o u n d a r y  is no l onge r  sat isf ied.  I n  th i s  e x a m p l e ,  

t h e  t a n g e n t s  a t  t - -  0 a n d  t --  1 a re  n o t  e v e n  def ined.  Howeve r ,  s ince  we  a re  e m p l o y i n g  t h e  n 

m i d p o i n t  ru le ,  t h e  t a n g e n t s  a t  t h e s e  two  e n d p o i n t s  a r e  n o t  needed .  N e v e r t h e l e s s ,  we  s t i l l  ge t  

r e a s o n a b l e  a p p r o x i m a t i o n s  t o  t h e  so lu t ions .  

Table 4. Square. 

n I[O(t) -- OM(t)[[c~ 

8 7.2(-02) 

16 1.9(-02) 

32 4.4(-03) 

64 1.0(-03) 

128 2.6(-04) 

256 6.4(-05) 
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