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Abstract 

Studying quantitative relationships between landscape pattern and water quality is a fundamental step to assess the 
impacts of non-point source pollution. Many hydrological models with multi-functionality have been developed as 
useful tools to study several key mechanisms in non-point source pollution. In landscape ecological studies, however, 
the empirical modelling approaches have been dominated with emphasis on the relationships between the landscape 
metrics and water quality indices. The main techniques for developing those models of landscape-water quality are 
statistical regression analysis based on linear models. In this article, Allometric models and the traditional multiple 
linear regression models for estimating the linkage between landscape metrics and water quality were tested in Sihu 
Basin, Hubei Province, China. The models at patch class level were established in 24 hydrological units of the basin, 
which took nine water quality indices (EC, pH, SS, DO, COD, TN, TP, NO3

--N, NH4
+-N) as the dependent variables 

and eighteen landscape metrics calculated in FRAGSTATS 3.3 as independent variables. The results suggested that, 
compared with the traditional multiple linear regression models, Allometric models were more suitable for SS, DO, 
TP, TN, NH4

+-N, in which landscape pattern metrics could explain the 80.5%, 77.7%, 58.2%, 43.9%, 67.6% of total 
variation, respectively. There had little difference between multiple linear regression models and Allometric models 
for EC and NO3

--N. The coefficients of determination in Allometric models were not as strong as that obtained in the 
multiple linear regression models for pH and COD. The above results indicated that using Allometric model may 
potentially provide a new way to study the linkage between landscape metrics and water quality indices, which will 
help protect our regional water resources.  
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Nomenclature 

 

PLAND                  Percentage of landscape  

NP                  Numbers of patches 

PD                  Patch density 

TE                          Total edge 

ED                          Edge density  

LSI                         Landscape shape index 

LPI                         Largest patch index 

AREA_MN           Mean patch area 

AREA_SD            Standard deviation in patch area 

AREA_CV            Coefficient of variation in patch area 

PARA_MN           Mean perimeter-area ratio 

SHAPE_MN              Mean shape index 

SHAPE_AM         Area-weighted mean shape index 

FRAC_MN           Mean patch fractal dimension 

FRAC_AM           Area-weighted mean patch fractal dimension 

AI                         Aggregation index 

IJI                         Interspersion & juxtaposition index 

COHESION         Cohesion index 

1. Introduction 

Non-point source (NPS) pollution resulted from the agricultural production threatened the water 
quality and aquatic ecosystems [1-3]. In the factors caused the non-point source, land use and land cover 
are predominated and numerous studies have been conducted the relationships between land uses and 
water quality within watersheds [4-7]. However, there is a growing demand for large-scale land 
transformation, which affects stream in a variety of ways across numerous spatial and temporal scales [8-
12].  

Recently, scientists in hydrology, ecology, geography, pedology, environmental sciences are 
concerned about the changes in landscape composition of watershed, their cumulative impaction on water 
quality, and emerges hundreds of water quality models on non-point source pollution mechanism and 
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nutrient migration and transformation. Of particular concern is the degree to which landscape conditions 
at watershed scales influence nitrogen, phosphorus, and sediment loadings to surface waters [13,14]. High 
levels of nutrients and sediment in water can pose significant human health and ecological risks [13]. In 
watershed scales models, there are the mechanism models based on hydrological processes and empirical 
models based on the correlative regression analysis between landscape and water quality [15-21]. 
However, it often occurs that parameters of these models have undefined ecological significance when we 
models landscape and water quality using these methods, which is the one reason that leads to the limited 
applying of empirical models.  

At present, Allometric models, which also named multiple power exponent regression models and 
originated from the relationship between the biomass, metabolic and growth character in different organs 
of organism, has increasingly wide application [22-24], and could afford to a new idea for evaluating the 
relationship between landscape and water quality. Extensive studies have shown that the Allometric 
relationship is simulated in different tributaries connection of watershed [25-27], many of which are about 
the relationship between hydrographic geometry character and water quantity. So, it is important to 
explain ecosystem character and evaluate ecological security in regional landscape [28]. Few have 
directly addressed the question of whether there is the Allometric relationship between water quality and 
landscape parameters in the basin scale. Actually, the hydrographic geometry characters of watershed are 
included in landscape characters. It is possible to obtain the Allometric relationship and the scale value 
between the hydrographic geometry characters and water quality through that of water quantity and the 
hydrographic geometry characters.  

