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We prove that for any infinite set of graphs of bounded genus, some member of 
the set is isomorphic to a minor of another. As a consequence, for any surface .Z 
there is a finite list of graphs, such that a general graph may be drawn in Z if an 
only if it topologically contains none of the graphs in the list. 0 1990 Academic 

Press, Inc. 

1. INTRODUCTION 

Kuratowski’s famous theorem of 1930 [6] asserts that a graph is planar 
if and only if it does not topologically contain K5 or K3,3. (Graphs are 
finite, and may have loops or multiple edges. A graph G topologically con- 
tains H if we may obtain a graph isomorphic to H from some subgraph of 
G by suppressing some divalent vertices.) There arose in the 1930’s the 
proposal to lind parallels to this theorem which apply to other surfaces. 

If C is a surface, let T(L) denote the class of all graphs which cannot be 
drawn in Z: and which are minimal with this property under topological 
containment. If 22 is the plane or sphere then the members of T(C) are 
precisely the graphs isomorphic to K5 or K,,,-this is another way to state 
Kuratowski’s theorem. In general, a graph can be drawn in Z: if and only if 
it topologically contains no members of T(Z). It remains then to determine 
T(C) explicitly. 

This appears to be very difficult, and there was little progress on the 
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problem until 1979, when Archdeacon, Glover, Huneke, and Wang [ 1,3] 
determined T(C) when Z is the projective plane. They found that in that 
case T(Z) has 103 members, up to isomorphism. 

One can show that for higher surfaces C, T(Z) has a large number of 
non-isomorphic members, and it is not clear even that it has only finitely 
many. The question of the liniteness of T(C) up to isomorphism was raised 
by Erdiis in the 1930’s, but again there was little progress until recently. In 
1980 Archdeacon and Huneke [2] proved finiteness for all non-orientable 
surfaces C. The orientable cases have remained open (except for the torus, 
for which R. Bodendiek and K. Wagner have recently announced a proof of 
finiteness). In this paper we complete the solution to Erdiis’ problem-we 
show that for any surface 2, T(Z) is indeed finite up to isomorphism. 

This is proved as a consequence of a more general “well-quasi-ordering” 
result about graph minors. A graph H is a minor of a graph G if H can be 
obtained from a subgraph of G by edge-contraction. The “minor” relation 
is different from topological containment-if H is topologically contained 
in G then it is isomorphic to a minor of G, but the converse is not 
necessarily true, as is easily seen. However, Erdiis’ problem may be refor- 
mulated in terms of minors; for, up to isomorphism, T(C) is finite if and 
only if the class of minor-minimal graphs which cannot be drawn in C is 
finite. (We prove this fact in Section 2.) 

We approach the “minor” formulation of Erdos’ problem by means of an 
idea of Wagner which dates from the 1960’s. Let us choose one repre- 
sentative from each isomorphism class of the class of minor-minimal 
graphs which cannot be drawn in C, and let the class of graphs we obtain 
be A. Now A has the desirable property that it is an antichain, that is, no 
member of A is isomorphic to a minor of another. (This follows from the 
fact that the members of A are minor-minimal with a certain property, viz. 
not being drawable in C.) Wagner made the conjecture that every antichain 
of graphs is finite. 

Although we do not prove Wagner’s conjecture here, we shall prove the 
following special case which is strong enough to settle Erdiis’ problem. (We 
hope to prove Wagner’s conjecture in full in a later paper.) 

( 1.1) For any number g, every antichain of graphs all of genus < g is 
finite. 

[The genus of a graph is the minimum genus (orientable or non-orien- 
table) of the surfaces in which it can be drawn.] 

This settles Erdiis’ problem; for if 2 is orientable with genus g, it is easy 
to see that all members of A have genus at most g + 1, and so by (l.l), A 
is finite, (The non-orientable case is similar.) 

Now for any number g there is a finite list of surfaces such that every 
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graph with genus <g can be drawn on some surface in the list. Thus 
prove (1.1) it sufhces to prove the following. 

to 

( 1.2) For any surface Z, every antichain whose members can all be drawn 
in Z is finite. 

The key JO our proof of (1.2) is to work with a slightly strengthened 
form, concerning graphs on C with some bounded number of vertices from 
each graph chosen as roots. It is quite easy, using a lemma proved in [ 111, 
to show that the rooted form of (1.2) is true in general if it is true when 
Z is the sphere and all the roots lie on two distinguished regions (the so- 
called cylinder case). With rather more difficulty and the aid of Higman’s 
well-quasi-ordering theorem for finite sequences, we are able to reduce the 
cylinder case to the case when Z is the sphere and all the roots lie on one 
distinguished region (the disc case). This very special case is the most 
difficult of all; to settle it we need the concepts of tree-width from [7,9] 
and part of the theory of patchworks developed in [S]. These steps are 
performed more or less in reverse order. 

Surfaces in this paper have (possibly empty) boundary. While the 
presence of the boundary has no effect on the embedding capabilities of 
the surface, it enables us to work only with graphs drawn on a surface 
where the root vertices are the ones that lie on the boundary, and this is 
convenient for technical and notational reasons. 

2. ERD~S’ PROBLEM IN MINORS 

Here we show that Erdos’ problem can be reduced to showing that for 
any surface C, the class of minor-minimal graphs which cannot be drawn 
in C is finite up to isomorphism. In fact, a more general statement is true. 
Let P be a property of graphs such that if G has P and H is isomorphic 
to a, minor of G then H has P-we call such a property P a hereditary 
property. For example, if X is a surface, the property “G can be drawn in 
Z” is hereditary. Let T(P) denote the class of all graphs, minimal under 
topological containment, without property P, and let S(P) denote the class 
of all graphs, minimal under minor containment, without property P. The 
main result of this section is the following. 

(2.1) For any hereditary property P, T(P) is finite up to isomorphism if 
and only if S(P) is finite up to isomorphism. 

To obtain from this the reformulation of Erdbs’ problem in terms of 
minors, we simply take P to be the property of being drawable in C. To 
prove (2.1) we need a lemma. Let e be an edge of a graph Gr with distinct 
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ends, both with valency at least three. (The valency of a vertex is the 
number of edges incident with it, counting loops twice.) Let G2 be the 
graph obtained from G, by contracting e. Then we say that G, is obtained 
from G2 by splitting a vertex. We say that G, is obtained from G2 by 
splitting vertices if there is a sequence 

&=I&,, H,, H,, . . . . Hk= G, 

of graphs where for 1~ i 6 k, Hi is obtained from Hi- 1 by splitting a 
vertex. The lemma we need is the following. 

(2.2) If H is a minor of G, there is a graph H’ which can be obtainedfrom 
H by splitting vertices and which is topologically contained in G. 

Proof: Let G’ be a minimal subgraph of G which has H as a minor. 
Then evidently H is obtained from G’ by contracting some edges of G’, say 
those in El s E( G’). Now if e E E, , the graph obtained from G’ by deleting 
e and contracting all other edges of E, does not have H as a minor, while 
the one obtained by contracting all edges of E, does. It follows that e is not 
a loop of the graph obtained from G’ by contracting all edges of E, - (e>. 
Hence, El is the edge set of a subforest of G’. For a similar reason, no edge 
in E, is incident with a vertex with valency one in G’. 

Choose a sequence e, , . . . . e, of distinct edges of E, with n maximum, 
such that for 1 < id n there is a vertex of G’ of valency two incident both 
with ei and with some edge distinct from e, , . . . . e,. Let H’ be the graph 
obtained from G’ by contracting e,, e2, . . . . e,. We claim that H’ satisfies the 
theorem. Certainly (from the definition of e,, . . . . e,)H’ is topologically con- 
tained in G’ and hence in G; it remains to show that H’ can be obtained 
from H by splitting vertices. 

Put E, = E(H’) n E, . Then E2 is the edge-set of a subforest of H’, and 
H may be obtained from H’ by contracting the edges in &. Now no edge 
e E E, is incident with a vertex of H’ with valency 2, because we could then 
set en+1 = e, contrary to the maximality of n. Thus every edge of E2 has 
both ends with valency 3 3 in H’. Let E, = { fi, . . . . f,>, and for 0 < i < k let 
Fi be (A : i < j d k}. Let Hi be the graph obtained from H’ by contracting 
all edges in Fi. Then HO = H and H, = H’, and for 1 < i< k H,- 1 is 
obtained from Hi by contracting fia The ends of fi in Hi are distinct, since 
E2 is the edge-set of a subforest of H’. We claim that both ends of fi have 
valency > 3 in Hi. For let u be an end of fi in Hi, and let v be the corre- 
sponding end off;: in H’. Let T be the component of the forest (V( H’), Fi) 
with v E V(T). Now every edge of H’ not in E(T) but incident with a vertex 
of T is incident with u in H,. If ( V( T)I = 1 it follows that u has valency > 3 
in Hi, since v has valency 2 3 in H’. If 1 I’( T)I 3 2, there is a vertex w  of 
T, with valency 1 in T, different from v. Then w  has valency > 3 in H’, and 
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so is incident with at least two edges of H’ not in E(T). It follows that u 
has valency 23 in Hi. We deduce that Hi is obtained from Hi- 1 by 
splitting a vertex, and so H’ is obtained from H by splitting vertices, as 
required. 1 

For any graph H, let Z(H) denote the class of all graphs which can be 
obtained from H by splitting vertices. 

(2.3) For any graph H, Z(H) is finite up to isomorphism. 

Proof For any graph G, define N(G) to be 2 (E( G)I - 3 ( V’( where V’ 
is the set of vertices of G with valency > 3. It is easy to see that N(G) b 0, 
and that if G is obtained from H by splitting a vertex then N(G) < N(H). 
The result follows. 1 

Proof of (2.1). If H is minor-minimal without property P, then it is 
certainly minimal without P under topological containment, and so 
S(P) s T(P). Suppose now that G E T(P). We know that G does not have 
property P, and so it has a minor HE S(P). By (2.1), there is a graph 
H’ E Z(H) which is topologically contained in G. But H’ does not have P, 
since H is a minor of H’, and yet G E T(P); thus G = H’. If follows that 
G E Z(H). Hence 

S(P)z T(P)E u (Z(H): HES(P)). 

But by (2.2), Z(H) is finite up to isomorphism for each graph H; and the 
result follows. 1 

3. WELL-QUASI-ORDERS 

We state in this section some basic results about well-quasi-orders which 
we shall need for our argument. For proofs, see [4]. 

