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Before his untimely death on October 14, 1971, Advances in &futhe- 
matics had received permission from N. E. Steenrod to publish this paper 
which is based on the Colloquium Lectures given at the Annual Summer 
Meeting of the American Mathematical Society at Pennsylvania State 
University in August, 1957. 

The lectures gave an excellent introduction to a central problem of 
algebraic topology and its applications, namely the problem of extending 
continuous functions. In particular, they gave a clear account of some of 
Steenrod’s more important contributions to the subject and covered, 
as well, the related work of several other mathematicians. Many advances 
have been made since 1957 but most of them were inspired by the 
ideas presented in these lectures. This paper is strongly recommended 
for anyone wanting an introduction to the subject. 
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The class of problems known as extension problems is central to 
nearly all of topology. Many of the basic theorems of topology, and 
some of its most successful applications in other areas of mathematics are 
solutions of particular extension problems. The deepest results of this 
kind have been obtained by the method of algebraic topology. The 
essence of the method is a conversion of the geometric problem into an 
algebraic problem which is sufficiently complex to embody the essential 
features of the geometric problem, yet sufficiently simple to be solvable 
by standard algebraic methods. Many extension problems remain 
unsolved, and much of the current development of algebraic topology is 
inspired by the hope of finding a truly general solution. 

To place my contribution to these developments in its proper setting, 
I shall begin with a discussion of the extension problem, and the methods 
of finding solutions in special cases. 

2. THE EXTENSION PROBLEM 

Let X and Y be topological spaces. Let A be a closed subset of X, 
and let h : A + Y be a mapping, i.e., a continuous function from A to Y. 
A mapping f : X -+ Y is called an extension of h iff(x) = h(x) for each 
x E A. The inclusion mapping g : A + X is defined by g(x) = x for 
x E A. Then the condition that f be an extension can be restated: h is the 
composition fg off and g. 

X 

/ 

\ 
\ g \f 

\ fg = h. 
A 

\ 
-Y 

h 
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When X, Y, A and h are given, we have an extension problem: 
Does an extension f of h exist ? 

3. TRANSFORMING GEOMETRIC INTO ALGEBRAIC PROBLEMS 

The general method of attack on an extension problem is to apply 
homology theory to transform the problem into an algebraic problem. 
To the diagram of spaces and mappings we assign a diagram of groups 
and homomorphisms. Each space has a homology group HP for each 
dimension q, and each mapping induces homomorphisms of the corre- 
sponding groups. Thus, for each q, we have an algebraic diagram 

Ho(X) 

f*g* =h*- 

Given the three groups and the homomorphisms g, , h, , we can now 
ask the question: Does there exist a homomorphism + such that +g.+ = h, ? 
(It should be noted that g, is not usually an inclusion, because a non- 
bounding cycle of A may bound in X.) If an extension f exists, setting 
4 = f.+ solves the algebraic problem because of the property (fg), = f,g, 
of induced homomorphisms. Thus, the existence of a solution of the 
algebraic problem is a necessary condition for the existence of an 
extension. But it is not usually a sufficient condition. The reason for 
this is that much of the geometry has been lost in the transition to algebra. 

It is a prime objective of research in algebraic topology to improve the 
algebraic machinery so as to give a sharper algebraic picture of the 
geometric problem. For example, in place of homology we may use 
cohomology. We obtain an analogous diagram 

g*f* = h*. 

The chief difference is the reversal of the directions of the induced 
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homomorphisms. If we consider cohomology solely as additive groups, 
they have no real advantage over homology groups. However, unlike 
homology, the cohomology groups of a space admit a ring structure: 
if u E ZP( Y) and ZI E E@(Y), then they have a product, called the cup- 
product, 

u u 21 E H”+*(Y). 

This product is bilinear, and satisfies the commutative law u u ZI = 
(- l)r% u u. Furthermore a mapping f: X -h Y induces a ring homo- 
morphism 

f*(uuV) = f*uuf*v. 

Letting H*(Y) = {B(Y), 4 = 0, l,...} d enote the resulting graded ring, 
the algebraic diagram becomes 

H*(x) 

/ 
g* \ 

'\ f' 
\ 

\ 

H*(A) - h* ii*(Y) 

g*f * = h*, 

and the algebraic problem is sharpened by the requirement that the 
solution (b of g*$ = h* must be a ring homomorphism. 

This provides a considerable improvement in the algebraic picture 
of the geometric problem. However it is not the best that can be done. 
The cohomology groups possess not only a ring structure but also a more 
involved structure referred to as the system of cohomology operations. 
A cohomology operation T, relative to dimensions q and r, is a collection 
of functions IT,), one for each space X, such that 

TX : Hn(X) -+ H’(X), 

and, for each mapping f : X -+ Y, 

f *Tyu = TdYf *u for all u E Hq(Y). 

The simplest nontrivial operations are the squaring operations. For 
each dimension q and each integer i > 0, there is a cohomology operation, 
called square-i, 

Sqi : Hq(X; Z,) - Hg+i(X; Z,). 

Here the coefficient group 2, consists of the integers Z reduced modulo 2. 
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Also for each prime p > 2, there are cohomology operations generalizing 
the squares called cyclic reduced pth powers. These are function 

gP : fqx; Z,) --f f$q+2i’“-l)(X; Z,). 

I shall discuss these operations in detail later on. At the present time 
I wish only to emphasize the importance of cohomology operations to the 
study of the extension problem: In the derived algebraic problem using 
cohomology, the solution + : H*(Y) -+ H*(X) of the algebraic problem 
g*+ = h* must be a ring homomorphism, and also must satisfy 
q5T, = TX+ for every cohomology operation T. Thus, by cramming as 
much structure as possible into cohomology theory, we endeavor to 
obtain the strongest possible necessary conditions for a solution of the 
extension problem. 

The ultimate objective is to refine the algebraic machinery that the 
derived algebraic problem is a faithful picture of the geometric problem. 
This has not yet been accomplished; but it appears to be within reach. 

We turn now to a more detailed discussion of the ideas presented so far. 

4. EXAMPLES OF EXTENSION PROBLEMS 

Examples of solutions of extension problem are plentiful even in the 
most elementary aspects of topology. The Urysohn lemma is an example. 
In this case X is a normal space, A = A, u A, is the union of two 
disjoint closed subsets, Y is the interval [0, I] of real numbers, and 
h(A,) = 0, h(A,) = 1. Th e conclusion of the lemma asserts that an 
extension always exists. 

The Tietze extension theorem is another example. In this case X is 
normal, Y = [0, I], and h is arbitrary. Again an extension always exists. 

The study of the arcwise connectivity of a space Y is another example. 
In this case X = [0, 11, A consists of the two points 0 and 1, and 

40) = yo , h(l) = yl . A n extensionf of h is a path in Y from y. to y1 . 
There is a special class of extension problems called retraction problems. 

If A C X, then a mapping f : X -+ A is called a retraction if f (x) = x 
for each x E A. Given a space X and a closed subspace A, there is the 
problem of deciding whether or not such a retraction exists. By setting 
Y = A, and taking h : A -+ Y to be the identity, it is seen that each 
retraction problem is an extension problem. 

An important example from elementary algebraic topology is the 
following. Let E be the closed n-cell, i.e., the set CL1 xi2 < 1 in Cartesian 
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n-space, and let 5 be its boundary, i.e., the (n - I)-sphere CF=i xi2 = 1. 
Then 

The boundary S of the n-cell E is not a retract of E 

The proof of this for n = 1 is readily deduced from the fact that E 
is connected and 5’ is not. For n > 1, the proof is not trivial, although 
the conclusion for n = 2 is intuitively appealing to anyone who has 
tightened a drum head, or stretched canvas tautly over a frame. The 
proof utilizes the general method of converting the problem into an 
algebraic one. We take homology groups in the dimension n - 1, and 
obtain the diagram 

K-@I 

/ 
\ \ 

K. ', fi 

The dimension n - 1 is used since this gives the only nontrivial homo- 
logy group of S. Using integer coefficients 2, we have H,-,(S) * 2, 
and H,-,(E) = 0. Now h = identity implies h, = identity. This gives 
an impossibility: the identity homomorphism of 2 cannot be factored 
into homomorphisms 2 % 0 5 2. Therefore the retraction f of E 
into S does not exist. 

It may be felt that a nonexistence theorem is of little use. This is not 
the case. By a mild twist, a negative result can be given a positive form. 
In the case at hand, we obtain as a corollary the well-known Brouwer 
fixed-point theorem: Each mapping g : E ---t E has at least one jixed point. 
For suppose to the contrary that there is a g with no fixed-point. As x 
and g(x) are distinct points, they lie on a unique straight line, and x 
divides this line into two half lines. The half line not containing g(x) 
meets S in a single point denoted by f(x). The continuity of g implies 
that off. In case x E S, it is clear that f(x) = x. So f is a retraction 
E -+ S. As this is impossible, a fixed point free g cannot exist. 

5. THE USE OF THE COHOMOLOGY RING 

The next example is one in which the cohomology ring must be used 
to arrive at a decision. Let X denote the complex projective plane, i.e., 
the space of 3 homogeneous complex variables [a0 , .a1 , x2] not all zero. 
It is a compact manifold of dimension 4. Let A be the complex projective 
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line in X defined by the equation x2 = 0. Topologically, A is a 2-sphere. 
In this case the conclusion is that A is not a retract of X. 

Suppose that f : X -j A is a retraction so that fg = identity where 
g : A + X is the inclusion. Passing to cohomology, we have the diagram 

H*(X) $ H*(A), 
/* 

g*f * = identity. 

When two groups are so related by homomorphisms, the left hand group 
splits into a direct sum: 

H*(X) = image of .f * $ kernel of g* 

The abbreviated notation is 

H*(X) = Imf* + Kerf*. (5.1) 

Furthermore g* gives an isomorphism 

g* : Imf* ‘ii H*(A). (5.4 

If we include the ring structure, and use the fact that f *, g* are ring 
homomorphisms, then 

Imf * is a subring, and Ker g* is an ideal. (5.3) 

Turning to the example under consideration, we are given X, A and 
the inclusion g, and we can ask if Kerg* is a direct summand. The 
cohomology of X is zero in dimensions >4. In dimensions < 4, the 
cohomology of X and A with integer coefficients Z is given by the table 

0 2 I 3 4 

A 20200 
x 20202 

Furthermore g* is an isomorphism in the dimensions 0 and 2. It is seen 
then that the direct sum decomposition required by 5.1 does exist and, 
in fact, is unique. Namely, in the dimensions 0 and 2, Ker g* is zero so 
that Imf * is the whole group, and in the dimension 4, Ker g* is the 
whole group and Imf * = 0. 

