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SUMMARY

The high rate of clinical response to protein-kinase-
targeting drugs matched to cancer patients with
specific genomic alterations has prompted efforts
to use cancer cell line (CCL) profiling to identify addi-
tional biomarkers of small-molecule sensitivities. We
have quantitatively measured the sensitivity of 242
genomically characterized CCLs to an Informer Set
of 354 small molecules that target many nodes in
cell circuitry, uncovering protein dependencies that:
(1) associate with specific cancer-genomic alter-
ations and (2) can be targeted by small molecules.
We have created the Cancer Therapeutics Response
Portal (http://www.broadinstitute.org/ctrp) to enable
users to correlate genetic features to sensitivity in
individual lineages and control for confounding
factors of CCL profiling. We report a candidate
dependency, associating activating mutations in
the oncogene b-catenin with sensitivity to the Bcl-2
family antagonist, navitoclax. The resource can be
used to develop novel therapeutic hypotheses and
to accelerate discovery of drugs matched to patients
by their cancer genotype and lineage.

INTRODUCTION

Insights into cancer genomes and advances in small-molecule

science are providing a foundation for future cancer therapeutics

that are linked to genomic alterations present in patients’ can-

cers. Several drugs that target dependencies acquired by can-

cers as a result of somatic mutations or translocations are

yielding high clinical response rates, although beneficial re-
sponses are observed in a fraction of cancer patients and are

not always durable (Gonzalez de Castro et al., 2013). Current

targeted drugs inhibit protein kinases encoded by driver onco-

genes or their wild-type alleles directly (‘‘oncogene depen-

dencies’’). It is not known whether similar clinical responses

can result from drugs targeting nononcogenes that become

essential for cancer survival or progression in the context of spe-

cific genetic features (‘‘oncogene-induced dependencies’’). To

accelerate discovery of patient-matched therapies, systematic

approaches are needed to identify: (1) the dependencies that

cancers acquire as a result of specific genetic features and (2)

small-molecule drugs that target the dependencies.

Cancer cell-line profiling has been used to reveal patterns of

small-molecule sensitivities across diverse cancer cell lines

(CCLs). These efforts initially focused on relating sensitivity to

CCL lineage (Shoemaker, 2006) but now increasingly relate

sensitivity to genetic and epigenetic features (Barretina et al.,

2012; Garnett et al., 2012; Heiser et al., 2012; Larsen et al.,

2011; Sharma et al., 2010; Sun et al., 2007). This approach

identified dependencies on oncogenic alleles of EGFR and

BRAF that are now exploited by targeted cancer therapeutics

(McDermott et al., 2007). Manifestation of genetic dependencies

in a lineage-restrictedmanner—for example, sensitivity of V600E

BRAF melanoma, but not colorectal cancers, to BRAF-targeting

vemurafenib (Prahallad et al., 2012)—highlights the need to inte-

grate genetic and lineage features in CCL profiling.

CCL profiling studies have historically been limited in the

quantity, diversity, or level of characterization of CCLs and small

molecules used. One of the earliest CCL profiling efforts, the

NCI-60, probed a set of 59 CCLs from various lineages with

now > 105 diverse small molecules. Although this approach

has been valuable for identifying lineage-selective small-mole-

cule sensitivities, the relatively small number of CCLs and limited

genomic characterization restricted the usefulness of these data.

More recent studies have aimed to address this limitation. One
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recent study profiled 479 CCLs with significant genomic charac-

terization against 24 anticancer drugs (Barretina et al., 2012). A

second study profiled an average of 368 CCLs against 130

preclinical or clinical anticancer agents, though the genomic

alterations correlated to sensitivity were limited to �70 genes

(Garnett et al., 2012). In order for genomic and lineage CCL

profiling to link cancer genetic alterations systematically with

potential drug-targetable dependencies, we need to obtain

sensitivity measurements for extensively characterized CCLs

against a larger set of small molecules that span a broad array

of cell processes.

Here, we provide a resource, the Cancer Therapeutics

Response Portal (CTRP; http://www.broadinstitute.org/ctrp),

that enables researchers to analyze relationships between

genetic and lineage features of cancer and small-molecule

sensitivity. We profiled the sensitivity of 242 CCLs to an Informer

Set of small molecules with well-annotated targets and activities

that collectively modulate a broader range of cellular processes

than is currently being investigated in cancer drug discovery. We

correlated the compound-sensitivity measurements of CCLs to

their genomic alterations, identifying significant correlations

involving 60% of the compounds tested and suggesting candi-

date dependencies on their targets. We intend the CTRP to be

a living resource, incorporating new data over time involving

additional CCLs and compound treatments (single-agent and

combination), and new analyses linking sensitivity to additional

types of cellular features.