A quasi-order Q = (Q, < ) is a class Q together with a transitive, reflexive 
relation < . (It becomes a partial order if we also require < to be antisym- 
metric.) A quasi-order (Q, < ) is a well-quasi-order if for every countable 
sequence ql, q2, . . . of members of Q there exist j> i > 1 such that qi < qj. 

(3.1) rf Q = <Q, \ ) < is a well-quasi-order then every countable sequence 
419 q2, -** of members of Q has a countable subsequence qi,, qi2’ . . . (where 
il <i,< a..) such that qil<qi2< . . . . 

If Q1 = ( Ql, < 1) and Q2 = (Q2, < 2) are quasi-orders, we define 
Ql x Q2 = (Ql x Q2, d J7 where t ply p2) d (ql, q2) if p1 d 1 qr and p2 62 q2. 
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(3.2) If Q2 and Q2 are well-quasi-orders, so is Q1 x Q2. 

If Q=(Q, <) is a quasi-order, Q <w = (Q <w, < ) is defined as follows. 
Q <w is the class of all finite sequences of members of Q. If ( pl, . . . . p,.), 
(4 1, a*‘, qskQcw, we say that (pi, . . . . p,.) < (ql, . . . . qS) if there exist integers 

1 < i1 < i, < . . . < i, < s 

such that pj < qi, (1 < j < r). The following is due to Higman [4], 

(3.3) If Q is a well-quasi-order then so is Q ‘“. 

4. GRAFTS 

In the course of the paper we shall define a “simulation” of X in Y, for 
several different kinds of objects X and Y. “X is simulated in Y” will always 
mean “there is a simulation of X in Y.” 

Let G, H be graphs. It is easy to see that H is isomorphic to a minor of 
G if and only if there is a function 0 such that for each edge e of H, a(e) 
is an edge of G, and for every vertex u of H, a(v) is a non-null connected 
subgraph of G, with the following properties: 

(Sl ) a(e) # a(e’) for distinct e, e’ E E(H) 

(S2) a(v) and o(v’) are vertex-disjoint for distinct U, U’ E V(H) 

(S3) a(e) is not an edge of a(u), for eEE(H) and VE V(H) 

(S4) if e is a loop of H incident with v E V(H) then a(e) is incident 
only with vertices of a(u) 

(S5) if e E E(H) has distinct ends v i, Us E V(H) then a(e) has one end 
in a(~,) and the other in a(~,). 

We call such a function u a simulation of H in G. 
A graft is a pair (G, 7’) where G is a graph and TE V(G). We call 1 TI 

the index of the graft. If (G, T), (H, U) are grafts, a simulation of (H, U) in 
(G, T) is a simulation 0 of H in G with the following additional property: 

e-w I TI = I Ul, and for each u E U, some vertex of a(u) is in T. (This 
vertex is necessarily unique.) 

Let & be a class of grafts. The relation “is simulated in” is a quasi-order 
of &. If it is a well-quasi-order we say that & is well-rooted. If there is 
a maximum index of the members of &‘, we call this the index of &. 
(Conventionally, the empty set has index zero.) 

(4.1) If ~4 is well-rooted then it has an index. 
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Proof: If & has no index, then there is a countable sequence (Gi , T, ), 
(G G), . . . of members of & such that 1 T, 1 < 1 T2[ < .. . . But then for 
1 < i < i’, ( Gi, Ti) is not simulated in (Git, Tit), because (S6) is not satisfied. 
Hence & is not well-rooted. 1 

We mention that we believe that the converse to (4.1) also holds, and 
hope to publish a proof of this in a later paper. This would clearly imply 
Wagner’s conjecture. 

(4.2) If dI, dz are well-rooted then so is ~2~ v J&~, 

ProoJ Any countable sequence of elements of &I u dz has a countable 
subsequence either with all entries in &I or with all entries in dz. The 
result follows. 1 

Grafts are one way to work with multiply-rooted graphs. But sometimes 
we need to distinguish the roots, and it is more convenient to work with 
k-tuples of vertices rather than subsets. A rooted graph then is a pair (G, r), 
where G is a graph and r is a finite sequence of vertices of G. The index of 
a rooted graph is the length of z. If z has length k and 16 i < k, z(i) denotes 
the ith term of r. If (G, r) and (H, v) are rooted graphs, a simulation of 
(H, v) in (G, z) is a simulation 0 of H in G with the following additional 
property: 

(S7) (G, z) and (H, v) have the same index k say, and for 
1 < i < k, z(i) is a vertex of g( v(i)); and for 1 < i < j < k, z(i) = z(j) if and 
only if v(i) = v(j). 

If (G, z) is a rooted graph of index k, its underlying graft is (G, T), where 
T= (t(l), . ..) z(k)). It is easy to see that if (H, v) is simulated in (G, z) then 
(H, U) is simulated in (G, T), where (H, U) and (G, T) are the respective 
underlying grafts. 

Again, the relation “is simulated in” is a quasi-order on any class of 
rooted graphs; and again if it is a well-quasi-order we say the class of 
rooted graphs is well-rooted. We need the following lemma. 

(4.3) Let & be a well-rooted class of grafts, and let a be a class of rooted 
graphs of bounded index, such that for each member of 9, its underlying 
graft is in ~2. Then 98 is well-rooted. 

ProoJ It is enough to prove that for every number k, the class of mem- 
bers of 39 with index k is well-rooted, since 8 is the union of only finitely 
many such classes. 

Thus we may assume that all members of $? have index k. Let (G,, z,), 
(G d, . . . be a countable sequence of members of 9J. For each i, let 
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(G i, 7’i) E &’ be the underlying graft of (Gi, zi). Since & is well-rooted, 
there is by (3.1) a countable sequence of integers 0 < i1 < i, < . - - such that 
for jb 1, (G,, T,,) is simulated in (G,,,, T,,,,). 

We wish to show that for some i’ > i> 1, (Gi, zi) is simulated in (Gif, zir). 
If this is true for the subsequence (Gi,, ‘J (j= 1,2, . ..) then it is true for the 
original sequence. Thus, for simplicity of notation, we replace the original 
sequence by the subsequence. Hence ( Gi, Ti) is simulated in ( Gi+ 1, Ti+ 1), 
for i = 1, 2, . . . . Let ci be a simulation of (Gi, Ti) in (Gi+ 1, Ti+ I) and for each 
21~ Ti+l, let a, ‘(u) be the element u E Ti such that u is a vertex of a,(u). 

For i = 1, 2, . . . and for each UE Ti, let 7ti(v) be 

-1 
CT1 ( . . . bi-2 -I (al:1l (u)) . ..). 

Then n,(v) E T1. Since T, is finite, there exist i’ > i 2 1 such that 

But then 

z,(j) = fJ,‘(alr+ll . . . (0,’ l (Q(j))) . ..) (1 <jGk) 

and so the composition in the natural sense of oi, pi+ 1, . . . . cr,! is a simula- 
tion of (Gi, zi) in (Gi,, zi,) as required. 1 

5. DRAWINGS OF GRAFTS 

A surface is a compact 2-manifold with (possibly empty) boundary. We 
denote the boundary of a surface C by bd Z, and each component of bd C 
is called a cuff of C. We denote the closure of a subset 2~ C by z. If X 
is a topological space, an X-arc in Z is a subset of 2 homeomorphic to X. 
In particular, an O-arc is a subset of C homeomorphic to a circle. (Every 
cuff of .Z is thus an O-arc.) We denote by Z(a, b, c) the surface obtained 
from the sphere by adding a handles and b cross-caps, and removing the 
interiors of c pairwise disjoint closed discs. Every connected surface is 
homeomorphic to C(a, 6, c) for some choice of a, b, c. A drawing r is a pair 
vvl W)h h w  ere U(T) c C is closed and V(r) c U(T) is finite, such 
that 

(i) U(T) - V(T) has only finitely many components, called edges 

(ii) for each edge e, (e, 2) is homeomorphic either to ((0, 1 ), [ 0, 11) 
or to (S’ - (x}, S’) where XE S’ 

(iii) for each edge e, e n bd C = 0. 
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Let r be a drawing in Z, and let (G, T) be a graft. r is said to be a 
drawing of (G, T) (in C) if there is a bijection a from V(G) to V(T) and a 
bijection p from E(G) to the set of edges of r, such that 

(i) for u E V(G) and eE E(G), u is incident with e if and only if 
w  E P(e) 

(ii) for v E V(G), a(v) E bd Z if and only if v E T. 

In this situation, we shall say a(v) represents v E V(G). If (G, T) has 
a drawing in C, we say that Z embeds (G, T). If &’ is a set of grafts 
(respectively, rooted graphs), we say that C embeds ~2 if Z embeds (the 
underlying graft of) each member of &. 

If r is a drawing in .Z, we shall often use graph-theoretic terminology for 
r, speaking of the vertices, paths, circuits, etc., of r in the natural way, 
when we expect no confusion to arise. If r is a drawing in Z and XE Z’, 
we say that X is r-normal if X n U(T) E V(T). If Y c Z is closed and no 
edge of r meets both Y and Z - Y, then (U(T) n Y, V(T) n Y) is a drawing 
which we denote by Tn Y. 

6. FOUNDATIONS ON A DISC 

We can now state our main theorem, and begin its proof. The theorem 
is the following. 

(6.1) If A? is a class of graphs with bounded index, and some surface C 
embeds ~2, then S? is well-rooted. 

This result clearly implies (1.2), which is its special case when Lsl has 
index zero. The first and most difficult part of the proof is to show that 
(6.1) is true when Z is the disc Z(0, 0, 1 ), and this we shall do in the next 
seven sections. 

Let E be a disc. For each O-arc FEZ, exactly one component of its 
complement does not intersect bd C and points of it we say are inside I; If 
XC C, we say X is inside F if x is inside F for all x E X. We say F encloses X 
if X- F is inside F. If r is a drawing in C, and C is a circuit of r, then 
the union of closures of its edges is an O-arc; and we shall often denote this 
O-arc by C. We define p(C) to be the maximum number of mutually 
disjoint paths of r between C and bd C. By a form of Menger’s theorem, 
p(C) equals the minimum of 1 U(T) n I;/ taken over all r-normal O-arcs F 
with C - F inside F. A C-ring is such an O-arc F which attains the mini- 
mum, that is, with 1 V(T) n I;] = p(C). We next study C-rings, and to do so 
we need the following lemmas. 
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(6.2) Let C be a sphere and let F, , F2 be O-arcs of Z with 1 F1 n FzI 2 2. 
Let z EC - (F, u F2). Then there is an O-arc F, G F, u F2 such that the 
component of Z - 1;3 which contains z contains no point of FI v F2. 

