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Abstract

This article concerns the exact controllability of unitary groups on Hilbert spaces with

unbounded control operator. It provides a necessary and sufficient condition not involving

time which blends a resolvent estimate and an observability inequality. By the transmutation

of controls in some time L for the corresponding second-order conservative system, it is

proved that the cost of controls in time T for the unitary group grows at most like expðaL2=TÞ
as T tends to 0: In the application to the cost of fast controls for the Schrödinger equation, L is

the length of the longest ray of geometric optics which does not intersect the control region.

This article also provides observability resolvent estimates implying fast smoothing effect

controllability at low cost, and underscores that the controllability cost of a system is not

changed by taking its tensor product with a conservative system.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let H0 and Y be Hilbert spaces with respective norms jj � jj0 and jj � jj: Let A be a

self-adjoint, positive and boundedly invertible unbounded operator on H0 with
domain DðAÞ:We introduce the Sobolev scale of spaces based on A: For any positive
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integer p; let Hp denote the Hilbert space DðAp=2Þ with the norm jjxjjp ¼ jjAp=2xjj0
(which is equivalent to the graph norm jjxjj0 þ jjAp=2xjj0). We identify H0 and Y with

their duals. Let H�p denote the dual of Hp: Since Hp is densely continuously

embedded in H0; the pivot space H0 is densely continuously embedded in H�p; and

H�p is the completion of H0 with respect to the norm jjxjj�p ¼ jjA�p=2xjj0: We still
denote by A the restriction of A to Hp with domain Hpþ2: It is self-adjoint with
respect to the Hp scalar product. We denote by A0 its dual with respect to the duality
between Hp and H�p; which is an extension of A to H�p with domain H2�p:

Let CALðH2;Y Þ and let BALðY ;H�2Þ denote the dual of C (where LðX ;YÞ
denotes the Banach space of continuous operators from X to Y ).
The ‘‘generator’’ A0 and the control operator B define the first- and second-order

differential equations:

’fðtÞ � iA0fðtÞ ¼ BuðtÞ; fð0Þ ¼ f0AH�1; uAL2
locðR;Y Þ; ð1Þ

.zðtÞ þ A0zðtÞ ¼ BvðtÞ; zð0Þ ¼ z0AH0; ’zð0Þ ¼ z1AH�1; vAL2
locðR;Y Þ; ð2Þ

where each dot denotes a derivative with respect to the time variable t; u and v are the
input functions.
Eqs. (1) and (2) with u ¼ 0 ¼ v describe reversible conservative systems. For

example, if A is the positive Laplacian and B is a boundary control operator, then (2)
is a boundary controlled scalar wave equation, (1) is a boundary controlled
Schrödinger equation (Sections 2 and 10 elaborate on this example).
We assume that B is an admissible control operator for (2), i.e.

8T40; 8vAL2ð0;T ;YÞ;
Z T

0

eit
ffiffiffiffi
A0

p
BvðtÞ dtAH�1; ð3Þ

so that the solution zAC0ðR;H0Þ-C1ðR;H�1Þ of (2) is defined by the following

integral formula where SðtÞ ¼ ð
ffiffiffiffiffi
A0

p
Þ�1 sinðt

ffiffiffiffiffi
A0

p
Þ and ’SðtÞ ¼ cosðt

ffiffiffiffiffi
A0

p
Þ:

zðtÞ ¼ ’SðtÞz0 þ SðtÞz1 þ
Z t

0

Sðt � sÞBvðsÞ ds:

In Section 4 the control system (2) and its dual observation system are reduced to the
standard first-order setting for the theory of observation and control. We also
assume that B is an admissible control operator for (1), i.e. 8T40; (K1;T40;

8uAL2ð0;T ;Y Þ;
Z T

0

eitA0
BuðtÞ dt

����
����

����
����
2

�1
pK1;T

Z T

0

jjuðtÞjj2 dt; ð4Þ

so that the solution fAC0ðR;H�1Þ of (1) is defined by the integral formula:

fðtÞ ¼ eitA0
f0 þ

Z t

0

eiðt�sÞA0BuðsÞ ds: ð5Þ
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Definition 1.1. System (1) is exactly controllable in time T if for all f0 in H�1; there is

a u in L2ðR;YÞ such that uðtÞ ¼ 0 for te½0;T  and fðTÞ ¼ 0: The controllability cost

for (1) in time T is the smallest positive constant k1;T in the following inequality for
all such f0 and u:

Z T

0

jjuðtÞjj2 dtpk1;T jjf0jj
2
�1: ð6Þ

System (2) is exactly controllable in time T if for all z0 in H0 and z1 in H�1; there is a v

in L2ðR;YÞ such that vðtÞ ¼ 0 for te½0;T  and zðTÞ ¼ ’zðTÞ ¼ 0: The controllability

cost for (2) in time T is the smallest positive constant k2;T in the following inequality
for all such z0; z1 and v:

Z T

0

jjvðtÞjj2 dtpk2;Tðjjz0jj20 þ jjz1jj2�1Þ: ð7Þ

Remark 1.2. Strictly speaking, the properties above define the null-controllability of
the systems but, for such reversible systems, they are equivalent to exact
controllability. We refer to Section 4 for the dual notions of observability.

The main results of the paper, stated in Section 3, are consequences of the
controllability of the wave-like system (2) on the controllability of the Schrödinger-
like system (1). In particular, upper bounds on the controllability cost k1;T of (1) as T

tends to zero are given. Applications to the boundary controllability of the
Schrödinger equation, based on the geodesic condition of Bardos et al. [2] for
the controllability of the wave equation, are presented in Section 10: a new proof of
the result of Lebeau [9], an extension of this result to product manifolds, and an
upper bound on the cost of fast controls in the same context.
The main tool presented in this paper is the control transmutation method which

can be seen as an adaptation to the theory of control of the kernel estimates method
of Cheeger et al. [5]. It consists in explicitly constructing controls v in any time T for
the Schrödinger-like system (1) in terms of controls u in time L for the corresponding

wave-like system (2), i.e. uðt; xÞ ¼
R
R

kðt; sÞvðsÞ ds; where the compactly supported

kernel k which depends on T and L is some fundamental controlled solution on the
segment ½�L;L controlled at both ends. In Section 2, we recall an earlier estimate on
the optimal fast control cost rate for a one dimensional system. We use it to
construct the fundamental controlled solution k in Section 8 and perform the
transmutation in Section 9.
This paper also contains results of independent interest on the controllability of