RESULTS

Creating an Interactive Resource
Profiling the Sensitivity of CCLs to an Informer Set of

Small-Molecule Probes

The two main considerations for inclusion of small molecules in

the Informer Set were high selectivity for their targets (e.g., rapa-

mycin; Brown et al., 1995) and/or collective targeting of many

distinct nodes in cell circuitry. Compounds having different

structures but targeting the same protein (e.g., cyclosporin A

and tacrolimus targeting calcineurin; Liu et al., 1991) and com-

pounds having differential selectivity toward distinct members

of a protein family (e.g., histone deacetylases; Pan et al., 2012)

were included to validate that genetic feature/sensitivity correla-

tions can be attributed to dependency on a defined protein

target. Compounds in clinical development, with strong selec-

tivity data, or with pharmacokinetic data were prioritized to

enable rapid drug development. The current Informer Set com-

prises 35 FDA-approved drugs, 54 clinical candidates, and 265

probes (�30% prepared for this project by synthesis; Table S1

available online).

The 242CCLs (Table S2J), chosen to alignwith lineages studied

byTheCancerGenomeAtlasand inpublishedgenome-wideRNAi

screens (Cheung et al., 2011), are a subset of the Cancer Cell Line

Encyclopedia collection of �1,000 genetically characterized

CCLs. Data regarding gene expression, amplifications/deletions,

somaticmutations in 1,645 cancer genes, and lineage/histological

subtypes are freely available (http://www.broadinstitute.org/

ccle). EachCCLwas grown in its preferredmedia, plated at a den-

sity optimized during assay development (Table S2J), and treated
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with compound at eight concentrations for 72 hr. Sensitivity

was assayed using CellTiter-Glo to measure cellular ATP levels

as a surrogate for cell number and growth. The area under percent

viability curves (AUC) was computed as a measure of sensitivity

(Extended Experimental Procedures), as AUC reflects both

relative potency and total level of inhibition observed for a com-

pound across CCLs (Table S2G and Figure S1).

Analysis of Sensitivity Data

The ability of genomic CCL profiling to identify clinically relevant

biomarkers of drug response depends on the ability of CCLs to

model tumor responses, which cannot be confirmed without

patient-response data to the same perturbations. To evaluate

the performance of CCLs in this study, we analyzed distributions

of AUCs across all compounds to identify trends among various

subpopulations (Figure 1A). Whereas most CCLs respond differ-

entially across our Informer Set, we observed that CCLs within

specific tissue lineages and suspension CCLs were often more

sensitive to many compounds tested (Figure 1B). These obser-

vations motivated us to perform analyses of AUC distributions

that include all CCLs, as well as analyses that exclude specific

context-dependent subsets of CCLs, to control for potential

‘‘confounding factors’’ (Figures 1C and S1 and Extended Exper-

imental Procedures).

We performed statistics-based enrichment analyses that

combined rank-based and parametric tests (Experimental Pro-

cedures) to identify genetic alterations and cellular features

that are significantly enriched among sensitive (AUC < 3.5) or

unresponsive (AUC > 5.5) CCLs. Analyses were performed for

each compound across all CCLs and relevant subsets. These

correlations are available as a table for download (Table S2

and Data S1), and those exceeding a specific threshold of statis-

tical significance are visualized in the CTRP (Extended Experi-

mental Procedures).

Querying the CTRP Resource
Validating Known Dependencies

The resource identified several known mutation/sensitivity rela-

tionships, such as the increased sensitivity of BRAF mutant

CCLs to P-0850, an analog of the FDA-approved BRAF-V600E

inhibitor, vemurafenib (Smalley, 2010) (Figure 2A). Inspection of

P-0850-unresponsive V600E CCLs identified additional features

previously associated with resistance to vemurafenib: (1) the

unresponsive colorectal CCL, RKO, is reported to produce

high levels of hepatocyte growth factor, which activates CRAF

via MET in an autocrine fashion and circumvents dependence

on BRAF (Corcoran et al., 2011; Straussman et al., 2012), and

(2) the unresponsive CCL, SKMEL28, contains an activating

mutation in EGFR, and enhanced EGFR signaling has been

linked to resistance in vemurafenib-treated colon cancers (Pra-

hallad et al., 2012). These data show that the resource can iden-

tify candidate resistance mechanisms that may suggest rational

combination therapies.

The resource identified increased sensitivity of NRAS mutant

and KRAS mutant CCLs to the MEK1/2 inhibitor, selumetinib,

which has shown preliminary moderate activity in clinical trials

with KRAS mutant patients (P.A. Janne et al., 2012, ASCO,

abstract; Yoon et al., 2011) (Figure 2A). Several mutant CCLs

are unresponsive to selumetinib, suggesting that KRAS/NRAS
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Figure 1. Response of CCLs to Informer Set

(A–C) Sensitivity of 242 CCLs to small-molecule probes/drugs was assessed (CellTiterGlo), and areas under the concentration-response curve (AUC) were

computed. Data are shown as box plots indicating distributions of AUC values for each compound (A) and a heatmap of AUC values (scale represents AUC values

ranging between 1 [sensitive; red] and 6 [unresponsive; blue]) (B) for single CCLs (columns) treated with single compounds (rows). Missing numerical values in

heatmap were imputed using a k-nearest neighbors approach. AUC distributions were analyzed by incorporating context-dependent exclusions (C) of cell lines

(gray bars represent excluded cell lines). See also Figure S1 and Table S1.
may be one of several factors determining the response. Anal-

ysis of unresponsive outliers may reveal additional features

modifying the response to selumetinib.