The proof of this is straightforward point-set topology, and we omit it. 

(6.3) Let Z be a sphere and let F,, F2 be O-arcs in Z. Let 
zl, z2 E Z- (F, u F,), and be in distinct components of Z- Fi (i= 1, 2). 
Then there are O-arcs F3, F4 in Z such that 

(i) F3uF4cF1uF2, F,nF&F,nF, 

(ii) the component of C - F3 which contains z 1 contains no point of 

4" F2 

(iii) the component of C - F4 which contains z2 contains no point of 
F, u F2. 

Proof If 1 F1 n F2 1 < 1 this is obvious. If IF, n F2 1 2 2 then (6.2) 
applies. Let F3, F4 be the boundaries of the components of Z - (F, u F2) 
containing zl, z2, respectively. Then (ii) and (iii) are satisfied and 
F+F,rF,uF,. It remains to show that F3 n F4 _C F1 n F2. Let 
x E F, n F4. Then x is a limit point both of the component of C - (F, u F2) 
containing z I and of the component containing z2. It follows that 
x E F, n F2 as required. i 

(6.4) Let r be a drawing in a disc C, and let C,, C, be circuits of K Let 
Fi be a C,-ring (i= 1, 2), such that some point of C, is inside F2, and no 
point of F2 is inside C1 . Then there is a C,-ring enclosed by both F, and F2. 

ProoJ: Extend C to a sphere C’, and let z2 be a point of C’ - Z. Let z1 
be a point of C inside C1. Now some point of C1 is inside F2, and so z1 
is inside F2, since no point of F2 is inside C1. Hence z1 and z2 are in 
different components of both Z’ - F1 and .Z’ - F2. By (6.3) there are O-arcs 
F,, F4sF1uF2, with F,nF,cF,nF,, such that 

D1 n (F, u FJ = 0 = D2 r? (F, u F2), 

where D 1 is the component of Z’ - F, containing zl, and D2 is the compo- 
nent of Z’ - F4 containing z2. Now no point of D1 is in F1, and so D1 is 
a subset of a component of z’ - F1. Similarly, D2 is a subset of a compo- 
nent of 2’ - F2. It follows that D, E .Z’, for no point of ,Z” - Z is in the 
same component of C’ - F, as zl. We deduce that z1 is inside F3, and so 
F3 encloses C1. Since no point of F, u F2 is inside F,, and z1 is inside 
F,, F2, and Fj, it follows that F1 encloses F,, and F2 encloses F3. On the 
other hand, z2 E D2 and so C’ - C G D,; hence C2 n D, = 0, since no point 
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of Z’ - C is in the same component of Z’ - F2 as a point of C2. Since 
C2 n D2 = 0 and Z’ - Z G D2, it follows that 1;4 encloses Cz. But 

and so 

Hence 

that is, 

However, 

by definition of p(C,), p(C,), and so equality holds throughout. We deduce 
that I;; is a Cl-ring, as required. 1 

(6.5) Let r be a drawing in a disc Z, and let Cl, Cz be circuits of IY Let 
Fi be a Ci-ring (i = I,2 ), such that F, and C2 bound disjoint open discs, and 
F2 and Cl bound disjoint open discs. Then there is a Cl-ring F, and a C,-ring 
F4 such that F, encloses F3, F2 encloses F4, and F3 and F4 bound disjoint 
open discs. 

Proof: Extend Z to a sphere Z’, and let Zi be a point of C inside Ci 
(i = 1,2). By (6.3), there are O-arcs F3, F4 G F, u Fz, with F3 n F4 c 
F, n F2, such that 

D, n (F, u F2) = 0 = D2 n (F, u F,), 

where D, is the component of C’ - F, containing zl, and D2 is the compo- 
nent of Z:’ - F4 containing z2. Arguing as in (6.4), we deduce that 
D,, D2 E C, that Di is inside Fi (i = 1,2), and that D, n D2 = 0. Hence F, 
encloses C1, F4 encloses C2, F1 encloses 1;;) and F2 encloses F4. Counting 
as in (6.4), we deduce that F3 is a C,-ring and F4 is a C,-ring. The result 
follows. 1 

Let r be a drawing in a disc C. If F is a r-normal O-arc, we define T(F) 
to be the set of all edges of r inside F. If C is a circuit of r and F is a 
C-ring, we say F is a minimal C-ring if there is no C-ring F’ with 
r(F')cr(F). 
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(6.6) Let r be a drawing in a disc C, and let C be a circuit of I’. If F,, F2 
are minimal C-rings then T(F, ) = r(F2). 

ProoJ: By (6.4) there is a C-ring F3 enclosed by F1 and by F2. Hence 
W,) s WI) n rm, and the result follows from the minimality of 
r;-I& I 

With r, C, C as in (6.6), we define d(C) to be the common value of T(F) 
taken over all minimal C-rings F. 

Again, let r be a drawing in a disc C. If r, s > 0 are integers, an (r, s)-nest 
in r is a sequence (C,, . . . . C,) of circuits of r, such that 

(i) for 1 < i < i’ < s, Ci is inside Ci, (and hence Ci and Ci, are vertex- 
disjoint) 

(ii) there are r mutually vertex-disjoint paths of r between C1 
and C,. 

Let k = 1 V(T) n bd Z:(. A circuit C of r is a boss if p(C) < k and there is 
a ((1 +p(C)), k)-nest (C,, . . . . C,) with C1 = C. The main result of this 
section is the following. 

(6.7) Let r be a drawing in a disc Z, and let C,, C2 be bosses. Then either 
4G) c 4G), or 4G) s WA, or d(C,) n A(&) = 0. 

ProoJ: Let Fj be a minimal C,-ring, and let (Cf , . . . . Cf ) be a 
((p(Ci) + l), k)-nest with Ci = Ci (i= 1,2). NOW IFI n V(G)1 = p(C,) and 
there are p( C,) + 1 mutually disjoint paths of r between C: and Ct. Thus 
F, does not meet all these paths. But F, encloses C;, and so some vertex 
of Cl; is inside F,. 

Suppose that some point of F2 is inside C,. Now 

and so F, u F2 meets some C{ (1~ j < k) in at most one point. But then 
with that value of j, Ci encloses F2 (because some point of F2 is inside C:), 
and F, encloses C{ (because some point of C/; is inside F,). It follows that 
F1 enclose F2, and so d(C,) s d( C,) as required. 

We may assume then that no point of F2 is inside C1, and similarly that 
no point of F1 is inside Cz. Suppose that some point of C1 is inside F2. 
Then by (6.4) there is a C,-ring F3 enclosed by both F1 and F2. From the 
minimality of F, , it follows that r( F, ) = T(F,). But r( F3) c r(F2), and so 
r( F1 ) c r( r, ), as required. 

We may assume then that no point of C1 is inside F2, and similarly that 
no point of C2 is inside F1. Hence the hypotheses of (6.5) hold, and so 
there is a C,-ring F, and a C,-ring F4, bounding disjoint open discs, with 
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1;3 enclosed by F, and F4 enclosed by F2. Then d( C,) = I’(F;), by the mini- 
mality of F, , and similarly d( C,) = I( F4). But I( F3) n r(F4) = @, and the 
result follows. 1 

Let r be a drawing in a disc Z, and let k = 1 V(T) n bd Cl. By (6.7), we 
may choose bosses C1, . . . . C, of r such that 

(0 Wd, . . . . d(C,) are mutually disjoint, and 

(ii) for every boss C, d(C)cd(C,) for some i (1 <i<t). 

For 1 < i 6 t, let Fi be a minimal C,-ring. By repeated applications of 
(6.5), we find that we may choose F, , . . . . F, so that they bound mutually 
disjoint open discs. Then we may arrange (by shrinking these discs slightly) 
that distinct F;s intersect only in V(r). Thus, there is a set {F,, . . . . F,}, 
where Fj is a C,-ring (1 < i < t), such that F,, ,.., F, bound mutually disjoint 
open discs, and such that Fj n F,, c V(r) for 1 < i < i’ < t. We call the set 
{F,, . . . . F,) a foundation for IY 

7. TREE-WIDTH 

A hypertree is a triple (V, T, 9) where V is a finite set, T is a tree, and 
F= (X,: tE V(T)) is a family of subsets of V, such that 

(i) u(X,: tE V(T)= V 

(ii) for t, t’, t” E V(T), if t’ lies on the path of T between t and t” then 
x, n X,!, c x,, . 

A graph G is said to have tree-width w if w  2 0 is minimum such that 
there is a hypertree ( V, T, 9) with V= V(G), and with 

(i) IX,1 dw+ 1 for each tE V(T), and 

(ii) for each edge e of G some X, contains both ends of e. 

We define the tree-width of a drawing of a graft (G, S) to be the tree-width 
of G. For more about tree-width, see [7, 8,93. The following is proved in 
cv 

(7.1) Let r, s > 0 be integers. Then there is an integer w such that every 
drawing in a disc with no (r, s)-nest has tree-width d w. 

8. CENTRED O-ARCS 

Again, let r be a drawing in a disc C, and let F be a r-normal O-arc. 
Let JFn V(r)1 = r. We say that F is centred if r has a (r, s)-nest (C, , . . . . C,) 
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where s = r$y] such that each Ci is inside F and such that there are Y 
mutually disjoint paths of r between C1 and F. The following may be 
proved by a slight adaptation of the proof of [ 7, Theorem (4.1)] the details 
of which we omit. 

(8.1) If F is centred, there is a (r, s)-nest ( C1, . . . . C,) (where r, s are as 
above) such that each Ci is inside F, and there are r mutually disjoint paths 
P 1, . . . . P, of r between C1 and F, such that the intersection of each Pi and 
each Cj is a path. 

If Cl) . ..) C, and P, , . . . . P, are as in (8.1 ), the subdrawing 
c,u -a* UC,UP~U *** u P, is called a sleeve for F. 

(8.2) If C is a boss of r then every C-ring is centred. 

Proof: Let (C,, . . . . C,) be a (( 1 + p(C)), k)-nest with C1 = C, where 
k = ) V(T) n bd XI. Let F be a C-ring. There are 1+ p(C) mutually disjoint 
paths of r between C1 and Ck, but IFn V(r)1 =p(C). Hence there is a 
path of r between C1 and Ck which does not meet F. It follows that some 
vertex of Ck is inside F. 