systems defined by unitary groups. In Section 4, we recall admissibility, observability
and controllability notions for such systems, their duality, and reduce the second-
order system (2) to this first-order setting. In Section 5, we state a necessary and
sufficient condition on the resolvent of the generator and the observation operator
for exact observability. In Section 6, we state a sufficient condition on the resolvent
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of the generator and the observation operator for the existence of controls steering
any state to a smooth state in any positive time T at a cost bounded from above by a
negative power of T : In Section 7, we prove that the controllability cost of a system
is not changed by taking its tensor product with a system defined by a unitary group.
In the companion paper [12], we apply the control transmutation method to the

simpler case of the first-order equation ’fðtÞ þ eiyA0fðtÞ ¼ BuðtÞ with jyjop=2 (in
particular, the corresponding semigroup is holomorphic), but in the more general
setting where A0 generates a cosine operator function in a Banach space. The
relationship between the controllability of this first order equation and the second-
order equation (2) has been investigated earlier in various settings (cf. references in
[12]) but only with y ¼ 0: Eq. (1) corresponds to the case jyj ¼ p=2:

2. Boundary control of the Schrödinger equation on a segment

Our estimate of the cost of fast controls for (1) builds, through the control
transmutation method, on the same estimate for a one-dimensional control system of
type (1), i.e. the Schrödinger equation on a segment ½0;L with Dirichlet ðN ¼ 0Þ or
Neumann ðN ¼ 1Þ condition at the left end controlled at the right end through a
Dirichlet condition:

@tfþ i@2s f ¼ 0 on 0;T ½�0;L½; @N
s fns¼0 ¼ 0; fns¼L ¼ u; fnt¼0 ¼ f0: ð8Þ

With the notations of Section 1, A ¼ �@2s on H0 ¼ L2ð0;LÞ with DðAÞ ¼
f fAH2ð0;LÞ j @N

s f ð0Þ ¼ f ðLÞ ¼ 0g; C with values in Y ¼ C is defined by Cf ¼
@s f ðLÞ; and H1 ¼ H1

N is one of the following Sobolev spaces on the segment ½0;L:

H1
1 ð0;LÞ ¼ f fAH1ð0;LÞ j f ðLÞ ¼ 0g and H1

0 ð0;LÞ ¼ f fAH1
1 ð0;LÞ j f ð0Þ ¼ 0g:

Definition 2.1. The rate a� is the smallest positive constant such that for all a4a�
there exists g40 such that, for all NAf0; 1g; L40; TA0; infðp;LÞ2 the

controllability cost kL;T of system (8) satisfies: kL;Tpg expðaL2=TÞ:

It is well-known that the controllability of this system reduces by spectral analysis
to classical results on nonharmonic Fourier series. The study of upper bounds of the
controllability cost for short times was initiated by Seidman (cf. references in [13]).
We recall a theorem of [13] which improves his estimate of the optimal rate a�
(computing a� is an interesting open problem and its solution does not have to rely
on the analysis of series of complex exponentials).

Theorem 2.2. The optimal fast control cost rate for the one-dimensional system (8) in

Definition 2.1 satisfies: 1=2pa�p8ð36=37Þ2o8:
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3. Main results

The main result of this paper, proved in Section 9, is a generalization of Theorem
2.2 to the first-order system (1) under some condition on the second-order system (2):

Theorem 3.1. If system (2) is exactly controllable for times greater than L�; then

system (1) is exactly controllable in any time T : Moreover, the controllability cost k1;T
of (1) satisfies the following upper bound (with a� as in Theorem 2.2):

lim sup
T-0

T ln k1;Tpa�L2
�: ð9Þ

Remark 3.2. The upper bound (9) means that the smallest norm of an input function
u steering system (1) from an initial state f0 to zero grows at most like

gjjf0jj expðaL2
�=ð2TÞÞ as the control time T tends to zero (with any a4a� and some

g40). The falsity of the converse of Theorem 3.1 is well-known, e.g. in the setting of
Section 10.

Remark 3.3. As observed in [4] (9) yields a logarithmic modulus of continuity for the
minimal time function Tmin :H�1-½0;þNÞ of (1); i.e. Tminðf0Þ; defined as the

infimum of the times T40 for which there is a u in L2ðR;YÞ such thatR T

0 jjuðtÞjj2 dtp1; uðtÞ ¼ 0 for te½0;T  and fðTÞ ¼ 0; satisfies: for all a4a�; there
is a c40 such that, for all f0 and f0

0 in H�1 with jjf0 � f0
0jj�1 small enough,

jTminðf0Þ � Tminðf0
0ÞjpaL2

�=lnðc=jjf0 � f0
0jj�1Þ:

Replacing the notion of exact controllability by the controllability to a subspace
with finite spectrum, which is enough to steer any initial state to a smooth final state,
we obtain a much better upper bound for the cost of fast controls. The spectral
projection on ½l1; l2 is denoted by 1l1pApl2 :

Theorem 3.4. If system (2) is exactly controllable, then (k40; (d40; 8TA0; 1;
8f0AH�1; (uAL2ðR;YÞ such that the solution fAC0ð½0;NÞ;H�1Þ of (1) satisfies

1jAjXd=T2fðTÞ ¼ 0 and
R T

0 jjuðtÞjj2 dtpk
T
jj1jAjXd=T2f0jj

2
�1: In particular, for all pAN:

fðTÞAHp�1 and jjfðTÞjjp�1pð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kK1;T=T

p
Þðd=T2Þp=2jjf0jj�1:

Theorem 3.1 still holds when system (1) is replaced by its tensor product with a

conservative system. If we consider A as a self-adjoint operator on H1 and if Ã is an

other self-adjoint operator on an other Hilbert space H̃; then the operator A#I þ
I#Ã defined on the algebraic tensor product DðAÞ#DðÃÞ is closable and its

closure, denoted A þ Ã; is a self-adjoint operator on the closure of the algebraic

tensor products H1#H̃; denoted H1 %#H̃ (cf. Theorem VIII.33 in [14]). The self-

adjoint operator A0 þ Ã is defined similarly. Thanks to Lemma 7.1 proved in
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Section 7 (and the duality between observability and controllability), Theorem 3.1
implies:

Theorem 3.5. Let Ã be a self-adjoint operator on an other Hilbert space H̃: If system

(2) is exactly controllable in times greater than L�; then for all positive time T there is a

positive constant *kT satisfying (with a� as in Theorem 2.2):

8FAH1 %#H̃;

Z T

0

jjðC#IÞeitðAþÃÞF jj2 dtp *kT jjF jj2 and lim sup
T-0

T ln *kTpa�L2
�:

This is equivalent to the exact controllability in time T at cost *kT of the

equation ’FðtÞ � iðA0 þ ÃÞFðtÞ ¼ ðB#IÞuðtÞ with Fð0Þ ¼ F0AH�1 %#H̃ and

uAL2
locðR;Y %#H̃Þ:

4. Preliminaries on conservative control systems

In this section, we review the general setting for conservative control systems:
admissibility, observability and controllability notions and their duality (cf. [6,16]).
We recall the characterization of solutions in the weak sense. We prove that
smoother data can be controlled with smoother input functions. We reduce the
second-order system (2) to this first-order setting.
Let X and Y be Hilbert spaces. Let A : DðAÞ-X be a self-adjoint operator.

