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Abstract

This article concerns the exact controllability of unitary groups on Hilbert spaces with
unbounded control operator. It provides a necessary and sufficient condition not involving
time which blends a resolvent estimate and an observability inequality. By the transmutation
of controls in some time L for the corresponding second-order conservative system, it is
proved that the cost of controls in time T for the unitary group grows at most like exp(aL?/T)
as T tends to 0. In the application to the cost of fast controls for the Schrédinger equation, L is
the length of the longest ray of geometric optics which does not intersect the control region.
This article also provides observability resolvent estimates implying fast smoothing effect
controllability at low cost, and underscores that the controllability cost of a system is not
changed by taking its tensor product with a conservative system.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let Hy and Y be Hilbert spaces with respective norms || - ||, and || - ||. Let 4 be a
self-adjoint, positive and boundedly invertible unbounded operator on H, with
domain D(A). We introduce the Sobolev scale of spaces based on A. For any positive
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integer p, let H, denote the Hilbert space D(47/?) with the norm ||x[|, = ||47/2x]|,

(which is equivalent to the graph norm ||x||, + ||4?/?x||,). We identify Hy and Y with
their duals. Let H_, denote the dual of H,. Since H, is densely continuously
embedded in H, the pivot space H, is densely continuously embedded in H_,, and
H_, is the completion of Hy with respect to the norm ||x||_, = ||4772x]|,. We still
denote by A the restriction of 4 to H, with domain H,,,. It is self-adjoint with
respect to the H), scalar product. We denote by 4’ its dual with respect to the duality
between H, and H_,, which is an extension of 4 to H_, with domain H,_,.

Let Ce #(H,;Y) and let Be (Y, H_;) denote the dual of C (where (X, Y)
denotes the Banach space of continuous operators from X to Y).

The “generator” A’ and the control operator B define the first- and second-order
differential equations:

¢(1) —id'§p(t) = Bu(t), $(0) = ppeH 1, ueLi(R;Y), (1)

() + A1) = Bo(r), ((0)={(oeHy, ((0)=(eHy, veli . (RY), (2)

where each dot denotes a derivative with respect to the time variable ¢, u and v are the
input functions.

Egs. (1) and (2) with u =0 = v describe reversible conservative systems. For
example, if A is the positive Laplacian and B is a boundary control operator, then (2)
is a boundary controlled scalar wave equation, (1) is a boundary controlled
Schrédinger equation (Sections 2 and 10 elaborate on this example).

We assume that B is an admissible control operator for (2), i.e.

T

VT>0, YoeL*(0,T;Y), / e"fﬁBu(z) dte H 4, (3)
0

so that the solution {e C*(R; Hy)nC'(R; H_;) of (2) is defined by the following

integral formula where S(7) = (VA') " sin(rv/4’) and S(f) = cos(1v/A'):

{0 = S0+ 5006+ [ 8- )00 .

In Section 4 the control system (2) and its dual observation system are reduced to the
standard first-order setting for the theory of observation and control. We also
assume that B is an admissible control operator for (1), i.e. VT >0, 3K; 7>0,

2

T T
YueL*(0,T;Y), ’/0 ¢ Bu(r) dt <K17T/O ()] dt, (4)

—1

so that the solution ¢ € C°(R; H_;) of (1) is defined by the integral formula:

b(1) = &'y + /0 t ¢~ A' Bu(s) ds. (5)
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Definition 1.1. System (1) is exactly controllable in time T if for all ¢, in H_,, there is
auin L*(R; Y) such that u(¢) = 0 for t¢[0, 7] and ¢(T) = 0. The controllability cost
for (1) in time 7 is the smallest positive constant x; 7 in the following inequality for
all such ¢, and u:

T
/0 (O dr <y 71| (6)

System (2) is exactly controllable in time T if for all {; in Hy and {; in H_, thereisa v
in L*(R; Y) such that v(f) = 0 for t¢[0, T] and {(T) = {(T) = 0. The controllability
cost for (2) in time T is the smallest positive constant «, 7 in the following inequality
for all such ¢y, {; and v:

T
/0 o) dr<rea.r (1ol + 16 F - 7)

Remark 1.2. Strictly speaking, the properties above define the null-controllability of
the systems but, for such reversible systems, they are equivalent to exact
controllability. We refer to Section 4 for the dual notions of observability.

The main results of the paper, stated in Section 3, are consequences of the
controllability of the wave-like system (2) on the controllability of the Schrédinger-
like system (1). In particular, upper bounds on the controllability cost k; 7 of (1) as T
tends to zero are given. Applications to the boundary controllability of the
Schrédinger equation, based on the geodesic condition of Bardos et al. [2] for
the controllability of the wave equation, are presented in Section 10: a new proof of
the result of Lebeau [9], an extension of this result to product manifolds, and an
upper bound on the cost of fast controls in the same context.

The main tool presented in this paper is the control transmutation method which
can be seen as an adaptation to the theory of control of the kernel estimates method
of Cheeger et al. [5]. It consists in explicitly constructing controls v in any time T for
the Schrédinger-like system (1) in terms of controls u in time L for the corresponding
wave-like system (2), i.e. u(r,x) = [ k( s) ds, where the compactly supported
kernel k& which depends on T and L is some fundamental controlled solution on the
segment [—L, L] controlled at both ends. In Section 2, we recall an earlier estimate on
the optimal fast control cost rate for a one dimensional system. We use it to
construct the fundamental controlled solution k& in Section 8 and perform the
transmutation in Section 9.