Let l<j<k,andsupposeFmeetsC,.Thenforj<j’<k, IFnCjrJ>2, 
and so 

IFn V(r)1 2 2(k- j) + 1. 

Hence 2(k -j) + 1 < p(C), and so j 2 k - i(p( C) - 1). But p(C) < k since C 
is a boss, and so 

r~dC)l<k-$-W?- 1). 

Thus G . . . . Crptcj,~, are all inside F. Moreover there are p(C) mutually 
disjoint paths between C and bd C by definition of p(C), and hence 
between C1 and F, as required. [ 

We shall require the following lemmas concerning centred O-arcs in 
Section 11. The ends of a [0, 1 ]-arc are defined in the natural way. 

(8.3) Let F be a r-normal centred O-arc. Let I be a r-normal [O, II-arc 
with ends in F and with all its other points inside F. Then 

IIn WI 3 min(IF, n W)l, IF2 n WI L 

where F, , F2 are the closures of the two components into which the ends of 
I divide F. 

Proof. Let I Fn V(r)/ = r, and let ( C1, . . . . C,,,,,) be the nest in a sleeve 
for F. For i= 1, 2, put IFi n V(r)1 = ri. Then rl + r2 = r + n where 
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n = /In Fn V(r)]. We may hence assume that IIn V(r)/ < $r+ in, for 
otherwise the theorem is true. We assume r > 0, for otherwise the result is 
trivial. 

If I meets C, then it has at least two points in common with C,, . . . . CTr/2, 
and so 

Iln V(r)] 2 2(rgl- 1) + 1 + n. 

Thus 

a contradiction. Hence Z does not meet C,. 
But I meets every path of r from F, to Fz which is enclosed by F; and 

so for some i (i = 1 or 2) I meets every path from Fi to C1 which is enclosed 
by F. There are at least Ye such paths, mutually disjoint, and so 
(In V(T)/ >rj as required. 1 

(8.4) Let F be a r-normal centred O-arc and let S be a drawing of a 
forest in Z, such that U(S) n F G V(T), and U(E) is enclosed by F. Then r 
has a subdrawing 3, which is a drawing of a forest, which U(Z’) enclosed 
by F, such that for all u, v E V(T) n F, there is a component of Z containing 
both u and v tj-and only if there is a component of E”’ containing them both. 

This follows from (8.3) and [lo, Theorem (3.6)]. 

9. BOUNDARY-LINKED NESTS 

Let r be a drawing in a disc C, with ) V(r) n bd .Z[ = k. Let r, s 2 0 be 
integers. An (r, s)-nest ( C1 , . . . . C,) is boundary-linked if there are k mutually 
disjoint paths of r between C, and bdC. 

Let (F, , . . . . F,) be a foundation for r. Then by (8.2), each Fj is centred; 
let rj be a sleeve for Fj (16 i < t). Let r0 be the subdrawing of r consisting 
of those vertices and edges inside none of F1, . . . . I;;. Let r* be 
r,tx,u - u rr . We call r* a truncation of r (induced by (I;, , . . . . F,}). 

(9.1) Let r* be a truncation of r, and let r, s be integers with r, s 2 k. 
Every (r, s)-nest of P is boundary-linked in r. 

ProoJ: Let {F,, . . . . Ft> be a foundation inducing the truncation r*, and 
let rl, . . . . rt, To be as above. Let (C,, . . . . C,) be an (r, s)-nest of r*. Sup- 
pose it is not boundary-linked in r. Then p( C,) < k. But r 3, k, and s 2 k, 
and so C1 is a boss. Hence Fj encloses C1 for some i (1 < i 6 t), say i = 1. 
There are r mutually disjoint paths of r between C1 and C,, and so one 
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of them does not meet F,, since IF, n V(f)1 = p(C,) <k 6 r. Hence some 
vertex of C, is inside F, . As in the proof of (8.2), F1 does not meet any of 
C 1, ***, Crkiz, and so (C,, . . . . C& is a (k, rik])-nest in rl. But it is easy 
to see that rl has no such nest (because for example, its cyclomatic 
number is too small). This contradiction implies that (C,, . . . . C,) is 
boundary-linked, as required. 1 

(9.2) If r, s 2 k there is a number N such that for any drawing I with 
1 V(I) n bd Zj = k, if I has no boundary-linked (r, s)-nest, then every trunca- 
tion I* has tree-width <N. 

This follows from (9.1) and (7.1). 
We shall require the following, which is essentially [ 11, Theorem (9.4)]. 

(9.3) Let (H, U) be a graft which embeds in a disc Z, with 1 UI = k. Then 
there are integers r, s > k such that for every graft (G, T) with 1 TI = k, if 
(G, T) has a drawing in C with a boundary-linked (r, s)-nest, then (H, U) is 
simulated in (G, T). 

From (9.2) and (9.3) we deduce the following. 

(9.4) Let (H, U) be a graft which embeds in a disc C with 1 UI = k. Then 
there is a number w  such that for every graft (G, T) with 1 Tj = k, if (H, U) 
is not simulated in (G, T) then every truncation of every drawing of (G, T) 
in C has tree-width <w. 

10. PAINTINGS 

Let Z be a disc. A painting r in C is a pair (U(T), N(T)) where 
U(T) G C is closed and N(r) c U(I) is finite, such that 

(i) U(I) - N(r) has only finitely many components, called cells 

(ii) for each cell e, (2, e) is homeomorphic to (Z, C- (x1, . . . . xk)) 
where k = JZ- ej and x1, . . . . xk E bd Z are distinct 

(iii) for each cell e, e n bd C = @. 

A painting is roughly a generalization of a drawing. For if r is a drawing 
with no loops, we may “thicken” each edge of r slightly to obtain a 
painting in which 12 - el = 2 for each cell e. If r is a drawing with loops 
such that each loop bounds a region, we may perform an analogous con- 
struction; we thicken each non-loop edge, and we fill in the region bounded 
by each loop. Thus each loop of the drawing corresponds to a cell e of the 
painting with 12 - el = 1. Let us say that a drawing is cellular if each loop 
bounds a region. 
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A painting r= (U, N) is said to have tree-width w if w  2 0 is minimum 
such that there is a hypertree (V, T, F), where F = (X,: t E V(T)), with 

(i) JX,J<w+l for each tEV(T), and 

(ii) for each cell e of r, e - e E X, for some t E V( T). 

If X is a finite set, an ordering of X is a bijection from (1, 2, . . . . [XI} to 
X. Let Q = (Q, < ) be a quasi-order. A Q-portrait in a disc Z is a quintuple 
( U, N a, P, 41, where ( U, N) is a painting, a is an ordering of U n bd Z, p= 
is an ordering of 2 - e for each cell e of (U, N), and 4 is a function from 
the set of cells of (U, N) to Q. Its index is 1 Un bd(C)I. 

Let (U, N, a, p, $), (U’, N’, a’, ,u’, 4’) be Q-portraits. A simzdation of the 
first in the second is a pair (E, g), where E is a drawing of a forest in Z 
with vertex set N’, and a(u) is a component of Z for each ZJ E N, and a(e) 
is a cell of (U’, N’) for each cell e of (U, N), such that 

(i) every edge of Z * is a subset of a cell of (U’, N’) 

(ii) for distinct ul, u2 E N, ~(21~) and a(~,) are distinct 

(iii) for distinct cells e 1, e2 of ( U, N), a( e, ) and ofe,) are distinct 

(iv) for u E N and each cell e of (U, N), no edge of a(v) intersects o(e) 

(v) for each cell e of (U, N), le- el = la(e) - a(e)] 

(vi) for each cell e of (U, N) and each integer n with 1 < n < If? - el, 
p&,,(n) is a vertex of c+,(n)) 

(vii) (UnbdC( = (U’nbdL(, and for 1 bn< (UnbdC(, a’(n) is a 
vertex of a(a(n)) 

(viii) for each cell e of (U, N), 4(e) d #‘(a(e)). 

The tree-width of a Q-portrait (U, N, a, p, 4) equals the tree-width of 
( U, N). The following is proved in [ 8, Theorem (9.2)]. 

( 10.1) Let Q be a well-quasi-order, and let k, w 2 0 be integers. Let 
Pl, p,, *** be a countable sequence of Q-portraits all with index k and tree- 
width < W. Then there exist j> ib 1 such that Pi is simulated in Pj. 

[We remark that the definition of tree-width in [S] differs slightly from 
our definition here; but the two quantities differ by at most k, and hence 
the tree-width in the sense of [S] is at most w  + k.] 

11. PAINTINGS FROM FOUNDATIONS 

Let C be a disc and k 2 0 an integer. Let d(k) denote the class of all 
rooted graphs (G, z) with index <k whose underlyng grafts have drawings 

582b/48/2-9 
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in Z and where all the terms in the sequence z are distinct. Let * be some 
new element. We define a quasi-order Qk = (d(k) u {* >, 6 ) as follows. 
For a, q2 E d(k) u (4, 

41 d q2 if ql, q2 E d(k) and q1 is simulated in q2 

q1 Q2 if ql=q2=* 

414 q2 otherwise. 

Let (G, z) E d(k), with index exactly k, and let (G, T) be its underlying 
graft. Then (G, T) embeds in C, and so it has a drawing which is cellular, 
as is easily seen. Let r be such a drawing. Let (F,, . . . . F,} be a foundation 
for r. For 1 < i < t, let ai be an ordering of V(r) n Fi and let ei be the 
corresponding ordering of the corresponding subset of V(G). Let 7~ be the 
ordering of V(r) n bd C where for 1 <n < k, Z(H) is the point of Z: 
representing the n th term of z. For 1 d i < t, let Zi be the union of Fi and 
the set of points inside r;i, and let 

For 0 < i < t, let Ti = Tn Ci, and let Gi be the subgraph of G corre- 
sponding to Ti. Then for each i> 1, (Gi, $i) E &(k - 1). For each edge e 
of To, let D(e) be a disc with e G D(e) CC, such that 

D(e) n U(T) = 2 

D(e)AdEiSZ 

D(e) n D(e’) C f? n 2’ 

(1 di< t) 

for distinct edges e, e’ of To. 