Equivalently, iA generates a strongly continuous group ðeitAÞtAR of unitary

operators on X : Let X1 denote DðAÞ with the norm jjxjj1 ¼ jjðA� bÞxjj for some
besðAÞ (sðAÞ denotes the spectrum of A; this norm is equivalent to the graph
norm and X1 is densely and continuously embedded in X ) and let X�1 be the

completion of X with respect to the norm jjxjj�1 ¼ jjðA� bÞ�1xjj: Let X 0 denote the
dual of X with respect to the pairing /�; �S (linear in the first variable and conjugate-

linear in the second variable). The dual ofA is a self-adjoint operatorA0 on X 0: The
dual of X1 is the space X 0

�1 which is the completion of X 0 with respect to the norm

jjxjj�1 ¼ jjðA0 � %bÞ�1xjj and the dual of X�1 is the space X 0
1 which is DðA0Þ with the

norm jjxjj1 ¼ jjðA0 � %bÞxjj:
Let CALðX1;YÞ and let BALðY 0;X 0

�1Þ denote its dual. Note that the same
theory applies to any A-bounded operator C with a domain invariant by ðeitAÞtX0

since it can be represented by an operator in LðX1;YÞ (cf. [16]).
We consider the dual observation and control systems with output function y and

input function u:

’xðtÞ � iAxðtÞ ¼ 0; xð0Þ ¼ x0AX ; yðtÞ ¼ CxðtÞ; ð10Þ

’xðtÞ � iA0xðtÞ ¼ BuðtÞ; xð0Þ ¼ x0AX 0; uAL2
locðR;Y 0Þ: ð11Þ
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We make the following equivalent admissibility assumptions on the observation
operator C and the control operator B (cf. [16]): 8T40; (KT40;

8x0ADðAÞ;
Z T

0

jjCeitAx0jj2 dtpKT jjx0jj2; ð12Þ

8uAL2ðR;Y 0Þ;
Z T

0

eitA0
BuðtÞ dt

����
����

����
����
2

pKT

Z T

0

jjuðtÞjj2 dt: ð13Þ

With this assumption, the output map x0/y from DðAÞ to L2
locðR;YÞ has a

continuous extension to X : Eqs. (10) and (11) have unique solutions xACðR;X Þ and
xACðR;X 0Þ defined by

xðtÞ ¼ eitAx0; xðtÞ ¼ eitA0
xð0Þ þ

Z t

0

eiðt�sÞABuðsÞ ds: ð14Þ

These so-called mild solutions are also the unique solutions in the weak sense (cf.
[1]): xð0Þ ¼ x0; xð0Þ ¼ x0;

8jADðA0Þ; t//xðtÞ;jSAH1ðRÞ; d

dt
/xðtÞ;jSþ/xðtÞ; iA0jS ¼ 0; ð15Þ

8jADðAÞ; t//xðtÞ;jSAH1ðRÞ; d

dt
/xðtÞ;jSþ/xðtÞ; iAjS ¼ /uðtÞ;CjS:

ð16Þ

The following dual notions of observability and controllability are equivalent
(cf. [6]).

Definition 4.1. System (10) is exactly observable in time T at cost kT if the following
observation inequality holds:

8x0AX ; jjx0jj2pkT

Z T

0

jjyðtÞjj2 dt: ð17Þ

System (11) is exactly controllable in time T at cost kT if for all x0 in X 0; there is a u in

L2ðR;Y 0Þ such that uðtÞ ¼ 0 for te½0;T ; xðTÞ ¼ 0 and:Z T

0

jjuðtÞjj2 dtpkT jjx0jj2: ð18Þ

The controllability cost for (1) in time T is the smallest constant in (18), or in (17),
still denoted kT :

In this setting, smoother data can be controlled by smoother input functions. The

Sobolev space H1
0 ð0;T ;Y 0Þ is endowed with the homogeneous norm defined by
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jjujj21 ¼
R T

0
jjd

dt
ðe�ibtuðtÞÞjj2 dt; and its dual is H�1ð0;T ;YÞ with dual norm jj � jj�1:

Integrating by parts, for all x0AX�1; yðtÞ ¼ CeitAx0 satisfies

jjyjj�1 ¼ inf
fAH1

0
ð0;T ;Y 0Þ

Z T

0

CeitðA�bÞðA� bÞ�1x0;
d

dt
ðe�ibtfðtÞÞ dt

�� ����
����

�
jjfjj1:

With this remark (and the usual duality argument) we obtain:

Lemma 4.2. Let b� ¼ suptA½0;T  je�ibtj�2 and b� ¼ suptA½0;T je�ibtj2: The admissibility

assumptions (12) and (13) imply: 8x0AX ; jjCeitAx0jj2�1pb�KT jjx0jj2�1; and

8uAH1
0 ðR;Y 0Þ; jj

R T

0 eitA0
BuðtÞ dtjj21pb�KT jjujj21: Definition 4.1 implies: 8x0AX�1;

jjx0jj2�1pb�kT jjyjj2�1; and equivalently: for all x0 in X 0
1; there is a u in H1ðR;Y 0Þ such

that uðtÞ ¼ 0 for teð0;TÞ; xðTÞ ¼ 0 and jjujj21pb�kT jjx0jj21:

The first-order control system (1) and its dual observation system:

’fðtÞ � iAf ðtÞ ¼ 0; f ð0Þ ¼ f0AH1; yðtÞ ¼ Cf ðtÞ; ð19Þ

fit into the present setting: X ¼ H1; X 0 ¼ H�1; A is A with DðAÞ ¼ H3; A
0 is A0

with DðA0Þ ¼ H1; b ¼ 0; b� ¼ b� ¼ 1; C is theA-bounded operator C with DðCÞ ¼
H2 invariant by ðeitAÞtX0:We shall now explain how the second-order control system