However, on examining the ring structure, we find that the uniquely 
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determined candidate for Imf * is not a subring. For let u be a generator 
of H2(X) so that u E Imf *. Since X is a manifold, the PoincarC duality 
theorem asserts that H2 is self-dual under the cup product pairing to H4. 
It follows that u u u must generate H4(X). Therefore u u u is not in 
Imf*; and, therefore, A is not a retract. 

This example is intimately related to the mapping h : S3 + S2 of the 
3-sphere into the 2-sphere studied first by H. Hopf [14]. In the space of 
two complex variables, let S3 be the unit sphere z,,.%$, + zi.%i = 1, and E4 
the unit 4-cell z,&, + z& < 1. Let S2 be the space of two homogeneous 
complex variables [zO , z,]. Then h sends the point (z, , zi) of S3 into 

[% 3 zi] in S2. This is a very smooth mapping. The inverse images of 
points of S2 give a fibration of S3 into great circles. Hopf proved that h 
is not extendable to a mapping E4 ----f S2. (Notice that (zO , zi) -+ [x0 , zi] 
has a singularity at (0, O).) If we form a new space out of E4 by collapsing 
its boundary S3 into S2 according to h, the resulting space is homeo- 
morphic to the complex projective plane X, and S2 corresponds to the 
complex projective line A. Since A is not a retract of X, it follows that h 
cannot be extended over E”. 

6. THE USE OF THE SQUARING OPERATIONS 

The next example is a retraction problem for which the cohomology 
ring does not provide an answer; but the squaring operations do give an 
answer. Let P5 denote the real projective space of dimension 5 (6 homo- 
geneous real variables). Let P4 3 P3 3 P2 be projective subspaces of the 
indicated dimensions. Let X be the space obtained from P5 by collapsing 
P2 to a point, and let A C X be the image of P4 under the collapsing map: 
P5 -+ X. Again the assertion is that A is not a retract of X. 

We tackle this problem in the same manner as the preceding one, and 
begin by asking whether Ker g* is a direct summand of H*(X). Knowing 
the cohomology of P5, one readily deduces that of X and A. With Z, 
as coefficients, the cohomology is given by the following table 

0123 4 5 

Furthermore, g* is an isomorphism in dimensions < 5. Therefore there 
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is a direct sum splitting as in 5.1 and it is unique: Imf * must be the 
whole group in dimensions < 5, and it is zero in the dimension 5. 

In this case the candidate for Imf* is obviously a subring. The reason 
is that the cup product of elements of dim 3 3 has dim 3 6, and is, 
therefore, zero. Thus, insofar as the cohomology ring is concerned, 
A could be a retract of X. To show that it is not a retract, we must use the 
cohomology operation 

Sq” : fP(X; 2,) + fP(X; 2,). 

If u is the nonzero element of H3, a suitable calculation shows that Sq”u 
is the nonzero element of W. Now the unique candidate for Imf * 
contains u and is zero in dimension 5; hence it is not closed under Sq3. 
But it would have to be closed if a retractionf existed becausef*Sq2 = 
Sq2f *. Therefore a retraction does not exist. 

This result has a good application in differential geometry. It is well 
known that a differentiable manifold has a continuous field F of nonzero 
tangent vectors if and only if its Euler number is zero. This implies that 
the n-sphere S” has a tangent field F if and only if n is odd. S3 in fact has 
3 fields which are independent at each point because it is a group mani- 
fold (unit quaternions). The question arises as to the maximum number 
of fields tangent to S5 which are independent at each point. The answer 
is 1. For, by a direct construction, two independent fields can be made 
to yield a retraction of X into A (see [28]). 

The same method can be used to prove a more general result [28]. 
If n is a positive integer, and 2k is the largest power of 2 dividing n + 1, 
then any set of 2” vector fields tangent to Sn are dependent at some point. 
This result is the best possible for n < 15. 

7. HOMOTOPIES 

Having demonstrated the need of finer and finer algebraic tools, it is 
natural to ask if there is an end to the process. The answer is that there 
is real hope of achieving a complete solution. To exhibit the basis for 
my hope, I must delve more deeply into the geometric aspects of the 
extension problem. For this, the concept of homotopy is vital. Let h 
be a mapping A -+ Y, and let I = [0, I] be the unit interval, then a 
mapping H : A x I + Y is called a homotopy of h if H(x, 0) = h(x) 



380 STEENROD 

for x E A. Setting h’(x) = H(x, 1), H is called a homotopy of h into h’ 
and we write h ‘v h’ (h is homotopic to h’). This is an equivalence 
relation, and the set of maps homotopic to h is called the homotopy class 
of h. The set of homotopy classes of mappings A + Y is denoted by 

Map(X, Y). 
A basic result, due to Borsuk, is the 

HOMOTOPY EXTENSION THEOREM. Iff:X+ Y, A iscZosedinX,and 
h = f / A. Then any homotopy H of h may be extended to a homotopy off. 
Precisely, the mapping G of the subset X x 0 u A x I of X x I into Y, 
given by G(x, 0) = f(x) for x E X and G(x, t) = H(x, t) for x E A, t E I, 
may be extended to a mapping f : X x I -+ Y. 

The intuitive idea of the theorem is that if we grab hold of the image 
of A and pull it along, then the image of X will come sliding after. 

The theorem is not true in the generality stated; some restriction on 
X, A or Y is necessary. It suffices for example if Y is triangulable or if 
X and A are triangulable. It also suffices to impose the condition of being 
an absolute neighborhood retract on Y or on X and A. In the future we 
assume some such restriction without further mention. 

Notice that the theorem asserts the extendability of certain kinds of 
mappings. This solution of a special extension problem is of the utmost 
importance for the general problem because of the following 

COROLLARY. The extendability of h : A + Y to a mapping f : X -+ Y 
depends only on the homotopy class of h: If h is extendable and h ‘v h’, 
then h’ is extendable. 

It is only necessary to extend the homotopy to F : X x I -+ Y and set 
f’(x) = F(x, 1). 

One advantage this gives us is that, in any particular extension problem, 
we may vary h by a homotopy and obtain a simpler but equivalent 
problem. For example, suppose it were known that h is homotopic to a 
constant mapping h’ (i.e., h’(A) is a single point). Since such an h’ is 
obviously extendable, so is h. 

The result also enables us to rephrase the extension problem in an 
apparently weaker form: Does there exist an f such that fg ‘v h ? Given 
such anf, we have that f j A is obviously extendable, and f / A E h, and 
so h is extendable. 
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Having freed one aspect of the extension problem (replacing fg = h 
by fg ‘v h), it is natural to consider freeing other parts of unnecessary 
restrictions. The condition that g be the inclusion mapping A C X is 
no longer an essential feature. Let X, A, Y be any three spaces and let 
h : A + Y and g : A + X be mappings. Does there exist a mapping 
f : X + Y such that fg ‘v h ? This problem is called the “left-factoriza- 
tion” problem. The class of these problems includes the extension 
problems and many more. Broadening thus the class of problems does 
not increase the difficulties because of the following result. 

Each Left-Factorization Problem is Equivalent to Some Retraction Problem. 

To see this, we start with a left-factorization problem as above, and 
construct a space Z as follows. In the union of X, A >: I and Y, identify 
each point (a, 0) with g(a) in X, and identify each point (a, 1) with h(a) 

in Y. The resulting space Z contains X and Y and a homotopy of g into 
h. It follows quickly that Y is a retract of 2 if and only if there exists a 
mapping f : X ---t Y such that fg 'v h. 

Thus the broadest type of problem is equivalent to the narrowest type. 
It is easily shown that a left-factorization problem depends only on 

the homotopy classes of g and h. Even more it depends only on the 
homotopy types of the three spaces involved. Two spaces X, X’ have the 
same homotopy type (are homotopically equivalent) if there exist map- 
pings+:X-+X’and+‘:X’ + X such that +$’ ‘v identity of X’ and 
+‘$ = identity of X. W e may substitute X’ for X in any problem if we 
set g’ = #g. Analogous substitutions can be made for A and Y. 

An advantage of this flexibility is that any particular problem can 
often be greatly simplified by homotopic alterations of the spaces and 
mappings involved. 

More important however is the light which it casts on the class of all 
problems. If we consider only those spaces admitting finite triangulations, 
then there are only a countable number of homotopy types of spaces, and 
for any two spaces there are only a countable number of homotopy 
classes of mappings. This statement can be proved by the use of the 
well-known simplicial approximation theorem. It is a consequence that 
there are only a countable number of extension problems. This in itself 
makes it reasonable to hope for effective methods of solving any extension 
problem. 

To substantiate this hope, consider the notion of the induced homo- 
morphism f * of cohomology assigned to a mapping f : X + Y. A well- 
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known property is that homotopic maps induce the same homomorphism. 
Hence we have a function 

R xy : Map(X, Y) + Hom(H*(Y), H*(X)) 

defined by RxY(f) = f *. By H om we mean all functions preserving 
whatever algebraic structure we are able to put into the cohomology 
theory of spaces. Suppose we have an extension problem with spaces 
X, A, Y such that R,, is onto, and RAY is l-l into. Suppose moreover 
that the algebraic problem g*+ = h* has a solution 4. Since R,, is onto, 
there exists an f : X -+ Y such that f * = 4. Then (fg)* = h*. Since 
RAY is l-1 into, this implies fg ‘V h. Hence the solvability of the algebraic 
problem is both necessary and sufficient for solving the geometric 
problem. 

Thus we would have a complete hold on the extension problem if 
we knew that RxY is l-l onto for all triangulable spaces X, Y. This is 
true for some spades and false for others, For example, let X = S3 and 
Y = S2; then Hom(H*(S2), H*(S3)) = 0, and Map(S3, S2) = ~~(5’~) 
is infinite. However our point of view above has been too narrow in 
specifying the range of Rx, . Some more intricate algebraic gadget 
should do the trick. The possibilities are many. For example R,*(f) 
could be taken to be the cohomology sequence associated with the 
mapping cylinder off. 

The finding of a suitable l-l mapping R,, of Map(X, Y) into a 
computable algebraic object is called the homotopy classiJication problem. 
Solving it completely will solve the extension problem completely. 
Why should we be hopeful of solving this ? First, Map(X, Y) is a 
countable set, and is therefore suitable for algebraization. Secondly, 
in many special cases (as will be shown) we have obtained solutions. 
Thirdly, we have available now a variety of functions RXY which taken 
together may provide the complete solution. 

8. LIFTING PROBLEMS 

There is a class of problems called lifting problems which are dual in 
a certain sense to extension problems. In a lifting problem, we are given a 
fibre bundle X over a base space Y with projection f : X -+ Y. This 
means that each y E Y has a neighborhood V such that f -lV is repre- 
sentable as a product space V x F for some fixed space F called the 
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fibre. Furthermore, f restricted to f-IV is the projection V X F ---t V. 
In the lifting problem, we are also given a space A and a mapping 
h : A -+ Y; and the problem is to decide whether there exists a mapping 
g:A+Xsuchthatfg= h. 