In some cases, genetic features correlated better with small-

molecule sensitivity in the context of specific lineages. We

observed that EGFR mutant lung CCLs were highly sensitive to

neratinib, a dual ERBB2/EGFR inhibitor (Figure 2A) (Arteaga,

2006), currently in phase II trials for advanced non-small cell

lung cancer.

Mining for New Dependencies

The CTRP suggests dependencies involving oncogenes for

which targeted therapies are lacking. We observed that CCLs

with MYC mutations, including those interfering with MYC

protein degradation (Vervoorts et al., 2006), had increased sensi-

tivity to (–)-gallocatechin-3-monogallate (GCG), a green-tea-

derived natural product (Figure 2B). Previous studies report

that treatment of digestive tract-derived CCLs or mouse tumor

models with epigallocatechin-3-monogallate, a GCG analog,

led to decreased MYC expression (Ju et al., 2005; Ran et al.,
2005). We also observed that mutations in MYC and, to a lesser

degree, amplifications ofMYC (Figure 2B) correlated with sensi-

tivity to SB-225002, an inhibitor of a chemokine receptor

(CXCR2) implicated in promoting oncogene-induced senes-

cence (Acosta et al., 2008). Though the relationship of MYC

and SB-225002-targeted biology is not understood, the correla-

tion of sensitivity to SB-225002 with two different types of

genomic alterations in MYC supports a potential connection.

We also identified small molecules with strong potency

against CCLs of a specific lineage. Although they display a range

of sensitivity, ovarian CCLs were among the most sensitive to

two probes (ML210 and RSL3; Figure 3A) identified for their

ability to kill oncogenically engineered cell lines selectively,

BJeLR (HRasG12V, SV40 large T and small T antigens) and

DRD (HRasG12V, hTERT, SV40 small T oncoprotein, domi-

nant-negative p53, cyclin D1, and mutant CDK4), relative to un-

transformed controls (Weı̈wer et al., 2012). Mutations in HRAS

did not correlate with sensitivity to RSL3 or ML210 in CCLs

used in our study. We confirmed the potency of ML210 against
Cell 154, 1151–1161, August 29, 2013 ª2013 Elsevier Inc. 1153
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Figure 2. Genetic Dependencies Targeted by

Small Molecules

The distribution of CCL response (AUC values) to

compound treatment is represented as a heatmap

denoting sensitivity (red) or unresponsiveness (blue)

aligned with genomic alterations for corresponding

CCLs (gray bars). The resource identified known

clinically drug-targeted genetic dependencies (A) and

known drug-resistance mechanisms (BRAF V600E

outlier cell lines: *RKO; #SKMEL28). The resource also

suggested dependencies with both mutation and

copy-number variation in MYC (B). Global analysis of

the resource showed that EGFR-mutated CCLs are

unresponsive to NAMPT inhibitors (C). CNV-H, high

copy number (R8 copies); TES, all targeted-exome

sequencing mutant calls; TES-A, targeted-exome

sequencing, nonneutral missense mutations; Onco,

Oncomap mutant calls; MUT, any mutation call. See

also Figure S3, Tables S2 and S3, and Data S1.
five ovarian CCLs (IC50 �10 nM), including three not previously

profiled, using sulforhodamine B to detect cellular protein con-

tent as an assay for cytotoxicity (Skehan et al., 1990) (Figure 3B).

Treatment of SKOV3 cells with ML210 also increased expression

of the DNA-damage marker phospho-H2AX (Figure S2B) and

levels of cleaved caspase-3 (Figure S2C), a marker of apoptosis,

suggesting that ML210 is cytotoxic. Similar results were ob-

tained with ML162, another probe identified in the phenotypic

screen that yielded ML210 (Figures S2A, S2B, and S2C).

RSL3 and related compounds are thought to induce cell death

via ferroptosis (Dixon et al., 2012), though they appear to pro-

mote markers of apoptosis in this context. It is possible that

the sensitive CCLs, whether of ovarian or other lineages, have

features in common with the engineered cells described above

that render them sensitive to ferroptosis modulators. Testing

these compounds in more CCLs and performing multifeature

correlation analyses may help uncover these features.

Global Analyses

We determined whether studying gene/compound connections

as sets rather than individually could yield insights about depen-

dencies. We limited these analyses to connections having
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greater statistical significance than those

included in Table S2 (Extended Experi-

mental Procedures) to ensure that clustering

experiments were not dominated by re-

latively weaker connections. Hierarchical

clustering of compounds based on their pro-

file of connections to genetic features (Table

S3I) yielded several clusters of compounds

that share similar mechanisms of action,

including: PRIMA-1 and PRIMA-1-Met (re-

activators of mutant p53 signaling), FK866

and GMX-1778 (NAMPT inhibitors), neopel-

tolide and leucascandrolide A (modulators

of respiration), and teniposide and etopo-

side (topoisomerase inhibitors) (Figure S3).