This paper also contains results of independent interest on the controllability of
systems defined by unitary groups. In Section 4, we recall admissibility, observability
and controllability notions for such systems, their duality, and reduce the second-
order system (2) to this first-order setting. In Section 5, we state a necessary and
sufficient condition on the resolvent of the generator and the observation operator
for exact observability. In Section 6, we state a sufficient condition on the resolvent
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of the generator and the observation operator for the existence of controls steering
any state to a smooth state in any positive time 7" at a cost bounded from above by a
negative power of T'. In Section 7, we prove that the controllability cost of a system
is not changed by taking its tensor product with a system defined by a unitary group.

In the companion paper [12], we apply the control transmutation method to the
simpler case of the first-order equation ¢(¢) + " 4'¢(f) = Bu(t) with [0]<n/2 (in
particular, the corresponding semigroup is holomorphic), but in the more general
setting where A’ generates a cosine operator function in a Banach space. The
relationship between the controllability of this first order equation and the second-
order equation (2) has been investigated earlier in various settings (cf. references in
[12]) but only with 8 = 0. Eq. (1) corresponds to the case |0| = n/2.

2. Boundary control of the Schrodinger equation on a segment

Our estimate of the cost of fast controls for (1) builds, through the control
transmutation method, on the same estimate for a one-dimensional control system of
type (1), i.e. the Schrédinger equation on a segment [0, L] with Dirichlet (N = 0) or
Neumann (N = 1) condition at the left end controlled at the right end through a
Dirichlet condition:

al¢ + 1632(]") =0 on }Oa T[X}OaL[a 8SN¢-|S:0 = Oa (rb]s:L =Uu, d)]t:O = ¢O' (8)

With the notations of Section 1, 4 =-0? on Hy= L*0,L) with D(A)=
{feH?*0,L)|0Yf(0) =f(L) =0}, C with values in Y =C is defined by Cf =
Oy f(L), and H, = H}, is one of the following Sobolev spaces on the segment [0, L]:

H{(0,L) = {feH'(0,L) | /(L) =0} and Hy(0,L)={feH|(0,L)|/(0)=0}.

Definition 2.1. The rate o, is the smallest positive constant such that for all o> a,
there exists y>0 such that, for all Ne{0,1}, L>0, Te]O,inf(n,L)z] the
controllability cost xz  of system (8) satisfies: 7 7 <y exp(aL?/T).

It is well-known that the controllability of this system reduces by spectral analysis
to classical results on nonharmonic Fourier series. The study of upper bounds of the
controllability cost for short times was initiated by Seidman (cf. references in [13]).
We recall a theorem of [13] which improves his estimate of the optimal rate a,
(computing a, is an interesting open problem and its solution does not have to rely
on the analysis of series of complex exponentials).

Theorem 2.2. The optimal fast control cost rate for the one-dimensional system (8) in
Definition 2.1 satisfies: 1/2<ux, <8(36/37)* <8.
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3. Main results

The main result of this paper, proved in Section 9, is a generalization of Theorem
2.2 to the first-order system (1) under some condition on the second-order system (2):

Theorem 3.1. If system (2) is exactly controllable for times greater than L., then
system (1) is exactly controllable in any time T. Moreover, the controllability cost x
of (1) satisfies the following upper bound (with o, as in Theorem 2.2):

limsup 7 In ;7 <o,L>. 9)
T-0

Remark 3.2. The upper bound (9) means that the smallest norm of an input function
u steering system (1) from an initial state ¢, to zero grows at most like
7||¢ol| exp(eL?/(2T)) as the control time T tends to zero (with any o>, and some
y>0). The falsity of the converse of Theorem 3.1 is well-known, e.g. in the setting of
Section 10.

Remark 3.3. As observed in [4] (9) yields a logarithmic modulus of continuity for the
minimal time function Ty : H_1—[0,+00) of (1); i.e. Tmin(¢py), defined as the
infimum of the times 7>0 for which there is a u in L*(R;Y) such that
S llu@|F de<1, u(r) =0 for 1¢[0,T) and $(T) = 0, satisfies: for all a>ux,, there
is a ¢>0 such that, for all ¢, and ¢; in H_; with ||y — Pyl|_; small enough,
| Tnin(¢0) — Tmin ()| < L3 /In(c/|bg — ol )-

Replacing the notion of exact controllability by the controllability to a subspace
with finite spectrum, which is enough to steer any initial state to a smooth final state,
we obtain a much better upper bound for the cost of fast controls. The spectral
projection on [4, ;] is denoted by 1;, <4<,-

Theorem 3.4. If system (2) is exactly controllable, then 3x>0, 3d >0, VT €]0, 1],
Vooe H 1, ueL*(R;Y) such that the solution ¢eC°([0, 00); H 1) of (1) satisfies
1>a/r2¢(T) =0 and fOT u(o)|]* dl<%||1‘A‘>d/Tzq50||il. In particular, for all peN:

$(T)eHyy and ||§(T)[l,- <(1+ /KK /T)(d/ T ||ol|-

Theorem 3.1 still holds when system (1) is replaced by its tensor product with a
conservative system. If we consider 4 as a self-adjoint operator on H, and if 4 is an
other self-adjoint operator on an other Hilbert space H, then the operator A1 +
I®A defined on the algebraic tensor product D(A)® D(A) is closable and its
closure, denoted A + A, is a self-adjoint operator on the closure of the algebraic
tensor products H; ® H, denoted H, ® H (cf. Theorem VIII.33 in [14]). The self-
adjoint operator A’ + A is defined similarly. Thanks to Lemma 7.1 proved in
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Section 7 (and the duality between observability and controllability), Theorem 3.1
implies:

Theorem 3.5. Let A be a self-adjoint operator on an other Hilbert space H. If system
(2) is exactly controllable in times greater than L., then for all positive time T there is a
positive constant Ry satisfying (with o, as in Theorem 2.2):

T N
VFeH ®H, / I(CRNe" D F||> di<ir||F||* and limsup T In & <o, L.
0 T-0

This is equivalent to the exact controllability in time T at cost Ry of the
equation  d(t) —i(A' + A)D(t) = (BRDu(t) with ®(0)=dieH @H and
uel? (R; Y ®H).

4. Preliminaries on conservative control systems

In this section, we review the general setting for conservative control systems:
admissibility, observability and controllability notions and their duality (cf. [6,16]).
We recall the characterization of solutions in the weak sense. We prove that
smoother data can be controlled with smoother input functions. We reduce the
second-order system (2) to this first-order setting.

Let X and Y be Hilbert spaces. Let o7 : D(.«/)—> X be a self-adjoint operator.
Equivalently, i</ generates a strongly continuous group (e),.p of unitary
operators on X. Let X; denote D(.«7) with the norm ||x||, = ||(.«/ — B)x]| for some
péta(f) (a(</) denotes the spectrum of o7, this norm is equivalent to the graph
norm and X; is densely and continuously embedded in X) and let X_; be the
completion of X with respect to the norm ||&||_, = ||(.# — ) "¢||. Let X’ denote the
dual of X with respect to the pairing <-,-> (linear in the first variable and conjugate-
linear in the second variable). The dual of .7 is a self-adjoint operator /' on X’. The
dual of X is the space X”, which is the completion of X’ with respect to the norm
€|, = [|(:" — B)""¢|| and the dual of X_; is the space X/ which is D(.«/") with the
norm ||}, = [|(=#' — B)x]|.

Let 4 #(X;,Y) and let e £(Y’,X’,) denote its dual. Note that the same
theory applies to any .oZ-bounded operator % with a domain invariant by (e )i>0
since it can be represented by an operator in Z (X, Y) (cf. [16]).

We consider the dual observation and control systems with output function y and
input function u:

x(t) —idZx(t) =0, x(0)=xpeX, y(t)=%x(1), (10)

E(r) —ist'E(1) = Bu(r),  £(0) =SoeX', ueLi(R;Y'). (11)

loc
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We make the following equivalent admissibility assumptions on the observation
operator ¥ and the control operator £ (cf. [16]): VT >0, K7 >0,

T
Wxoe D(t), / 166 xo| > di < K|l xol (12)
0

2

T
/ e Bu(t) dt

Vue L*(R; Y'), ‘
0

T
<Kr [ W0 dt (13)

With this assumption, the output map xo+>y from D(</) to L (R;Y) has a

continuous extension to X . Egs. (10) and (11) have unique solutions xe C(R, X) and
e C(R, X') defined by

t
x(f) = e xy, E(1) = e”"“//i(O) + / emﬂ)ﬁ/%’u(s) ds. (14)
0

These so-called mild solutions are also the unique solutions in the weak sense (cf.

[1D): x(0) = xo, £(0) = &,

VoeD('), t—{x(1),¢)eH' (R), %<X(t),qo> +(x(1),iel'9) =0, (15)

VpeD(es), 1 (1), 0> H'(R), TCE(), 0> + CEl1)i/p) = Cult), ).
(16)

The following dual notions of observability and controllability are equivalent

(cf. [6]).

Definition 4.1. System (10) is exactly observable in time T at cost iy if the following
observation inequality holds:

T
Vxoe X, ||xo||2<w/ ()] de. (17)
0

System (11) is exactly controllable in time T at cost k7 if for all &y in X”, there is a u in
L?*(R; Y') such that u(z) = 0 for t¢[0, T], £(T) = 0 and:

T
/0 ()| dr<rerl|ol (18)

The controllability cost for (1) in time T is the smallest constant in (18), or in (17),
still denoted x7.

In this setting, smoother data can be controlled by smoother input functions. The
Sobolev space H}(0,T;Y’) is endowed with the homogeneous norm defined by
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lull} = [ [|4(e P u(r))||* dr, and its dual is H~'(0,T; ¥) with dual norm || - ||_,
Integrating by parts, for all xoe X_;, y(t) = Ge™” x satisfies

/ T<(€e”<'”’”(«faf—ﬁ) w0 e Mo ar)| /10l

With this remark (and the usual duality argument) we obtain:

Il = inf
$eHL(0,T;Y")

Lemma 4.2. Let f, = sup,.jo.7 le | and p* = sup,jo r1le”" . The admissibility
assumptions (12) and (13) imply: VxoeX, ||Ge"” x|, <p*Kr||xol|>,, and
Vue HY(R; Y'), || fo " Bu(t) di||; <P Kr||u||;. Definition 4.1 implies: ¥xoe X 1,
lIxo0l%, \B*KT||yH71, and equwalently.for all &y in X|, there is a u in H'(R; Y') such
that (1) = 0 for 1¢(0,T), &(T) = 0 and |[u[{ <p.rer |||l

