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The coupled normal-shear contact behavior of rough surfaces remains a problem of interest with applica-
tions in many practical engineering problems. In this paper, we have further developed a micromechanical
approach for obtaining the stress–displacement behavior of rough interfaces. The micromechanical
approach considers the mechanics of asperity contacts and utilizes statistical description of interface
roughness. Here we have focused upon the role of asperity contact orientations. To that end, we have
incorporated asperity contact relative curvature distribution in our model and derived a relationship for
the extent of asperity contact orientations in terms of the asperity contact relative curvature and interface
closure. This relationship allows us to define the range of asperity contact orientation as the interface is
subjected to combined normal and shear loading. We have consequently refined our stress–displacement
relationship and its numerical evaluation procedure to include the asperity contact relative curvature dis-
tributions. We find that the asperity contact relative curvature has a significant effect on the extent of
asperity contact orientation, and consequently on the shear behavior of the interface. We also find that
the coupling between the normal and the shear responses, the interface frictional strength and the shear
displacement hardening behavior are closely related to the extent of asperity contact orientations.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

All surfaces are rough by nature irrespective of the scale of
observation. The contact mechanics of interfaces formed by joining
surfaces is, therefore, a fundamental problem in engineering. The
understanding of the rough contact behavior and its effective mod-
eling continues to be a challenging problem even with contribu-
tions spanning more than a century. The pioneering work related
to the contact mechanics of deformable bodies is attributed to
Hertz (1881, 1882) who developed the stress–displacement rela-
tionship of contact between two perfectly smooth convex elastic
bodies under normal interfacial loading. Hertz’s work was subse-
quently extended to a variety of loading conditions and material
behavior, notable among which is the solution for the contact
behavior of two smooth spheres under combined normal and shear
loading by Mindlin and Deresiewicz (1953). Hertz–Mindlin
solutions have provided the foundation of most developments in
contact mechanics. However, since the middle of the 20th century,
there has been an increasing realization that even the elastic con-
tact behavior between real surfaces is much more complicated
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than that predicted by Hertz, Mindlin and other elasticity solu-
tions. The root cause of this complexity, that has confounded the
development of universal approaches for contact models, is the
presence of numerous irregular asperities which strongly affect
the contact behavior.

Numerous researchers have investigated approaches for incor-
porating the effect of asperity contacts. The notable early efforts
along these lines can be traced to the works of Archard (1957),
Bowden and Tabor (1950), Greenwood and Tripp (1971) and
Greenwood and Williamson (1966). The recent approaches of
rough contact modeling can be considered in three categories:
(1) direct simulation using the finite element or equivalent method
(Hyun et al., 2004; Laursen, 2002; Wriggers, 2006; Yoshioka, 1994),
(2) fractal representation (Ciavarella et al., 2006; Hyun et al., 2004;
Majumdar and Bhushan, 1990; Persson et al., 2005; Yang and
Komvopoulos, 2005) and (3) statistical methods (Brown and
Scholz, 1985; Buczkowski and Kleiber, 2009; Bush et al., 1975;
Carbone, 2009; Greenwood, 2006; Greenwood and Williamson,
1966; Mccool and Gassel, 1981; Misra, 1997). Although direct sim-
ulation gives a detailed local behavior of asperity contact, it suffers
from expensive computational expense and could even fail to con-
verge due to the irregular geometry and local slip. Along the lines
of fractal model, the scale dependent property of the rough sur-
faces is considered, however, the local behavior, especially sliding,
is ignored in the fractal models. In contrast to the fractal model and
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direct simulation, the statistical approach offers an efficient
approach to describe the surfaces while incorporating the local
asperity contact behavior and the potential scale-dependent prop-
erty of surfaces. We note here that the number of references in
each category are too numerous to include here so we have limited
ourselves to cite a selection; the reader should be able to recon-
struct the literature by following the references cited therein as
well as in the recent reviews on the topic (Barber and Ciavarella,
2000; Zavarise and Paggi, 2008).

The interest in statistical methods has sustained since its intro-
duction in 1960s and the approach of Greenwood and coworkers
(referred to as the GW approach) has been widely applied. The
GW approach considers that the asperity contacts form only at
the summits, which represents the contact between a flat surface
and a rough surface. However, for two rough surfaces, contact is
possible at points other than the summit. Thus, the GW approach
models the contact between two rough surfaces as equivalent to
that between a flat surface and a rough surface. In recent years,
the GW approach has been refined (Carbone, 2009; Greenwood,
2006) by using the rough surface analysis of Nayak (1971) which
allows for the consideration of joint probability distributions of
summit heights and curvatures. Within this approach, the scale-
dependency of rough surfaces can be modeled by considering
scale-dependent power spectral density functions (Zavarise and
Paggi, 2008). An alternative statistical approach was developed
by Brown and Scholz (1985) by considering the formation of con-
tact between any two points of the rough surfaces. This alternative
approach admitted the possibility of contacts that are inclined with
respect to the nominal contact direction of the two rough surfaces.
However, the effect of the tangential forces present at the inclined
contacts was treated in an approximate manner. In an extension of
this approach, the author (AM) had introduced an asperity contact
orientation distribution and developed a stress–displacement
model of rough interfaces under normal and shear loading (Misra,
1997) and applied it to model anisotropic interfaces (Misra, 1999),
and surfaces undergoing damage (Misra, 2002). This extended
model has shown that the asperity inclination has a significant ef-
fect on the tangential stiffness and friction behavior of the inter-
faces. More recently, we have utilized the approach to develop
numerical implementation applicable for modeling rough contact
behavior under combined normal and shear loading (Misra and
Huang, 2009). It is noteworthy that most of the application of the
statistical methods has been to closure behavior under loading in
the normal direction to the nominal orientation of the interface.
The applications of the statistical methods to the shear behavior
as well as the coupled shear and normal behavior of rough inter-
faces have been relatively few (Archard, 1957; Buczkowski and
Kleiber, 2009; Ford, 1993; Misra, 1997; Yoshioka and Scholz,
1989a).