(This is the procedure of “thickening” edges discussed earlier-it is possible 
since r is cellular.) Let 

U’=+J . . . u -& u U (D(e): e E E&J), 

where E(T,) denotes the set of edges of r,; and let N’ = V(T,). Then 
(U’, N’) is a painting. The closures of its cells are the sets Cl, . . . . C, and the 
sets D(e) (eE E(T,)). For each cell f of (U’, N’), we define ,u~= ai and 
Kf) = (Gi, $i) if f= zi f or some i, 1 < id t; and we define pf to be some 
ordering of f-f, and ~$0 = *, if f = D(e) for some e E E( To). Then 
(U’, N’, 71, ,u, 4) is a Qk- ,-portrait. We call it a Qk- ,-portrait derived from 
(G, z) (via I). 

(11.1) With notation as above, the tree-width of (U’, V’) is no greater 
than the tree-width of any corresponding truncation sf r. 
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This is unfortunately not quite a consequence of [7, Theorem (3.8)]. 
However, it is a consequence of the strengthening of that theorem obtained 
by replacing the last sentence of its statement by the following. “If G has 
a tree-decomposition ( r, ( Y,: t E V(T))) of width d w, then H has a tree- 
decomposition (T, (X,: t E V(T))) of width < w  such that Y, n V(H) c X, 

for every t E V(T), and { ul, . . . . v,} E X, for some to E V(T).” The proof 
given in [7] serves as well to prove this strengthened form. (We omit the 
full statement of the result of [7], because to make that intelligible would 
require a disproportionate number of new definitions.) (11.1) follows from 
this by applying it to each Gi in turn. 

(11.2) Let (G, q), G, z,) E d(k), both with index k. Let Pi be a Qk _ 1- 
portrait derivedfrom (Gj, Zi) (i= 1,2). If P, is simulated in P2 then (G,, z,) 
is simulated in (G2, 7,). 

ProoJ: Let rl, r2 be respective drawings. By (8.4) the drawing e” of a 
forest involved in the simulation relation for the portraits can be chosen to 
be a subdrawing of r2, since each O-arc in the foundation used for r2 is 
centred, by (8.2). The rest of the verification of (11.2) is lengthy but 
straightforward, and is left to the reader. (We point out that the “missing” 
parts of rl, r2, the insides of the foundation O-arcs, have not been forgot- 
ten; the simulation relation works correctly on them because of condition 
(vii) in the definition of Q-portrait simulation.) 1 

12. CONCLUSION OF THE DISC CASE 

Now we complete the proof of (6.1) when C is a disc, as follows. We 
must show that the class of all grafts with index <k which embed in a 
disc C is well-rooted. We proceed by induction on k, and assume the result 
is. true for all smaller values of k. By (4.2) and our inductive hypothesis, it 
suffices to prove that the class of all grafts with index exactly k which 
embed in Z’ is well-rooted. 

Let (G, , T,), (G*, T2), . . . be a countable sequence of grafts with index k 
which embed in Z. For j > 1, let r’ be a drawing of (Gj, Ti) in C. We may 
assume that for j 2 2, (G, , T,) is not simulated in (Gi, T’); and so by (9.4) 
there is a number w  such that for all j > 2, every truncation of r’j has tree- 
width < w. For j 2 2 let 7j be some ordering of T’, and let Pi be a Qk- l- 
portrait derived from (Gj, zj) via r’. By (1 l.l), Pi has tree-width no greater 
than w, for j = 2, 3, . . . . By our inductive hypothesis and (4.3), Qk- 1 is a 
well-quasi-order, and so by (10.1) there exist j’ > j 2 2 such that Pi is 
simulated in Pjt. By (11.2), (Gj, zj) is simulated in (GjS, zip), and so (G,, Ti) 
is simulated in (Git, r’,), as required. 1 
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13. VERTEX IDENTIFICATION 

We have now finished the most difficult part of the paper. We shall have 
no further need for many of the preceding definitions; in particular, tree- 
width, paintings and foundations will not be used any more in this paper. 

We have established that certain classes of grafts are well-rooted. Our 
method for more complicated surfaces is based on making new well-rooted 
classes by piecing together old ones in certain ways; and the next two 
sections explain these constructions. 

Let (G, T) be a graft, and let XC V(G) be such that no edge of G has 
one end in X and the other in V(G) - X. Let G,, G2 be the restrictions of 
G to X and to V(G) - X, respectively, and let TI = Tn X, T, = T- X. Then 
(G, , T,), (G2, T,) are grafts, and we write 

(G, T) = (6, T,) 0 (Gz, T2). 

Let &, a be classes of grafts. We define ~2 @g to be the class of all 
grafts of the form A @II, where A E ~2 and BE 99. 

(13.1) If &‘, 649 are well-rooted then so is JZI @ 98. 

Proof. Let A,@B,, A,@&, . . . be a countable sequence of members of 
SZZ@S#, where A,~~ and Bier (i= 1, 2, . ..). By (3.2) there exist i’> i>, 1 
such that Ai is simulated in Aij and Bi is simulated in Bi,. But then Ai@Bi 
is simulated in Ai,O Big) as required. 1 

Let (G, T) be a graft and let t,, t2 E T be distinct. Let G’ be obtained 
from G by identifying tl and t2 forming a new vertex t say; and let T’ be 
one of 

Then (G’, T’) is a graft, and we say it is obtained from (G, T) by a vertex 
identification. 

(13.2) If ~2 is well-rooted, then the class of all grafts which can be 
obtained from a member of JIZ by a vertex identification is well-rooted. 

Proof. Let (H, , U,), (H,, U,), . . . be a countable sequence of grafts, 
such that for i= 1, 2, . . . there exists (Gi, Ti) E ~2 such that (Hi, Ui) is 
obtained from (Gi, Ti) by a vertex identification. For i = 1, 2, . . . let ti,, ti2 be 
the two vertices of Gi which are identified to form Hi, and let Ui be the 
vertex of Hi formed by identifying ti, and ti,. By-replacing our sequence by 
a suitable countable subsequence, we may assume that either UiE Ui for 
i = 1, 2, . . . . or Ui $ Ui for i = 1, 2, . . . . Let Zi be an ordering of Ti with 
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ri( 1) = til, ~~(2) = t, (i = 1, 2, . ..). By (4.3), there exist j > i > 1 such that the 
rooted graph (Gi, Zi) is simulated in (Gi, ~j). But then (Hi, Ui) is simulated 
in (Hi, Uj), as required. B 

If &’ is a class of grafts, let W’(d) = J$‘; and inductively, for i = 1, 2, . . . 
let W’(d) be the class of all grafts which can be obtained from a member 
of IV- ‘(d) by a vertex identification. Let 

W(d) = WO(d) u W’(d) u . . . . 

(13.3) If ~2 is well-rooted then so is W(d). 

Proof. Since & is well-rooted, it has an index k by (4.1). We proceed 
by induction on k. If k < 1 then W(d) = & and the result is true. We 
assume then that k 2 2. Now W’(d) has index <k - 1 as is easily seen, 
and by (13.2) W’(d) is well-rooted. Hence W( W’(d)) is well-rooted, by 
our inductive hypothesis. By (4.2), &u W( W’(d)) is well-rooted; but 
W(d) = ~9 u W( W1(&)) and the result follows. 1 

14. CHAINS, TRAINS, AND CONCATENATIONS 

As well as the rather easy constructions of the last section, we need a 
more complicated one, which we call concatenation. Here, roughly, we 
paste together grafts in series, overlapping each with its predecessor. Let & 
be a class of grafts and let (G, T) be a graft. A path-decomposition of (G, T) 
over & is a sequence (Gi, Yi_ 1, Yi) (1 d i < r) for some r > 1, such that 

(i) (Gi, Yi_1~ Y,)E& for 1 <idr 

(ii) Gi is a subgraph of G for 1 < i< Y, G1 u ... u G, = G, and 
G 1, “‘, G, are mutually edge-disjoint 

(iii) for 1 < h < i < j < Y, V(G,) n V( Gj) E I (this condition says, 
roughly, that each graph in the sequence is pasted onto its predecessor) 

(iv) for 1 <i<r, V(Gi)n ~(Gi+l)= Yi 

(v) T= You Y,. 

If k 2 0 is an integer, we say that (G, T) is a k-chain over & if it has a 
path-decomposition (Gi, Yi _ 1, Yi) (1 <i<r) such that \Yil =k (O<i,<r), 
and there are k mutually vertex-disjoint paths of G between Y. and Y,. We 
begin with the following lemma which establishes some properties of 
k-chains. 

(14.1) Let (G, T) b e a k-chain, and let (Gi, Yi_ 1, Yi) (1~ i < r) be a 
path-decomposition with 1 YiI = k (0 6 i < r). Let P1, . . . . Pk be mutually 
disjoint paths of G from Y, to Y,. Then 
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(i) for 1 < i 6 r, there is no edge of G with one end in uj< i V( Gj), the 
other in uj> i V( Gj), and neither end in V(Gi) 

(ii) if l<h<i<j<r, every path of G from V(G,) to V( Gj) meets 

V(Gi) 

(iii) for O<i<r and 1 dp<k, IYin V(P,)I =l 

(iv) for 1 < i < r and 1 6 p <k the intersection of P, and Gi is a path 

(v) for 1 < p <k, P, is obtained from the paths P, n Gi (i = 1,2, . . . . r) 
by concatenating them in order. 

Prooj Suppose e is an edge as in (i). Choose h with 1 < h < r such that 
e E E(G,). By symmetry, we may assume h d i. Let v be the end of e with 
v E uj> i V( Gj), and choose j > i with v E V( Gj). Then 

V E V(G,) CT V(G,) s V(Gi), 

a contradiction. Thus there is no such edge, and (i) holds. From this, (ii) 
follows immediately. 

To prove (iii) we show first that for 0 6 id r and 16 p 6 k, 
Yin V(P,> # 0. This is true if i = 0 or i = r, since Pp is a path from Y0 to 
Y,. If 0 < i < r, then Pp meets V( Gi) by (ii), since it meets V( G, ) and V( G,.); 
and the last vertex of Pp in V( Gi) is also in V( Gi+ 1), by (ii), and hence is 
in Yi. Thus Yin V(P,) # 0. But since 1 YiJ = k and PI, . . . . Pk are mutually 
vertex-disjoint, (iii) follows. 