We also analyzed the frequency with

which mutated genes correlate with sensi-
tivity or unresponsiveness to different compounds (Table S3).

We found several genes (STK11, EGFR, BRAF) correlated with

unresponsiveness to many compounds. EGFR-mutated CCLs

were unresponsive to different compounds with the samemech-

anism of action (NAMPT inhibition; Figure 2C). The top-ranked

gene, STK11, has been implicated in resistance to docetaxel in

a murine model of KRAS mutant lung cancer (Chen et al.,

2012). Similarly, retrospective clinical analyses indicate that pa-

tients with BRAF mutant metastatic colon cancers tend to be

nonresponsive to EGFR-targeted therapy (Sartore-Bianchi

et al., 2009). Our CCL data suggest a possibility that mutations

driving certain cancers may lead to unresponsiveness to a

wide range of small molecules.

CCLs with Activating Mutations in b-Catenin Are More
Sensitive to Navitoclax
The resource suggests oncogene-induced dependencies

involving oncogenic alleles of the transcription factor b-catenin

(CTNNB1) and alterations in genes encoding proteins that regu-

late b-catenin stability. CTNNB1 is mutated in several cancer

types, yet no targeted treatment has been identified. Activating
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Ovarian CCLs are highly sensitive to ML210 and RSL3 (A). An expanded panel

of ovarian CCLs showed sensitivity to ML210 (IC50 of �10 nM) independent of

the BRCA1 status of the CCLs (B). See also Figure S2.
mutations in the CTNNB1 degradation box (amino acids 32–45)

are known to interfere with its phosphorylation and proteasomal

degradation, leading to aberrant increases in protein levels

(Sparks et al., 1998).

We found thatCTNNB1mutant CCLs were among those most

sensitive to navitoclax (Figure 4A), an inhibitor of antiapoptotic

Bcl-2 family members (Bcl-xL, Bcl-2, and Bcl-w, but not Mcl-1

or Bfl-1/A1) previously studied in clinical trials (Gandhi et al.,

2011). In studying other proteins regulating b-catenin degrada-

tion (APC, AXIN1, CSNK1A1, GSK3B, and bTRC), we found

that alterations inAXIN1 andCSNK1A1 also correlate with sensi-

tivity to navitoclax (Figure 4A). Collectively, these functionally

related alterations account for 37% of the CCLs most sensitive

to navitoclax, suggesting that alterations increasing b-catenin

levels or activity may create a dependency of cancer cells on

Bcl-2 family members for survival (Figure 4B). Our results are

consistent with a recent study showing that the level of b-catenin

pathway activity in CCLs correlates with sensitivity to knock-

down of BCL2L1 (encodes Bcl-xL) (Rosenbluh et al., 2012).

Increased b-catenin activity has also been linked to enhanced

expression of BCL2 and BCL2L1 (Kaga et al., 2006; Rosenbluh

et al., 2012) and to suppression of BAX-mediated apoptosis

(Wang et al., 2009). We do not observe a correlation between

CTNNB1mutation and Bcl-2, Bcl-xL, or Bcl-w protein levels (Fig-

ure S4A). We note that, in some lineages, unresponsive CCLs

lacking CTNNB1 mutations have increased MCL-1 protein

levels, which is reported to confer resistance to navitoclax (Tahir

et al., 2010). We also observed that correlation between MCL1

gene expression and unresponsiveness to navitoclax ranked
highly (top 2%) compared to all other genes (Table S5 and

Extended Experimental Procedures).

Analytical and Experimental Confirmation in CCLs

We analyzed the sensitivity data using an orthogonal analytical

approach, elastic-net regression (Zhu and Hastie, 2004), which

aims to identify a parsimonious model that best predicts

response to navitoclax. This analysis used both somatic muta-

tion and copy-number data for each gene as candidate predic-

tive features. Consistent with enrichment analysis, mutation of

CTNNB1 is among the top-ranked features in predicting sensi-

tivity to navitoclax (Figure 4C and Table S4). To assess model

performance using 10-fold cross-validation, we calculated a

root-mean-square error between the predicted and observed

sensitivities and compared this value to the day-to-day variability

of AUCs in our profiling data (AUC = 0.98, 90th percentile). Our

estimated prediction error (1.45) is greater but comparable to

the biological replicate variability of AUCs. Ingenuity pathway

analysis (IPA; Jiménez-Marı́n et al., 2009) of the full list of predic-

tive features revealed that a majority of the genes in our model

are directly linked via interactions annotated in the Ingenuity

knowledge base. Our highest-scoring IPA network (p = 10�38)

identified b-catenin as a centrally connected node in the network

and links it to destruction complex members CSNK1A1 and

APC, as well as antiapoptotic BCL2, a target of navitoclax

(Figure 4D).