(2) and its dual observation system:

z̈ðtÞ þ AzðtÞ ¼ 0; zð0Þ ¼ z0AH1; ’zð0Þ ¼ z1AH0; yðtÞ ¼ CzðtÞ; ð20Þ

also fit into the present setting.
The states xðtÞ and xðtÞ of systems (20) and (2) at time t and their state spaces X

and X 0 are defined by

xðtÞ ¼ ðzðtÞ; ’zðtÞÞAX ¼ H1 � H0; xðtÞ ¼ ðzðtÞ; ’zðtÞÞAX 0 ¼ H0 � H�1:

X is a Hilbert space with the ‘‘energy norm’’ defined by jjðz0; z1Þjj2 ¼ jj
ffiffiffiffi
A

p
z0jj20 þ

jjz1jj20; X 0 is a Hilbert space with norm defined by jjðz0; z1Þjj20 ¼ jjz0jj20 þ jjz1jj2�1; and
X is densely continuously embedded in X 0: These spaces are dual with respect to the

pairing /ðz0; z1Þ; ðz0; z1ÞS ¼ /A�1=2z1;A1=2z0S0 �/z0; z1S0:
The dual second-order systems (20) and (2) rewrite as dual first-order systems (10)

and (18), where u ¼ v; A is defined on the domain DðAÞ ¼ DðAÞ � Dð
ffiffiffiffi
A

p
Þ by

Aðz0; z1Þ ¼ �iðz1;�Az0Þ; A0 is an extension of A to X 0 with domain X ; b ¼ 0;

b� ¼ b� ¼ 1; X1 is H2 � H1 with the norm defined by jjðz0; z1Þjj2 ¼ jjAðz0; z1Þjj2 ¼
jj
ffiffiffiffi
A

p
z1jj20 þ jjAz0jj20; CALðX1;YÞ is defined by Cðz0; z1Þ ¼ Cz0 and BALðY ;X 0

�1Þ is
defined by By ¼ ð0;ByÞ:
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The following admissibility assumptions are then equivalent: (3) for B; (13) for B;
(12) for C; and the admissibility of C for (20), i.e. 8T40; (K2;T40;

8x0 ¼ ðz0; z1ÞADðAÞ;
Z T

0

jjCzðtÞjj2 dtpK2;T ðjjz0jj21 þ jjz1jj20Þ: ð21Þ

In particular, z is the unique solution of (2) in C0ðR;H0Þ-C1ðR;H�1Þ in the

following weak sense: zð0Þ ¼ z0; ’zð0Þ ¼ z1; for all j in DðAÞ;

t//zðtÞ;jS0AH2ðRÞ and
d2

dt2
/zðtÞ;jS0 þ/zðtÞ;AjS0 ¼ /vðtÞ;CjS0: ð22Þ

The exact controllability for (2) in Definition 1.1 is the usual notion for (11) in
Definition 4.1. Similarly, the usual notion of observability for (10) in Definition 4.1
yields the following definition for the exact observability in time T at cost kT of
system (20):

8z0AH1; 8z1AH0; jj
ffiffiffiffi
A

p
z0jj20 þ jjz1jj20pkT

Z T

0

jjC ’zðtÞjj2 dt: ð23Þ

5. Observability resolvent estimate

In the general setting for conservative control systems described in Section 4, we
consider the following observability resolvent estimate:

(M40; (m40; 8xADðAÞ; 8lAR; jjxjj2pMjjðA� lÞxjj2 þ mjjCxjj2: ð24Þ

Theorem 5.1. System (10) is exactly observable if and only if the observability

resolvent estimate (24) holds. More precisely, for all e40 there is a Ce40 such that

(24) implies (17) for all T4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðp2 þ eÞ

p
with kT ¼ CemT=ðT2 � Mðp2 þ eÞÞ:

We begin by proving two lemmas which do not rely on the assumption that A is
self-adjoint.

Lemma 5.2. For all T40; x0ADðAÞ; lAR:

Z T

0

jjCeitAx0jj2 dtp2T jjCx0jj2 þ T2

Z T

0

jjCeitAðA� lÞx0jj2 dt: ð25Þ

In particular, if system (10) is exactly observable then (24) holds.

Proof. Set xðtÞ ¼ eitAx0; zðtÞ ¼ xðtÞ � eitlx0 and f ¼ iðA� lÞx0: Since ’xðtÞ ¼
iAxðtÞ ¼ eitAðilx0 þ f Þ ¼ ilxðtÞ þ eitAf ; we have ’zðtÞ ¼ ilzðtÞ þ eitAf and
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therefore zðtÞ ¼
R t

0 eiðt�sÞleisAf ds: We plug it in xðtÞ ¼ eitlx0 þ zðtÞ to estimate
Z T

0

jjCxðtÞjj2 dtp2

Z T

0

jeitlj2 dtjjCx0jj2 þ 2

Z T

0

t

Z t

0

jeiðt�sÞlj2jjCeisAf jj2 ds dt: ð26Þ

Since lAR; we have jeitlj ¼ jeiðt�sÞlj2 ¼ 1: Now the inequality:Z T

0

t

Z t

0

FðsÞ ds dtp
Z T

0

t

Z T

0

FðsÞ ds dt ¼ ðT2=2Þ
Z T

0

FðsÞ ds

with FðsÞ ¼ jjCeisAf jj2 completes the proof of (25).
The second statement of Lemma 5.2 results from applying (12) and (17) to (25): it

yields (24) with M ¼ T2kT KT and m ¼ 2TkT : &

Lemma 5.3. If (24) holds then for all wAC1
compðRÞ

8x0AX ;

Z
jjeitAx0jj2ðw2ðtÞ � M ’w2ðtÞÞ dtpm

Z
jjCeitAx0jj2w2ðtÞ dt: ð27Þ

Proof. Let x0ADðAÞ: Set xðtÞ ¼ eitAx0; z ¼ wx and f ¼ ’z � iAz: Since ’x � iAx ¼
0; we have f ¼ ’wx: The Fourier transform of f with respect to time is f̂ðtÞ ¼
ð�it� iAÞẑðtÞ: Applying (24) to ẑðtÞ; integrating in time, and the unitarity of the
Fourier transform yieldZ

jjzðtÞjj2 dtpM

Z
jj f ðtÞjj2 dt þ m

Z
jjCzðtÞjj2 dt: ð28Þ

Subtracting the first term of the right-hand side and the density of DðAÞAx complete
the proof of (27). &