Now let 16 p < k and 16 i < r. Any vertex of Pp in V(Gi) which is 
incident with an edge not in Gi is in Yi- 1 u Yi, and SO by (iii) there are 
at most two such vertices; and the same argument shows that if there are 
two such vertices, the subpath of P, between them is a subgraph of Gi. 
Thus (iv) holds, and (v) follows from (iv) and (ii). 1 

( 14.2) If SZ? is well-rooted and k > 0 is an integer, the class of all 
k-chains over A? is well-rooted. 

Prooj It suffices to prove that for every k’ the class of all k-chains over 
& with index k’ is well-rooted. Let (G’, T’ ), (G’, T2), . . . be a sequence of 
k-chains over &, all with the same index, and for i = 1,2, . . . let 
(GJ, Yj- 1, Yj) (1 < j < ri) be the corresponding path-decomposition. For 
i = 1, 2, . . . let Pi, . . . . Pi be mutually vertex-disjoint paths of G’ from Yi to 
YF,. 

Let i 3 1 be an integer. For j= 1, 2, . . . . ri, and for p = 1, . . . . k, let r.i( p) be 
the first vertex of Pi in V( Gf:) (which is necessarily in YJ- 1 ), and let 
zj( p + k) be the last vertex of Pi in V( Gj) (which is necessarily in Yj). Then 
(Gj, 7;) is a rooted graph. Since 1 Yi- 1 1 = k and Pi, . . . . Pi are mutually 
vertex-disjoint, it follows that {rj( l), . . . . T;(k)) = Yj- 1, and similarly that 
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(rj(k + l), . ..) rj(2k)) = Yj. Thus (G,j, rj) E 99, where 9J is the class of all 
rooted graphs of index 2k with underlying graft in &. By (4.3), 98 is well- 
rooted, and so by (3.3) there exist i > h 2 1 and j( 1 ), . . . . j(,,) such that 

l<j(l)<j(2)< *a* <j(r,)<ri, 

and such that for 1 d n < Ye, (Gt, rt) is simulated in (Gj(,), rjcn,). For 
1 < n < Ye, let 0, be the corresponding simulation. Let Q be the subgraph 
of G’ formed by the union of the a,(u) for 1 < n d rh and u E V( Gi). Let 

Then Y G V(Q). Let R be the intersection of Pi u . . . u Pi with 

u (Gj: je (1, . . . . 
yi) - (j(l), “*7 j(Yh)} 1. 

Let G be the union of Q and R. For a component K of G, we say K realizes 
u E V(Gh) if V(K) n V(a,(u)) # @ for some n with 1 <n < rh. 

(1) Every component of G realizes some vertex of V( G”). 

For if K is a component of G and V(K) n V(Q) = a, then K is a compo- 
nent of R, and so K is a subpath of PL for some p with 1~ p <k. Now 
PL meets V(Q) and so K # Pi, and some end u of K is an internal vertex 
of Pi. But then u E V(Q) from the definitions of Q and R, and hence 
V(K) n V(Q) # @, a contradiction. Thus there is no such component K, as 
required. 

(2) Zf V(a,(u)) n V(a,(v)) # @ then u = v. 

If m = n the result is clear, and we assume m < n without loss of 
generality. Choose x E V(o,(u)) n V( a,( v)). Then 

and so x = ~&)(p + k) for some p with 1 < p d k, where x E V(P,). 
Similarly x = T&,(P). Since 6, is a simulation of (Gk, 7:) in ( Gjtm,, rjcm,), 
it follows that u = rk( p + k), and similarly that v = rE( p). But for m < I < n, 

$I)( P) = &( P + k) = x 

and so r:(p) = r:( p + k), since gI is a simulation. But 

$(p+k)=C+,(p) (m<l<n-1) 

and we deduce that u = U, as required. 
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(3) Every component of G realizes a unique vertex of V( Gh), 

By (1) and (2), it suffices to show that if x # y and P is a path of G 
between x E V(a,( u)) and y E V(a,( v)) then IA = v; and it clearly suffices to 
prove this when no internal vertex of P is in V(Q). We assume m 6 n 
without loss of generality, and we proceed by induction on n - m. Suppose 
that e E E(Q) for some edge e of P. Then both ends of e are in V(Q), 
and so E(P) = {e]. Choose 1 with 16 l<rh and WE V(GF) such that 
eEE(dw))- BY (a w  = u and w  = v, and so u= v, as required. We may 
assume then that every edge of P is in E(R). Since E(P) # 0 and 
E(P) c E(R), P is a subpath of PP for some p with 1~ p < k. By (14.1), no 
vertex of P except x is in V( Gj,,,) (and so m # n), and similarly, no vertex 
of P except y is in V( G&,). In particular, x = z&,( p + k) and y = rjrn,( p). 
If n 3 m + 2 then by (14.1) some vertex of P is in V(Gjtm + 1j), and the last 
such vertex is in Y z V(Q). Since no internal vertex of P is in V(Q), we 
deduce that one of x, y is in V(GjCM + i,), and the result follows from (2) 
and our inductive hypothesis. We may assume then that n = m + 1. But 
x = zXm,( p + k) and so u = rk( p + k). Similarly, v = zt( p). But rk( p + k) = 
ri( p) since n = m + 1, and so u = v, as required. 

(4) Every vertex of V(Gh) is realized by a unique component of G. 

Certainly every vertex of V(Gh) is realized by some component of G. Let 
v E V(Gh), and let x E V(o,(v)), y E V(a,(v)). We wish to prove that x and 
y are in the same component of G. If m = n this is true since a,(v) is 
connected, and so we may assume n > m. Suppose that n = m + 1. Then 
VE V(GL) n V(Gi), and so VE YL. Choose p with 1 6 p < k such that 
v = rL( p + k) = rE( p). Then x is the same component of G as rj+,,( p + k), 
and y is in the same component of G as r&,(p). But rjtn,( p + k) and 
ricn,( p) are in the same component of R and hence of G, by (14.1), since 
n = m + 1. The result is therefore true if n = m + 1. Now suppose n > m + 1. 
Then v E V(G:) for m < 2 < n, and we may choose zI E V(G&,,) (m < l< n) 
such that zI E V(a,(v)), and z, = x, z, = y. But for m < 2 < n, zI and zI+ 1 are 
in the same component of G, by our observation above. Hence x and y are 
in the same component of G, as required. 

Now to complete the proof of (14.2), we define r~ by 

(i) if v E V(G”), a(v) is the component of G which realizes v 

(ii) if eE E(Gh), ( ) CJ e is a,(e), where 1 < n < rh and e is an edge of Gt . 

It is easy to verify that o is a simulation of (Gh, 7”) in (G’, T’), as required. 
This completes the proof of (14.2). 1 

Now we need a mild generalization of k-chains. We say that (G, T) is a 



GRAPH MINORS, VIII 279 

k-train over & if it has a path-decomposition (Gi, Yi_ 1, Yi) (1 < i < r) over 
& such that 

(i) for 1 < i < r, ] YJ = k 

(ii) if r 2 3 there are k mutually vertex-disjoint paths of G between 
Y, and Yrml. 

If ~2 is a class of grafts, we denote by &* the class of all grafts 
isomorphic (in the natural sense) to a member of d. Evidently if & is well- 
rooted then so is xZ*. 

( 14.3) Every k-train over d belongs to w(d*gp*~d*) u 
W( SZ?* @AZ*) v zz2 where B is the class of all k-chains over AI. 

Proof: Let (G, T) be a k-train over&, and let (Gi, Yi- 1, Yi) (1 < i < r) 
be the corresponding path-decomposition. If r = 1 then (G, T) E &. If r = 2 
then (G, T)E W(&*@&*). If r > 3 then 

(G, T)E W(&*@B*@zI*). 

In each case the theorem is true, as required. 

If SX?’ is a class of grafts, Lk(&) denotes the class of k-trains over z$‘, and 
Ck(&) denotes L’(L’(L’(... (Lk(&))...))). 

( 14.4) Zf & is well-rooted then so is Lk( ~4). 

This follows immediately from (14.2), (13.1), (13.3), (14.3), and (4.2). 
We say that a graft (G, T) is a concatenation over & if (G, T) E Ck(&) 

for some k 2 0. 

(14.5) If 
well-rooted. 

d is well-rooted, then the class of all concatenations over d is 

Proo$ By (4.1), SQ’ has some index k,. Now for k > ko, Lk(&) = ~2, 
and so every concatenation over S$ is an element of Cko(&). But this is 
well-rooted, from (14.4). The result follows. 1 

15. TUBES 

A cylinder is a surface homeomorphic to X(0,0,2). Our next objective is 
to prove (6.1) when Z is a cylinder. 

There are two kinds of O-arc in a cylinder; those that are null-homotopic 
and bound a disc, and those that wind once around Z. A hoop is an O-arc 
of the second kind. If F is a hoop then C - F is naturally divided into two 
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parts, which we call the sides of F. If I;, , F2 are hoops and F2 - F1 lies com- 
pletely in one side of F, , it follows that F1 - F2 lies completely in one side 
of F2. In these circumstances we say that F, , F2 are Zaminar. If F, , F2 are 
distinct laminar hoops, then Z is divided naturally into three parts-the 
side of F1 not containing F, - F, , the side of F2 not containing F, - F2, 
and the remainder, which we denote by C(F,, F2). 

A tube in a cylinder Z is a triple (r, F, , F2), where r is a drawing in Z 
and F,, F2 are r-normal laminar hoops such that U(T) z Z(F,, F2). The 
width of a tube (r, F;, , F2) is the largest value of Y such that for every 
r-normal hoop Fc Z( F, , F,), either Fn Y(r) = I;, n V(T), or Fn V(Y) = 

F2 n V(r), or [Fn V(r)] 2 r. If there is no such number r, we say its width 
is infinite. The length of a tube (r, F1, F2) is the largest value of s such that 
Iln I’( r)l 2 s for every r-normal [0, 1 ]-arc I with one end in F, and the 
other in F2. 

If (r, F, , F2) is a tube, and (G, T) is a graft, we say that (r, F, , F2) is 
a framing of (G, T) if there is a bijection a from V(G) to V(r) and a 
bijection /? from E(G) to the set of edges of r, such that 

(i) for ZJE V(G) and eE E(G), u is incident with e if and only if 
44 E P(e) 

(ii) for u E V(G), a(u) E F, u F2 if and only if u E T. 

If (G, 7’) has a framing, we say (G, T) is tubular. If (G, T) is a tubular graft, 
its width is the maximum width of all its framings and its length is the mini- 
mum length of all its framings. 