2. Materials and methods  

2.1. Study site  

Sihu Basin lies in Jianghan Plain, Hubei Province, China (29°26′-31°02′N, 111°57′-114°05′E). South 
of the basin is the Yangtze River, and the north is Han River and Dongjin River, the east is the Xintan 
entrance that is the Dongjin River enters the Yangtze River, the northeast is the Main Ditch and the third 
sub-ditch of Zhanghe Reservoir. It is the subtropical monsoon climate and covers an area more than 
11547.5 km2, which comprises about 80 % land and 20 % water [29]. The total yearly radiation is 440.0-
460.9 KJ/cm2, the yearly average sunshine is 1800-2000 h, the accumulated temperature above 10 ℃ is 
5000-5350 ℃, the yearly average atmosphere temperature is 15.9-16.6 ℃, and the yearly precipitation is 
1100-1300 mm. Due to the complex hydrographic network, this wetland agricultural basin could be 
divided into three parts. The upper reach is the hilly country and the area is 3240 km2, which includes the 
Chang Lake, Tianguan River and the upper of them. The middle area is 5980 km2 between the below of 
the Chang Lake, Tianguan River and the upper of the Hong Lake, Xiaxin River. The lower reach is 1155 
km2 included the lower of the Hong Lake, Xiaxin River. There are 33 irrigating water gates, 4 drainage 
gates, 17 first pump stations and 754 second pump stations in the selected basin. Soil type is the yellow 
and brown earth and the paddy soil of the hilly country and the plain is the alluvial paddy soil.  

2.2. Selection of hydrological units and sampling sites 

The upper reach of the basin is out of the study because its terrain is the hilly country and has not the 
characteristic of wetland agriculture. Sampling sites were located at the middle and the lower reaches 
along the Main Channel, Pailao River, West Channel, Luoshan Channel, 17 of which were the middle 
reach (ID01-ID17) and others were the lower reach (ID18-ID24). Meantime, the boundary of 24 
hydrological units was accurately defined by digital elevation model (DEM) data and field research 
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(shown in Fig.1). Water samples were collected from the outlet sites of the 24 hydrological units in 
August, 2010. A 600 ml plastic bottle was used for sampling at 0.5 m below the surface water and 5 
replications were conducted. At the same time, the longitude and latitude of the sampling sites were 
situated accurately by GPS (GARMIN GPS72). Nine physical and chemical indices in the sampled water, 
electric conductivity (EC), pH, suspend solids (SS), dissolve oxygen (DO), chemical oxygen demand 
(COD), total nitrogen (TN), total phosphorous (TP), nitrate nitrogen (NO3

--N), ammonium nitrogen 
(NH4

+-N), respectively, were measured. The portable dissolve oxygen analyzer (JPB-607) was used in the 
analysis of DO. EC was determined by the conductivity meter (DDS-001A). The pH value was measured 
with the electric potential method. COD was analyzed by the potassium permanganate oxidation. TN and 
TP were measured from a persulfate-digested split of unfiltered sample on a UV spectrophotometer and 
molybdenum antimony colorimetry. NO3

--N was measured on a UV spectrophotometer. NH4
+-N was 

analyzed by Nessler’s reagent colorimetry. SS was determined by drying method. These methods can be 
seen in the environmental quality standards for surface water (GB3838-2002), China.  
 

 

Fig.1 Study area and hydrological units 

2.3. Analysis of land use and landscape metrics  

The satellite data of HJ-1AB (30 m resolution) in 2010 was collected from the network platform of 
resource satellite application center of China for evaluating the land use of the basin, which was analyzed 
by supervised classification and manual visual judgment in ENVI 4.5 (The Environment for Visualizing 
Images) and ArcGIS 9.3, then land use pattern of 24 hydrological units were dominated by residential 
point (RP), road (R), ditch (D), fish pond (FP), dry farm land (DL), paddy field (PF) and forest land (FL), 
according to the current situation classification of land use (GB/T 2001-2007) and the characteristic of 
land cover (shown in Fig.2). 