Proof of Theorem 5.1. The implication is the second part of Lemma 5.2. The
converse results from Lemma 5.3 and the following remark (as in [3]).
Taking wðtÞ ¼ fðt=TÞ with fACN

compð0; 1½Þ; we haveZ
jjCeitAx0jj2w2ðtÞ dtpjjfjj2LN

Z T

0

jjCeitAx0jj2 dt ð29Þ

and, since ðeitAÞtX0 is assumed to be a unitary group:Z
jjeitAx0jj2ðw2ðtÞ � M ’w2ðtÞÞ dt ¼ jjx0jj2IT ð30Þ

with

IT ¼
Z

f2
t

T

	 

� M

T2
’f2

t

T

	 
� �
dt ¼ T

Z
f2ðtÞ dt � M

T

Z
’f2ðtÞ dt: ð31Þ
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For fa0 and T large enough, IT40 so that (27) implies (23) with kT ¼ mjjfjj2LN=IT :
In particular, since

kT ¼ mT
jjfjj2LNR
f2ðtÞ dt

T2 � M

R
’f2ðtÞ dtR
f2ðtÞ dt

 !�1

and inf
fACN

compð0;1½Þ

R
’f2ðtÞ dtR
f2ðtÞ dt

¼ p2;

for all e40; there is a feACN

compð0; 1½Þ such that T4Mðp2 þ eÞ implies kT ¼
CemT=ðT2 � Mðp2 þ eÞÞ with Ce ¼ jjfejj

2
LN=

R
f2e ðtÞ dt: &

Remark 5.4. Observability resolvent estimates like (24) are introduced in [3] as
sufficient conditions for exact observability. Theorem 5.1 for C bounded on X is
proved in [17], using a more involved strategy of Liu [10] which our proof shortcuts.
Liu had proved that, for a conservative first-order systems with bounded control
operator, exact controllability is equivalent to exponential stability. From this
equivalence and the Huang–Prüss condition for exponential stability, he deduced an
observability resolvent condition for conservative second-order systems with
bounded observation operator which he called a frequency domain inequality.

6. Fast smoothing controllability

In this section, as a substitute to the smoothing effect of holomorphic semigroup
(used in [12]), we introduce the notion of smoothing effect controllability. More
precisely, in the general setting for conservative control systems described in Section
4, we prove that controllability to a subspace with finite spectrum and a power-like
bound on the cost of fast controls is implied by the following observability resolvent
estimates (a stronger form of (24)):

(m40; (eA0; 1½; (M : R-ð0;þNÞ; lim sup
jlj-N

jljeMðlÞoN such that :

8xADðAÞ; 8lAsðAÞ; jjxjj2pMðlÞjjðA� lÞxjj2 þ mjjCxjj2: ð32Þ

Theorem 6.1. Assume that A satisfies (32). (k40; (d40; 8TA0; 1; 8x0AX 0;

(uAL2ðR;YÞ such that the solution xAC0ð½0;NÞ;X 0Þ of

’xðtÞ � iA0xðtÞ ¼ BuðtÞ; xð0Þ ¼ x0;

satisfies 1jA0 jeXd=T2xðTÞ ¼ 0 and
R T

0
jjuðtÞjj2 dtpk

T
jj1jA0 jeXd=T2x0jj2: In particular, for

all positive s; xðTÞADðA0sÞ and jjA0sxðTÞjjpð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kKT=T

p
Þðd=T2Þs=ejjx0jj:

Proof. Note that (32) still holds for all lAR: Replacing C by
ffiffiffiffi
m

p
C; we assume that

m ¼ 1 without loss of generality.
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The second statement of the theorem results from applying the first statement and
(13) to the integral formula expressing xðTÞ in (14).
The first statement of the theorem is the exact controllability in time T of the

projection of the data on the spectral subspace of X with spectrum greater than

ðd=T2Þ1=e: By duality, it is equivalent to the following exact observability of data in
this spectral subspace: (k40; (d40; 8TA0; 1;

8x0AX 0 such that 1jAjeXd=T2x0 ¼ x0; jjx0jj2p
k
T

Z T

0

jjCeitAx0jj2 dt: ð33Þ

Let wT denote a smooth truncation defined by wT ðtÞ ¼ wðt=TÞ and wACcompð0; 1½Þ:
Set xðtÞ ¼ eitAx0; z ¼ wx and f ¼ i ’z þAz: Since i ’x þAx ¼ 0; we have f ¼ i ’wT x:

The Fourier transform of f with respect to time is f̂ðtÞ ¼ ðA� tÞẑðtÞ:With x ¼ ẑðtÞ
and l ¼ t; the inequality in (32) writes: jjẑðtÞjj2pMðtÞjj f̂ðtÞjj2 þ jjCẑðtÞjj2: Applying
this inequality for t greater than a threshold m40 and using the unitarity of the
Fourier transform yield:

Z
jjzðtÞjj2 dtp sup

jtjXm

t
m

����
����
e

MðtÞ
Z

jj f ðtÞjj2 dt þ
Z

jjCzðtÞjj2 dt

þ
Z
jtjom

jjẑðtÞjj2 dt: ð34Þ

Setting m ¼ 2ðd=T2Þ1=e we have 12jAjXmx0 ¼ x0: For jtjo2m we have jjðA�
tÞ�112jAjXmx0jjpjjx0jjð2m� jtjÞ�1; so that using i�1@te

itðA�tÞx0 ¼ eitðA�tÞðA� tÞx0;
and integrating by parts yield ẑðtÞ ¼ i�1

R
’wT ðtÞeitðA�tÞðA� tÞ�112jAjXmx0 dt and

jjẑðtÞjjpjj’wjjL1ð2m� jtjÞ�1jjx0jj: Therefore
R
jtjpm jjẑðtÞjj

2
dtp2

mjj’wjj
2
L1 jjx0jj2: MoreoverR

jjCzðtÞjj2 dtpjjwjj2LN

R
jjCxðtÞjj2 dt;

R
jjzðtÞjj2 dt ¼ T jjwjj2L2 jjx0jj2 and

R
jj f ðtÞjj2 dt ¼

T�1jj’wjj2L2 jjx0jj2: Hence (34) implies

jjx0jj2 jjwjj2L2 �
jj’wjj2L2

meT2
sup
jtjXm

jtjeMðtÞ � 2jj’wjj2L1

mT

 !
p
jjwjj2LN

T

Z
jjCxðtÞjj2 dt:

Replacing m and x by their values, there is a k0 depending on w and e such that

jjx0jj2 1� k0

d
sup

jt=2jeXd=T

jtjeMðtÞ � k0T
2
e�1

d1=e

0
@

1
Ap

k0

T

Z
jjCeitAx0jj2 dt:

Since lim supjlj-N
jljeMðlÞoN; 2

e � 140 and To1; taking d large enough

independently of T yields a k40 such that (33) holds. &
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Proof of Theorem 3.4. Since system (2) is exactly controllable, Theorem 5.1 implies
the corresponding observability resolvent estimate (24), i.e.