X 
1’ 

‘/’ 

A// 

fg = h. 

Y 

The condition that X A Y is a bundle is dual to the condition of an 
extension problem that A 2 X is an inclusion mapping. 

An elementary example of a lifting problem and its solution is the 

MONODROMY THEOREM. If X is a covering space of Y with projection f, 
then a mapping h : A + Y can be lifted to g : A + X zy and only ;f the 
algebraic problem posed by the fundamental groups has a solution: 

h, 4Y) 

It should be recalled that, since X covers Y, fx imbeds rrr(X) isomor- 
phically into nr(Y). Also, since base points are not specified, the images 
off* and h, are only defined up to inner automorphisms of rr( Y). Thus 
to decide whether the algebraic problem has a solution it suffices to 
determine whether some conjugate of f*rrl(X) contains h,r,(A). 

The monodromy theorem is used in complex variable theory in order 
to find a single-valued branch of the composition of a single-valued and 
a multiple-valued function. 

If X is a bundle over Y with projection f, we obtain a special lifting 
problem by taking A = Y and h = identity. A solution g : Y + X of 
fg = identity is called a cross-section of the bundle. Cross-sectioning 
problems are the duals of retraction problems. 

A great variety of these problems arise in differential geometry 
(see [24]). Let Y b e a differentiable manifold. For any tensor of a specified 
algebraic type, the set of all such tensors at all points of Y forms a fibre 
bundle X over Y. A cross-section of this bundle is a tensor field defined 
on Y of the specified type. For example, let X be the manifold of nonzero 
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tangent vectors of Y. A cross-section is a continuous field of nonzero 
vectors. For a compact Y, such a field exists if and only if the Euler 
number of Y is zero. This is proved by using cohomology groups of the 
dimension of Y. Many applications of algebraic topology to problems of 
this type have been made. But many more remain out of reach. 

We propose to show now that the duality between extension and lifting 
persists in considerable detail. The dual of the homotopy extension 
theorem is the 

COVERING HOMOTOPY THEOREM. In the situation 

X 

g f, 

/\ 
fg = h 

A Y 
h 

where X is a bundle over Y, let H be any homotopy of h. Then there exists 
a homotopy G of g such that fG = H, i.e., any motion in the base space Y 
can be covered by a motion in the bundle space X. 

The proposition asserts that a certain kind of lifting problem always 
has a solution. In analogy with the case of the extension problem, we 
have the 

COROLLARY. In any lifting problem, the liftability of a mapping 
h : A -+ Y depends only on the homotopy class of h. 

In any lifting problem, a solution g’ of the weaker problem fg' 'V h 
leads to a solution of the problem fg = h. It is only necessary to cover the 
homotopy of fg' into h by a homotopy of g’. 

As before we can abandon now the restriction that X is a fibre bundle 
over Y. We define a right-factorization problem to consist of three spaces 
A, X, Y and mappings h : A -+ Y and f : X + Y. A solution is a 
mapping g : A -+ X such that fg e h. The existence of a solution 
depends only on the homotopy classes of the mappings and the homotopy 
types of the spaces. 

The general method of handling a lifting problem or a right-factoriza- 
tion problem is the same as that used for extension and left-factorization 
problems. We transform the problem to an algebraic one by applying 
a functor from topology to algebra. All of the discussion of the derived 
algebraic problems applies equally well to the new situation. When we 
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are able to cram into the algebraic functor enough structure to be able 
to solve the homotopy classification problem, then we will be able 
to solve any lifting problem. 

9. THE CLASSIFICATION THEOREMS OF HOPF AND HUREWICZ 

There are certain restricted situations where homology and cohomo- 
logy, considered as having additive structure only, are adequate to solve 
the homotopy classification problem. Two theorems proved about 1935 
mark high spots in this direction. These are the theorems of Hopf and 
Hurewicz. 

HOPF'S CLASSIFICATION THEOREM. If K is a jinite complex, and 
n > 0 is an integer such that Hq(K) = 0 for all q > n, then the natural 
function 

Map(K, 9) + Hom(H7”(Sn), H”(K)) 

is one-to-one and onto. 
Since H”(P) is infinite cyclic, we have 

Hom(EP(S”), H”(K)) cz HTL(K); 

therefore Map(K, 9’) is in 1 - 1 correspondence with H”(K). 

HUREWICZ'S CLASSIFICATION THEOREM. If Y is a connected and 
simply-connected space, and n is an integer such that Hi(Y) = 0 for 
0 < i < n, then the naturalfunction 

Map(P, E’) + Hom(H,(P), H,(Y)) 

is one-to-one and onto. 

Again H,(S”) is infinite cyclic, and, therefore, Map(P, Y) is in I-1 
correspondence with H,(Y). 

As is well known, Hurewicz defined a group structure in Map(S”, Y) 
giving an abelian group denoted by rTL( Y) and called the nth homotopy 
group. The conclusion of the theorem can be restated: Then ri(Y) = 0 
for 0 < i < n, and r,(Y) m H,(Y). 

The homotopy groups, like the homology groups, form a functor from 
topology to algebra, and convert geometric problems into algebraic 
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ones. They can be and are used to solve extension problems. However, 
unlike homology groups, there is a severe restriction on their use. 
Homotopy groups are very difficult to calculate effectively. Computing 
a homotopy group requires us to solve a homotopy classification 
problem; and this may be a problem of the same order of difficulty as 
the extension problem under consideration. A chief virtue of Hurewicz’s 
theorem is that it reduces the calculation of a particular homotopy group 
to that of a homology group. 

The Hopf and Hurewicz theorems have an intersection: the homotopy 
classes of mappings S” --+ S” are in l-l correspondence with the homo- 
morphisms H,( S%) -+ H,( S”). Since H,( Sn) is infinite cyclic, any such 
homomorphism f.+ is characterized by an integer d called the degree of 
the mappingf, and it satisfiesf*(s) = dz for x E H,(S”). 

There is a union of the two theorems which is due to Eilenberg [l 11: 

HOMOTOPY CLASSIFICATION THEOREM. Let K be a Jinite complex and 
n a positive integer such that Hq(K) = 0 for q > n. Let Y be a connected 
and simply-connected space such that H%(Y) = 0 for 0 < i < n. Then 
Map(K, Y) is in l-l correspondence with Hn(K; H,(Y)), i.e., the nth 
cohomology group of K using HJ Y) as coejicients. 

Notice that the hypotheses allow only a single dimension n in which 
the cohomology of X is nonzero and the homology of Y is nonzero. As 
soon as we allow an overlapping of nontriviality in more than one 
dimension, the additive structure of homology and cohomology becomes 
inadequate. 

10. OBSTRUCTIONS 

The method introduced by Eilenberg to prove the above result has very 
general applicability, and is called obstruction theory (see [24, Part III]). 
Let K be a complex, L a subcomplex and f : L + Y. For the sake of 
simplicity assume that Y is arcwise connected and simply-connected. 
Let Kg denote the p-dimensional skeleton of K. The subcomplexes 
L u K’J for p = 0, I,... form an expanding sequence. Let us attempt 
to extend f over each in turn. An extension f. over L U K” is obtained 
by defining f. to be f on L, and to have arbitrary values on the vertices 
of K not in L. For any l-cell u of K - L, f. is defined on its vertices and 
gives two points in Y. As Y is arcwise connected, we may map u into 
a path joining the two points. Doing this for each such 0 gives and 
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extension fi off,, over L u K1. For each 2-cell cr of K - L, fi is defined 
on its boundary 6 giving a loop in Y. Since 7~i( Y) = 0, the mapping fi 
on & may be extended over u. Doing this for each u gives an extension 
f2 of fi over L u K2. Now if each ni( Y) = 0 for i < dim(K - L), 
there is nothing to stop us from continuing this process and obtaining 
an extension over all of K. But this is too severe a requirement, and we 
must ask what happens in the general case. 

Assume now that somehow an extension fq off over L u Kq has been 
achieved for some q, and consider the extension problem posed by each 
(q + I)-cell D of K - L. We have that f, 1 6 is defined, and is a mapping 
of a q-sphere into Y. This determines an element of the homotopy group 
rq( Y) provided we give 6 an orientation. This is done by first orienting u, 
and then giving 6 the orientation of the algebraic boundary au. Then, 
for each oriented cell u, f, ( au defines an element of nq( Y) denoted by 
c(f, , u). This funtion of (q + I)-cells may be regarded as a (q + I)-dim 
cochain of K with coefficients in Z-,(Y), and is denoted by c( f,). Since 
f, can be extended over u if and only if c(fq , u) = 0, we call c(fp) the 
obstruction to extending f, . Since f, is defined on each cell of L, c(fq) is 
zero on L. It is therefore a cochain of K module L. 

Most important is the fact that c(fJ is a cocycle, i.e., it vanishes on 
boundaries. This follows because it was defined using the boundary, 
and 88 = 0. It determines therefore a cohomology class 

E(fJ E w++Y, L; T*(Y)). 

Consider now what happens if we retreat one stage to fqpl and extend 
it over L u Kq in some other fashion obtaining f,‘. On any q-cell 7 of 
K ~ L, the two mappings fg , f,’ agree on the boundary, and give two 
cells in Y with a common boundary. These determine a map of a 
q-sphere in Y, and hence an element of ‘rr,( Y) denoted by d(f, , f,‘, T). 
The resulting q-cochain is called the dzfleerence cochain. Its main property 
is that its coboundary is the difference of the two obstruction cocycles. 

wf, Jr’) = 4.h) - 4fa’) 

This gives E(fn) = C( f,‘). Th ere f ore C(fq) depends only on fqml and can 
be written 8+‘(fg-J. I t is the obstruction fqpl over L u Kq+l to exten- 
ding knowing that it can be extended over L u Kq. 

Now suppose we retreat two stages to fqp2 and extend over L v Kg-l 
in some other fashion obtaining fapl . This gives a (q - 1)-cochain 
d(f,-, , fi&,). Its coboundary is --cq(fi-J. So if the alteration f& is 

607/W3-2 
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chosen so that d(&, ,jiel) . is a cocycle, it may be extended to a mapf,’ 
of L LJ Kq. In this case c(&) and c(&‘) can be different cohomology 
classes. Their difference is some function of the cocycle d(f,-, ,fi-i). 
In fact they are related by the squaring operation 

sq2 w,-I ,fL-1) = WJ - Wpl)* 

It follows that the obstruction to extendingf,-, over L u Kg+l, assuming 
it can be extended over L u Kg, is an element of the quotient group 
HQ+l/Sq2HQ-l. 