We used FRAGATATS software (version 3.3) to calculate 18 landscape metrics at class level, 
including PLAND, NP, PD, TE, ED, LSI, LPI, AREA_MN, AREA_SD, AREA_CV, PARA_MN, 
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SHAPE_MN, SHAPE_AM, FRAC_MN, FRAC_AM, AI, IJI, COHESION, which showed the area and 
quantity, shape, distribution and structure, and diversity of the class in the basin, respectively.  
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Fig.2 Composition of land uses in Sihu Basin, Hubei Province, China  

2.4. Statistical analysis  

Allometric model and multiple linear regression model were used to explain the relationships of water 
quality indices and landscape metrics in 24 hydrological units of the basin. Two kinds of models take the 
following forms: 

 

WQI= a0+a1L1+a2L2+…+ anLn                                                                                                                                                                                                                  (1) 

where WQI (water quality indices) is the dependent variables, L1,2…n (landscape pattern metrics) are the 
independent variables, α1,2…n are the coefficients and n is the number of variables.  

 
n

nLLALWQI   21
21                                                                                                                                                                                    (2) 

Where α1,2…n are the relative growth weight factors, n is the number of variables and A is an 
undetermined coefficient which would represent the management level.  

After the natural logarithm transformation of dependent and independent variables, Allometric model 
convert into multiple linear regression model:  

 

Ln(WQI)=Ln(A)+a1Ln(L1)+a2Ln(L2)+ a3Ln(L3)+…+ anLn(Ln)                                                         (3) 

Before modeling, the normal distribution of landscape metrics in the class levels was tested by 
Kolmogorov-Smirnov method [30]. Results indicated that nine variables, RNP, DSHAPE_MN, FPPLAND, DLLPI, 
DLPARA_MN, DLSHAPE_MN, DLFRAC_MN, DLFRAC_AM and DLCOHESION did not meet the normal distribution (p＜
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0.05). After converting the natural logarithm, these indices were presented the preferable normal 
distribution. Statistical analysis was carried out by SPSS 17.0.   

3. Results 

3.1. Allometric model between landscape metrics and water quality indices 

The Allometric model was used to establish the relationship between landscape variables and water 
quality variables, as shown in Eq.(4) to Eq.(12). 
 

Ln(SS) = 2.909 + 0.871Ln(PFED) - 1.386Ln(PFPARA_MN)- 0.051 Ln(DLIJI) + 0.375 Ln(PFPLAND)   (4) 

Where SS is suspend solids (mg/L), PFED is ED of paddy field (m/hm2), PFPARA_MN is PARA_MN of 
paddy field, DLIJI is IJI of dry farm land (%), PFPLAND is PLAND of paddy field (%). Eq. (4) was the 
simulated model for SS by the Allometric model. It was showed that 80.5% of the total variation could be 
explained by PFED, PFPARA_MN, DLIJI and PFPLAND. Significantly positive correlation was found between 
the proportion of the paddy field and the concentration of SS in the water of ditch, and there was a 
negative correlation between DLIJI and the concentration of SS, that meant, the concentration of SS was 
decreased when the dry farm land patches were dispersed in the other patches.  
 

Ln(DO) = 2.290 + 0.93Ln(FPSHARE_AM) + 0.504Ln(DIJI)+ 0.18 Ln(FPAREA_MN) - 0.551 Ln(FLIJI)    (5)  

Where DO is dissolve oxygen (mg/L), FPSHARE_AM is SHARE_AM of fish pond, DIJI is IJI of ditch (%), 
FPAREAMN is AREA_MN of fish pond (hm2), FLIJI is IJI of forest land (%). In Eq. (5), 77.7% of the 
variation of DO could be explained by FPSHAPE_AM, DIJI, FPAREA_MN and FLIJI. With the mean patch area of 
fish pond increasing, the shape of fish pond regulating, and the ditch patch dispersing, the concentration of DO 
in the hydrological units was the higher. A negative correlation was found in both FLIJI and DO, which 
suggested that forest land acted as the sink could be improved water quality to some extent. 
 

Ln(TN) = 1.093 -0.292Ln(DAREA_MN)                                                                                                (6) 

Where TN is total nitrogen (mg/L), DAREA_MN is AREA_MN of ditch (hm2). In the Allometric model for 
TN, DAREA_MN was served as explanatory variable after stepwise regression. When the DAREA_MN increased, 
the concentration of TN was decreased, which was benefit for water quality. 

 

Ln(TP) = -0.568 - 0.427Ln(DAREA_MN) - 0.069 Ln(DAREA_SD)                                                            (7) 

Where TP is total phosphorous (mg/L), DAREA_MN is AREA_MN of ditch (hm2) and DAREA_SD is 
AREA_SD of ditch (hm2). Eq. (7) showed that DAREA_MN and DAREA_SD in landscape metrics could explain 
the variation of TP. That is, the larger of DAREA_MN and DAREA_SD, the concentration of TP in water of ditch 
was the lower, which implied that ditch was the key landscape composition for regional water quality.  