(M40; (m40; 8z0AH2; 8z1AH1; 8lAR;

jj
ffiffiffiffi
A

p
z0jj20 þ jjz1jj20pM jj

ffiffiffiffi
A

p
ð�iz1 � lz0Þjj20 þ jjiAz0 � lz1jj20

	 

þ mjjCz0jj2:

For la0 and z1 ¼ il�1Az0; this estimate writes:

8z0AH3; 8lAR�; jj
ffiffiffiffi
A

p
z0jj20 þ

1

jlj2
jjAz0jj20p

M

jlj2
jj
ffiffiffiffi
A

p
ðA � l2Þz0jj20 þ mjjCz0jj2:

In particular, since A is positive:

8z0AH3; 8tAsðAÞ; jjz0jj21p
M

jtjjjðA � tÞz0jj21 þ mjjCz0jj2:

Hence the observability resolvent (32) corresponding to system (1) holds with
MðlÞ ¼ M=jlj and e ¼ 1: Applying Theorem 6.1 with s ¼ p=2 completes the proof of
Theorem 3.4. &

7. Tensor product with a conservative system

Theorem 3.5 results from Theorem 3.1 and the following lemma. This trivial
lemma is of independent interest. It says that the controllability cost of a system is
not changed by taking its tensor product with a conservative system. It simplifies
greatly and improves on previous results concerning conservative systems distributed
in rectangles (or other product spaces like cylinders or parallelepipeds): boundary
controllability from one whole side (cf. [8]) and semi-internal controllability (cf. [7]).
Some applications are given in Section 10 and [13].

Lemma 7.1. Let X ; X̃ and Y be Hilbert spaces and I denote the identity operator on

each of them. Let A : DðAÞ-X and *A : Dð *AÞ-X̃ be generators of strongly

continuous semigroups of bounded operators on X and X̃: Let C : DðCÞ-Y be a

densely defined operator on X such that etADðCÞCDðCÞ for all t40: Let X %#X̃ and

Y %#X̃ denote the closure of the algebraic tensor products X#X̃ and Y#X̃ for the

natural Hilbert norms. The operator C#I : DðCÞ#X̃-Y %#X̃ is densely defined on

X %#X̃:

(i) The operator A#I þ I# *A defined on the algebraic DðAÞ#Dð *AÞ is closable

and its closure, denoted Aþ *A; generates a strongly continuous semigroup of bounded

operators on X %#X̃ satisfying

8tX0; 8ðx; x̃ÞADðCÞ � X̃; jjðC#IÞetðAþ *AÞðx#x̃Þjj ¼ jjCetAxjj jjet *Ax̃jj: ð35Þ
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(ii) If i *A is self-adjoint, then for all TX0:

inf
zAX %#X̃;jjzjj¼1

Z T

0

jjðC#IÞetðAþ *AÞzjj2 dt ¼ inf
xAX ;jjxjj¼1

Z T

0

jjCetAxjj2 dt: ð36Þ

Remark 7.2. When C is an admissible observation operator, (36) says that the cost of

observing t/etðAþ *AÞ through C#I in time T is exactly the cost of observing t/etA

through C in time T : The proof of part (i) of Lemma 7.1 is still valid if X ; X̃ and Y

are Banach spaces and X %#X̃ and Y %#X̃ are closures with respect to some uniform
cross norms (cf. [15]).

Proof. Let G denote the generator of the strongly continuous semigroup

t/etA#et *A (defined since the natural Hilbert norm is a uniform cross norm, cf.

[15]). Since DðAÞ#Dð *AÞ is dense in X#X̃ and invariant by t/etG; it is a core for

G (cf. theorem X.49 in [14]). Since A#I þ I# *A ¼ GnDðAÞ#Dð *AÞ; it is closable and

Aþ *A ¼ G: Therefore etðAþ *AÞ ¼ etA#et *A and (35) follows (by the cross norm
property).
To prove point (ii), we denote the left- and right-hand sides of (36) by IAþ *A and

IA: Taking z ¼ x#x̃ with jjx̃jj ¼ 1; IAþ *ApIA results from (35). To prove

IAþ *AXIA; we only consider the case in which both X and X̃ are infinite

dimensional and separable (this simplifies the notation and the other cases are

similar). Let ðenÞnAN and ðẽnÞnAN be orthonormal bases for X and X̃: Since

ðen#ẽmÞn;mAN is an orthonormal base for X %#X̃; any zAX %#X̃ writes

z ¼
X

m

xm#ẽm with xm ¼
X

n

cn;men and jjzjj2 ¼
X
n;m

jcn;mj2 ¼
X

m

jjxmjj2:

Since i *A is self-adjoint, t/et *A is unitary for all tX0 so that ðet *AẽnÞnAN is

orthonormal. Therefore, using (35):

jjCetðAþ *AÞzjj2 ¼
X

m

ðCetAxmÞ#ðet *AẽmÞ
�����

�����
�����

�����
2

¼
X

m

jjCetAxmjj2:

By definition,
R T

0
jjCetAxmjj2dtXIAjjxmjj2: Summing up over mAN; we obtain

Z T

0

jjðC#IÞetðAþ *AÞzjj2 dt ¼
Z T

0

X
m

jjCetAxmjj2XIA

X
m

jjxmjj2 ¼ IAjjzjj2:

This proves IAþ *AXIA and completes the proof of Lemma 7.1. &
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8. The fundamental controlled solution

In this section we use Theorem 2.2 to construct a ‘‘fundamental controlled
solution’’ k of the Schrödinger equation on a segment controlled by Dirichlet
conditions at both ends.
The following proposition shows that the upper bound for the controllability cost

of the Schrödinger equation on the segment ½0;L controlled at one end is the same
as the controllability cost of the Schrödinger equation on the twofold segment
½�L;L controlled at both ends.