The present work extends the statistical approach by (1) incor-
porating the asperity contact relative curvature distribution, (2)
relating the asperity contact orientation range to the asperity con-
tact relative curvature and interface closure, and (3) further
extending the numerical implementation to solve the derived non-
linear stress–displacement equation system under mixed force and
displacement loading conditions. We find that the asperity contact
relative curvature distribution has a significant effect on the extent
of asperity contact orientation, and consequently on the shear
behavior of the interface. We also find that the coupling between
the normal and the shear behavior, the interface frictional strength,
and the shear displacement hardening behavior are closely related
to the extent of asperity contact orientations.

In the subsequent discussion, we first briefly present our
approach for statistical modeling of contact surface via asperity
contact height, relative curvature and orientation distributions,
and the connection between them. We then derive the nonlinear
stress–displacement relationship for rough contact based on kine-
matically driven micromechanical methodology (Misra, 1997,
1999) and provide the numerical procedure utilizing Newton–
Raphson method for evaluating the stress–displacement relation-
ship. Finally, we validate our numerical results via comparison
with experimental data for interface closure and shear under con-
stant normal stress.

2. Statistical description of contact interface

The roughness of a surface may be considered in terms of statis-
tics of parameters, such as heights, slopes and curvatures, which
describe its deviation from a plane surface. Such statistical descrip-
tions have been investigated first by Longuet-Higgins (1957a,b)
and later by Nayak (1971) in the context of Gaussian rough sur-
faces. It was shown that while the surface heights and curvatures
are statistically dependent, the slopes are statistically independent
for random Gaussian surfaces. The joint probability distribution of
heights and curvatures obtained from this analysis has been
applied for modeling rough surface contact behavior assuming that
the contact occurs only at the summits, such as that between a flat
and a rough surface (Carbone, 2009; Greenwood, 2006).

However for two rough surfaces, the asperity contact can form
between any two points of the surfaces. In this case, the relation-
ship between surface topography measurements and the statistical
descriptions of actual asperity contacts are far from clear. Never-
theless, the composite topography, obtained as the sum of the
heights of the two surfaces (Brown and Scholz, 1985, 1986; Yoshio-
ka and Scholz, 1989a) can be used to define the asperity contacts.
As a first approximation, we assume that the asperity contact
heights, curvatures and orientations for the composite topography
are statistically independent. Given that the slopes of the individ-
ual surfaces are statistically independent of the heights and curva-
tures (Longuet-Higgins, 1957b), the assumption regarding the
statistical independence of asperity contact orientation can be con-
sidered reasonable. In contrast, the statistical independence of
asperity contact heights and curvatures is likely only under certain
restrictive conditions and their joint probability distribution for
composite topography requires further analysis. The motivation
for the assumption of statistical independence is to simplify the
analysis for combined normal and shear loading of the rough inter-
face. In a future paper we will examine this assumption in a greater
detail.

2.1. Asperity contact heights and curvatures

The asperity contact height, r, is determined with reference to
the highest peak of this composite topography, such that the asper-
ity contact height represents the overlap of the interacting sur-
faces. The probability density function of these asperity contact
heights is bounded by zero and is likely to be skewed (Yoshioka
and Scholz, 1989a,b). Such a probability density function can then
be modeled as a gamma distribution, H(r), given as:

HðrÞ ¼ ra expð�r=bÞ
Cðaþ 1Þba ð0 < r <1; a > �1; b > 0Þ ð1Þ

where a and b are parameters related to the mean and variance of
the asperity contact heights as follows

mean : rm ¼ ðaþ 1Þb
variance : r2

r ¼ ðaþ 1Þb2 ð2Þ

Parameter a is unit less while parameter b takes the unit of asperity
contact height. Surfaces that have smaller average asperity contact
height and narrow distributions of asperity contact heights are con-
sidered to be smoother. Fig. 1 gives examples of asperity contact
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Fig. 2. Examples of asperity contact relative radii of curvatures distributions.

Fig. 3. Schematic depiction of the relationship between extent of asperity contact
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height distributions for rough and smooth interfaces based upon
the measurements reported in the literature. In Fig. 1(a), the mea-
sured height distributions for Westerly granite samples reported
by Yoshioka and Scholz (1989a) are plotted along with the best-
fit gamma distributions. In Fig. 1(b) the asperity contact height dis-
tribution for marble samples are plotted based upon the mean and
the standard deviation of heights reported by Xia et al. (2003). For
an interface with N asperities per unit area, NH(r) dr denotes that
number of asperity contacts in the interval represented by r and
r + dr.