The first-order control system (1) and its dual observation system:

Sy —idf()=0, f(0)=foeH, y(t)=Cf(0), (19)

fit into the present setting: X = H,, X' = H |, ./ is A with D(«/) = H3, o/' is A’
with D(«7') = H, =0, B, = B* = 1, € is the .«/-bounded operator C with D(%) =
H, invariant by (e”),. .. We shall now explain how the second-order control system
(2) and its dual observation system:

(1) + Az(t) =0, z(0) =zpeH), z(0)=z1eHy, y(t)= Cz(1), (20)

also fit into the present setting.
The states x(¢) and &(z) of systems (20) and (2) at time ¢ and their state spaces X
and X’ are defined by

X(l) = (Z(l),Z(l))EX = H| x Hy, f(l) = (C(t),f(l))eX’ =Hy x H_4.

X is a Hilbert space with the “energy norm” defined by ||(zo,21)|]* = ||v/4z0l|§ +
||z1][3, X" is a Hilbert space with norm defined by ||(Co, )17 = 15115 + 11¢111%,, and
X is densely continuously embedded in X’. These spaces are dual with respect to the
pairing < ({o,{1), (20,21) ) = <A™, 4220 — <L, 21 Do

The dual second-order systems (20) and (2) rewrite as dual first-order systems (10)
and (18), where u = v, .o/ is defined on the domain D(.«Z) = D(A4) x D(/A) by
o (z0,21) = —i(z1,—Azy), /' is an extension of ./ to X’ with domain X, =0,
B.=p" =1, X; is H, x H; with the norm defined by ||(20,21)||2 = HJZ/(Z(),ZI)HZ =
WAz |5 + ||Az0||3, €€ £ (X1, Y) is defined by €(z9,z)) = Czo and Be L (Y, X" ) is
defined by £y = (0, By).
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The following admissibility assumptions are then equivalent: (3) for B, (13) for 4,
(12) for 4, and the admissibility of C for (20), i.e. VI'>0, 3K, r >0,

T
Vxo = (20,21) € D(), / ICz(OIP de<Kar(llzolF + [12111)- (1)
0

In particular, { is the unique solution of (2) in C°(R;Hy)nC!'(R;H_;) in the

following weak sense: {(0) = (o, {(0) = {;, for all ¢ in D(A4),

d2
“_’<C(t)a(p>0€H2<R) and E<C(I)a(p>0+<C(t)aA(p>0: <U(f),CQD>0. (22)

The exact controllability for (2) in Definition 1.1 is the usual notion for (11) in
Definition 4.1. Similarly, the usual notion of observability for (10) in Definition 4.1
yields the following definition for the exact observability in time 7" at cost kr of
system (20):

T
Vzoe Hy, ¥z, € Hy, ||\/Zzo|\§+||z1||§<xr/ |C2(2)|)* dr. (23)
0

5. Observability resolvent estimate

In the general setting for conservative control systems described in Section 4, we
consider the following observability resolvent estimate:

IM >0, I3m>0, VxeD(Z), VieR, ||x]?<M||(/ —)x||* +m||%x])>. (24)

Theorem 5.1. System (10) is exactly observable if and only if the observability
resolvent estimate (24) holds. More precisely, for all €>0 there is a C,>0 such that

(24) implies (17) for all T >/ M (r? + &) with kr = C;mT /(T> — M (7* +¢)).

We begin by proving two lemmas which do not rely on the assumption that A4 is
self-adjoint.

Lemma 5.2. For all T>0, xoe D(</), LeR:

T T
/ || e xo||* dr <27T)|%x0||* + TZ/ |Ge™ (ot — 2)xol|* dt. (25)
0 0

In particular, if system (10) is exactly observable then (24) holds.

Proof. Set x(f) = e"xq, z(t) = x(f) — e”xy and f =i(o/ — A)xy. Since x(f) =
i x(t) = e (idxg +f) = iix(t) + ™ f, we have z(¢) =ilz(t) +e"’f and
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therefore z(7) = [; &/"9%™7f ds. We plug it in x(¢) = "x, + z(¢) to estimate

T T T t
/ ||‘€x(t)||2dt<2/ |e”i|2dz||(gxo||2+2/ z/ &R G S|P dsdr. (26)
0 0 0 0

Since /€R, we have || = |{"9*]> = 1. Now the inequality:

// dsdt<// §) ds di = (TZ/Z)/OTF(s)ds

with F(s) = ||%e*7f||* completes the proof of (25).
The second statement of Lemma 5.2 results from applying (12) and (17) to (25): it
yields (24) with M = T?*k7K7 and m = 2Tky. O

Lemma 5.3. If (24) holds then for all ye ComlD(IR)
Vxoe X, / e x| POA(E) — MAA(6)) de<m / 16 xo|P2 (0 dr. (27)

Proof. Let xoeD(.o7). Set x(t) = ¢"”xy, z = yx and f = z — i/z. Since X — i./x =
0, we have f = yx. The Fourier transform of f with respect to time is ﬂﬂ:) =
(—it —i4)Z(z). Applying (24) to Z(t), integrating in time, and the unitarity of the
Fourier transform yield