If we now retreat three stages to,f,-, and extend over L u Kq in some 
other fashion obtaining f,‘, then d(fqp2 , fip2) is a (Q - 2)-cycle, and Sq2 
of its cohomology class is zero. The difference I - ~(f,‘) is some 
function of Z(f,-, ,fip2). Th e relationship in this case has been studied 
by Adem [l]. He has defined quite generally a cohomology operation, 
denoted by Q3, which increases dimension by 3, is defined on the kernel 
of Sq2 and has values in the cokernel of Sq2. The operation provides the 
desired connection. 

The three stage retreat is as far as this game has been analysed in a 
detailed and effective manner. The general pattern is clear. If f, and f,’ 
are two extensions of f over L v KQ which agree on L u K’ 

(0 < y < q - 3), then W,+, ,fi+d is an (r + 1)-cocycle. Furthermore 
it lies in the kernel of Sp2; hence Q3 is defined on it, and it lies in the 
kernel of Q3; hence some unknown operation Q4 is defined on it. If 
Y < q - 4, it lies in the kernel of Q4; and some operation Q5 is defined 
on it. This continues up to @qp4, and this operation applied to d(f,+,,f~‘+,) 
gives the difference r(f& - c(fa’) modulo images of Sq2, @3,...,@g--r-1. 

The method of successive obstructions has two main phases. First one 
must compute effectively those homotopy groups 7ri( Y) which appear as 
coefficient groups. This in itself is a difficult problem. It is worth 
noting in this connection that E. H. Brown [6] has shown that the 
homotopy groups of a simply-connected finite complex are effectively 
computable. The second phase is to give effective methods of computing 
the operations @ for i > 3. Much work remains to be done. But enough 
has been accomplished to make one hopeful of ultimate success. 

11. THE COHOMOLOGY RING 

We shall turn now to the methods of constructing cohomology 
operations. Perhaps the simplest operation is the cup product which 
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gives the ring structure to the cohomology groups. When first discovered 
about 1936 by Alexander, Cech and Whitney, the cup product appeared 
to be very mysterious. It was not known for example why cohomology 
admits a ring structure but homology does not. The formulas defining 
the cup product gave little insight into the structure of the cohomology 
ring. 

Lefschetz in his Colloqium book of I942 presented a new approach to 
products which dispelled much of the mystery. It was based on products 
of complexes. If K and L are cell complexes, then their topological 
product K x L may be regarded as a cell complex in which the cells are 
the products u x T of cells D E K and 7 EJJ. It follows that the chain 
groups of K x L are sums of tensor products of the chain groups of K 
and L 

Introducing orientations suitably (i.e. defining incidence numbers in 
K x L in terms of those in K and L,), one arrives at the boundary 
formula 

qu @ b) = au @ b f  (-1)” a @ Sb, dim a = p. 

From this it follows that the product of two cycles is a cycle, and if either 
is a boundary so is their product. Thus we have an induced homomor- 
phism 

a : H,(K) @ H,(L) -+ H,+,(K x L). 

In fact, with integer coefficients, 01 is an isomorphism of Cptpzr H, 0 H, 
with a direct summand of H,(K x L). Abbreviating ol(x @ y) by x x y, 
we obtain a bilinear product which is associative and commutative: 
if T interchanges K and L, then 

T*(x x y) = (-l)YUy x X. 

An entirely analogous game can be played with cochains and coho- 
mology. If u and v are cochains of K and L respectively, define u x v by 
specifying its values on product cells as follows 

(u x v) * (0 x 7) = (u - “)(V * 7) 
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(It is understood here that u * u is zero if u and u have different dimen- 
sions). This gives an isomorphism (K or L finite) 

C’(K x L) 53 c O(K) @ O(L), 
P+q=r 

satisfying the coboundary relation 

and inducing 

S(u x v) = 624 x v + (-l)Pu x sv, 

a : HP(K) @ Hq,) --f fP+g(K x L). 

This yields a bilinear product which is associative, and commutative. 
It is also highly nontrivial in that 01 maps &+qzr HP @ H* isomorphically 
onto a direct summand of H’(K x L). 

Up to this point the results for homology and cohomology are on a par. 
Now take K = L, and let 

d:K+KxK 

be the diagonal mapping d(x) = (x, x). Passing to homology and 
cohomalogy gives two diagrams of homomorphisms 

H,(K) 0 H,(K) A H,+,(K x K) & HD+*m 

HP(K) @ Ha(K) & Hp+q(K x K) % Hp+q(K). 

Clearly d, and 01 cannot be composed, but d* and 01 can be because 
cohomology is contravariant. The cup-product of u E HP(K) and 
v E Hq(K) is defined by 

uv = d*a(u @ v) = d*(u x v). 

This gives a product in the cohomology of K which is associative and 
commutative: 2427 = (-1)%x4. 

This method of Lefschetz makes it completely clear why cohomology 
has a ring structure but homology does not. It also shows that the study 
of the cohomology ring reduces to the study of the homomorphism d*, 
i.e., to an investigation of the way in which the diagonal is imbedded 
in the product. 

A very beautiful application of the ring structure was made by Hopf 
[ 151 in determining the cohomology of Lie groups as follows 



COHOMOLOGY OPERATIONS 391 

HOPF'S THEOREM ON GROUP MANIFOLDS. If G is the space of a Lie 
group, then the cohomology ring of G over a field of coeficients of charac- 
teristic 0 is the same as the cohomology ring of the product space of a collection 
of spheres of odd dimensions. Equivalently, H*(G) is an exterior algebra 
with odd dimensional generators. 

There is an extension theorem hidden in this proposition. To see this, 
let K be a finite complex, and let 1 denote a selected vertex of K. In the 
product K x K, let K v K denote the union of the subsets K x 1 and 
1 x K; it is the union of two copies of K with a point in common. Define 

h:KvK+K by h(x, 1) = x = A(1, x). 

Then for each K, we have an extension problem: Can h be extended 
to f : K x K -+ K? A very strong necessary condition for this is that 
H*(K) must be an exterior algebra with odd dimensional generators. 
For the existence of f defines a continuous multiplication in K by 
xy = f (x, y) having 1 as a two-sided unit. And such a multiplication 
was all that Hopf assumed in proving his theorem. 

An extensive generalization of Hopf’s theorem has been given by 
A. Bore1 [4]. He relaxes the hypotheses by allowing the space G to be 
infinite dimensional, and the coefficient field to have a prime charac- 
teristic (providing the field is perfect). He concludes that H*(G) is a 
tensor product of exterior algebras and polynomial rings (which may be 
truncated). 

Another application of the cohomology rings was made by Pontrjagin 
to the computation of an obstruction [19]. A simplified form of the result 
goes as follows. Let h : K3 + S2 map the 3-skeleton of a complex K 
into the 2-sphere; and let u be a generator of the infinite cyclic group 
H2(S2) using integer coefficients. Since K3 is the 3-skeleton, the inclusion 
X3 C K induces an isomorphism 4 : H2(K) m H2(K3). Then the 
cohomology class of the obstruction to extending h over K4 is the square 
of +-lf *u.Therefore (r#-lf*u)" = 0 is a necessary and sufficient condition 
that h 1 K2 be extendable over K4. 

12. MOTIVATION FOR Sq2 

Because the method of constructing the squaring operations appears 
to be somewhat arbitrary, it is worthwhile to give the motivation which 
led their discovery. Briefly, obstruction theory gave a nonconstructive 
proof of the existence of Sq2. 
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To see this clearly, let K be a complex, and let ZI be an n-cocycle of 
K representing u E HTL(K; 2). Construct a mapping f of the (a + l)- 
skeleton K”+l into the n-sphere Sn as follows. First, shrink K+l to a 
point to be mapped by f into a point y0 E 5’“. Each oriented n-cell u 
of K becomes an n-sphere and may be mapped onto 5’” with the degree 
z, * (J (= the value of u on u). For each (a + I)-cell T, the boundary of T 
is mapped on S” with total degree = v . ar. By definition of coboundary, 
we have v . ar = Sv * T = 0 because v is a cocycle. So the mapping of 
the boundary of r extends over T Doing this for each 7 defines 
f : Kn+l + 5’“. 

The obstruction to extending f over Kn+2 is an (n + 2)-cocycle c(f) 
with coefficients in rr,+r(Sn). It s cohomology class c(f) depends only 
on the class u of v, and may be written c(f) = Sq%. When n = 2, we 
have na(S2) = 2, and Pontrjagin’s extension theorem (Section 11) gives 
c(f) = u u U. When n > 2, Freudenthal proved that 7~?~+i(S~) = 2, , 
and, therefore, Sq2 is a mapping fP(K; 2) ---f Hn+2(K; 2,). 

13. THE HOMOLOGY OF GROUPS 

The first effective definition of the squares used explicit formulas in 
simplicial complexes. These were generalizations of the Alexander 
formula for the cup product, and they gave no intuitive insight. To 
obtain such insight it was important to find a conceptual definition 
analogous to Lefschetz’s construction of cup products using K x K and 
the diagonal mapping d: K ---f K x K. This was found; and, surprisingly, 
it revealed a connection with another development of algebraic topology, 
namely, the homology groups of a group. We turn to this now. 

Let 7~ be a group (possibly non-abelian). In the applications we have 
in mind r is a finite group. A complex W is called a n-complex if rr is 
represented as a group of automorphisms of W. A r-complex W is said 
to be r-free if, for each cell u of W, the transforms of u under the various 
elements of 7~ are all distinct. Let W/n denote the complex obtained by 
identifying points of W equivalent under rr. Then n-freeness implies 
that the collapsing map W--t W/T is a covering with 7r as the group of 
covering transformations. Let A(r) denote the family of r-free complexes 
which are also acyclic (i.e., all homology groups are zero). There are 
two important facts about the family A(n). First, it is nonempty. 
Secondly, if W and W’ are in A(V), then there are chain mappings 
W/n -+ IV/n ---t W/n giving a homotopy equivalence. It follows that the 
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homology of W/r depends on r alone, and we define the homology of 7~ by 

for WE A(r). 

This concept was developed first by Eilenberg and MacLane, and 
independently by Hopf. 

As an example, let 7~ be the cyclic group of order 2 with generator T. 
Let W be the union of a sequence of spheres 

SO(-SlCSZC...CgzC... 

where the n-sphere Sn is an equator of SfL+l. Let T be the antipodal 
transformation in each P. The two hemispheres of P determined by 
9-l are n-cells denoted by d, and Td, . The collection of these cells for 
n = 0, 1, 2,... gives a cellular structure on W. Obviously W is n-free. 
We orient the cells so that the following are the boundary relations: 

ad, = Td, - do , aTd, = do - Td, , 

ad, = d, + Td, , aTd, = Td,+d,, 

ad, = Td, - d2 , aTd, = d, - Td, , 

..* 

In an even (odd) dimension, every cycle is a multiple of Td,, - d,, 
(dzn+l + Tdz,+J and this cycle bounds. Therefore W is acyclic. 
Collapsing W--t Wj7r gives a sequence of real projective spaces 

The cells d, , Td,, come together to form a single cell d,‘; and the 
boundary relations become 

ad;, = 2d;,pl , ad;,,, = 0. 