For an asperity contact, a relative radius of curvature, R, is
defined according to the Hertz theory of normal contact between
spherical elastic bodies as:

1=R ¼ 1=R1 þ 1=R2 ð3Þ

where R1 and R2 are the radii of curvatures of the two surfaces at an
asperity contact. Taking R1 = eR2, where R2 > R1 so that 0 < e < 1,
asperity contact relative radius of curvature can be rewritten as:

R ¼ R1R2=ðR1 þ R2Þ ¼
e

1þ e
R2 ð4Þ

The probability density function of the asperity contact relative cur-
vature, denoted by p(R), is modeled as a Gaussian distribution given
below:

pðRÞ ¼ 1
2pR2

r

exp �ðR� RmÞ2

2R2
r

 !
ð5Þ

where Rr is the standard deviation and Rm is the mean of the asper-
ity contact relative radii of curvature. Surfaces that have smaller
mean and larger variance for asperity contact relative radii of curva-
tures are considered to be rougher, as shown Fig. 2. Since Gaussian
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Fig. 1. Examples of asperity contact height distributions.

orientation, and radii of curvatures of interfaces 1 and 2.
distribution extends to minus infinity, for practical purposes the
calculations are truncated to ±3Rr.

2.2. Asperity contact orientations

The asperity contacts at rough interfaces can be inclined with
respect to the nominal interface direction. Fig. 3 gives a schematic
illustration of the relationship between asperity contact inclina-
tion, radii of curvatures and interface closure for the case that
the incipient contact occurs at the asperity summits. For this case,
we observe from the figure that at incipient interface contact all
asperity contacts are in the 1-direction and the contact angle is
zero. As the interface closure increases, new asperity contacts will
form that are inclined to the first.direction. For the cases in which
the initial contacts form at points other than the summits of the
two surfaces, inclined asperity contacts will be present at the
incipient contact. In either case, since the asperity heights, curva-
tures and relative locations are uncertain; the asperity contacts
at the interfaces of rough surfaces take various orientations with
respect to the nominal direction of the interface. We define the
asperity contact orientation as the normal vector, n, given in terms
of the azimuthal angle, /, and the meridional angle, h, measured
with respect to a Cartesian coordinate system in which direction
1 is normal to the nominal interface as shown in Fig. 4. We now
consider the distribution density of contact orientation defined as

nðniÞ ¼
1
M

XM

j¼1

d ni � nj
i

� �
ð6Þ

where, M is the total number of asperity contact, and d(n � nj) =
d(h � hj)d(/ � /j)/sinhj. Kanatani (1984) has shown that the



Fig. 4. Depiction of an asperity contact orientation with respect to a global
coordinate system.
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observed directional density of the type given by Eq. (6) can be
estimated as smooth orientation distribution function of the form:

nðniÞ ¼
1

4p
½1þUijninj þUijklninjnknl þ � � �� ð7Þ

where the nth rank tensors U are coefficient tensors such that the
expansion is equivalent to the spherical harmonic expansion given
as (see also Chang and Misra, 1990):

nðniÞ ¼
1

4p
1þ

X1
k¼2

0 ak0PkðcoshÞþ
Xk

m¼1

Pk
mðcoshÞðakm cosm/þbkm sinm/Þ

" #( )

ð8Þ

where
P0 = summation over even indices, Pk = kth Legendre polyno-

mial, Pm
k = the associated Legendre functions, and ak0, akm and bkm

are the coefficients.
We note that the orientational density function given by Eqs. (7)

and (8) are defined in a spherical domain. In contrast, the asperity
contact orientation is bounded within a conical domain as depicted
in Fig. 5 given by: 0 6 h 6 hm, 0 6 / 6 2p, where hm denotes the
extent of asperity contact orientations in the meridional direction.
From Fig. 3 we see that the relationship between asperity contact
orientation extent, hm, and the relative radii of curvatures can be
obtained as follows for a given interface closure, r:

hm ¼ cos�1 1� r
R1 þ R2

� �
¼ cos�1 1� e

ð1þ eÞ2
r
R

 !
ð9Þ

where hm is the largest meridional angle, R is the relative radius of
curvature, r is the closure and e/(1 + e)2 is the curvature modifica-
tion factor which depends on the ratio R1/R2. Since hm can take
the values in the range of 0 to p/2, we can write hm as p/2a, where
parameter a takes the value from 1 to1. Thus the domain of asper-
ity contact orientations becomes: 0 6 h 6 p/2a, 0 6 / 6 2p, showing
Fig. 5. Schematic depiction of asperity contact orientation distribution and its
relationship to asperity contact heights and curvatures (Misra, 1997).
that the conical domain can be mapped onto a spherical domain by
using a scaled or shifted meridional coordinate ah. In this case, the
orientational density function given by Eqs. (7) and (8) can be ap-
plied to the conical domain by using shifted meridional coordinates
as introduced by Misra (1997, 1999). The relationships between the
largest meridional angle, hm, the asperity contact orientation
parameter, a, and the ratio of the interface closure to the relative ra-
dius of curvature, r/R, are plotted in Fig. 6 for different e. The ratio r/
R is related to the asperity contact height distribution and initial
interface closure. For interfaces with the ratio r/R in the range of
0.1–1.0, the maximum asperity orientation will range from 15� to
45� with respect to the 1-direction. Further, we note that for highly
mated surfaces with large initial closure, Eq. (9) will correctly result
in large maximum asperity orientations. We also observe that the
maximum asperity orientation decreases with the factor e, indicat-
ing that asperity contact orientations become small for surfaces
with contrasting radii of curvatures. For e = 0, that is the contact
of a flat surface with a rough surface, Eq. (9) correctly yields
hm = 0. On the other hand, for surfaces with similar radii of curva-
tures, that is for factor e in the range 0.5–1, there is minimal effect
on the maximum asperity orientation.