Proposition 8.1. For any a4a� (cf. Definition 2.1), there exists g40 such that, for all

L40; TA0; infðp=2;LÞ2 and f0AH�1ð�L;LÞ; there are g� and gþ in L2ð0;TÞ such

that the solution fAC0ð½0;T ;H�1ð�L;LÞÞ of the following Schrödinger equation on

½�L;L controlled by g� and gþ:

@tfþ i@2s f ¼ 0 in 0;T ½� � L;L½; fns¼7L ¼ g7; fnt¼0 ¼ f0 ð37Þ

satisfies f ¼ 0 at t ¼ T and
R T

0 jg7ðtÞj2 dtpgeaL2=T jjf0jj
2
H�1ð�L;LÞ:

Proof. By duality (cf. [6]), it is enough to prove the observation inequality:

(g40; 8f0AH1
0 ð�L;LÞ; jjf0jj

2
H1pgeaL2=T jj@se

itDf0ns¼7Ljj
2
L2ð0;TÞ2 ; where D denotes @

2
s

on ½�L;L with Dirichlet boundary conditions. Applying Theorem 2.2 with N ¼ 0 to
the odd part of f0 and with N ¼ 1 to the even part of f0 completes the proof of
Proposition 8.1. &

Expressing the solution of (37) with f0 ¼ dAH�1ð�L;LÞ (the Dirac distribution
at the origin) in terms of g7 by the integral formula and applying Proposition 8.1
yields the following family of null-controlled solutions (depending on L40 and
T40 with a good cost estimate) which we refer to as fundamental controlled
solutions.

Corollary 8.2. For any a4a� (cf. Definition 2.1), there exists g40 such that 8L40;

8TA0; infðp=2;LÞ2; (kAC0ð½0;T ;H�1ð � L;L½ÞÞ satisfying

@tk þ i@2s k ¼ 0 in D0ð0;T ½� � L;L½Þ; ð38Þ

knt¼0 ¼ d and knt¼T ¼ 0; ð39Þ

Z T

0

jjkðt; �Þjj2H�1ð�L;L½Þ dtpgeaL2=T : ð40Þ
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9. The transmutation of second-order controls into first-order controls

In this section we perform a transmutation of a control for the second-order
system (2) into a control for the first-order system (1) (cf. (47)), then combine it with
Theorem 3.4 into Theorem 3.1. The control transmutation method outlined in
Section 1 proves Theorem 3.1 only for smoother data, i.e. :

Proposition 9.1. If system (2) is exactly controllable in times greater than L� (cf.

Definition 1.1), then (a40; (g40; 8L4L�; 8TA0; infð1;LÞ2; 8f0AH1;

(uAL2ð0;T ;YÞ such that the solution f of (1) satisfies fðTÞ ¼ 0 andR T

0 jjuðtÞjj2 dtpk2;LgeaL2=T jjf0jj
2
1; where k2;L is defined in (7).

Proof. Let L4L�: Since (2) is exactly controllable in time L; by Lemma 4.2 (applied
to the reduction of (2) to the first-order setting described after the statement of this

lemma): for all z0AH1 and z1AH0; there is a vAH1ðR;YÞ such that vðsÞ ¼ 0 for

seð0;LÞ; the solution z of (2) satisfies zðLÞ ¼ ’zðLÞ ¼ 0 and

Z
jj’vðtÞjj2 dtpk2;Lðjjz0jj21 þ jjz1jj20Þ: ð41Þ

Let a4a� and TA0; infð1;L2Þ½: Let g40 and kAC0ð½0;T ;H�1ð � L;L½ÞÞ be the
corresponding constant and fundamental controlled solution given by Corollary 8.2.

We define
%
kAC0ð½0;NÞ;H�1ðRÞÞ as the extension of k by zero, i.e.

%
kðt; sÞ ¼ %kðt; sÞ on

½0;T � � L;L½ and
%
k is zero everywhere else. It inherits from k the following

properties:

@t
%
k þ i@2s

%
k ¼ 0 in D0ð0;T ½� � L;L½Þ; ð42Þ

%
knt¼0 ¼ d and

%
knt¼T ¼ 0; ð43Þ

Z T

0

jj
%
kðt; �Þjj2H�1ðRÞ dtpgeaL2=T : ð44Þ

Let f0AH1 be an initial data for (1). Let z and v be the corresponding solution and
control function for (2) with data z0 ¼ f0 and z1 ¼ 0: We define

%
zAC0ðR;H1Þ-C1ðR;H0Þ and

%
vAH1ðR;Y Þ as the extensions of z and v by reflection

with respect to s ¼ 0; i.e.
%
zðsÞ ¼ zðsÞ ¼

%
zð�sÞ and

%
vðsÞ ¼ vðsÞ ¼

%
vð�sÞ for sX0: Since

z1 ¼ zðLÞ ¼ ’zðLÞ ¼ 0;
%
z is the unique solution in C0ðR;H0Þ-C1ðR;H�1Þ of

.

%
zðtÞ þ A0

%
zðtÞ ¼ B

%
vðtÞ;

%
zð0Þ ¼ f0; ’

%
zð0Þ ¼ 0;
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in particular in the following weak sense (as in (22)): for all j in H2;

s//
%
zðsÞ;jS0AH2ðRÞ and d2

ds2
/
%
zðsÞ;jS0 þ/

%
zðsÞ;AjS0 ¼ /

%
vðsÞ;CjS0: ð45Þ

Eq. (41) implies the following cost estimate for
%
v:Z

jj’
%
vðsÞjj2 dsp2

Z
jjvðsÞjj2 dsp2k2;Ljjf0jj

2
1: ð46Þ

The main idea of our proof is to use
%
k as a kernel to transmute

%
z and

%
v into a solution

f and a control u for (1). The transmutation formulas

fðtÞ ¼
Z

%
kðt; sÞ

%
zðsÞ ds and 8t40; uðtÞ ¼ �i

Z
%
kðt; sÞ

%
vðsÞ ds; ð47Þ

define fAC0ð½0;NÞ;H0Þ and uAL2ð½0;NÞ;YÞ since
%
kAC0ð½0;NÞ;H�1ðRÞÞ;

%
zAH1ðR;H0Þ and

%
vAH1ðR;YÞ: Property ð43Þ of

%
k implies fð0Þ ¼ f0 and fðTÞ ¼

0: Since
%
zðsÞ ¼ ’

%
zðsÞ ¼ 0 for jsj ¼ L; Eqs. (45) and (42) imply, by integrating by parts,

for all j in H3:

t//fðtÞ;jS0AH1ð0;NÞ; d

dt
/fðtÞ;jS0 þ/fðtÞ; iAjS0 ¼ /uðtÞ;CjS0: ð48Þ

This is Eq. (16) corresponding to (1), i.e. with the settings described after (19).
Therefore f and u satisfy (5).