To confirm the relative sensitivity of CTNNB1 mutant CCLs

observed in the large-scale profiling data, we retested navitoclax

in a subset of CCLs. We first examined a panel of lineage-

matched nonmutant and CTNNB1 mutant CCLs and confirmed

that mutant CCLs had increased CTNNB1 protein (Figure S4A)

(Sparks et al., 1998) and AXIN2 expression levels (Figure S4B)

(Jho et al., 2002). We then retested the sensitivity of seven

CTNNB1 mutant and four nonmutant CCLs to 72 hr treatment

with navitoclax (CellTiterGlo); the AUCs were similar to those in

our profiling data (Figure 5A). We also found that the CCLs

most sensitive to navitoclax elicited the largest increase in cas-

pase 3/7 activation, as measured by Caspase-Glo, indicating

that loss of viability resulted from apoptosis (Figure 5B) (Tse

et al., 2008). We also tested five previously untested CCLs with

CTNNB1 mutations in the degradation box, and their sensitivity

to navitoclax was similar to the original CTNNB1 mutant lines

(Figure 5C). These data support our hypothesis that mutations

in CTNNB1 and alterations in its destruction complex are bio-

markers for sensitivity to navitoclax.

Our data suggest that CTNNB1 mutations that increase

b-catenin protein levels sensitize cells to navitoclax. We

reasoned that small molecules that increase b-catenin protein

levels may also sensitize cells to navitoclax in the absence of

CTNNB1 mutations. To explore this hypothesis, we tested

CCLs for differential changes in b-catenin levels following a

3-day treatment with CHIR-99021, a GSK3b inhibitor that pre-

vents phosphorylation and degradation of b-catenin (Bennett

et al., 2002). We identified four CCLs for further testing: RKO

and HT29, which lack CTNNB1 mutations and showed signifi-

cant CHIR-99021-induced increase in b-catenin (Figure 6A);

HEC59, which lacks CTNNB1 mutations and showed little

change in b-catenin in response to CHIR-99021; and SW48,

which contains a mutant GSK3b phosphorylation site in
Cell 154, 1151–1161, August 29, 2013 ª2013 Elsevier Inc. 1155



Figure 4. Mutations in b-Catenin Associate with Sensitivity to Navitoclax

(A–D) Activating mutations in b-catenin (CTNNB1) or mutations in members of its destruction complex (AXIN1; CSNK1A1) correlate with sensitivity to navitoclax

(A). Previous studies have linked theWnt/b-catenin pathway to expression of Bcl-2 family members (B). An elastic-net regression model (black circles, observed;

red crosses, predicted; weighted root-mean-square error, 1.45) predicts AUC sensitivity values across CCLs treated with navitoclax (C). Heatmap depicts model

features (rows; e.g., mutation, copy number) sorted by descending weight (black bars) across all CCLs tested (columns). Scale represents range of normalized

values between �3 and 3 (red, relative higher copy number, presence of mutation; blue, relative lower copy number). All model features (Table S4) were input to

Ingenuity Pathway Analysis (Jiménez-Marı́n et al., 2009), and the highest-scoring network (D) contains b-catenin as a central node (p = 10�38). The network

contains members of the b-catenin pathway present in the regression model (brown), other genes present in the model (dark gray), and molecular interactions

with nonregression-model features (light gray). See also Tables S4 and S5.
CTNNB1 (S33Y) and did not increase b-catenin in response to

CHIR-99021 (Figure 6D).

Each CCL was pretreated with CHIR-99021 and then co-

treated with both CHIR-99021 and navitoclax. ATP levels were

measured as a surrogate for cell viability. The IC50 of both RKO

and HT29 response to navitoclax shifted 4- to 8-fold lower (Fig-

ures 6B and 6C) after pretreatment with CHIR-99021 and was

more pronounced than after only cotreatment (Figure S5A).

Neither CHIR-99021 pretreatment nor cotreatment significantly

increased sensitivity to navitoclax in HEC59 (Figures 6E and

S5B) or in SW48 (Figures 6F and S5C). These data suggest

that increasing b-catenin levels may correlate with increased

sensitivity to navitoclax. We have not determined whether

increasing protein levels leads to increased activity, which we

observed also correlates to navitoclax sensitivity. Of the 242
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CCLs profiled in our study, 41 were tested previously for b-cat-

enin activity in a TCF4 reporter assay (Rosenbluh et al., 2012).

Of those 41 CCLs, 8 were sensitive and the remaining 33 unre-

sponsive to navitoclax in our assay. Of the 8 sensitive CCLs, 6

were active in the reporter assay, whereas only 7 of the 33 unre-

sponsive CCLs were considered active in the reporter assay (p <

0.05; data not shown). Thus, compounds that increase b-catenin

protein levels may also increase b-catenin activity, rendering

them sensitive to navitoclax.