Using Z,( = the integers mod 2) as coefficients, we obtain H&n; &,) w 2, 
for all 4. 
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14. CONSTRUCTION OF THE SQUARES 

We are prepared now to define the squaring operations in a complex K. 
Recall that the diagonal mapping d : K + K x K is used to construct 
cup products by the rule u u ZI = d*(u x v). To compute d*, one must 
obtain from d a chain mapping 

4, : C,(K) - C,(K x K), q 3 0. 

Since the cells of K x K are the products of cells of K, the diagonal is 
not a subcomplex of K x K. Hence there is no uniquely determined d, , 
but one must choose d,, from a collection of algebraic approximations to d. 
We proceed to describe these. For each cell u of K, define its carrier 
C(a) = 1 o x u 1 to be the subcomplex of K x K consisting of u x u 
and all of its faces. We refer to C(u) as the diagonal carrier. Because u 
and its faces form an acyclic complex, C(u) is likewise acyclic. It is the 
minimal carrier of d because C(u) is the least subcomplex containing d(u). 
Any chain mapping d,, such that d,u is a chain on C(u) is called an 
approximation to d. The two principal facts about such approximations 
are that they exist, and any two are chain homotopic. These facts are 
proved by constructing the chain map, or the chain homotopy, induc- 
tively with respect to the dimension starting in the dimension zero. 
The acyclicity of the carrier is all that is needed for the general step. 
Any approximation d, induces a homomorphism d*, and the homotopy 
equivalence of any two insures that they give the same d*. 

The important point to be observed about the construction of d, is 
this: although the mapping d is symmetric, there is no symmetric 
approximation d, . Precisely, if T is the automorphism of K x K which 
interchanges the two factors, then Td = d but there is no d, such that 
Td, = d, . This is easily seen by taking K to be a l-simplex u so that 
K x K is a square. The l-chain d,a must connect the two end points 
of the diagonal and lie on the periphery of the square, so it must go 
around one way or the other. 

This difficulty can be restated in a more illuminating fashion. Let T 
act also on K as the identity map of K. Then d is equivariant, i.e.,Td = 
dT. But there is no chain approximation d,, which is equivariant. The 
reason is that r acts freely on the set of possible choices for d,,a but 
leaves u fixed. 

Given a d,, , we can measure its deviation from symmetry. Since d,, and 
Td, are carried by C, there is a chain homotopy dl of d, into Td, . 
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Precisely, for each q-cell u, there is a (q + I)-chain d,a on C(a) such that 

adp = Td,a - d,o - dlaa. 

Then 

r3Tdp = d,,a - Td,u - Td&. 

It follows that dl + Td, is a homotopy of d,, around a circuit back into 
itself. For each q-cell u this homotopy lies on C(u); it is therefore 
homotopic to the constant homotopy of do . Precisely, there is a (q + 2)- 
chain d2u on C(u) such that 

Zd,u = d,u + Td,u + d& 

At this stage, the construction should remind one of the construction, 
given in the preceding section, of the n-free complex IV. The analogy is 
made precise as follows. Form the product complex W x K. Define the 
action of n in W x K by T(w x u) = (Tw) x u. The composition of 
the projection W x K + K and d : K -+ K x K has the minimal 
carrier C(w x u) = 1 u x u 1; it is acyclic, and satisfies TC = CT. 
Since W is n-free, so also is W x K. It follows that there is a chain 
mapping 

carried by C which is equivariant: q5T = T+. (The tensor product @ is 
used instead of x because W and K are now regarded as chain com- 
plexes). Recalling that W consists of cells di , Tdi , we now identify 
+(d,, @ u) with the diagonal approximation dou, and $(dl @ u) with the 
chain homotopy d iu, etc. Then the &relations given above for d,p, 
dlu, d,u correspond exactly to the fact that I$ is a chain mapping: 
a+ = +a. 

For each integer i 3 0, we define a product called cup-i, as follows. 
If u E t?(K), and v E G(K), then u vi ZI E Cp+@ei(K) is defined by 

(u uj v) . c = u @ v - +(d, @,I c), c E C,+,-,(K). 

Using the fact that $ is equivariant we obtain the coboundary relations 
modulo 2 

S(u uj v) = 24 Ujdl v + v ui-l u + su uj v + u vi sv. 

(By convention, u U-, TJ = 0). If we set u = 2, and assume 6u = 0 mod 2, 
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it follows that u vi u is a cocycle mod 2. Passing to cohomology classes 
gives a function denoted by 

sqi : H”(K; Z,) -+ EPyK; Z,) 

which assigns to the class of u the class of u vi u. It is notationally more 
convenient to define 

sqj : HqK; Z,) --f H”+‘(K; Z,) 

by setting Sqju = Sqpeju. 
The cup-i products depend on the choice of 4. However any two +‘s 

are connected by a chain homotopy which is equivariant. It follows that 
Sqj is independent of the choice of 4. 

15. PROPERTIES OF THE SQUARES 

The elementary properties of the S@ are as follows. 
1. If f is a mapping, then f *Sqi = Sqif *. This expresses the 

topological invariance of Sqi. 
2. Sqi is a homomorphism. 
3. Sq” = identity. 
4. Sq% = u v u if p = dim u. 
5. Sqh = 0 if i > dim u. 
6. If L C K, and 6 : HP(L) -+ Hp+l(K, L) is the usual coboundary, 

then GSqi = Sq%. 
7. If 6” : W(K; 2,) + i?+l(K; 2,) is the Bockstein coboundary for 

the coefficient sequence 0 +22-+24-+22-f0, then Sql= 6” and 

SqPHl = g*sq2j for j > 0. 

These can be proved readily by using the machinery already set up. 
Less elementary is the Cartan formula: 

8. Sqj(u u ?I) = gzo sqiu u sqj-iv. 
This can be proved by an explicit computation of a T-mapping 
W-+W@W. 

Using these properties one can compute the squares in many special 
cases. If dim u = 1, its only non-zero squares are S$u = u and 
Sqlu = a*u = u u u. If dim u = 2, its only non-zero squares are 
Sqou = u, Sqlu = S*u, and Sq2u = u u u. These facts combined with 
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formula 8 enable us to compute squares in the subring of H*(K; 2,) 
generated by 1 and 2-dimensional classes. For example, 

9. S@(&) = (f) &+[ if dim u = 1. 
In this formula, (r) is the binomial coefficient mod 2, and is zero if i > k. 

In the real projective n-space P “, the cohomology ring is the poly- 
nomial ring generated by the non-zero element u E H1(Pn; Z,), truncated 
by the relation ZP+~ = 0. Cl early formula 9 gives all squares in PII. Let Pr 
be a projective subspace of P” (0 < r < n), and form a space Pn/Pr by 
collapsing P’ to a point. The collapsing map f : Pn -+ Pn/Pr induces 
isomorphisms f * : Hk(Pn/Pr) = Hk(P”) for all k > r because P’ is an 
r-dimensional skeleton of P”. Let w,; E Hk(Pn/Pr) be such thatf*~~ = ~8. 
Using 9 and 1, we have Sq’w,. = (F) w,,.+< for k > Y and all i. In particular, 
when n = 5 and Y = 2, we have Sq3w, = wg . I used this example in 
Section 6 to show that P4/P2 is not a retract of P5/P2. This is the simplest 
case known to me where a Sq’ gives a relation between cocycles which are 
not already related by a cup product or a Bockstein coboundary operator. 

16. REDUCED POWER OPERATIONS 

The squaring operations are associated with the symmetric group of 
degree 2. It is to be expected that more cohomology operations are to be 
obtained by studying the n-fold power Kn = K x *.* x K, and the 
action of the symmetric group S(n) as permutations of the factors of Kn. 
This is the case. The general definition goes as follows. 

Let n be any subgroup of S(n); and let W be a n-free acyclic complex. 
Let C(d x 0) = 1 u 11~ be the diagonal carrier from W x K to Kn. 
As it is equivariant and acyclic, there is an equivariant chain mapping 

Let K* = Hom(K, Z) be the cochain complex of K. Define a cochain 
complex W @ K*” by 

Cr(W @ K*=) = f Ci(W) @ C++‘(K+-$ 
i=O 

The terms of the sum are zero for i > n dim K - r. If w E Ci( W) and 
u E Cr+i(K*n), set 

S(w @ a) = aw @ 21 + (- l)i w  @ 2%. 
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This defines 6 in W @ K*n and makes of it a cochain complex. Define 
a cochain mapping 

dual to d as follows 

f$‘(w @ v) * u = (-l)i(i-i%J f $+(w @ u) 

where i = dim w, v is a cochain of KY;n M Kn*, and u is a chain of 
K with dim 0 = dim v - i. 

The action of 7~ in W @ K*n is defined by 

T(w@v)= Tw@Tv, TEE-. 

And rr acts as the identity in K *. Then the equivariance of + implies that 
of 4’. It follows that 4’ transforms cochains equivalent under r into the 
same cochain. If we identify equivalent cochains of W @ K*n, we obtain 
the quotient complex denoted by W @,, K*n. Then 4’ induces a cochain 
mapping 

Passing to cohomology with coefficient group G, we obtain an induced 
homomorphism 

c$* : Hr(W 0, K*n @ G) - HT(K* @ G) = Hr(K; G) 

Now let u be a q-cocycle mod 0 of K*. Treating u as an integer 
cochain, we have 6~ = 8v for some v. Then the multiples of u and v 
form a cochain subcomplex M of K*. Let $ denote the inclusion 
mapping M + K *. The product mapping I,F : Mn 4 K*n is equivariant, 
hence #” and the identity map of W induce a cochain mapping 

c/Y: W@,M”+ W@,K*n. 

Tensoring with G and passing to cohomology gives an induced mapping 

z,b* : H’( W 0, M” @ G) + P( W 0, K”n @ G). 

Composing #* and +* gives a mapping 

CD : HT(W 0, M” @ G) - H’(K; G). 

It depends apparently on the choice of 4 and the cocycle u mod 0. In 
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fact it is independent of + (any two 4’s are equivariantly homotopic); 
and it depends only on the cohomology class 21 of u. The image of @, 
for all r, is called the set of n-reduced powers of u E Hq(K; 2,). 

The groups H*( W 0, IlP @ G) depend only on the groups rr, G 
and the integers 8,4, n. They are generalizations of the ordinary homology 
groups of T. In the special case that u is an integral cocycle (V = 0), 
and q is even, we have 

For, in this case, M = Z is generated by u, and M” = Z is generated by 
U% with r acting as the identity. Therefore W 0, M” w W 0, 2 = W/r. 
If we take account of the dimensional indexing, the assertion follows. 
Then, to put it roughly, each homology class of a permutation group of 
degree n gives a cohomology operation. 