Since
R T

0 jjuðtÞjj2 dtp
R T

0 jj
%
kðt; �Þjj2H�1ðRÞ dt

R
jj’
%
vðsÞjj2 ds; Eqs. (44) and (46) imply the

cost estimate which completes the proof of Proposition 9.1. &

Proof of Theorem 3.1. Let a4a�; L4L� and eA0; 1½:
According to Theorem 3.4 with p ¼ 2: (k40; (d40; 8TA0; 1; 8f0AH�1;

(u1AL2ð½0; eT ;Y Þ such that the solution fAC0ð½0; eT ;H�1Þ of (1) with u ¼ u1 on

½0; eT  satisfies fðTÞAH1; jjfðTÞjj1pjjf0jj�1ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kK1;eT=eT

p
Þd=ðeTÞ2; andR T

0 jju1ðtÞjj2 dtp k
eTjjf0jj

2
�1: Therefore, according to Proposition 9.1, (a40; (g40;

8TA0; infð1;LÞ2; 8f0AH�1; (u2AL2ð½eT ;T ;Y Þ such that the solution

fAC0ð½0;T ;H�1Þ of (1) with u ¼ u1 on ½0; eT  and u ¼ u2 on ½eT ;T  satisfies fðTÞ ¼
0 and

R T

eT jju2ðtÞjj2 dtpk2;LgeaL2=ðT�eTÞjjf0jj
2
2: Since

R T

0 jjuðtÞjj2 dt ¼
R eT
0 jju1ðtÞjj2 dt þR T

eT jju2ðtÞjj2 dt; the controllability cost k1;T in Definition 1.1 satisfies for all

TA0; infð1;LÞ2:

k1;Tp
k
eT

þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kK1;1=eT

q	 
2 d2

ðeTÞ4
k2;Lg exp

aL2

ð1� eÞT :

Therefore lim supT-0 T ln k1;TpaL2=ð1� eÞ: Letting a; L and e tend, respectively, to
a�; L� and 0 completes the proof of (9). &
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10. Geometric bounds on the cost of fast boundary controls for Schrödinger equations

When the second-order equation (2) has a finite propagation speed and is
controllable, the control transmutation method yields geometric upper bounds on
the cost of fast controls for the first-order equation (1). This was illustrated in [13] on
the internal controllability of Schrödinger equations on Riemannian manifolds
which have the wave equation as corresponding second-order equation. Similar
lower bounds proved in [13] (without assuming the controllability of the wave
equation) imply that the upper bounds are optimal with respect to time dependence.
In this section, we illustrate the control transmutation method on the analogous
boundary control problem for Schrödinger equations.
Let ðM; gÞ be a smooth connected compact n-dimensional Riemannian manifold

with metric g and smooth boundary @M:When @Ma|; M denotes the interior and
%M ¼ M,@M: Let D denote the (negative) Laplacian on ðM; gÞ and @n denote the
exterior Neumann vector field on @M: The characteristic function of a set S is
denoted by wS:

Let H0 ¼ L2ðMÞ: Let A be defined by Af ¼ �Df on DðAÞ ¼ H2ðMÞ-H1
0 ðMÞ: Let

C be defined from DðAÞ to Y ¼ L2ð@MÞ by Cf ¼ @nfnG where G is an open subset of
@M: With this setting, (1) is a Schrödinger equation, (2) is a scalar wave equation,
and these equations are controlled by the Dirichlet boundary condition on G: In
particular (2) writes:

@2t z� Dz ¼ 0 on Rt � M; z ¼ wGv on Rt � @M;

zð0Þ ¼ z0AL2ðMÞ; ’zð0Þ ¼ z1AH�1ðMÞ; vAL2
locðR;L2ð@MÞÞ: ð49Þ

It is well known that C is an admissible observation operator for the wave equation
(20) and the Schrödinger equation (19) (cf. e.g. [2,9], Corollary 3.9). To ensure the
exact controllability of the wave equation we use the geometric optics condition of
Bardos–Lebeau–Rauch (specifically Example 1 after Corollary 4.10 in [2]):

There is a positive constant LG such that every generalized geodesic

of length greater than LG passes through G at a non-diffractive point: ð50Þ

Generalized geodesics are the rays of geometrical optics (we refer to [11] for a
presentation of this condition with a discussion of its significance). We make the
additional assumption that they can be uniquely continued at the boundary @M: As
in [2], to ensure this, we may assume either that @M has no contacts of infinite order

with its tangents (e.g. @M ¼ |), or that g and @M are real analytic. For instance, we
recall that (50) holds when G contains a closed hemisphere of a Euclidean ball M of
diameter LG=2; or when G ¼ @M and M is a strictly convex bounded Euclidean set
which does not contain any segment of length LG:
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Theorem 10.1 (Bardos et al. [2]). If (50) holds then the wave equation (49) is exactly

controllable in any time greater than LG:

Thanks to this theorem, Theorem 3.5 implies:

Theorem 10.2. Let M̃ be a smooth complete ñ-dimensional Riemannian manifold and *D
denote the Laplacian on M̃ with the Dirichlet boundary condition. Let g denote the

subset G� M̃ of @ðM � M̃Þ: If (50) holds then the Schrödinger equation:

i@tf� ðDþ *DÞf ¼ 0 on Rt � M � M̃; f ¼ wgu on Rt � @ðM � M̃Þ;

fð0Þ ¼ f0AL2ðM̃;H�1ðMÞÞ; uAL2
locðR;L2ð@ðM � M̃ÞÞÞ;

is exactly controllable in any time T at a cost *kT which satisfies the following upper

bound (with a� as in Theorem 2.2): lim supT-0 T ln *kTpa�L2
G:

Remark 10.3. For M̃ ¼ |; the controllability was proved in [9]. As in [9], this results
extends to the plate equation. The boundary controllability of a rectangular plate

from one side was proved in [8] (Theorem 2.2). When M is a segment and M̃ is a line,
Theorem 10.2 extends this result to an infinite strip.

Remark 10.4. In particular, Theorem 10.2 shows that the geometric optics condition
is not necessary for the controllability cost of the Schrödinger equation to grow at

most like expðC=TÞ as T tends to 0: Indeed, any geodesic of M̃ yields a geodesic of

M � M̃ in a slab fxg � M̃ with xAM; and this geodesic does not pass through the

control region g since the slab does not intersect the boundary set @M � M̃:
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