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A B S T R A C T

A variant of the protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene is known

to be associated with susceptibility to autoimmune diseases and bacterial infections as it

acts as an important regulator of T-cell activation. The objective of this study was to eval-

uate whether PTPN22-C1858T polymorphism is associated with the resistance to pul-

monary tuberculosis (PTB). Single-nucleotide polymorphism of PTPN22-C1858T

(rs2476601) was genotyped in 124 patients with PTB and 130 healthy controls from India

using restriction fragment length polymorphism and direct sequencing of the amplified

DNA. The frequencies of genotypes CC, CT, and TT were 100%, 0%, and 0%, respectively,

in PTB; and 99.2%, 0.8% and 0%, respectively, in healthy control individuals. These values

did not differ significantly between the patients and controls. The mutant allele C1858T

was found to be a rare allele in Indian population.

� 2016 Asian-African Society for Mycobacteriology. Production and hosting by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
Introduction

Tuberculosis (TB), an infectious disease caused by Mycobac-

terium tuberculosis (Mtb), is a major global health problem.

The number of TB cases reported worldwide is on the rise

partly due to development of multidrug-resistant Mtb. TB is

also the leading cause of death from infectious diseases,
especially in Asia and Africa [1]. According to the World

Health Organization Global Tuberculosis Report 2015, TB ranked

alongside human immunodeficiency virus as a leading cause

of death. In 2014, there were an estimated 9.6 million new TB

cases, of which 1.5 million deaths were recorded, indicating

the high prevalence of this disease. Globally, India has the lar-

gest number of TB cases—23% of the global total followed by
esh, India.
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Indonesia (10%) and China (10%) [2]. In 2014, more than 2 mil-

lion TB cases were reported from India [2].

TheWorld Health Organization estimated that one-third of

the global population is infected with Mtb, but only 5–10%

among them develop the clinically evident disease [3]. This

indicates that along with the infective agent other factors also

play a role in developing clinically evident disease. Variability

in TB susceptibility was demonstrated in Germany, wherein

accidental injection of live Mtb instead of Bacillus Calmette–

Guérin vaccine caused some infants to become seriously ill,

whereas others showed no symptoms at all [4]. This finding

indicates a clear genetic predisposition as one of the host fac-

tors influencing risk factors for the development of TB [5–7].

Access to genetic data using various studies is an impor-

tant aspect of identifying new genetic associations through

genome-wide association studies [8]. Genome-wide associa-

tion studies have been successful in identifying genetic vari-

ants that contribute to complex human traits in diverse

populations [9]. Several genes are reported to have been asso-

ciated with TB pathogenesis such as protein tyrosine phos-

phatase nonreceptor type 22 (PTPN22), TLR2, vitamin D

receptor (VDR), and cytokine genes (interleukin-10 [IL-10], IL-

6, interferon-c, tumor necrosis factor-a, and tumor growth

factor-b1) [10].

Protein tyrosine phosphatases are involved in maintaining

the T cells in the resting stage and are also responsible for

bringing back the activated T cells to the resting phenotype

in the absence and presence of antigen, respectively [11,12].

In this study, we focused on Lyp encoded by PTPN22. Lyp, a

cytosolic phosphatase, is mainly expressed in hematopoietic

cells [13,14]. By dephosphorylating many proteins and

enzymes in early T-cell receptor signal cascade, Lyp acts as

a negative regulator of T-cell receptor signaling [15,16] and

is involved in immune and inflammatory responses; addition-

ally, its levels are increased in cells that participate in the

immune response against Mtb [17]. Previous studies have

identified the physiological association between a missense

C1858T (R620W) mutation in PTPN22 and autoimmune dis-

eases such as rheumatoid arthritis [15,18,19], type 1 diabetes

[20–23], systemic lupus erythematosus [24], and Graves’ dis-

ease [25,26]. Vang et al. [16] have reported that the missense

allele (C1858T allele) is a gain-of-function variant. It has also

been reported that the C1858T allele of PTPN22 is associated

with a higher incidence of bacterial pulmonary infections in

patients with chronic mucocutaneous candidiasis [27]. How-

ever, the C1858T allele has been shown to play a protective

role in pulmonary TB in various populations [28–31]. Interest-

ingly, it has also been reported that the C1858T allele of

PTPN22 is not associated with TB in an Iranian population

[32]. Studies in Indian population have evaluated the associa-

tion between the C1858Tallele of PTPN22 and various diseases

such as type 1 diabetes [33,34], sporadic idiopathic

hypoparathyroidism [35], and rheumatic heart disease [36],

but no such association studies were so far performed for

TB patients. The differences in the results concerning the

association of the C1858T allele of PTPN22 with different dis-

eases in various populations necessitated the present investi-

gation in Indian population. This study aims to investigate

the association between the single-nucleotide polymorphism
(SNP) C1858T allele of PTPN22 and pulmonary TB in a sample

of Indian population.

Materials and methods

Study subjects

Whole-blood samples (2 mL) were collected from 124 pul-

monary tuberculosis (PTB) patients at Jayalakshmi Memorial

Chest Hospital, Kadapa, Andhra Pradesh, India (60 male

patients and 64 female patients; mean age: 45.36 ± 5.92 years).

Acid-fast bacilli in sputum samples, chest X-ray examination,

and Mantoux and fine-needle aspiration cytology tests were

performed to confirm the disease, although the patients were

already undergoing treatment. We have randomly selected

130 age- and sex-matched unrelated healthy controls (60

males and 70 females; mean age: 40.25 ± 7.62 years). Individu-

als recruited to the health control group had no previous his-

tory of TB. All patients gave written informed consent. The

Ethics Committee of the institute approved this study.