For practical calculations, we consider only terms with k = 2 in
Eq. (8) to obtain a simple truncated form of the shifted spherical
harmonic expansion as:
nðXÞ ¼ 1
2p

1þ b
4
ð3 cos ahþ 1Þ þ 3 sin2 ahðc cos 2/þ d sin 2/Þ

� �

for 0 6 h 6
p
2a

; 0 6 / 6 2p
� �

ð10Þ
where angles / and h are defined in Fig. 4, X represents the solid
angle formed by / and h, and parameters a, b, c and d determine
(b)

Fig. 6. (a) hm versus r/R and (b) parameter a versus r/R.
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Fig. 8. Asperity contact orientation density for isotropic interface (a) as a function
of parameter, a, and (b) as function of hm.
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the shape of the density function n(X). It is straightforward to show
that:Z 2p

0

Z p=2a

0
nðXÞa sin ahdhd/ ¼ 1 ð11Þ

The density function in Eq. (10) has the ability to model surfaces of
varying roughness. As discussed in Misra (1999), more asperity con-
tacts orient in the direction perpendicular to the interface for
smooth surfaces than that for rough surfaces. Accordingly, for a
given e, as parameter, a, increases or r/R decreases (as shown in
Fig. 6(b)), the contact distribution concentrates toward the direction
normal to the interface (along the 1-axis of the global Cartesian
coordinate system in Fig. 4). In particular, the density function,
n(X), behaves like a delta function in the limit a ?1 or r/R ? 0
yielding an expectation E[h] = 0, which represents a concentrated
contact orientation, normal to a perfectly smooth interface. While
parameter, a, describes the extent of the asperity contact orienta-
tions, parameter, b, determines the shape of the orientation distri-
bution in the meridional direction, h. With different combinations
of parameters a, and b, the density function of asperity contact ori-
entations can represent interfaces with varying anisotropy in the
meridional direction as illustrated in Fig. 7. For isotropic distribu-
tion of orientations in the meridional direction, the parameter, b,
is a function of the parameter, a, and the orientation angle, h.
Parameter, c and d, determine the shape of the orientation distribu-
tion in the azimuthal direction, /. For isotropic surfaces, parame-
ters, c and d, take the value zero. In Fig. 8 we show how the
asperity contact orientations probability density varies with param-
eter, a, and hm for isotropic interfaces.

3. Micromechanical stress–displacement Relationship

Stress–displacement relationship is based upon the kinemati-
cally driven micromechanical approach described previously.
(a)

(b)

Fig. 7. Asperity contact orientation distributions for different parameters.
(Misra and Huang, 2009). For completeness, we present here a brief
description of the model derivation.

3.1. Asperity contact displacement

In the kinematically driven approach, we assume that the
asperity displacement, dj, at a given asperity contact height is the
same and directly related to the overall displacement of the inter-
face, Dj. This kinematic assumption disregards the nonlocality of
asperity contact interactions. The assumption is reasonable for
interfaces with relatively large asperity spacing in stiff materials
such that the overlap of deformation fields associated with neigh-
boring asperity contacts is minimal and the statistical description
of the interface remains unchanged during loading. This assump-
tion has been widely used and appears to be especially useful for
describing contacts between metals and stiff geo materials. In this
case, the asperity displacements are written in terms of the overall
interface displacements as follows:

dn

ds

dt

8><
>:

9>=
>; ¼

n1 n2 n3

s1 s2 s3

t1 t2 t3

2
64

3
75

D1 � r

D2

D3

8><
>:

9>=
>; ð12Þ

where dn is the asperity normal displacement, while ds and dt are the
asperity shear displacements resolved along the local coordinate
axes. The local Cartesian coordinate system is formed by the normal
vector, n, shown in Fig. 4, and vectors, s and t chosen arbitrarily on
the plane tangential to the asperity contact surface, such that the
vectors nst are given as follows:

ni ¼ hcos h; sin h cos /; sin h sin /i
si ¼ h� sin h; cos h cos /; cos h sin /i
ti ¼ h0; � sin h; cos /i

ð13Þ
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Fig. 9. (a) Schematic of arbitrarily directed asperity contact shear loading, and (b)
resultant tangential force–displacement curve.
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The subscripts in this paper follow the established tensor conven-
tion unless specified otherwise.