DISCUSSION

Genomic and lineage CCL profiling offers an approach to identify

cancer dependencies that are targetable with small molecules

and suggest combinations of compounds that mitigate drug



Figure 5. Confirmation Experiments for Navitoclax/b-Catenin

Response to navitoclax observed in large-scale profiling was confirmed in

three independent experiments (A), with the seven most sensitive CTNNB1-

mutant CCLs (gray bars) and four control CCLs lacking mutations in CTNNB1

(white bars). In parallel, caspase 3/7 activation after navitoclax treatment was

measured (B), showing that loss of viability was due to induction of apoptosis.

The response of previously untested CTNNB1 mutant CCLs (red bars) to na-

vitoclax was measured using the same conditions from our initial profiling

experiments (C). Data are represented as mean ± SD. See also Figure S4.
resistance. The Cancer Therapeutic Response Portal (CTRP)

suggests candidate dependencies associated with common

and medically significant oncogenes. The first version of the

CTRP resulted from profiling an Informer Set of small molecules,

many of which target nonaltered proteins that work in partner-

ship with oncogenes. Exploiting oncogene-induced depen-

dencies contrasts to a related approach based on targeting
cell-biological ‘‘hallmarks’’ common to cancers (Hanahan and

Weinberg, 2011) without linking these ‘‘nononcogene addic-

tions’’ to specific genomic alterations (Luo et al., 2009). For

example, navitoclax has been tested in phase I/II clinical trials

for small-cell lung cancer (Gandhi et al., 2011); however, our

data suggest that navitoclax might best be targeted to patients

harboring CTNNB1 mutations, which are present in colorectal,

hepatocellular, gastric, and endometrial cancers. We observe

that CTNNB1 mutant CCLs are sensitive to navitoclax in several

lineages thoughmore strongly in some (e.g., gastric) than others.

The same selectivity was not observed for ABT-199, a Bcl-2-

specific inhibitor (Souers et al., 2013) (data not shown), suggest-

ing that inhibition of other Bcl-2 family members underlies the

differential response. Consistently, Rosenbluh et al. recently

showed that knockdown of BCL2L1 (Bcl-xL) in b-catenin-active

CCLs impairs proliferation (Rosenbluh et al., 2012), implicating

Bcl-xL as a relevant target for navitoclax in CTNNB1 mutant

cancers.

Profiling data for single agents may also suggest drug com-

binations to prevent or overcome drug resistance. By studying

the response of BRAF-V600E mutant CCLs to V600E inhibition,

we show how outlier cell lines unresponsive to a small molecule

in an otherwise sensitive cohort can reveal additional features

that correlate with and confer resistance—in this case, upregula-

tion of HGF. Combined treatment with a MET inhibitor to block

HGF signaling was sufficient to sensitize these cells to BRAF-

V600E inhibition (Corcoran et al., 2011; Straussman et al.,

2012). These observations also suggest that correlating small-

molecule response to groups of features rather than individual

ones may yield biomarkers with greater predictive accuracy.

Because the same oncogene may give rise to different depen-

dencies in different cancer types (e.g., BRAF in melanoma

versus colorectal), the CTRP has been built to allow users to

identify dependencies in all CCLs or only in specific lineages.

For example, we find that KRASmutations correlate significantly

with sensitivity to navitoclax among colorectal CCLs, but not

among all CCLs (data not shown). Interestingly, Corcoran et al.

recently showed that navitoclax synergizes with selumetinib to

kill KRAS mutant CCLs in several lineages but most strongly

and consistently in colorectal CCLs (Corcoran et al., 2013).

Corcoran et al. also highlight an important lesson for inter-

preting CCL profiling data. The authors attribute a lack of efficacy

of selumitinib as a single agent in KRAS mutant tumors to the

fact that it is largely cytostatic rather than cytotoxic. Combination

with navitoclax, which activates apoptosis, was required for

induction of cell death. We note that most CCL profiling data,

gathered using a readout for cell growth or proliferation rather

than death, may identify gene/sensitivity relationships involving

cytostasis; indeed, whereas KRASmutant lines are among those

most affected by selumetinib in our study, the compound only

leads to partial inhibition of ATP levels, suggestive of cell growth

inhibition. Corcoran et al. describe a screening approach for

how cytostatic compounds with selectivity for specific cancer

genotypes might be exploited in combination strategies to

achieve greater efficacy. It also suggests the importance of

considering level of inhibition in analyses of existing data and

motivates incorporation of scaleable assays for cell death in

future data collection.
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Figure 6. Small-Molecule Induction of

b-Catenin Levels and Sensitivity to Navito-

clax

Treatment with the GSK3b inhibitor CHIR-99021

led to increased levels of b-catenin in RKO and

HT29 (nonmutant) cells (A) and relatively little

change in HEC59 (nonmutant) and SW48 (S33Y

CTNNB1 mutant) cells (D). Sensitivity to navito-

clax was assessed after pretreatment with CHIR-

99021 (red) and was compared to DMSO-

pretreated controls (black). RKO (B) and HT29 (C)

cells, which had increased levels of b-catenin,

showed 4-fold increase in sensitivity to navito-

clax, whereas HEC59 (E) and SW48 (F) cells,

which had unchanged levels of b-catenin,

demonstrated no significant change in sensitivity.