 

Ln(NH4
+-N) = -0.235 - 0.502Ln(DAREA_MN) - 0.666 Ln(FLAREA_MN)                                                 (8) 

Where NH4
+-N is the content of ammonium nitrogen (mg/L), DAREA_MN is AREA_MN of ditch (hm2), 

FLAREA_MN is AREA_MN of forest land (hm2). In landscape metrics, DAREA_MN and FLAREA_MN were 
contributed to the concentration of NH4

+-N. With the DAREA_MN and FLAREA_MN increasing, the 
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concentration of NH4
+-N was decreased. It was concluded that ditch, a typical artificial wetland, played 

an important role to reduce the eutrophication of the surface water. In addition, forest land acted as a kind 
of sink landscape could withhold the pollutant in the water. 
 

Ln(EC) = 5.266 + 0.324Ln(PFPLAND) - 0.099Ln(FPAREA_CV)                                                           (9) 

Where EC is electrotic conductivity (us/cm), PFPLAND is PLAND of paddy field (%), FPAREA_CV is 
AREA_CV of fish pond. There is correction relationship among EC and the content of inorganic acid, 
alkali and salt in the water body, the more of the content of these ions, the higher is the electronic 
conductivity. Eq. (9) showed that EC could be explained by PFPLAND and FPAREA_CV in the landscape 
variables. When the percentage of paddy field area decreased and the difference among the fish pond 
patches increased, EC is decreased. 
 

Ln(NO3
--N) = 0.004 + 0.175Ln(PFPD) - 0.062 Ln(PFNP)                                                                (10) 

Where NO3
--N is the content of nitrate (mg/L), PFPD is FD of paddy field (Number per 100 hectares), 

PFNP is NP of paddy field. In Eq. (10), the independent variable was dominated by paddy field. With the 
PFPD and PFNP increased, the concentration of NO3

--N was increased and water was contaminated. 
 

Ln(pH) = 1.975 + 0.011Ln(DLPI)                                                                                                    (11) 

Where DLPI is LPI of ditch (%). When the linkage of pH and landscape metrics was simulated by the 
Allometric model, the independent variable was only DLPI. That meant, largest patch index was 
responsible for pH. 
 

Ln(COD) = 1.414 - 0.144Ln(FPAREA_MN)                                                                                        (12) 

Where COD is chemical oxygen demand (mg/L), FPAREA_MN is AREA_MN of fish pond (hm2). Eq. (12) 
showed that the variation of COD was dominated by FPAREA_MN. The larger of FPAREA_MN, the 
concentration of COD in water was the higher. 
 

3.2. Multiple linear regression models between landscape metrics and water quality indices 

Multiple linear regression model was usually used to specify the relationships in both land use and 
water quality. So, we also used these models to simulate the linkages of the landscape metrics and water 
quality indices, presented in Eq.(13) to Eq.(21). 
 

SS =0.371 - 0.017FPPARA_MN                                                                                                           (13) 

Where SS is suspend solids (mg/L), FPPARA_MN is PARA_MN of fish pond (hm2). In Eq. (13), the 
variation of SS was dominated by FPPARA_MN, with the mean perimeter-area ratio of fish pond increasing, 
the concentration of SS was reduced.  
 

DO = 4.921 – 0.151FPLPI                                                                                                                 (14)  
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Where DO is dissolve oxygen (mg/L), FPLPI is LPI of fish pond (%). Eq. (14) showed that a negative 
correlation was found between DO and FPLPI in linear regression model. The lower of FPLPI, the 
concentration of DO was the higher, which was benefit for improving water quality. 
 

TN = 11.417 - 0.105DCOHESION                                                                                                        (15) 

Where TN is total nitrogen (mg/L), DCOHESION is COHESION of ditch (%). In multiple linear regression 
model for TN, DCOHESION was the key independent variable for TN. The larger of DCOHESION, the 
concentration of TN was the higher, which meant that the better connection among the ditches could 
improve water body.  
 

TP =0.090 + 0.009DLLPI                                                                                                                 (16) 

Where TP is total phosphorous (mg/L), DLLPI is LPI of dry farm land (%). From Eq. (16), with the 
DLLPI increasing, TP in water was improved. There was a negative effect in both DLLPI and TP. 
 

NH4
+-N = 0.019 + 0.679DPD + 0.014DLLPI                                                                                    (17) 

Where NH4
+-N is the content of ammonium nitrogen (mg/L), DPD is PD of ditch (Number per 100 

hectares) and DLLPI is LPI of dry farm land (%). NH4
+-N is the important factor resulting in 

eutrophication of river and lake. In Eq. (17), DPD and DLLPI were contributed to the variation of NH4
+-N. 