If we recall that the squares Sqi are the mod 2 homology classes of 
S(2), it is clear that we have available a great wealth of cohomology 
operations, and that these demand analysis. 

17. A BASIS FOR REDUCED POWER OPERATIONS 

A rather elaborate analysis [26, 271 shows that a relatively small 
collection of reduced power operations generate all others by forming 
compositions. The analysis has two main steps. The first shows that 
we do not need to consider all permutation groups; it suffices to consider, 
for each prime p, the cyclic group pP of order p and degree p. The second 
step analyzes the homology (in the generalized sense) of pP . 

Just as Hj(p2; 2,) m Z, , we have H,(p,; Z,) m Z, . A generator ~j 
for this group gives a cohomology operation analogous to Sqi . When 
p > 2, this operation is identically zero for most of the values ofj. The 
reason for this is that the homomorphism of homology induced by the 
inclusion mapping pr, + S, has a large kernel for p > 2. If we discard 
the operations which are zero, we obtain an infinite sequence of operations 
called the cyclic reduced powers 

B,i : W(K; Z,) - fP+2+l’(K; Z-J, i = 0, I,... 

The operation YPi reduces to Sq2’ when p = 2, and the main properties 
of these operations are mild modifications of the properties of Sq2” listed 
in Section 15. 
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To complete our list of basic cohomology operations, we need to adjoin 
for each prime p the Pontrjagin pth power. For each integer k > 0, it 
is a function 

y, : fPQ(K; Z,,) ---f EF(K; Z,,,,). 

At first glance, the operation may seem mysterious; however it is only 
a mild modification of the pth power in the sense of cup products. For, 
if !I.+ is reduced modp”, it becomes UP. Pontrjagin [20] discovered the 
operation for p = 2. He observed that, if u is a cocycle mod 2”, then 

uuou+uu,6u 

is a cocycle mod 2 k+l. The operations for p > 2 were found and studied 
by P. E. Thomas [29, 301. 

There are certain elementary cohomology operations which are taken 
for granted but must be mentioned in order to state the main result. 
These are: addition, cup products, homomorphisms induced by homo- 
morphisms of coefficient groups, and Bockstein coboundary operators 
associated with exact coefficient sequences 0 + G’ -+ G -+ G” + 0. 
Then the main result becomes: 

The elementary operations and the operations Sqi, ‘& , 9@l)i, ‘p, generate 
all reduced power operations by forming compositions. 

18. RELATIONS ON THE BASIC OPERATIONS 

The generators listed above satisfy numerous relations. Some of the 
relations satisfied by the Sqi are given in Section 15. They satisfy also 
a more complicated set of relations which were found by J. Adem [I]: 
If a < 2b, then 

Sqa,‘$b = ‘F’ (” ,-4 2; ‘) Sqa+b-iSqi. 

i=O 

This holds for the indicated operations applied to a cocycle of any 
dimension. To clarify the rough implication, let us call an iterated square 
SqiSqj reducible if i < 2j. Then the formula expresses each reducible 
iterated square as a sum of irreducible ones. Iterated squares, as reduced 
power operations, appear as homology classes of the 2-Sylow subgroup 
of S(4). These relations were found by computing the kernel of the 
homomorphism induced by the inclusion of the subgroup in the whole 
group. They have two important consequences. 
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1. Each Sqi can be expressed as a sum of iterates of S&, j = 0, 1,2,.... 
To state the situation roughly, we have a very good hold on the 

relations satisfied by the cyclic reduced powers in spite of the fact that 
these relations are complicated. 

As for the Pontrjagin pth powers, the situation is not as satisfactory; 
however it is exceedingly interesting. Thomas has given a set of relations 
which the pth powers satisfy, but in a most indirect fashion. He takes as 
coefficient domain a graded ring A with divided powers. The divided 
powers are functions yn : A, + A,, having the formal properties of the 
function x”/n!. The cohomology H*(K; A) becomes a bigraded ring. 
He then extends the definition of pD to operations ‘$3, for all integers 
n 3 0. The collection {‘&} are then shown to form a set of divided 
powers in the subring of H*(K; A) of elements with even bidegrees. In 
this way he obtains relations such as 

Although each y3, is expressible in terms of the ‘VP for primes p dividing 
n, it would be exceedingly clumsy to write the above relations using only 
the powers with prime indices. 

It is not yet known whether we have a complete set of relations on the 
basic generators. Once can ask, for example, whether expressions of the 
form ‘+&c?‘~~ are reducible ? 

2. Let us call the iterated square SqilSqi2 -.* SqiT admissible if 

i, > 2i, , i, > 2i3 ,..., i,-, > 2i, . 

Then every iterated square is uniquely expressible as a sum of admissible 
iterated squares. 

The first result shows that the system of generators given in Section 17 
is too large, we can throw out each Sqi for which i is not a power of 2. 
(It is to be noted that if we do this, then the relations satisfied by the 
remaining squares are not readily written). 

The second result was proved first by J.-P. Serre [22] using an entirely 
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different method involving the Eilenberg-MacLane complexes. The 
result can be expressed in a more illuminating fashion. Let A be the 
associative (noncommutative) algebra over 2, generated by the Sqi 
subject to the relations of Adem with Sq” = I. Then the admissible 
elements form an additive basis for A. 

J. Milnor has shown [17] that the mapping 4 : A -+ A @ A given by 

$(Sqi) = i sqj @ sqi-' 

j=O 

(compare with formula 8 of Section 15) defines a homomorphism of 
algebras, and converts A into a Hopf algebra. He shows that the dual 
Hopf algebra A* (which is commutative) is a polynomial ring in an 
easily specified set of generators. Dualizing gives an additive base for A 
quite different from that of Serre. An important consequence of Milnor’s 
work is that the algebra A is nilpotent. 

Analogous results have been obtained for the gpi for primes p > 2. 
Adem [2, 31 and Cartan [7] found independently the iteration relations, 
and proved the analogs of Proposition 1 and 2 above. Milnor handles 
also the case p > 2. 

19. THE EILENBERG-MACLANE COMPLEXES 

There is another approach to the subject of cohomology operations 
which makes use of the special complexes, called (r, n)-spaces, due to 
Eilenberg and MacLane [ 12, 131. These spaces appear to be fundamental 
to any study of homotopy; and it seems likely that the complete solution 
of the extension problem will make vital use of them. 

If rr is an abelian group and n > 0 is an integer, then a space Y is said 
to be a (rr, n)-space if it is arcwise connected and all of its homotopy 
groups are zero except ‘rr,( Y) which is isomorphic to T. 

There are a few relatively simple examples. The circle S1 is a (2, I)- 
space (all its higher homotopy groups are zero because its universal 
covering space, the straight line, is contractible). The infinite dimensional 
real projective space (Section 13) is a (2, , I)-space (it is covered twice 
by S” whose homotopy groups are zero). Another example is the complex 
projective space of infinite dimension. It is a (2, 2)-space because it is 
the base space of a fibration of S” by circles, i.e., by fibres which are 
(2, 1)-spaces. 



COHOMOLOGY OPERATIONS 403 

There are (‘rr, n)-spaces for any prescribed n and n. This fact is not 
evident, and will be discussed in some detail in later sections. For the 
present, it is helpful to anticipate two broad conclusions of this discussion. 
First, a (m, n)-space is usually infinite dimensional. Secondly, although 
the homotopy structure of a ( 7~, n)-space is simple, its homology structure 
is usually most intricate. This is in sharp contrast with a space such as 
S” whose homology is simple, and whose homotopy is intricate. 

Let Y be a (.rr, n)-space. Attached to Y is its fundamental class uO. 
This is an element of H”( Y; r) obtained as follows. Since ri( Y) = 0 
for i < n, Hurewicz’s theorem asserts that the natural map + of T~( Y) 
into H,(Y) is an isomorphism. Since also HrLP1( Y) = 0, it follows that 
the natural mapping 

Hn( Y; r,(Y)) - Hom(ffn(~7), n,(Y)> 

is an isomorphism. Then u0 is the element on the left whose image on 
the right is @‘. We may also describe u0 as the primary obstruction to 
contracting Y to a point [24; p. 1871. The first important result about 
(r, n)-spaces, is the 

HOMOTOPY CLASSIFICATION THEOREM. If Y is a ('rr, n)-space, and X 
is a complex, then the assignment to each f : X -+ Y off *uO sets up a 
l-l correspondence between Map(X, Y) and H”(X; r). 

A proof of this proposition, in the geometric case, can be found in 
[l I, p. 243, Theorem II]; and, for the purely algebraic case of semi- 
simplicial complexes, see [13, paper III, pp. 520-5211. In essence, the 
argument is the one used in proving Hopf’s theorem (Section 9). If X, 
in the theorem, is also a (‘ir, n)-space, the conclusion asserts that there 
is a map f : X -+ Y such that f *uO is the fundamental class of X, and 
this mapping is a homotopy equivalence: 

COROLLARY. Within the realm of complexes, any two (VT, n)-spaces 
have the same homotopy type. Thus their homology and cohomology depend 
only on m and n; hence H*( Y; G) may be written H*(r, n; G). 

The importance of (r, n)-spaces to the study of cohomology operations 
is seen as follows. Recall that a cohomology operation T, relative to 
dimensions q, Y and coefficient groups G, G’ is a set of functions 

TX : Hn(X; G) + Hr(X; G’) 

607/W?3 
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for each space X such thatf *Ty = Txf * for each mapping f : X + Y. 
Let Q(q, G; Y, G’) denote the set of all such operations. If we add opera- 
tions in the usual way (T + T’)x = TX + TX’, then O(q, G; r, G’) is an 
abelian group. 

Now let Y be a (G, q)-space, and let ua be its fundamental class. If 
T E cO(q, G; r, G’), then 

Tu, E fP(Y; G’) = W(G, q; G’). 

THEOREM. The assignment T ---f Tu, defines an isomorphism 

O(q, G; r, G’) m W(G, q; G’). 

This result is due to Serre [22, p. 2201, and independently to Eilenberg- 
MacLane [13]. The proof runs as follows. Suppose T, T’ are operations 
such that Tu, = T’uO . Let X be a complex and u E Ng(X; G). By the 
classification theorem, there is a mappingf : X + Y such thatf *u,, = U. 
Therefore 

Tu = Tf *u. = f *Tu, = f “T’u, = T’f *u. = T’u. 

Thus T = T’ in O(q, G; r, G’). For the other part, let w E Hr(G, q; G’). 
Construct a T E O(q, G; r, G’) as follows. If X is any complex, and 
u E Ha(X; G), choose a mapping f : X + Y such that f *u,, = u and 
define Tu = f *w. One verifies that Tu, = w by taking X = Y, u = u0 
and f = identity. 