/ 12() | de< M / £ (I di +m / 20| di. (28)

Subtracting the first term of the right-hand side and the density of D(.</) € x complete
the proof of (27). O

Proof of Theorem 5.1. The implication is the second part of Lemma 5.2. The
converse results from Lemma 5.3 and the following remark (as in [3]).
Taking y(¢) = ¢(¢/T) with ¢ CL_(]0, 1[), we have

comp

Ce it/

T
20 de<|[ I / 6 x| di (29)

and, since (¢"), is assumed to be a unitary group:

/ [l xoll* (2 (1) = M7 (1)) dt = ||xol[*I7 (30)

= [(#(7) -2 #(p) ) a=7 [ e0a- T [Foa o

with
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For ¢ #0 and T large enough, I7 >0 so that (27) implies (23) with k7 = m||¢]| |iL /Ir.
In particular, since

Ky =mT

U812 (o Jowar) " o [Pwa
[ () dt(T Mf¢2(z) dz) and ¢>eC£15:pf(]0«lD [¢*() i

for all ¢>0, there is a ¢,eC, (]0,1[) such that T>M(n* +¢) implies x7 =
ComT/(T* — M(n* +¢)) with C, = ||p,|[3../ [¢2(t)dr. OO

Remark 5.4. Observability resolvent estimates like (24) are introduced in [3] as
sufficient conditions for exact observability. Theorem 5.1 for ¥ bounded on X is
proved in [17], using a more involved strategy of Liu [10] which our proof shortcuts.
Liu had proved that, for a conservative first-order systems with bounded control
operator, exact controllability is equivalent to exponential stability. From this
equivalence and the Huang—Priiss condition for exponential stability, he deduced an
observability resolvent condition for conservative second-order systems with
bounded observation operator which he called a frequency domain inequality.

6. Fast smoothing controllability

In this section, as a substitute to the smoothing effect of holomorphic semigroup
(used in [12]), we introduce the notion of smoothing effect controllability. More
precisely, in the general setting for conservative control systems described in Section
4, we prove that controllability to a subspace with finite spectrum and a power-like
bound on the cost of fast controls is implied by the following observability resolvent
estimates (a stronger form of (24)):

Im>0,36€]0,1[,IM : R— (0, +00),lim sup [A]°M (L)< oo such that :
14— 0

VxeD(A), Viea(d), ||xX|F<MA)||(L — x| +m|%x]|). (32)

Theorem 6.1. Assume that <f satisfies (32). k>0, 3d>0, VT €)0,1], Vi e X,
Jue L*(R; Y) such that the solution e C°([0, 0 ); X') of

(1) — it E(1) = Bu(1),  &(0) = &,

satisfies 1) 542 ¢(T) = 0 and fOT u(2)||? df<?||1\_,c/’y>d/T250||2- In particular, for
all positive s, &(T)e D(/") and || E(T)||< (1 + /K7 JT)(d/T*)"%||&].

Proof. Note that (32) still holds for all Ae R. Replacing € by \/m%, we assume that
m = 1 without loss of generality.
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The second statement of the theorem results from applying the first statement and
(13) to the integral formula expressing &(T) in (14).

The first statement of the theorem is the exact controllability in time 7 of the
projection of the data on the spectral subspace of X with spectrum greater than

(d/T 2)1/ ¢, By duality, it is equivalent to the following exact observability of data in
this spectral subspace: 3k >0, 3d >0, VT €]0, 1],

T
Vxoe X' such that 1> 4/72X0 = Xo, on||2<;/ |€e™ xo||* dr.  (33)
0

Let y denote a smooth truncation defined by y(¢) = x(¢/T) and y € Ceomp(]0, 1]).
Set x(t) = €"”xp, z = yx and f = iz + .o/z. Since ix + .o/x = 0, we have f = ijrx.
The Fourier transform of / with respect to time is f(t) = (7 — 7)Z(z). With x = 2(z)

and /. = 1, the inequality in (32) writes: ||2(7)||* < M (2)|| /(7)) 42(1)||>. Applying
this inequality for t greater than a threshold u>0 and using the unitarity of the

Fourier transform yield:
/||z I de< sup /||f 2 a’t+/||f€z 2 de
12y

A2
+/T|<M|z(r)|| dt. (34)

Setting = 2(d/T%)"* we have 1y))5 X0 = Xo. For |t|<2u we have ||(o/ —

O Lol | <[l (2 — [, so that using i-19,¢x = "/ — t),

and integrating by parts yield 2(t) =i~ [ yr(£)e =) (of —1)7112|{Q/|>Hx0 dt and

I <2l o e ol Thereore ., 1 >||2d1<%||7;|@1||x0||2. Moreover

fH‘gZ )II? dl<||/||va||(5x 17 dr, [11z(0)l[ dr = 22lxoll” and [{| £ (0)| di =
T-117113:|x0]|*. Hence (34) implies

2112 2112 2
||XOH2 ||)(||22 o ||;{||L2 sup |‘E|LM(T) . 2||X||L] <||XHL” H(gx(t)HZ dr.
LT uT T

[t >n

Replacing p and x by their values, there is a k' depending on y and ¢ such that

K/ & 1
bl (17 son w5 [l e
t/2°>d/T

Since lim supy;_, . [A]’M(Z)< o0, 2—1>0 and T<1, taking d large enough
independently of T yields a k>0 such that (33) holds. [
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Proof of Theorem 3.4. Since system (2) is exactly controllable, Theorem 5.1 implies
the corresponding observability resolvent estimate (24), i.e.