3.2. Asperity contact force

The relationship between the asperity contact forces, fi, and
displacements, Dj, is then defined as follows:

fi ¼ KijðDj � d1jrÞ ð14Þ

where the asperity contact stiffness tensor, Kij, given by:

Kij ¼ Knninj þ Kstðsisj þ titjÞ ð15Þ

where Kn and Kst denote asperity stiffness along the normal and
tangential directions of the asperity contact. The coupling between
the normal and shear behavior at the asperity-level is considered to
be negligible. The asperity contact stiffnesses are obtained from the
Hertz–Mindlin contact theory of perfectly smooth elastic interfaces
(Johnson, 1985). The asperity contact normal stiffness is given as:

fn ¼ Kndn ¼ kKdgþ1
n ð16Þ

where, fn is the contact normal force, and K, k and g are constants,
which take the values:

k ¼ 2� v
2ð1� vÞ ; g ¼ 1

2
; K ¼ 8G

ffiffiffi
R
p

3ð2� vÞ ð17Þ

where G is the material shear modulus, v is Poisson’s ratio and R is
relative radius of curvature.

The asperity contact loading in the tangential direction is com-
plicated when an interface is subjected to a sequential loading in
which an interface is first subjected to a normal closure followed
by shearing as is typically done in laboratory experiments. In this
case, the inclined asperity contacts first experience tangential load-
ing along specific directions (determined by their orientations) as
the interface is subjected to normal closure. Subsequently, the
asperity contact experiences out-of-plane tangential loading, such
as that denoted by T2 in Fig. 9(a), where the N–T plane represents
the asperity contact loading condition under normal closure. It is
noteworthy that the widely cited solutions given by Mindlin
(1949) and Mindlin and Deresiewicz (1953) only consider contact
loading confined within an N–T plane. For loading confined in an
N–T plane, a contact can be considered to be undergoing either
loading or unloading. However, when the shear forces are out-
of-plane, both loading and unloading can happen simultaneously
in orthogonal shear directions. As a result additional energy is
expended in undergoing this loading–unloading–reloading loop
and the resultant tangential displacements and force are likely to
be non-coaxial. In Fig. 9(b) we show as an example calculation
for the case in which we first apply on an asperity a tangential
force T1 in a given direction and then apply T2 such that the angle
between T1 and T2 is 2p/3. Upon the application of force T1, the tan-
gential force displacement curve follows the path 0–A as shown in
Fig. 9(b). Subsequently, upon the application of force T2, the con-
tact first experiences unloading from A to B as the resultant tan-
gential force decreases. As T2 is increased further, the resultant
tangential force begins to increase and the contact again experi-
ences loading from B to A to C. The consequent hysteretic loop rep-
resents a loss of energy during this loading process. The size of the
loop is determined by the angle between T1 and T2. To our knowl-
edge, solutions for cases that involve varying shear directions do
not exist, however, models based upon 2-d plasticity have been
proposed (Dobry et al., 1991) and applied to rough contact model-
ing (Buczkowski and Kleiber, 2009). The complete loading history
of each asperity contact must be strictly followed to determine
the true tangential traction, slip annulus and the resultant tangen-
tial force–displacement behavior as illustrated in Fig. 9(b). Clearly,
such an approach will entail additional computational efforts. For
the case of monotonic shear loading subsequent to normal loading
considered in this paper, the effect of unloading at individual
asperity are expected to be small, since in this case only one direc-
tional change is involved. Therefore, for our calculations we have
considered the case of constant normal asperity force and mono-
tonically increasing asperity shear force, such that the asperity
shear force–displacement relationship is given as:

fs ¼ lKndn 1� 1� dst

kldn

� �3
2

" #
ds

dst
¼ Kel

stds ð18Þ

ft ¼ lKndn 1� 1� dst

kldn

� �3
2

" #
dt

dst
¼ Kel

stdt ð19Þ

where Kst is the stiffness in the tangential direction, and the super-
script el denotes asperity contacts that are not sliding. We note Eqs.
(18) and (19) are valid when jkldnj > dst. When this condition is vio-
lated, sliding occurs at the contact per the Amonton–Coulomb’s fric-
tion law. In this case Eqs. (18) and (19) can be rewritten as:

fs ¼ lKndn
ds

dst
¼ Kp

stds ð20Þ

ft ¼ lKndn
dt

dst
¼ Kp

stdt ð21Þ

where the superscript p denotes asperity contacts that are sliding.
In Eq. (18) through (21) the ratios ds/dst and dt/dst give the projection
of the asperity contact shear force, fst, in the s- and the t-directions,
the stiffness, Kst, has been introduced for convenience, and dst is
defined as the asperity shear displacement given by,

dst ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

s þ d2
t

q
ð22Þ
3.3. Interface stress–displacement relationship

Under a given loading, numerous asperity contacts occur at vary-
ing asperity contact heights, relative curvatures and orientations.



Table 1
Interface properties.