(15.1) Every tubular graft of width 2 r and index <k is an r-train of 
tubular grafts of width > r -I- 1 and index d k + 2r. 

ProoJ: Let (G, T) be a tubular graft of width 2 r and index <k. We 
wish to show it is an r-train of tubular grafts of width 2 r + 1 and index 
<k + 2r. If its width is at least r + 1 we are done. We assume then that it 
has width r. Let (r, F, , F2) be a framing of (G, T) with width r, on a cylinder 
C. Choose hoops H,, . . . . H, with n maximum such that 

(9 HI, . . . . H, E Z(F, , F2) are r-normal, and mutually laminar 

(ii) IHjn Y(r)/ <r (1 <i<n) 

(iii) the sets F, n V(T), F2 n V(T) and Hi n V(T) (1 < i < n) are all 
different. 

Define HO = F1, H, + 1 = F2. We assume H,, . . . . H, to be numbered in 
order along Z, so that for 1 < i < n, Hi G L’( Hi- 1, Hi + 1 ). Let Ti be the 
intersection of r with L’(H,- 1, Hi) (1 < i < n + 1). From the maximal&y of 
n, (ri, Hi- 1, Hi) is a tube with width b r + 1. Let Gi be the subgraph of 
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G corresponding to Ti, and let Yi be the set of vertices of G represented by 
the points in V(r) n Hi. Then (Gi, Yi- 1, Yi) (1 \< i,<n + 1) is a path- 
decomposition of (G, T) over the class of all tubular grafts with width 
2 r + 1 and index <k + 2r. It remains to check that 

(i) for 1 < i< n, ( Yil = r; this is true by (ii) above and the fact that 
(r, F,, F2) has width r 

(ii) if n > 1, there are r mutually vertex-disjoint paths of r between 
Y, and Y,; this follows from Menger’s theorem and the fact that 
(r, I;, , Fz) has width r. 

The result follows. 1 

(15.2) Let (G, T) be a tubular graft of index <k and let Y 2 0 be an 
integer. Then (G, T) is a concatenation of tubular grafts of width br and 
index <k+r(r- 1). 

Proof Let %(t, u) be the class of all tubular grafts of width 2 t and 
index <u. Now by (15.1), 

Y(0, k) E L’(S( 1, k)) = C’(%( 1, k)). 

We prove by induction on t that for t > 0, 

3(0, k) E C’(g(t + 1, k + (t + 1) t)). 

The result is true if t = 0, and we assume t 3 1. By our inductive hypothesis, 

S(O, k&C’-‘(g(t, k+ t(t- 1))) 

but by (El), 

g(t, k+ t(t-l))EL’@(t+ 1, k+(t+ l)t)), 

and so 

This completes the inductive proof, and the result follows. 1 

Let &(k, r, s) denote the class of all tubular grafts with index <k which 
have a framing (r, F,, F2) in a cylinder C, such that there do not exist 
r-normal laminar hoops F;, F; c C(F1, Fz) such that (r’, F’;, Fi) has 
width 3 r and length as, where r’ is the intersection of r and C(F;, F;). 
Our next object is to prove that &(k, r, s) is well-rooted. 

(15.3) rf G, T) E zI(k, r, s), then (G, T) is a concatenation of tubular 
grafts of length < s and index < k + r(r - 1). 
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Proof: Take a framing (r, F, , F2) of (G, T) in a cylinder Z, as in 
the definition of &(k, r, s). If we express (G, T) as a concatenation by 
beginning with this framing and decomposing it (by the method of (15.1) 
and (15.2)) we express (G, T) as a concatenation of tubular grafts of width 
>, Y and index <k + r(~ - 1 ), with the additional property that each of 
these grafts has a framing (P, F;, Fi), where F;, F; s C(Fl, F2) are 
r-normal and r’ = Tn Z(F;, F;). But any such graft has length <s, since 
(G, T) E d(k, Y, s). The result follows. 1 

(15.4) For any integers k, r, s 2 0, d(k, r, s) is well-rooted. 

ProoJ Let W denote the class of grafts with index <k + r(r - 1) + 2s 
which embed in a disc. Then 9# is well-rooted by the result of Section 12. 
Let a’ be the class of all tubular grafts with length <s and index 
6 k + r(r - 1). Then 9 c W(a), and so 99’ is well-rooted by (13.3). But 
any member of &(k, r, s) is a concatenation over 9#‘, by (15.3), and hence 
&(k, r, s) is well-rooted by (14.5). 1 

16. BOUNDARY-LINKING IN TUBES 

Let 2 be a cylinder, and let r, s 2 0 be integers. A framing (r, F1, F2) in 
Z is said to be (r, s)-boundary-linked if there exist f-normal laminar hoops 
F; , F; s Z( F1, F2) such that 

(i) F; E C(F,, F;), F; c C(F,, F;) 

(ii) (I’nZ(F{, Fi), F;, F;) has width ar and length 2s 
(iii) for i = 1, 2 there are 1 V(r) n Fij mutually vertex-disjoint paths of 

r between Fi and F/. 

Let k, r, s 2 0 be integers, and let B(k, r, s) denote the class of all grafts 
of index <k which have framings in Z which are not (r, s)-boundary- 
linked. Let B(k) denote the class of all tubular grafts with index <k. The 
main result of this section is the following. 

(16.1) If B(k - 1) is well-rooted then so is 9?(k, r, s) , for any integers 
k, r, s > 0. 

[We interpret 99( - 1) = 0.1 
The following lemma is used to prove ( 16.1). 

(16.2) g(k, r, s) E &(k, r, s) u W(g(k - 1) @ &(2k, r, s + 2)) u 
W(9Qk - l)@%?(k - 1)). 
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ProoJ: Let (G, T) E &?(k, Y, s), and let (r, F1, Fz) be a framing of (G, T) 
in .Z which is not (Y, s)-boundary-linked. Let 1 V(T) n Fit = ki (i = 1, 2). We 
assume k, 2 k2 without loss of generality; and certainly k, + k, 6 2k. Let k3 
be the minimum value of 1 V(r) n F[ taken over all r-normal hoops 
Fs C(F, , F2). Then k, 2 k, since Fz is a possible choice of I;: Since 
kl 2 k2 2 k,, one of the following three cases must occur. 

Case 1. kl=kZ=kj. 

In this case we claim that (G, T) E d(k, Y, s). For suppose that 
F;, Fi are r-normal laminar hoops with F;, Fi E C(F, , Fz), and 
(rn W;;, F;), F;, r;;‘) h as width >r and length 3s. We assume without 
loss of generality that F; E C(F, , FL) and F; E C(F,, F;). But by Menger’s 
theorem there are k3 mutually vertex-disjoint paths of r between Fi and F/ 
(i = 1,2), and so (r, F1, Fz) is (r, s)-boundary-linked, contrary to our 
hypothesis. Thus such I;;, F; do not exist, and so (G, T) E d(k, r, s) as 
claimed. 

Case 2. kl > k2 = k3. 

In this case we claim that (G, T) E W(Aif(k - 1)@&(2k, Y, s + 2)). For let 
F be a r-normal hoop with FE C(F,, F2) and with 1 V(T) n FI < kl, 
chosen so that the side of F including F, - F contains as few vertices of r 
as possible. Let Ti = r n C(F, Fi) and let (ri, F, Fi) be a framing of some 
graft (Gi, Ti) (i= 1, 2). 

Now (G2, T2)~9!?(k- 1) since 1 V(T) n FI < kl. We claim that 
(G,, T,) E d(2k, Y, s + 2). Certainly 1 T1 1 < k, + k3 < 2k. Suppose then that 
F;, F; c Z(F1, F) are r-normal laminar hoops, and (r’, F;, F;) has width 
br and length as+2Zmax(s+ 1,2), where r’=rn.L’(F;, F;). We 
assume without loss of generality that F; G Z(F,, F;), F; c C(F,, F;). It is 
easy to see that there is a r-normal hoop F; E C(F;, F;), such that the 
tube (P, F;;‘, F;) has length as, where r” = Tn C(F;‘, F;), and such 
that F;’ n r @ F; n r. Then (P’, I;;‘, F;) has width 3 Y and length 2s. 
Moreover, there are k2 mutually disjoint paths of r between F, and F2, 
since k3 2 kz, and hence there are k2 mutually disjoint paths of r between 
F;’ and Fz. Also, from the choice of F, there are k, mutually disjoint paths 
of r between F;;’ and I;,. Thus (r, F, , F2) is (Y, s)-boundary-linked, a 
contradiction. Hence there do not exist such F;, Fi and so (G, , T,) E 
d(2k, r, s + 2) as claimed. It follows that 

(G, T) E W(S?(k - 1)@&(2k, r, s + 2)). 

Case 3. k2 > k,. 

Let F be a r-normal hoop with ) V(r) n FI < k,; and let 
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Ti = Tn C(F, I;i) (i = 1,2). Then (rj, F, Fi) is a framing of some member of 
&J(k--1) sincek,<k,,k, (i=l,2); and so 

(G, T) E W(&?(k - l)&%(k - 1)). 

In each case then the theorem is satisfied. This completes the proof. m 

Proof of (16.1). If k%(k - 1) is well-rooted then the right hand side of 
(16.2) is well-rooted, by (4.2), (13.1), (13.3), and (15.4), and hence so is 
gtk, r, 4. I 

17. CONCLUSION OF THE CYLINDER CASE 

Now we prove that a(k) (as defined in Section 16) is well-rooted. Let Z 
be a cylinder with cuffs C1, C2, and let g(k,, k2) be the set of all grafts 
with drawings r in Z: such that Ir n Ci( = ki (i = 1,2). Clearly every 
tubular graft embeds in C, and in fact we have the following, as is easily 
seen. 

(17.1) For any integer k > 0, S?(k) = u (a(k,, k2)), the union being taken 
over all integers kI, k2 2 0 with kI + k2 6 k. 

We shall need the following lemma, which is a consequence of [ 11, 
Theorem (9.3)]. 

(17.2) Let (H, U) E B(kI, k2). Then there are integers r, s 2 0 such that 
for every (G, T) E g(k,, W, either (H, U) is simulated in (G, T) or 
(G, T) E gtk, + k2, r, 4. 

From this we deduce the following. 