20. SEMISIMPLICIAL COMPLEXES 

The rough conclusion of the preceding section is that the determination 
of all cohomology operations is equivalent to the problem of computing 
the cohomology of the (n, %)-spaces. The latter problem has been the 
subject of extensive research by Eilenberg-MacLane [13], H. Cartan 
[7-91, and others. A brief review of their work is in order. 

The basic construction of (‘ir, n)-spaces is given in the language of 
semisimplical complexes. This appears to be a most convenient concept 
for nearly all questions concerned with homotopy. The following 
definition of an abstract semi-simplicial complex K is obtained by 
writing down fairly obvious properties of the singular complex of a space. 
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First, for each dimension q > 0, there is a set K, whose elements are 
called q-simplexes (to be thought of as ordered simplexes). For each q 
and each i = 0, l,..., q, there is a function ai : K, -+ K,-, called the 
ith face operator, and if x E Kc, , then six is the ith face of x. Again, 
for each q and each i = 0, I,..., q, there is a function si : K, -+ Kqll 
called the ith degeneracy operator. (Picture the collapsing of a (q + I)- 
simplex into a q-simplex obtained by bringing the ith and (i + 1)st 
vertices together; then si is the inverse operation). The definition is 
completed by imposing the identities: 

aiaj = ajelai, i<j, 

S$j = sjsi--l , i >j, 

ais, = sjplai , i<j, 

ais, = ai+isi = identity 

ais, = sjaiml , i>j+l. 

A mapping f : K -+ L of one semisimplicial complex into another 
consists of a function f, : Kg + L, for each q such that aif, = f,..la, 
and sifp = fp+lsi . 

An ordinary simplicial complex K can be converted in various ways 
into a semisimplicial complex K’. For example, if an ordering of the 
vertices of K is given, one defines Kp’ to be the set of order preserving 
(monotonic) simplicial mappings of the standard ordered q-simplex d, 
into K. 

As already remarked, the concept of the singular complex of a space 
is a functor S from the category OT of spaces and mappings to the category 
93’ of semi-simplicial complexes and mappings. There is a functor 
R : 9 + GZ called the geometric realization. In fact if K E 97, then R(K) 
is a CW-complex. The particular realization given by Milnor [18] has 
very useful properties. Each non-degenerate simplex of K determines 
a cell of R(K). Also R behaves well with respect to standard operations 
such as suspensions and products. Now there are natural mappings 

RS(X) + A- for XE 02, 

K + 2X(K) for KEB. 

The second of these is always a homotopy equivalence. If X is a reason- 
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able space (e.g., triangulable), the first mapping is also a homotopy 
equivalence. The conclusion is that all questions in a, depending on 
homotopy type only, are equivalent to the corresponding questions in 99. 
This is true in particular of extension problems and homotopy classifica- 
tion problems. Since this is our main concern we will limit all subsequent 
discussion to the category .!8. 

Each K E 97 determines a simplicial chain complex C(K) as follows. 
The free abelian group generated by the set K, is denoted by C,(K) and 
is called the group of q-chains. The functions ai , si extend uniquely to 
homomorphisms of the chain groups denoted by the same symbols. The 
identities listed above remain valid. Now define a : C,(K) + C,-,(K) by 
a = c:=, (-i>i ai. Then aa = 0, and one defines homology and 
cohomology in the usuam way. 

21. CONSTRUCTION OF (x,12)-SPACES 

Eilenberg and MacLane assign to (‘rr, n) a semisimplicial complex 
K(r, n) in the following rather simple way. Let A, denote the complex 
of the standard q-simplex with ordered vertices. Let .??(A,, r) be the 
group of n-cocycles of A, with coefficients in QT. These are normalized 
cocycles in the sense that they have the value zero on degenerate 
n-simplexes. Then a q-simplex of K(vr, n) is defined to be such a cocycle: 
Kg = Zn(Ag , n). The standard map A,-, + A, , gotten by skipping the 
ith vertex, induces a homomorphism Zn(Ag; n) + Zn(A,-, , n) which 
is denoted by ai : Kg 4 Kg-, . The degeneracy si is likewise induced by 
the ith degeneracy A,+l + A, . 

Much work must be done to show that the homotopy groups of K(r, n) 
are zero save 7rn = i7, i.e., it is a (‘rr, n)-space. Granting this, one can ask 
what hinders a successful computation of its homology or cohomology. 
If n is infinite, e.g., 7~ = Z, then each Kg is infinite. This means that 
C,(K) is not finitely generated; and therefore the standard methods of 
computation can not be applied. If n is a finite group, each K, is finite, 
and we are in the realm of effective computability. But due to the large 
number of n-dimensional faces of A, , the standard methods are not 
practical. So, in either case, some large scale reduction of the problem 
must be achieved. 

The first observation is that K(T, n) and K(r, n + 1) are related. 
Define a complex W(z-, n) in the same manner as K(r, n) except for 
setting W, = P(A, , r). Since A, is acyclic, Zn(Aq; r) is the kernel of 
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6 : cyL!lg; 77) + 2 n+l(dq; ‘ir), and 6 is an epimorphism. From this it 
follows that we have semisimplicial mappings 

I+, n) A W(7r,n)~K(n,n+ 1) 

where p is a fibre mapping with the fibre K(r, a). The argument which 
shows that K(r, n) is a ( r, n)-space, shows also that W(,, n) is homo- 
topically equivalent to a point. The second observation is that K(z-, n) is 
an abelian group complex. This means that each Kg is an abelian group, 
i.e., Z”(d g; n), and each ai , si is a homomorphism. The group structure 
of Kg induces a ring structure in C,(K). 

These observations motivate the construction of a new sequence of 
complexes A(n, n) given by Eilenberg and MacLane. They start with 
A(n, 0) = K(z-, 0). Then, for any abelian group complex r, they 
construct a homotopically trivial complex B(r), and a fibre mapping 

r i, B(r) _P, B(r) 

with fibre r. Finally, A(r, n) is defined inductively by A(r, n) = 
B(A(r, n - 1)). This construction is referred to as the bar construction. 
An inductive argument based on the two fibrations leads to the conclusion 
that A(n, rz) is homotopically equivalent to K(n-, n). 

In case rr is finitely generated, the complexes A(n, n) are finite in each 
dimension, and hence their homologies are effectively computable. This 
is a large reduction of the problem. Using the A(n, n), Eilenberg and 
MacLane successfully computed the first few nontrivial homology 
groups, and obtained important applications. However the computation 
problem was still far from solved. 

The next large reduction of the problem was made by H. Cartan. He 
formulated a general concept of fibre space construction of which the 
two constructions given above are examples. He showed that any two 
acyclic constructions applied to homotopically equivalent group com- 
plexes gave homotopically equivalent base spaces. He was then able 
to give relatively simple constructions for cyclic groups n. Using these, 
the computation of H*(r, n) for finitely generated n’s is almost practical. 

To illustrate the complexity of the situation, we will state Cartan’s 
result on the structure of the ring H*(n, n; 2,) when n is infinite cyclic 
and p is an odd prime. First, there is a sequence x1 , x2 %.. of elements 
of H* such that H* is isomorphic to the tensor product &=r P(x,) where 
P(x,) is the polynomial ring over 2, generated by xi if dim xi is even, and 
it is the exterior algebra generated by xi if dim xi is odd. For any 
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dimension y, only a finite number of xi’s have dimensions < q. It remains 
to specify the xi’s. This is done most efficiently by using the cyclic 
reduced pth powers .!P. A finite sequence of positive integers (aI ,..., u,J 
is called admissible if 

(i) each ai has the form 2h,(p - 1) + ci where hi is a positive 
integer, and ci is 0 or 1, 

(ii) ai+l 3 pai , 1 <i<k. 
(iii) pa, < (p - l)(n + a, + *.a + uk) 

Define Stal = PA if ci = 0 and Stai = S*g’“i if ci = 1 where 6* is the 
Bockstein operator for 0 -+ 2, + Z,, --t Z, -+ 0. Let u,, be the funda- 
mental class of K(r, rz). Then the set {xi} consists of the element u,, mod p 
and the elements 

SPk .** SP’Uo 

as (al ,..,, ak) ranges over all admissible sequences. 
A corollary of this result is that all cohomology operations with Z as 

initial and Z, as terminal coefficient group are generated by the opera- 
tions: addition, cup-product, 6” and the CJ’r,i. 

Using the full strength of Cartan’s result, Moore [18] has shown that 
all cohomology operations, whose initial coeficient groups are Jinitely 
generated, are generated by the cohomology operations listed at the end 
of Section 17. 

22. SYMMETRIC PRODUCTS 

We have described two methods of obtaining cohomology operations. 
The first involved nth powers of complexes and the action of the sym- 
metric group on the factors. The second made use of the Eilenberg- 
MacLane complexes. Each method has its advantages. The first gives 
specific operations with convenient properties. The second gives all 
operations. Since they lead to the same results, it should be possible to 
bring the two methods together as a single method. The basis for accom- 
plishing this is provided by a theorem of Dold and Thorn [lo] as follows. 

Let SPnX denote the symmetric nth power of a space (or complex) X, 
i.e., collapse Xn by identifying points equivalent under S(n). Choose a 
base point x0 E X, and use it to give an imbedding 

SP”X c SPn+lX (22.1) 
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by identifying (xi ,..., a$ E X” with (x,, , x1 ,..., xJ E Xn+l. The union 
over n of SP”X gives the infinite symmetric product SP”X. The rough 
assertion of the Dold-Thorn result is that there are isomorphisms 

Trf(SP”X) =5 H,(X), i> 1. (22.2) 

This is a most surprising result. It offers an entirely new method of 
constructing (7~, n)-spaces. For example, if X is the n-sphere S”, it 
follows that SP”(S”) is a (Z, n)-space. The case n = 2 of this was 
already known for elementary reasons: SP”(S2) is the in$nite dimensional 
complex projective space. To see this, regard S2 as the space of 2 homo- 
geneous complex variables [a,, , a,], and also as the space of linear 
functions a, + a,x. Consider the complex projective n-space CPn as 
the space of n + 1 homogeneous variables [a,, , a, ,..., aJ, and also as 
the space of polynomials Cy=, a,,$. Each polynomial factors into the 
product of n linear functions, and determines thereby an unordered set 
of n elements of S2. This gives a 1-I correspondence between SPn(S2) 
and CP”. Letting n + co yields the above assertion. 

It is easy to construct a space X whose homology is zero save H,(X) 
which is prescribed. If HrL(X) . is a cyclic group of order 0, let X be Sn 
with an (n + 1)-cell attached by a map of degree 8. If H,(X) is a direct 
sum of cyclic groups, let X be a cluster of n-spheres having a common 
point together with (n + I)-cells attached to the spheres with suitable 
degrees. 