Parameters R1 (rough) S1
(smooth)

R2 (rough) S2 (smooth)

Asperity density,
N

200/mm2 200/mm2 0.2240/
mm2

0.2034/
mm2

Rm 50 lm 75 lm 8.82 mm 8.18 mm
Rr 15 lm 10 lm 0.30 mm 0.20 mm

Asperity friction,
l

1 1 1 1

Shear modulus, G 80.0 GPa 80.0 GPa 31.8 GPa 31.8 GPa
Poisson’s ratio, m 0.3 0.3 0.152 0.152
Initial closure, ro 0 0 0.10 mm 0.12 mm
Height

distribution
a = 6.14 a = 3.82 a = 7.20 a = 6.77
b = 3.52 lm b = 1.15 lm b = 0.05 mm b = 0.03 mm
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These asperity contacts can be classified into three groups: (1) those
in contact but without sliding (kldn > dst), (2) those in contact but
with sliding, and (3) those not in contact. The overall interface stress
can be obtained as the sum of the asperity contact forces contributed
by groups (1) and (2). Utilizing the orientation, relative curvature
and height distributions introduced in Section 2, we obtain the fol-
lowing expression for the overall interface stress:

Fi ¼ N
Z

rel

Z
Rel

Z
Xel

f el
i nðXÞdXHðrÞdrpðRÞdR

�

þ
Z

rp

Z
Rp

Z
Xp

f p
i nðXÞdXHðrÞdrpðRÞdR

�
ð23Þ

Eq. (23) reduces to the composite topography models presented by
(Brown and Scholz, 1985; Yoshioka and Scholz, 1989a) under their
assumptions regarding the effect of asperity contact orientations.
Furthermore, by eliminating the integration over the orientations
such that only summit contacts are considered and introducing
appropriate height and curvature distributions in Eq. (23), we can
recover the GW model and its recent modifications for the normal
closure of a rough surface in contact with a flat (Carbone, 2009;
Greenwood, 2006).

Very often, we have to solve the nonlinear equation system
given by Eq. (23) to obtain the displacements corresponding to
the applied stress loading conditions or mixed loading conditions.
In this paper, we utilize the Newton–Raphson method to solve this
set of nonlinear equations. We define a residual force vector, Ri(Di)
as

RiðDiÞ � N
Z

rel

Z
Rel

Z
Xel

f el
i nðXÞdXHðrÞdrpðRÞdR

�

þ
Z

rp

Z
Rp

Z
Xp

f p
i nðXÞdXHðrÞdrpðRÞdR

�
� FE

i ¼ 0 ð24Þ

where FE
i is the external force vector. We expand the residual Ri(Di)

in Taylor’s series with respect to displacement vector Di at (n � 1)th
iteration to obtain:

RjðDiÞ ¼ RjðDiÞn�1 þ @Rj

@Di

� �n�1

dDi þ � � � ð25Þ

where we omit the terms of order 2 and higher. We can thus obtain
the increment of displacement, dDi, corresponding to the residual
at the (n � 1)th iteration as

dDi ¼
�RjðDiÞn�1

ðTjiÞn�1 ð26Þ

where Tji is defined as the tangent stiffness tensor given by,

ðTjiÞn�1 ¼ @Rj

@Di

� �n�1

ð27Þ

We subsequently update the interface displacement in the usual
manner

ðDiÞn ¼ ðDiÞn�1 þ dDi ð28Þ

The above numerical scheme has been implemented in the follow-
ing 5-steps:

Step 1: Discretize the integration domain in Eq. (23) into sufficient
integration points representing asperity contact heights,
relative radii of curvatures and orientations so as to obtain
a converged solution. Each integration point represents an
asperity contact. For our computations we have used
Dr = 0.01r90, where r90 = is the 90th percentile of asperity
contact height for r-discretization, DR = 0.01Rr, where Rr,
is standard deviation of the asperity contact relative radii
of curvatures, and grid of 20 � 40 for h and /-discretization.
It is noteworthy that for each loading step, hm is and a are
changing according to Eq. (9). The integration is performed
using Simpson’s rule.

Step 2: Use the (n � 1)th iteration displacement (Di)n�1 to deter-
mine the asperity contact displacement using Eq. (12).

Step 3: Determine the sliding condition of each asperity and the
contact force using Eq. (18) through (21). Sum all asperity
contact forces to obtain the overall force, (Fi)n�1, using dis-
cretized equation (23) as described in Step 1.

Step 4: Use a small interface displacement increment, oDi, typi-
cally taken as 0.01r90, to obtain the asperity contact dis-
placement increment and, consequently, the asperity
contact force increment. Sum all asperity contact force
increments to compute the corresponding increment of
interface force, oFj, and evaluate tangent stiffness using
Eq. (27).

Step 5: Calculate the residual force Rn�1
j ¼ FE

j � ðFjÞn�1, and use Eq.
(26) to find the interface displacement increment, dDi.
Update the interface displacement (Di)n and check for
convergence.

4. Results and discussion

We demonstrate the applicability of the derived overall stress–
displacement relationship and its numerical implementation
under combined normal-shear loading conditions. In the subse-
quent discussion, we first utilize a 3-step loading path to study
the coupling behavior between normal and tangential loading.
We then compare our numerical results with experimental data
culled from literatures to verify our model.