Positive corrections were presented between the concentration of NH4
+-N and DPD and DLLPI. 

 

EC = -2382.268 +3.755PFPLAND +2453.833PFFRAC_CV                                                                   (18) 

Where EC is electrotic conductivity (us/cm), PFPLAND is PLAND of paddy field (%), PFFRAC_CV is 
FRAC_CV of paddy field. Modelling the linkage of EC and landscape metrics by multiple linear 
regression equation, the independent variables were PFPLAND and FPFRAC_CV. With the PFPLAND and 
PFFRAC_MN increasing, EC was improved. 
 

NO3
--N =2.216 - 0.013PFAI -7.575×10-7 DTE                                                                                  (19) 

Where NO3
--N is the content of nitrate nitrogen (mg/L), PFAI is AI of paddy field (%) and DTE is TE of 

ditch (m). NO3
--N is one of the important factors resulting in the pollution of ground water. For NO3

--N 
simulated by multiple linear regression model, PFAI and DTE were severed as the variation of NO3

--N. 
There were positive effects between the concentration of NO3

--N and PFAI, DTE. 
 

pH = 7.306 + 0.013DAREA_MN – 0.042 PFSHAPE_AM +0.0005 PFAREA_CV                                                                  (20) 

Where DAREA_MN is AREA_MN of ditch (hm2), PFSHARE_AM is SHARE_AM of paddy field and 
PFAREA_CV is AREA_CV of paddy field. There were positive effects between the pH and DAREA_MN, 
PFAREA_CV, while PFSHARE_AM was opposite.  
 

COD = 4.076 - 0.029FPED + 0.069 DLPI + 1.535 FLLPI                                                                  (21) 

Where COD is chemical oxygen demand (mg/L), FPED is ED of fish pond (m/hm2), DLPI is LPI of 
ditch (%) and FLLPI is LPI of forest land (%). Eq. (20) and Eq. (21) showed that DAREA_MN, PFSHAPE_AM, 
PFAREA_CV and FPED, DLPI, FLLPI in landscape metrics were served as pH and COD in linear regression 
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models, respectively. The pH was increasing with the DAREA_MN and PFSHAPE_AM improving and the 
PFAREA_CV decreasing. There were positive corrections in both the concentration of COD and DLPI, FLLPI.  

3.3. Comparison between Allometric models and multiple linear regression models 

The relationships between landscape metrics and water quality indices were established in the above 
equations. Compared the determination of coefficients (R2) in Allometric models and multiple linear 
regression models (shown in Fig. 3 to Fig. 11), the results showed that, Allometric model was more 
suitable for SS, 80.5% of the total variation could be explained by PFED, PFPARA_MN, PFPLAND and DLIJI 
(Fig.3). And DO took the second place, 77.7% of the variation could be explained by FPAREA_MN, 
FPSHAPE_AM, DIJI and FLIJI (Fig.4). Compared with the multiple linear regression model, Allometric 
models were more suitable for TP, TN and NH4

+-N, in which landscape pattern metrics could explain the 
58.2%, 43.9%, 67.6% of total variation respectively (Fig.5, 6, 7). In the models of TN and TP, the 
independent variables were dominated by ditch, which could eliminate and purify the pollutant in the 
water body, such as the nutritional salts of nitrogen and phosphorus.  

Fig.8 and 9 showed that the multiple linear regression models had the similar determination of 
coefficients (R2) with the Allometric models for EC and NO3

--N. The coefficients were 0.575, 0.534 and 
0.406, 0.387, respectively. Applying two kinds of models to predict NO3

--N would have been inefficient 
because the R2 of models were less than 0.5, which demonstrated that there was not sufficient proofs for 
explaining the variation of NO3