(17.3) For any integer k 2 0, 9?(k) is well-rooted, 

ProoJ: We proceed by induction on k, and assume that S?(k - 1) is 
well-rooted. (We recall that g( - 1) is interpreted as 0, which is certainly 
well-rooted.) By (17.1) and (4.2), it suffices to prove that B(k,, k2) is well- 
rooted for all choices of kI, k2 with kI + k2 < k. Let us then choose integers 
k,, k2 > 0 with k, + k2 < k. Let (G,, T,), (G2, T2), . . . be a countable 
sequence of members of 99(k,, k2). We wish to show that there exist 
j > i > 1 such that ( Gi, Ti) is simulated in (G,, Tj). If ( G1 , T, ) is simulated 
in (Gi, Tj) for some i > 1 we are done, and so we assume that this is false. 
By (17.2) there are integers r, s > 0 such that (Gi, Ti) E 9J(kl + k,, r, s) for 
all i b 2. But B(k, + k,, r, s) E B(k, r, s), and 9#(k, r, s) is well-rooted by 
(16.1) and our inductive hypothesis that B(k - 1) is well-rooted. Hence 
there exist j > i > 2 such that (Gi, Ti) is simulated in (Gi, Tj), as 
required. 1 
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18. THE GENERAL SURFACE 

So far we have proved (6.1) when C is a disc or cylinder. In this section 
we prove it in all other cases. 

If C is a cuff of a surface Z’, C + C denotes the surface obtained from .Z 
by “pasting” a disc onto C, thereby reducing the’number of cuffs by one. 
An O-arc F in Z is said to be planar in Z if it bounds a disc in C; it 
surrounds a cuff C if it is planar in Z + C but not in Z. It is near-planar if 
either it is planar in Z: or it is planar in C + C for some cuff C. 

Let G1 be the graph with two vertices u, u say and three edges, one a 
loop on u, one a loop on v, and one joining u, U. Let G, be the graph with 
one vertex and two edges. Let G3 be the graph with two vertices and three 
edges, mutually parallel. Let G4 be the graph with two vertices and two 
edges, exactly one of which is a loop. Let X, , X,, X3, X4 be the topological 
space associated with G,, GS, G3, G4, respectively. We recall that an Xi-arc 
in Z is a subset of C homeomorphic to Xi. We define the end of an X,-arc 
to be the point representing the monovalent vertex of G,. 

Let C be a surface. By a schism in Z: we mean a subset of C which is one 
of the following: 

(i) an O-arc I; which is not near-planar, with IFn bd Cl d 1 

(ii) a [O, II-arc with its ends in distinct cuffs, containing no other 
point of bd Z 

(iii) a [O, II-arc I; with both ends in the same cuff C, such that 
Fu C is not near-planar, and such that [Fn bd Z( = 2 

(iv) an X, or X,-arc in C such that both its O-arcs surround distinct 
cuffs of C, and which contains no point of bd C 

(v) an X,-arc in Z such that all three of its O-arcs surround distinct 
cuffs, and which contains no point of bd E 

(vi) an X,-arc with its end in one cuff and its O-arc surrounding 
another cuff, containing only one point of bd C. 

If X is a schism in C, we may “cut” along X in the natural way, to obtain 
a new surface C’. There is a natural surjection 8: Z’ + Z. If r is a drawing 
in E and X is r-normal, we define 

e-‘(r) = (8-y U(T)), e-y v-(r))). 

Then 0- ‘(r) is a drawing in Z’. 
We require the following lemma, which is a consequence of [ 11, 

Theorem (9.1)], and the discussion in Section 8 of that paper. 

(18.1) Let C be a connected surface, not a sphere, disc, or cylinder. Let A 
be a drawing of a graft (H, U) in Z. Then there is a number N such that for 
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every graft (G, T) and every drawing r of (G, T) in Z, one of the following 
holds: 

(i) (H, U) is simulated in (G, T) 

(ii) for some cuff C of C, IV(T)nCI #IV(d)nCl 

(iii) for some r-normal schism F, ) V( lJ n FI 6 N 

(iv) for some cuff C of Z there is a r-normal O-arc F surrounding C 
with FnbdZrCand with IV(T)nFI <IV(r)nCI. 

Let C be a connected surface. Then C z Z(a, b, c) for some choice of 
a, b, c, and we define g(C) = 4a + 2b + c. (This definition does not depend 
on the choice of a, b, c because c is fixed, being the number of components 
of bd Z, and 4a + 2b is also fixed, being equal to 2(2 - e - c) where e is the 
Euler characteristic of Z.) For a general surface Z, we define g(Z) to be the 
maximum of g(Z) taken over all components Z’ of Z. 

( 18.2) Let C be a connected surface, not a sphere, disc or cylinder, and let 
X be a schism in Z. Let Z:’ be obtained from C by cutting along X. Then 
kc’) < gw 

Proof Let EC, be a component of X’ and C2 be the union of the other 
components. Let C, Z’, Z1, C2 have Euler characteristics e, e’, e,, e2 and 
have c, c’, cl, c2 cuffs, respectively. Let a, b, c, k,, a2, b2, c2 be such that 
Z z X(a, b, c), and C2 has k, components, and C, may be obtained from 
the union of k2 disjoint spheres by adding a2 handles and b, cross-caps and 
removing the interiors of c2 disjoint closed discs (where of course k2 = a2 = 
b2 = c2 = 0 if C’ is connected). The schism X is of one of the types listed in 
the definition of “schism,” which gives us several cases to consider. In each 
case we can find e’ - e by considering a triangulation of Z in which X is 
a union of 0- and 1-simplices, and it can be verified that 

2( e’ - e) + e’ - c + 4a, + 2b2 + c2 > 4k2. 

But e’ =el+2k2- 2a2 - b2 - c2 and c’ = c, + c2, and it follows by sub- 
stitution that 2e,+c,>2e+c. Now g(C,)=4-2e,-c,, and g(C)= 
4 - 2e - c, and so g(Zc,) < g(Z). Since this holds for every component Z, 
of C’ we deduce that g(Z) < g(Z), as required. g 

We come now to the proof of (6.1). If C is a surface and k 2 0 is an 
integer, we define %?(C, k) to be the class of all grafts of index <k which 
embed in Z. If h, k 2 0 are integers, we define %?(h, k) to be the union of 
%?( Z;, k), taken over all surfaces Z with g(Z) < h. Then (6.1) is a conse- 
quence of the following. 

(18.3) For any integers h, k 2 0, W(h, k) ‘is well-rooted. 
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Proof: We make two inductive hypotheses-that %(h’, k’) is well-rooted 
for all h’, k’ with h’ < h, and that %‘(h, k’) is well-rooted for all k’ <k. 

Let Z: be a connected surface with g(Z) < h. We shall show first that 
%(C, k) is well-rooted. For let the cuffs of Z be Ci, . . . . C, in some order. 
Let %(C; k,, . . . . k,.) denote the class of all grafts which have a drawing r in 
Z with 

1 V(T) n Gil = ki (1 G&c). 

We claim that for any integers k,, . . . . k, 2 0 with k, + . a e + k, <k, 
%‘(C; k,, . . . . k,) is well-rooted. For if Z is a sphere, disc, or cylinder then 
%(.E; k,, . . . . k,)cB(k) and th e result follows from (17.3). We assume then 
that Z is not a sphere, disc, or cylinder. Let (G, , T,), (G2, T2), . . . be a 
countable sequence of grafts in %?(C; k,, . . . . k,.). We may assume that 
(G,, T,) is not simulated in any of (G2, T2), (G3, T,), . . . . By (18.1) and 
(18.2) there is a number N such that for i = 2, 3, . . . . either 

(i) (Gi, Ti) E W(%‘(h - 1, k + 2N+ 2)), or 

(ii) (Gi, Tj)e W(%(h, k- 1)@8(2k- 1)) 

depending on whether ( 18.1)( “’ ) 111 or (18.1)(v) applies. Thus in either case 
(Gi, 7’i) E 9, where 

9 = W(%‘(h - 1, k + 2N+ 2)) u W(V(h, k- 1)@9#(2k- 1)). 

But %‘(h - 1, k + 2N + 2) is well-rooted, by our first inductive hypothesis; 
and 9?(h, k - 1) is well-rooted, by our second inductive hypothesis; and 
&?(2k - 1) is well-rooted, by (17.3). Hence 9 is well-rooted by (13.1) and 
(13.3), and so there exist j > i 2 1 such that (Gi, Ti) is simulated in (G+ Z-“). 
Thus Q?(Z; k,, . . . . k,) is well-rooted, as claimed. 

It follows that %‘(Z, k) is well-rooted. For %(C, k) = u %Z(Z; k,, . . . . k,), 
the union being taken over all choices of k,, .,., k, 20 with 
k,+ .a. + k, < k. Since there are only finitely many such choices, %(Z’, k) 
is well-rooted by (4.2). 

Let 9(h, k) be the union of %(C, k) taken over all connected surfaces X 
with g(Z) 6 h. If C I z E, then ‘?&Z’,, k) = %‘(C,, k), and up to 
homeomorphism there are only finitely many connected surfaces Z with 
g(E) <h. Thus there are finitely many connected surfaces E,, . . . . C, with 
g(Zi) <h (1 < i < n) such that 

93(k k) = U (%(Zj, k): 1~ i < u). 

Since each %?(Zi, k) is well-rooted, it follows from (4.2) that 9(h, k) is well- 
rooted. 

582b/48/2-10 
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In particular, 9(/z, 0) is well-rooted. It follows from (3.3) that 9$(/z, 0) is 
well-rooted; for if (G, 0) E %‘(h, 0) there are grafts (G, , @), . . . . (G,, 0) E 
9(h, 0) such that 

(G, 0) = (%0)0 --a 0 (Gr, 0). 

(In contrast, for k > 0 the class of all grafts expressible as the “disjoint 
union” of members of 9(/z, k) is not well-rooted, by (4.1).) Let &(h, k) be 
9(h, k)@ -a- @ g(h, k), with k summands. By (13.1), 8(/z, k) is well- 
rooted, and hence by (13.1) again, so is &(h, k) @ %(h, 0). 

Let (G, T) E %(h, k), and let r be a drawing of (G, T) in some surface C 
with g(C) < h. Then V(r) n M(Y) # 0 for at most k components Z’ of C, 
since 1 TI < k, and so we may express (G, T) as ( G1, T,) @ (G,, 0) where 
(G,, T,) E &(h, k) and (G2, T2) E V(h, 0). It follows that 

W(h, k) c &(h, k) @ %(h, 0) 

and so %?(h, k) is well-rooted, as required. 1 
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