IM>0, Im>0, Vzoe Hy, Yz, € H,, VI€R,
1V Azol|? + ||zl||(2)<M(||\/Z(—izl — Jz0) |2 + ||idzo — /121||(2)) + m|Czo| -

For A#0 and z; = i/ "' Az, this estimate writes:

1 M
Vzoe Hs, VieR", ||V Az[; +W||AZO||§<W||‘/Z(A — 22)z20l[g + ml| o>
A

In particular, since A4 is positive:

M

Vzoe H3, Vtea(A), ||ZO\|%<HH

(4 = ©)z0ll} + ml|Czo| .

Hence the observability resolvent (32) corresponding to system (1) holds with
M(A) = M/|2] and ¢ = 1. Applying Theorem 6.1 with s = p/2 completes the proof of
Theorem 3.4. [

7. Tensor product with a conservative system

Theorem 3.5 results from Theorem 3.1 and the following lemma. This trivial
lemma is of independent interest. It says that the controllability cost of a system is
not changed by taking its tensor product with a conservative system. It simplifies
greatly and improves on previous results concerning conservative systems distributed
in rectangles (or other product spaces like cylinders or parallelepipeds): boundary
controllability from one whole side (cf. [8]) and semi-internal controllability (cf. [7]).
Some applications are given in Section 10 and [13].

Lemma 7.1. Let X, X and Y be Hilbert spaces and I denote the identity operator on
each of them. Let o/ : D(o/)—>X and </ : D(o/)—X be generators of strongly
continuous semigroups of bounded operators on X and X. Let € : D(4)—Y be a
densely defined operator on X such that e D(%) < D(%) for all t>0. Let X ® X and
Y ® X denote the closure of the algebraic tensor products X®X and Y®)?f0r the
natural Hilbert norms. The operator € ®1 : D(%) RX->YRX is densely defined on
X®X.

(i) The operator o/ @I + 1 ® </ defined on the algebraic D(o/)® D(.#) is closable
and its closure, denoted </ + </, generates a strongly continuous semigroup of bounded
operators on X ® X satisfying

V120, V(x,%)eD(%) x X, (@D /T (x@3)|| = ||5e'“x|| [l /5] (35)
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(i) If i.ed is self-adjoint, then for all T >0:

T T
inf / @@+ dt = inf / |6 x|>dr.  (36)
0

zeXQX,||z||=1 xeX|lx[[=1 /o

Remark 7.2. When % is an admissible observation operator, (36) says that the cost of
observing ¢+ ¢'“’+) through ¢ ® I in time T is exactly the cost of observing ¢+ ¢"”
through % in time 7. The proof of part (i) of Lemma 7.1 is still valid if X, X and ¥

are Banach spaces and X ® X and Y ® X are closures with respect to some uniform
cross norms (cf. [15]).

Proof. Let G denote the generator of the strongly continuous semigroup
e’ ®e'” (defined since the natural Hilbert norm is a uniform cross norm, cf.
[15]). Since D(.«/) ® D(.7) is dense in X ® X and invariant by 7+ ¢’ it is a core for
G (cf. theorem X.49 in [14]). Since 4/ @ + IR ./ = Gp(v)@p(e7)- 1t 18 closable and

of + o/ = G. Therefore ¢/(“+%) = ¢! ® ¢!/ and (35) follows (by the cross norm
property).

To prove point (ii), we denote the left- and right-hand sides of (36) by .# ,, -, and
S .. Taking z=x®=x with [|¥]| =1, J , 5 <./, results from (35). To prove
S y.y=Y o, we only consider the case in which both X and X are infinite
dimensional and separable (this simplifies the notation and the other cases are
similar). Let (e,),cn and (é,),.n be orthonormal bases for X and X. Since
(€4®ém), men i an orthonormal base for X ® X, any ze X ® X writes

z= Z X ® €, with x,, = Z Camen and ||z|| = Z |Cnm| = Z\|xm||2.

n.m m

td t.d

Since i</ is self-adjoint, f+>e™” is unitary for all >0 so that (e"”é,), . is

orthonormal. Therefore, using (35):

A+) 1|2
H(get(oﬁr /)Z” _

Z ((get{o/xm) etsz/ém

m

Z ||(get&/xm||

m

By definition, fOT |€e xpu||*dt= 7 7| xn||*. Summing up over me N, we obtain

T
/0 (@@ D)+ dr = /Zn%e“”xmn 250 S Il = 2

m m

This proves .# ,, -, >.7 ., and completes the proof of Lemma 7.1. [
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8. The fundamental controlled solution

In this section we use Theorem 2.2 to construct a “‘fundamental controlled
solution” k of the Schrodinger equation on a segment controlled by Dirichlet
conditions at both ends.

The following proposition shows that the upper bound for the controllability cost
of the Schrédinger equation on the segment [0, L] controlled at one end is the same
as the controllability cost of the Schrédinger equation on the twofold segment
[-L, L] controlled at both ends.