Data are represented as mean ± SD. See also

Figure S5.
The CTRP currently associates small-molecule sensitivity with

individual features. In some cases, multiple features associated

with sensitivity co-occur in the same CCLs, making it chal-

lenging to interpret whether an associated feature is causal.

For example, we observe that hematopoietic/lymphoid CCLs

are more sensitive than those from other lineages to many com-

pounds, including the BRD4 inhibitor JQ-1. MYC mutant CCLs

are among those most sensitive to JQ-1, but they are also

frequently of hematopoietic/lymphoid origin, making it difficult

to assess whether the genetic or lineage feature is the key deter-

minant of sensitivity. Whereas this example needs a larger set of

mutant lines to study MYC mutations separately within hemato-

poietic/lymphoid and solid tumor CCLs, the CTRP has been

built to allow users to perform this analysis in general; for

example, MYC amplification associates with sensitivity to SB-

225002 whether all CCLs are analyzed or only those from solid

cancers.

Although CCLs have a long history as models for human

cancer, their use in large-scale genomic CCL profiling has

emerged more recently. Decisions associated with selection of

CCLs, growth conditions, data collection (e.g., assay choice),

data filtering (e.g., for possible confounding CCLs), data anal-

ysis, and formulation of questions in controlled computational

experiments may contribute to differences in results and inter-

pretation of existing profiling studies. For example, this study

correlated CTNNB1 mutations with sensitivity to navitoclax,

whereas Garnett et al. correlated sensitivity to navitoclax with

NOTCH1mutations. However, the portal from Garnett et al. sug-
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gests that CTNNB1 mutations correlate

with sensitivity to TW-37, a pan-Bcl-2

family inhibitor. Despite such differences,

both studies identify several similar mu-

tation/sensitivity connections, including

both established (e.g., KRAS-NRAS/se-

lumetinib, BRAF/V600E inhibitors) and

novel associations (e.g., CDKN2A/GW-

843682X, a PLK1 inhibitor), as well as

features associated with unresponsive-

ness to compounds (e.g., TP53/nutlin-3).
Encouragingly, there are no examples of targeted cancer drugs

today that were not predicted by previous genomic CCL profiling

studies.

The CTRP is available online (http://www.broadinstitute.org/

ctrp), and the primary sensitivity data underlying the resource

can be downloaded from the NCI-CTD2 data portal (http://

ctd2.nci.nih.gov). Genetic feature data for CCLs tested can be

downloaded from the Broad/Novartis CCLE portal (http://www.

broadinstitute.org/ccle).

The CTRP is expected to evolve to include additional data and

analyses as they become available. We expect associations

identified with the current data set to change in strength as

new lines are examined, and we expect entirely new associa-

tions to be uncovered. We are extending this approach to test

newprobes and drugs, including compoundswith novel physical

and biological properties or rationally selected combinations of

compounds, across a larger set of CCLs. We are also undertak-

ing systematic analyses to correlate sensitivity to combinations

of cellular features, as well as other types of features, including

gene expression, signatures of pathway activity (Liberzon

et al., 2011), and activity of master regulators inferred computa-

tionally (Lefebvre et al., 2010). Further CCL annotations, such as

metabolic, proteomic, and epigenetic profiles, will enable addi-

tional types of predictive biomarkers to be identified. Our hope

is that the cancer biology community will use the CTRP to iden-

tify hypotheses for deeper investigation and to accelerate

discovery of patient-targeted therapies with better treatment

outcomes.

http://www.broadinstitute.org/ctrp
http://www.broadinstitute.org/ctrp
http://ctd2.nci.nih.gov
http://ctd2.nci.nih.gov
http://www.broadinstitute.org/ccle
http://www.broadinstitute.org/ccle


EXPERIMENTAL PROCEDURES

Cancer Cell-Line Profiling

Frozen cells were obtained from the Broad Institute Biological Samples Plat-

form or ATCC. CCLs were grown in their specified medium at 37�C/5%
CO2. Media were replaced every 2 days. Each CCL was tested for myco-

plasma infection (Takara PCR Mycoplasma Detection Set). A list of all CCLs

and media conditions is provided (Table S2) and resides on the NCI-CTD2

data portal (http://ctd2.nci.nih.gov).

Cells were plated at a density optimized during assay development

(Extended Experimental Procedures) in 384-well opaque white assay plates

and were incubated overnight at 37�C/5% CO2. Compound stocks were

plated in 384-well format in 8 pt, 2-fold concentration ranges defined by liter-

ature review. Compounds were pin transferred (CyBio Vario) into duplicate

assay plates and were incubated for 72 hr. ATP levels were measured using

CellTiter-Glo as a surrogate for cell viability.