Genomic DNA extraction from whole blood

Genomic DNAwas extracted from EDTA-treated frozen whole

blood by a rapid nonenzymatic method [37]. Genotyping of

PTPN22-1858C/T SNP (rs2476601) was performed by restriction

fragment length polymorphism in the amplified DNA. A frag-

ment of the PTPN22 gene was amplified using specific primers

(sense and antisense primers were 50-GATAATGTTGCTT

CAACGGAATTTA-30 and 50-TCACCAGCTTCCTCAACCACA-30,

respectively). The XcmI site generated by the PTPN22-1858C/

T transition mutation was used for the detection of SNP.

The amplified fragment was then digested with XcmI (New

England Biolabs, Beverly, MA, USA) for detecting the SNP. A

10-lL aliquot of the polymerase chain reaction (PCR) product

was digested overnight with 10 U of XcmI at 37 �C. After incu-
bation, the restriction digestion mixture was electrophoresed

on a 1.2% agarose gel in 1� Tris–acetate–EDTA buffer for 1 h at

125 V. The genotype of all patients and controls obtained

using the restriction fragment length polymorphism-PCR

assay was verified by direct sequencing using the sense

primer.

Statistical analysis

Allele frequencies of PTPN22 were counted directly. The p val-

ues were two tailed and the statistical significance was noted

at the .05 level. Fisher’s exact test and Spearman correlation

test were performed using GraphPad Prism 5.0 (GraphPad

Software, La Jolla, CA, USA).

Results

The presence of restriction endonuclease site for XcmI

(CCANNNNNNNNNTGG) in the PCR-amplified product indi-

cates the presence of mutant allele in PTPN22. In samples

from heterozygous subjects with mutant T allele, the 215-bp

products were digested into 170- and 45-bp fragments.

Patients with 1858C alleles did not have any restriction site



Fig. 1 – XcmI digestion patterns of the PTPN22-C1858T

polymorphism. A 215-bp fragment of the PTPN22 gene

region was amplified by polymerase chain reaction (PCR)

using genomic DNA as template. The PCR product was

digested with XcmI restriction endonuclease and then

separated on a 1.2% agarose gel and stained with ethidium

bromide and visualized using ultraviolet light. Lanes 1 and

3 = undigested amplified product of PTPN22. Lane

2 = PTPN22-amplified product digested with XcmI

(heterozygous) showing 215-bp (upper arrow) and 170-bp

(lower arrow) fragments. Lane 4 = PTPN22-amplified product

digested with XcmI (homozygous). Lane 5 = 100-bp DNA

ladder. bp = base pair.

Fig. 2 – DNA sequencing for part of the PTPN22 gene. (A)

Genotype CC. (B) Genotype CT. The arrow in panel B

indicates the position of the single-nucleotide

polymorphism where the overlapping of two peaks

(heterozygous) can be observed.
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for XcmI and showed intact 215-bp product (Fig. 1). Restriction

digestion of the PTPN22-amplified product with XcmI revealed

that only one healthy individual was a heterozygous mutant

for the C1858T allele (Lane 2) and none of the patients carried

the missense allele (Fig. 1).

The frequency of occurrence of the mutant genotype (CT

or TT) among PTB patients was 0% (0/124) and there was

one heterozygous (CT) mutant (1/130 = 0.8%) in the healthy

controls (p > .99; Table 1). The frequency of the mutant allele

was found to be 0% in the patient group and 0.38% in the

healthy control group (Table 1). Furthermore, the mutation

was confirmed by direct sequencing of the PCR-amplified

product. For the heterozygous genotype with the mutant T

allele, two peaks overlapped each other in a chromatogram

(Fig. 2), which indicated the presence of both C and T alleles.
Table 1 – Genotype and allele frequencies of the PTPN22 of
the C1858T polymorphism in pulmonary tuberculosis.

Genotype Patients
(pulmonary tuberculosis)

Healthy controls

CC 100% (124/124) 99.2% (129/130)
CT 0% (0/124) 0.8% (1/130)
TT 0% (0/124) 0% (0/130)

Fishers exact test, p > .99
Alleles

C 100% (248/248) 99.62% (259/260)
T 0% (0/248) 0.38% (1/260)
Discussion

In this study, we found no association between the genotypic

and allelic frequencies of the PTPN22-C1858T gene polymor-

phism and susceptibility to PTB in a sample of the Indian pop-

ulation. We have detected only one heterozygous mutant (CT)

in healthy control samples and no individuals with homozy-

gous mutant (TT) were detected among patients and controls.

The low mutant allele frequency of PTPN22 was also reported

in another study in a different disease in the Indian popula-

tion [35].

Some of the earlier studies reported a significant associa-

tion between the T allele and PTB [28,29]. Similar to previous

studies on Moroccan population [29], Colombian population

[28], and Iranian population [32], a sample of the Indian pop-

ulation also showed the absence of TT genotype in TB cases.

The aforementioned studies [28,29] suggest a potential pro-

tective role of the T allele in TB. However, in contrast to the

previous studies, the distribution of T allele in this study

was very low. It has been reported that the PTPN22-C1858T

polymorphism is not involved in susceptibility to Brucella

melitensis, an intracellular pathogen, which causes human

brucellosis [38]. The observations suggest that PTPN22-

C1858T confers resistance to TB while also increasing suscep-

tibility to Gram-positive bacteria. In this present study, the

mutant allele C1858T was identified as a rare allele at a fre-

quency of 0.0019 (1/508) and as such it cannot be used as a

marker for PTB in Indian population.

In conclusion, our study results found that PTPN22-C1858T

is not associated with the susceptibility to PTB in Indian

population.
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