Proposition 8.1. For any o> a, (cf. Definition 2.1), there exists y>0 such that, for all
L>0, T€)0,inf(n/2,L)*] and pye H'(—L, L), there are g_ and g, in L*(0, T) such
that the solution ¢pe C°([0, T); H-'(—L, L)) of the following Schrédinger equation on
[—L, L] controlled by g_ and ¢

8[¢+1632¢:0 in ]OvT[X] _LvLL ¢]5‘:iL =J+, ¢‘|f:0 = ¢0 (37)

satisfies =0 at t = T and fOT lg+ (D) dl<ye“L2/T||q50\|§{,1(,L’L).

Proof. By duality (cf. [6]), it is enough to prove the observation inequality:
3y>0, Yo HY(—L, L), ||yl <ye™E/T||Dse™ d)O]s:iL”iZ(o 1> Where 4 denotes 0?
on [—L, L] with Dirichlet boundary conditions. Applying Theorem 2.2 with N = 0 to
the odd part of ¢, and with N =1 to the even part of ¢, completes the proof of
Proposition 8.1. [

Expressing the solution of (37) with ¢, = e H~'(—L, L) (the Dirac distribution
at the origin) in terms of g4 by the integral formula and applying Proposition 8.1
yields the following family of null-controlled solutions (depending on L>0 and
T>0 with a good cost estimate) which we refer to as fundamental controlled
solutions.

Corollary 8.2. For any o> o, (cf. Definition 2.1), there exists y>0 such that YL>0,
VT €]0,inf(n/2, L)), Ike CO([0, T); H (] — L, L|)) satisfying

dk +i0k =0 in 7'()0, T[x] — L, L[), (38)
Kl—o=0 and ky_z =0, (39)

T
/O 1ty ) Bysgp.p de<ye T, (40)
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9. The transmutation of second-order controls into first-order controls

In this section we perform a transmutation of a control for the second-order
system (2) into a control for the first-order system (1) (cf. (47)), then combine it with
Theorem 3.4 into Theorem 3.1. The control transmutation method outlined in
Section 1 proves Theorem 3.1 only for smoother data, i.c. :

Proposition 9.1. If system (2) is exactly controllable in times greater than L, (cf.
Definition 1.1), then 3Ju>0, 3y>0, VL>L, VT€)0,inf(1,L)*], VY eH,
Juel?(0,T;Y) such that the solution ¢ of (1) satisfies ¢(T)=0 and
fOT [u(0)])? dtéKQ‘L'))eaLz/T||¢0||%7 where 1,1, is defined in (7).

Proof. Let L> L,. Since (2) is exactly controllable in time L, by Lemma 4.2 (applied
to the reduction of (2) to the first-order setting described after the statement of this
lemmay): for all {,e H; and {, € Hy, there is a ve H'(R; Y) such that v(s) =0 for
s¢ (0, L), the solution ¢ of (2) satisfies {(L) = {(L) = 0 and

/Hl’)(t)llzdtéxu(llioll? +[124115)- (41)

Let a>a, and T€]0,inf(1,L?)[. Let y>0 and ke C°([0, T); H~'(] — L, L[)) be the
corresponding constant and fundamental controlled solution given by Corollary 8.2.
We define ke C°([0, c0); H~'(R)) as the extension of k by zero, i.e. k(t,s) = k(t,s) on
[0,T)x]— L,L[ and k is zero everywhere else. It inherits from k the following
properties:

Ok +iojk =0 in 2'(0,T[x] L, L[), (42)
kj—o=0 and kj_r =0, (43)

T ) )
/0 et M1y e <ye T (44)

Let ¢, H; be an initial data for (1). Let { and v be the corresponding solution and
control function for (2) with data {,=¢, and (3 =0. We define
(e C'(R; H)n C(R; Hy) and ve H'(R; Y) as the extensions of { and v by reflection
with respect to s = 0, i.e. {(s) = {(s) = {(—s) and v(s) = v(s) = v(—s) for s>0. Since
{ ={(L) = {(L) =0, { is the unique solution in C°(R; Hy) nC'(R; H_) of

{(0) + A'L(0) = Bu(r),  {(0) = ¢y, {(0)=0,
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in particular in the following weak sense (as in (22)): for all ¢ in H,,

s> {{(s), @Yo HA(R) and —<C( ), @20+ CLs), Ao = u(s), CpDo.  (45)

Eq. (41) implies the following cost estimate for p:

/ is)] 2 ds <2 / o(3)] 2 ds<2sen. || o2 (46)

The main idea of our proofis to use k as a kernel to transmute { and p into a solution
¢ and a control u for (1). The transmutation formulas

:/l_c(t,s)g(s)ds and V>0, u(t :—z/k (t,5)v (47)

define ¢eC°([0, 0); Hy) and wuel?([0,0);Y) since keC’([0, 0); H'(R)),
{e H'(R; Hy) and ve H'(R; Y). Property (43) of k implies ¢(0) = ¢y and ¢(T) =
0. Since {(s) = g(s) = 0 for |s| = L, Egs. (45) and (42) imply, by integrating by parts,
for all ¢ in Hj:

9 3(1), @30+ <H1),idg>e = Cult), Cpdo.  (48)

[I—)<(]§(l),(p>0€H1(0, OO)» di

This is Eq. (16) corresponding to (1), i.e. with the settings described after (19).
Therefore ¢ and u satisfy (5).

Since [, [[u()|]* dr< [y [1k(t,)|[3 gy dt [ 1|(s)||* ds, Eqs. (44) and (46) imply the
cost estimate which completes the proof of Proposition 9.1. [

Proof of Theorem 3.1. Let a>a,, L>L, and ¢€]0, 1].