4.1. Coupling effect between normal and tangential loading

According to the Hertz theory, for the contact of bodies with the
same elastic constants, the normal force distribution is indepen-
dent of the shear force. It is also shown by Johnson (Johnson,
1985), that even for dissimilar solids, the influence of tangential
tractions upon the normal pressure and the contact area is quite
small. However, for rough interface, the interaction of normal
and tangential loading is significant. To this end, we have investi-
gated the coupling effect between normal and tangential loading
under a 3-step loading path for two interfaces with different
roughness (R1 and S1). The input parameters for the interfaces
R1 and S1 are as shown in Table 1. These parameters are for illus-
trative purpose and are based upon the work done by Yoshioka and
Scholz (1989b). We assume that the initial closure is zero such that
at the incipient interface contact, all asperity contacts are in the
1-direction, that is the asperity contact orientation is identically
zero. The 3-step loading path is as follows (see Fig. 10): in step 1,



(a)

(b)

Fig. 11. Stress–displacement behavior under 3-step loading path: (a) rough
interface, and (b) smooth interface.
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we incrementally apply normal displacement (D1) till a closure of
15 lm for rough interface and 6 lm for smooth interface; in step 2,
keeping the interface closure the same as that at the end of step 1,
we incrementally apply tangential displacement (D2) till a shear
displacement of 15 lm and 6 lm for the rough and smooth inter-
faces, respectively; finally in step 3, keeping the interface closure
and shear displacements the same as at the end of step 2, we incre-
mentally apply tangential displacement (D3) till a shear displace-
ment 15 lm and 6 lm for the rough and smooth interfaces,
respectively. The results are shown in Fig. 11(a) and (b) for rough
and smooth interfaces, respectively. We observe during the normal
closure (step 1) that the orientation extent at the same normal
stress is larger for the rough interface than the smooth interface.
For rough interface, we observe that after step 1, the normal stress
(F1) changes significantly in steps 2 and 3 as tangential displace-
ment increases. However, for the smooth interface, the normal
stress changes insignificantly under the same condition. Thus the
coupling effect between normal and tangential loading for rough
contacting interfaces is much stronger compared to smooth con-
tacting interfaces. In particular, if the contacting surfaces become
perfectly smooth, there is no coupling between tangential traction
and normal stresses. We also observe in step 2 that the tangential
traction for smooth interface reaches an asymptote suggesting that
it has achieved its frictional strength, while the tangential traction
for the rough interface exhibits a displacement-hardening type
behavior. We remark that the tangential traction of the interface
has two contributions: one from the asperity normal force, and
the other from the asperity tangential force which is proportional
to the asperity normal force via the asperity friction coefficient.
For rough interface, the asperity contact orientations are closer to
the horizon, thus they can develop considerable normal forces.
As a result the interface tangential traction shows a hardening
trend and can achieve values greater than the interface normal
stress. Finally, the validity of our numerical procedure is verified
as the two tangential tractions become identical at the end of step
3 when the tangential displacements in 2- and 3-directions
become the same. Such a result is expected for isotropic interfaces,
whose surfaces do not experience wear and the geometry remains
unchanged during the loading process.

4.2. Comparison of model prediction with measurements

In order to validate our model, we compared our numerical
results to the experimental data culled from the literature. For
the normal loading, the experimental data is based on the mea-
surement on marble reported by (Xia et al., 2003). The model
parameters are given in Table 1 for rough (R2) and smooth (S2)
interfaces, respectively. This data correspond to the interfaces
Fig. 10. The 3-step normal-shear loading procedure.
labeled MG21 and MG23 in the paper by Xia et al. The initial
closure, ro, for our calculation was taken such that the percent of
impending asperity contacts was approximately 30% of the possi-
ble contacts. It can be seen in Fig. 12(a), the numerical results agree
well with the experimental data. As expected, the smooth interface
has larger stiffness than the rough interface. In Fig. 12(b) we show
the evolution of asperity contact orientation extent with loading
plotted in terms of the average asperity contact orientation extent,
ham, defined as follows:

ham ¼
Z

R
cos�1 1� e

ð1þ eÞ2
r
R

 !
pðRÞdR ð29Þ

We note that for a given displacement the asperity orientation
extents are almost identical, while the normal stresses are signifi-
cantly different for the two interfaces. The stiff behavior of the
smooth interface is, therefore, the result of higher number of con-
tacts. Clearly, in this case, the asperity orientation extent has little
effect on the normal stress–displacement behavior.

For the evaluation of shear behavior prediction, we have com-
puted the result for the rough interface R1 and the smooth inter-
face S1. The calculation is performed under mixed loading
condition consisting of two steps. In step 1, we incrementally
increase the normal stress to 500 MPa. In step 2, we keep the nor-
mal stress constant at 500 MPa and incrementally increase the tan-
gential displacement till a substantial number of asperity contacts
achieve sliding and the interface can be considered as failed in
shear. The results of the step 2 loading are plotted in Fig. 13.

Fig. 13(a) shows the evolution of shear resistance, defined as the
ratio of the interface shear and normal stresses, with shear dis-
placement for smooth and rough interfaces. In Fig. 13(a) inset,
we have included the measurements reported by Biegel et al.



(a)

(b)

Fig. 12. (a) Comparison of the model result and experimental data under normal
loading, and (b) the evolution of orientation extent for rough and smooth interfaces.