--N using the metrics at patch class level within hydrological units.  
From Fig.10 and 11, the multiple linear regression models were better than Allometric models for 

predicting pH and COD. 72.0% of the variation in pH could be explained by DAREA_MN, PFSHAPE_AM and 
PFAREA_CV. The result is similar to that of modelling at the Chugoku district in the west of Japan by 
Bahman, which 74.0% of the variation was explained by water and urban indices in multiple linear 
regression model [31]. In our study, 40.1% of pH variable could be explained by DLPI in the Allometric 
model, which suggested that there was a linear correlation among pH and landscape metrics.  
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Fig.3 Comparison of observed and predicted values for SS in Allometric model and multiple linear regression model 
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Fig.4 Comparison of observed and predicted values for DO in Allometric model and multiple linear regression model 
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Fig.5 Comparison of observed and predicted values for TN in Allometric model and multiple linear regression model 
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Fig.6 Comparison of observed and predicted values for TP in Allometric model and multiple linear regression model 
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Fig.7 Comparison of observed and predicted values for NH4
+-N in Allometric model and multiple linear regression model 
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Fig.8 Comparison of observed and predicted values for EC in Allometric model and multiple linear regression model 
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Fig.9 Comparison of observed and predicted values for NO3
--N in Allometric model and multiple linear regression model 
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Fig.10 Comparison of observed and predicted values for pH in Allometric model and multiple linear regression model  
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Fig.11 Comparison of observed and predicted values for COD in Allometric model and multiple linear regression model  

4. Discussion 

Studying quantitative relationships between landscape metrics and water quality indices is a 
fundamental step to assess the impacts of non-point source pollution. Many hydrological models with 
multi-functionality have been developed as useful tools to study several key mechanisms in non-point 
source pollution. In landscape ecological studies, however, the empirical modelling approaches have been 
dominated with emphasis on the relationships between the landscape metrics and water quality. The main 
techniques for developing those models of landscape-water quality are statistical regression analysis 
based on linear models. Whether there is the non-linear relation in both landscape and water quality 
variables is not clear. The Allometric scaling relationships defined as the power exponent relation that 
describes variation in population density with body size in ecological communities, such as the thinning 
law in plant ecology, can be explained in terms of how individuals use resources as a function of their 
size. These relationships usually take the form of power laws M = bBα, where M is body mass, B is the 
biological property of interest and b and α are constants specific to the relationship [32]. Generally, the 
parameters in the Allometric model have more clear meaning than those of the other regression equations. 
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So, it is often used to evaluate variation in population density with body size in ecosystem. Maritan A. et 
al. [27] have been studied how the basic scaling features change to variations in network shape of river 
basins using Allometric model, and derived a new Allometric law for loopless networks. It is also 
believed that using Allometric model to link geometrical features of landscape and water quality may 
potentially provide a new way. In our research, the Allometric model and the multiple linear regression 
model were used to model the linkage of landscape-water quality. The Allometric model was more 
suitable for 5 of the selected 9 water quality indices, SS, DO, TN, TP, NH4

+-N, respectively, than multiple 
linear regression equation. Two kinds of models had the similar simulation determination of coefficients 
(R2) for EC and NO3

--N. Although the R2 of the Allometric model was not as strong as that obtained for 
the multiple linear regression model for COD, the variation of COD explained by landscape variables was 
over 50%. The results reveal that the majority of landscape and water quality indices are the non-linear 
relationship. Hence, modelling the linkage of landscape and water quality by the power exponent 
equation is feasible. Banavar et al. [33] have shown that directed networks would yield exactly α = (D + 
1)/D, where D is the dimension of the underlying space (D = 2 for planar networks, and D = 3 for a 
network in space) in plants and living organisms. They also showed that arbitrary loopless networks have 
α≥ (D + 1)/D hence suggesting that the purported ubiquity of the value α ~ 4/3 in nature. Dreyer O. [34] 
has concluded that the Allometric scale was two-thirds between area and water quantity of watershed, and 
half between mid-length stream and water quantity. That is, the Allometric scale of regional water 
variables resulted from landscape pattern changes can be gained by the Allometric model analysis, which 
is a very useful method for regional water quality management. Further research should closely examine 
the Allometric scale in both landscape metrics and water quality indices.  

 

5. Conclusion 

In this paper, we used two kinds of models, Allometric model and the traditional multiple linear 
regression model, to estimate the linkage of landscape metrics and water quality of 24 hydrological units 
in Sihu Basin, Hubei Province, China. The results suggested that, compared with the traditional multiple 
linear regression models, the Allometric models were more suitable for SS, DO, TP, TN, NH4

+-N, in 
which landscape pattern metrics could explain the 80.5%, 77.7%, 58.2%, 43.9%, 67.6% of total variation 
of the water quality indices, respectively. There had little difference between multiple linear regression 
models and Allometric models for EC and NO3

--N. The coefficients of determination in the Allometric 
models were not as strong as that obtained in the multiple linear regression models for pH and COD. The 
above results indicated that using Allometric model may potentially provide a new way to study the 
linkage between landscape metrics and water quality indices, which will help protect our regional water 
resources.  
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