According to Theorem 3.4 with p=2: 3x>0, 3d>0, VT e]0,1], Ve H_1,
Juy e L*([0,¢T); Y) such that the solution ¢e C°([0,eT]; H_1) of (1) with u = u; on
0,67) satisfies  $(T)eHr, [|o(T)]|, <Ilgoll_ (1 + /kKior/sT)d/(eT), and
fo |[ur (1) dr<k H¢o|| ;- Therefore, according to Proposition 9.1, J¢>0, 3y>0,
VTe]O,mf(l,L) |, VooeH_1, Jupel*([eT,T);Y) such that the solution
$eC’([0, T); H_y) of (1) with u = uy on [0,eT] and u = up on [¢T, T satisfies ¢(T) =
0 and [ ||ua(0)|]* de<wcopye ™/ T=D)| |y |[3. Since [ |[u(e)|]* dt = [i" [Jur ()| e +
LTT””Z(Z)HZ dt, the controllability cost k7 in Definition 1.1 satisfies for all
T€)0,inf(1,L)%:

K 2 42 al?
<— 1 K T) — ) —_—
L 8T+( TRk 1) P =T

Therefore lim sup;_,o T In k) 7 <al?/(1 — ¢). Letting , L and ¢ tend, respectively, to
o, L, and 0 completes the proof of (9). O
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10. Geometric bounds on the cost of fast boundary controls for Schrodinger equations

When the second-order equation (2) has a finite propagation speed and is
controllable, the control transmutation method yields geometric upper bounds on
the cost of fast controls for the first-order equation (1). This was illustrated in [13] on
the internal controllability of Schrodinger equations on Riemannian manifolds
which have the wave equation as corresponding second-order equation. Similar
lower bounds proved in [13] (without assuming the controllability of the wave
equation) imply that the upper bounds are optimal with respect to time dependence.
In this section, we illustrate the control transmutation method on the analogous
boundary control problem for Schrédinger equations.

Let (M, g) be a smooth connected compact n-dimensional Riemannian manifold
with metric g and smooth boundary M. When OM #(, M denotes the interior and
M= MUOM. Let A denote the (negative) Laplacian on (M, g) and 0, denote the
exterior Neumann vector field on OM. The characteristic function of a set S is
denoted by yg.

Let Hy = L*(M). Let 4 be defined by Af = —Af on D(A) = H*(M)~H}(M). Let
C be defined from D(A) to Y = L*(OM) by Cf = 8,/ where I' is an open subset of
OM . With this setting, (1) is a Schrodinger equation, (2) is a scalar wave equation,
and these equations are controlled by the Dirichlet boundary condition on I'. In
particular (2) writes:

8?(—AC:00n R, x M, {=yrvon R, xIM,

é’(O) :(OGLZ(M)a ((0) :CleHil(M)v velj

foc (R; L2(OM)). (49)
It is well known that C is an admissible observation operator for the wave equation
(20) and the Schrodinger equation (19) (cf. e.g. [2,9], Corollary 3.9). To ensure the
exact controllability of the wave equation we use the geometric optics condition of
Bardos—Lebeau—Rauch (specifically Example 1 after Corollary 4.10 in [2]):

There is a positive constant L such that every generalized geodesic

of length greater than Lp passes through I' at a non-diffractive point.  (50)

Generalized geodesics are the rays of geometrical optics (we refer to [11] for a
presentation of this condition with a discussion of its significance). We make the
additional assumption that they can be uniquely continued at the boundary OM. As
in [2], to ensure this, we may assume either that M has no contacts of infinite order
with its tangents (e.g. 9M = (), or that g and &M are real analytic. For instance, we
recall that (50) holds when I' contains a closed hemisphere of a Euclidean ball M of
diameter Ly /2, or when I' = OM and M is a strictly convex bounded Euclidean set
which does not contain any segment of length L.
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Theorem 10.1 (Bardos et al. [2]). If (50) holds then the wave equation (49) is exactly
controllable in any time greater than L.

Thanks to this theorem, Theorem 3.5 implies:

Theorem 10.2. Let M be a smooth complete fi-dimensional Riemannian manifold and A
denote the Laplacian on M with the Dirichlet boundary condition. Let y denote the
subset I' x M of d(M x M). If (50) holds then the Schrédinger equation:

i0ip — (A + A)p =0 on R, x M x M, ¢ = y,u on R, x (M x M),

$(0) = dpoe L*(M; H™'(M)), ue L (R; L*(A(M x M))),
is exactly controllable in any time T at a cost Ry which satisfies the following upper
bound (with o, as in Theorem 2.2): limsupy_ o T In Ry <o L2

Remark 10.3. For M = 0, the controllability was proved in [9]. As in [9], this results
extends to the plate equation. The boundary controllability of a rectangular plate
from one side was proved in [8] (Theorem 2.2). When M is a segment and M is a line,
Theorem 10.2 extends this result to an infinite strip.

Remark 10.4. In particular, Theorem 10.2 shows that the geometric optics condition
is not necessary for the controllability cost of the Schrédinger equation to grow at
most like exp(C/T) as T tends to 0. Indeed, any geodesic of M yields a geodesic of
M x M in a slab {x} x M with xe M, and this geodesic does not pass through the
control region y since the slab does not intersect the boundary set M x M.
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