(a)

(b)

Fig. 13. (a) Shear resistance-displacement behavior and (b) closure behavior during
interface shear under constant normal stress. The inset in (a) gives the measured
results re-plotted from Fig. 11a of (Biegel et al., 1992).
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(1992) on interfaces between two smooth or two rough surfaces of
Westerly granite blocks. The computed results show qualitative
agreement with the measurements. No attempt was made to
obtain quantitative agreement due to lack of data for surface
roughness parameters.

The difference between the shear behaviors of the smooth and
rough interfaces in Fig. 13(a) may be considered in two distinct
regimes of shear displacements. In the small shear displacement
regime, we observe that the smooth interface is significantly stiffer
in shear compared to the rough interface. Measurements per-
formed on interfaces of similar materials but with different degrees
of roughness (Biegel et al., 1992; Yoshioka and Scholz, 1989a) con-
firm that smoother interfaces are stiffer. The stiffer shear response
of the smooth interface can be attributed to the concentration of
asperity contact orientation distribution toward the direction nor-
mal to the interface. Under small shear displacements, the effect of
applied normal stress is dominant. Therefore, interfaces with larger
number of asperity contact in the direction normal to the interface
or with a larger real contact area tend to be stiffer. At the large
shear displacement regime, we observe that the curves crossover
and the rough interfaces are found to have a higher shear resis-
tance, and eventually, a higher frictional strength compared to
smooth interfaces.

As the shear loading is increased, a larger proportion of asperity
contacts inclined close to the direction normal to the interface
begin to slide. Since smooth interfaces have a larger proportion
of asperity contacts inclined close to the interface normal direction,
the interface exhibits a rather sharp yield point with very little dis-
placement hardening. As seen from Fig. 13(a), smooth interface
reaches a frictional resistance only slightly greater than the asper-
ity friction coefficient of 1. In contrast, the rough interface exhibits
considerable displacement hardening without a distinct yield point
and posses a significantly higher frictional resistance than the
asperity friction coefficient. Since the extent of the asperity orien-
tations depends upon the interface normal stress or closure as seen
from Fig. 12(b), the proposed method will predict a nonlinear
dependence of frictional resistance upon the interface normal
stress for elastic asperity behavior.

The shear behavior is also affected by the strong coupling
between normal and shear displacements. In Fig. 13(b) the closure
behavior during interface shear loading is plotted as the normal
displacement in step 2 of loading, dD1, versus D2. Both interfaces
first compress before dilating, with the rough interface experienc-
ing greater compression as well as dilation compared to the
smooth interface. Although the magnitude of normal displacement
is small, it has significant effect upon the displacement hardening
and frictional strength of interface.
5. Concluding remarks

The effect of asperity contact orientations on the stress–
displacement behavior of rough interfaces has not been adequately
investigated. Models based upon the composite topography
approach, either ignore the asperity contact orientation or treat
their effects in an approximate manner. As a consequence, these
approaches have difficulty in describing a number of phenomena
observed during interface shear, such as dilation-contraction and
shear displacement hardening. In this paper, we have utilized a
micromechanical model of rough interfaces to study the role of
asperity contact orientations. This micromechanical model is based
upon a methodology developed by the authors that considers
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asperity contacts and statistical description of interface roughness
(Misra, 1997, 1999; Misra and Huang, 2009). In the present
approach, the asperity contact orientations are explicitly consid-
ered. In addition, we have extended our micromechanical model
by incorporating the asperity contact relative curvatures distribu-
tion, and developing a relationship between the asperity contact
orientation extent, relative curvature and interface closure. The
nonlinear stress–displacement equation system of the extended
model is solved by the Newton–Raphson method for different
loading conditions. We demonstrate the applicability of the
derived model under a variety of loading conditions for smooth
and rough interfaces, including comparisons with experimental
results.

The numerical results demonstrate that the model replicates
the closure and shear behavior of smooth and rough surfaces both
qualitatively and quantitatively. We find that the asperity contact
relative curvature has a significant effect on the extent of asperity
contact orientation. The relationship between interface closure and
asperity orientation allows us to compute the evolution of the
asperity contact orientation extent as the interface is subjected
to normal loading. We find that the rough interfaces generally have
a larger asperity orientation extent than the smooth interfaces. The
orientation extent plays a significant role when the interface is
sheared following the application of normal loading. We also find
that the coupling between the normal and the shear response,
the interface frictional strength and the shear displacement hard-
ening behavior are closely related to the extent of asperity
orientations.

Finally we observe that the shear behavior of the interfaces
under constant normal stress should be considered in two distinct
regimes of shear displacements. In the small shear displacement
regime, the smooth interfaces are stiffer in shear compared to
the rough interfaces. As the shear displacement is increased and
a large number of asperity contacts reach their frictional resis-
tance, the shear stress–displacements curves of the smooth and
rough interfaces crossover. Thus, at the large shear displacement
regime, the rough interfaces are found to have a higher shear resis-
tance, and eventually, a higher frictional strength compared to
smooth interfaces. While the smooth interfaces show an abrupt
yield close to frictional strength, the rough interfaces exhibit a
shear displacement hardening and gradual transition to frictional
strength. This distinction in shear behavior with varying roughness
can also be attributed to the extent of asperity contact orientations.
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