Assembling the Informer Set

354 small molecules that perturb targets and processes on which cancer cells

may become dependent were identified by careful evaluation of the probe-

development literature, including seminars, journals, NIH Molecular Libraries

Initiative Probe Reports, and patents. Approximately 30% of the Informer

Set was accessed through organic synthesis. A list of all compounds, with

annotated targets and structures, is provided (Table S1) and resides on the

NCI-CTD2 data portal (http://ctd2.nci.nih.gov).

Data Processing

At each compound concentration, we computed a percent-viability score rela-

tive to the effect observed for vehicle-control (DMSO) treatment of the same

CCL. Concentration-response curves using percent-viability scores were fit

using cubic splines, and areas under percent-viability curves (AUC) were

computed and used as a measure of sensitivity for subsequent analyses

(Extended Experimental Procedures).

Genetic Data

Our analyses use publicly available annotations of CCLs, including: gene

expression (Affymetrix GeneChip Human Genome U133 Plus 2.0 Array),

copy number (Affymetrix Genome-Wide Human SNP Array 6.0), and mutation

status from massively parallel sequencing of >1,600 genes and from mass

spectrometric genotyping (OncoMap) for 492 mutations in 33 oncogenes/

tumor suppressors (Barretina et al., 2012). To illustrate the genetic diversity

of the CCLs, we report frequency distributions of the number of mutant genes

across the number of CCLs and the number of unique lesions for each gene

(Figure S1).

Enrichment and Regression Analysis

For each compound, profiling across CCLs yielded a ranked list of sensitivities

(AUCs) that could be analyzed for genetic features correlating with the

response. For each compound, we used a sorting-based enrichment scoring

algorithm (Cormen et al., 2000) to measure how genetic features distribute

across the ranked list of sensitivities, followed by a chi-square test of homoge-

neity to account for compound potency. The maximum (worst) of the p values

from these two tests was used in subsequent analysis to correct for multiple

hypothesis tests, resulting in false discovery rate (FDR) q values (Benjamini

and Hochberg, 1995). We applied a cutoff of q < 0.25 in Table S2 and a

more stringent cutoff in the CTRP. For elastic-net regression analysis, we

normalized copy-number variation, mutation, and lineage features using a z

score (standard normal distribution, with m = 0 and s = 1) for each feature.

Elastic net was implemented using Matlab, Python, & R using a core algorithm

component from the original authors (Zhu and Hastie, 2004; Extended Exper-

imental Procedures).

Global Analysis of the Resource

Global analysis was performed on the subset of connections most robust rela-

tive to potential confounding factors. When multiple data sets suggested the

same compound-gene connection, the best-scoring connection was retained.

Frequency, sum of scores, and average scores for every gene and compound
were computed (Table S3). Statistical significance of the number of overlap-

ping genes and compounds (hypergeometric distribution) and a hierarchical

clustering of compounds using enrichment scores were performed (Table

S3; Extended Experimental Procedures).

Confirming Sensitivity of Ovarian CCLs to ML210 and ML162

CCLs were plated in 384-well plates at 2,000 cells per well in their preferred

media and were treated with four concentrations of ML210 and ML162. Cell

number and growth were assayed after 72 hr treatment using an SRB assay.

Results from assays were confirmed using six replicates at each compound

concentration in each of three runs (Extended Experimental Procedures).

Confirming Association of CTNNB1 Mutation and Sensitivity to

Navitoclax

Four navitoclax-resistant control CCLs and sevenCTNNB1mutant CCLs were

seeded into 384-well plates as during profiling experiments. Caspase 3/7

activity was measured using Caspase-Glo (Promega) after 1.5 hr incubation.

ATP levels were measured 72 hr after treatment. Results were confirmed using

eight replicates at each compound concentration in each of three runs. Five

additional CTNNB1 mutant CCLs were also assayed for sensitivity to navito-

clax in a separate run for further comparison (Extended Experimental

Procedures).

Induction of b-Catenin Protein Levels and Sensitivity to Navitoclax

Four CCLs were pretreated with either DMSO or 4 mM GSK3b inhibitor CHIR-

99021, the maximum concentration that did not cause reduction in ATP levels

after 3 days of continuous treatment, as measured by CellTiter-Glo. Cell

samples were collected from untreated cells and after 3 days of DMSO or

CHIR-99021 treatment, and b-catenin protein levels were assayed by western

blotting (Extended Experimental Procedures).

For pretreatment experiments, cells were plated overnight, treated with

either DMSO or 4 mM CHIR-99021 for 72 hr, and seeded into 384-well plates

with media supplemented with DMSO or CHIR-99021. Cells were incubated

overnight, treated with navitoclax in a 12 pt, 2-fold dilution series for 72 hr,

and assayed for viability using CellTiter-Glo. All experiments were performed

in eight replicates in each of two to three runs. Cells were simultaneously

plated for cotreatment experiments under similar conditions (Extended Exper-

imental Procedures).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, five

figures, five tables, and one data file and can be found with this article online

at http://dx.doi.org/10.1016/j.cell.2013.08.003.
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