All of this can be done quite effectively. The question of the moment 
is the effectiveness of the construction of SP”X. The latter, as a complex, 
appears to have infinitely many cells in each dimension. The fact which 
renders the construction effective is a natural direct sum decomposition 
of the chain complex C(SPmX). The basic step is a splitting into chain 
subcomplexes 

C(SP’iX) R! C(SP”-‘X) + u, (22.3) 

The existence of such a subcomplex U, is easily established in the 
language of semisimplicial complexes as follows. Let X be semisimplicial, 
let 1 denote the O-simplex which acts as the base point x0 , and let 1, be 
the q-simplex (sJQ1. The Kth power Xk is taken in the sense of Cartesian 
products, and SPkX has as q-simplexes unordered sequences x1 .=* xk of 
q-simplexes of X. Such a simplex is in SPk-IX if some xi = I, . The 
q-dimensional part of U,c is defined to be those q-chains generated by 
chains of the form 

(x1 - I,) ... (Xk - 1,). (22.4) 
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(It is clear that expanding this product into a sum gives a chain of SPIcX). 
Under a face or degeneracy operator, this expression retains the same 
form or becomes zero. Thus U, is a chain subcomplex (FD-complex in 
the language of Eilenberg-MacLane). 

If we iterate the decomposition 22.3, we obtain 

C(SP”X) m i u, ) 
k=O 

C(SPX) m f u, . 
k=O 

Passing to cohomology gives 

By 22.3, 

H*(SP”X) w f H*(U,). 
k=O 

H*( U,) m H*(SPkX, SPk-lx) 

(22.5) 

(22.6) 

Since the finiteness of X (in each dimension) implies the same for SP”X, 
there is no question about the effective computability of U, and H*( U,). 
If X is connected, there is an additional fact: Hi( U,) = 0 for i < k. 
Thus for any dimension q, the sum in 22.5 is finite. To state it otherwise: 

Hn(SP”X) m Hg(SPkX) for k > 4. (22.7) 

Elements of H*( U,) are said to be of rank k. We obtain then a natural 
bigrading of H*(SP”X) by dimension and rank. Dold [18] has shown 
that the decomposition 22.5 depends only on the homology groups of X. 
It follows that H*(r, n) admits a natural bigrading by dimension and 
rank. In H*(n, n) the rank of a product is the sum of the ranks (for 
homogeneous elements). In fact this holds in H*(SP”X) whenever X is 
a suspension. 

When the decomposition by rank was discovered through the sym- 
metric products, it was then seen how to define it directly through the 
constructions of Cartan. It follows that Cartan’s methods of computation 
may be applied to compute effectively the homology of SPnX. This is an 
old problem of algebraic topology, and many papers have treated special 
cases. Now, for the first time, we have a generally valid method. 

The welding together of the two methods of constructing cohomology 
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operations is not yet complete. By the methods described in Section 16, 
one can define a homomorphism 

H’( w @, M”) - H’(SP”M) 

which, for n = 5’(n), is an isomorphism for large Y but not for all. Much 
work remains to be done to complete the picture. 

23. SPACES WITH Two NONZERO HOMOTOPY GROUPS 

A good start has been made on the analysis of spaces with just two 
nonzero homotopy groups. The rough overall picture is known but most 
of the details are missing. 

First, we know how to construct such spaces. Suppose the prescribed 
non-zero groups are rrn( Y) = r, and TV = n’ with q > n. The 
product space K(r, n) x K(r’, q) has the resuired homotopy groups; 
but there are many others which are homotopically distinct. To obtain 
these, we must consider fibre spaces having K(n, n) as base and K(n’, q) 
for fibre. Recall (Section 21) that W(rr’, q) is an acyclic fibre space over the 
base space K(~T’, q + 1) with fibre K(w, q). Any mapping 

f : K(7r, n) + K(n’, q + I) 

induces a fibre space Y’ over K(n, n) with the same fibre (see [24, 
Section lo]). Using a semisimplicial version of the classification theorem 
[24, Section 191, it follows that the assignment of Y’ to f sets up a I- 1 
correspondence between equivalence classes of such fibre spaces and 
homotopy classes of mappings. That such a fibre space has the prescribed 
homotopy groups follows from the exactness of the homotopy sequence 
of the fibre space [24, Section 171. 

The homotopy classification theorem of Section 19 implies that the 
homotopy classes of mappings K(r, X) + K(n’, q + 1) are in l-1 
correspondence with the elements of Hp+l(n, n; r’). Thus to any element 
k E H*+l(.rr, 12; z-‘) corresponds a homotopy class of spaces with the 
prescribed homotopy groups. In fact this gives all such in a l-1 manner. 
If Y has the prescribed homotopy groups, there is a unique K such that Y 
belongs to the class corresponding to K. This is seen by mapping 
Y -% K(r, rt) so as to carry the fundamental class of K(m, n) into that 
of Y, and defining R(Y) E H*+l(.rr, n; ‘ir’) to be the primary obstruction 
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to retracting the mapping cylinder of g into Y. The class k(Y) is called 
the Eilenberg-MacLane K-invariant of Y (see [12]). 

Automorphisms of 7~ and rr’ induce automorphisms of W+l(r, n; r’). 
If K, and K, E Hg+l(,, n; r’) are equivalent under such an automorphism 
then the corresponding spaces have the same homotopy type. Thus the 
homotopy type problem for such spaces reduces to determining equiv- 
alence classes of elements of HQ+~(T, n; n’) under such automorphisms. 
This problem is not yet solved. In essence we know how to compute 
the group H*+l(n, n; n’); but, if two elements of the group are given, 
we do not know how to tell in a finite number of steps, whether or not 
they are equivalent under automorphisms of 7~, 7r’. 

Recall (Section 10) that, in the theory of obstructions, we have need 
of secondary cohomology operations (such as Adem’s Q3) which are 
defined only on the kernel of an ordinary (primary) cohomology 
operation. In Section 19 we have seen that any K E HQ+l(r, n; r’) deter- 
mines a primary operation T(K): for any space X, 

T(k) : fP(X; 3-r) - w+yx; 3-r’). 

Furthermore k determines, as above, a fibre space Y over K(n, n) with 
fibre K(r’; Q). 

Each cohomology class y E Hr( Y; G) determines a secondary operation 
defined on the kernel of T(k). 

To see this, suppose u E H”(X; r) lies in the kernel of T(k). There is 
a mapping h :X ---f K(r, n) which carries the fundamental class of 
K(r, n) into U, and its homotopy class is unique. Since T(k)u = 0, we 
must have h*k = 0 (see Section 19). Since k is the characteristic class 
of Y (i.e., the obstruction to lifting K(T, rz) into Y), there is a mapping 
g : X + Y which composes with the projection Y + K(n, n) to give h. 
Define the secondary operation T(k, y), when applied to U, to be the set 
of images g*y for all liftings g of h. In the stable case r < n + q, one can 
describe precisely the nature of the set T(k, y)~ as follows. The restriction 
of y to the fibre K(n’, q) determines a primary cohomology operation 
T(y) : Hq(X; Z-‘) + Hr(X; G). Then the set of possible images g*y is 
obtained by adding one of them to the image of T(y). 

The result just proved emphasizes the importance of computing the 
cohomology of Y. This problem has barely been touched. As a fibre 
space, we know the cohomology of its base K(r, n) and its fibre K(rr’, q), 
and we know also its characteristic class k. This gives us a hold on its 
cohomology structure via the spectral sequence. But we are far from 
having it in our grasp. 



COHOMOLOGY OPERATIONS 413 

24. POSTNIKOV SYSTEMS 

Spaces with three or more nonzero homotopy groups can be built by 
continuing the pattern of the preceding section. Suppose we wish to 
build spaces having homotopy groups rr, rr’, yrrr in the dimensions 
n < q < Y respectively. First we build a space Y having two nonzero 
homotopy groups V, V’ in the dimensions 12, q. Let k E H~+l(m, n; r’) be 
its k-invariant. Now choose an element k’ E W+l( Y; 75”). The homotopy 
classification theorem (Section 19) assigns to K’ a mapping f : Y + 
K(?T”, r + 1). Let Y’ be the fibre space over Y induced by f and the 
acyclic fibre space W(r”, Y) + K(~T”, Y + 1). Then Y’+ Y has K(~T”, r) 
as its fibre; and therefore Y’ has the required three non-zero homotopy 
groups. 

Given a fourth homotopy group, say ‘T, to be inserted in the dimension 
s > r, we start with the Y’ above, choose a cohomology class 
k” E H”+r(Y’; u), select a corresponding map Y’ -+ K(a, s + I), and 
form the fibre space Y” over Y’ induced by W(a, s) 4 K(a, s + 1). 

It is clear that we have described a semieffective method of building a 
great variety of spaces using the Eilenberg-MacLane complexes as 
building blocks. The fact of the matter is that any space can be built, 
in the sense of homotopy type, by a sequence of such constructions. 
This idea is due to Postnikov [21]. Precisely, with any connected space X, 
we can associate a sequence of spaces X, , n = 0, 1, 2,..., a sequence of 
projections p, : X,, + XrLPl , and a sequence of mappings f, : X + X,, 
such that X0 is a single point, and for each n > 0 

(i) mi(Xn) = 0 for i > n, 
(ii) f,* : ~T~(X) m ri(Xn) for i < n, 

(4 Pnfn E fn-1 T 
(iv) X, is a fibre space over X,-i with respect to p, , the fibre is a 

(m%(X), n)-space and can be taken to be K(n,(X), n). 

Such a system is called a Postnikov system for X. It is not unique but 

any two {X,), {JL’} are equivalent in the sense that there are mappings 
x, + X,’ + x, which give a homotopy equivalence, and, in fact, 
a fibre homotopy equivalence of the fibre spaces X, + X,-i and 
X,’ + x;-, . 
This is indeed a most interesting way of dissecting a space. It provides 
a fresh point of view, and raises many questions whose answers may cast 
light on our basic problems. Some useful answers have already been 
obtained. E. H. Brown [6] has proved the following theorem: 
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If X is a Jinite complex which is connected and simply-connected, then 
a Postnikov system for X is effectively constructible. 

An immediate corollary is that the homotopy groups of X are effectively 
computable. At one time this problem was thought to be of the same 
order of magnitude as the extension problem itself. It was regarded as 
a basic weakness of obstruction theory that it used homotopy groups as 
coefficients when these groups were not known to be computable. 

It may be useful to conclude with some questions suggested by these 
results. Can Brown’s result be improved ? If X is a finite connected 
complex, and the word problem for nr(X) is effectively solvable, does it 
follow that a Postnikov system for X is effectively constructible ? A useful 
special case is that in which nl(X) is abelian. It will be important to 
find efficient methods of computing the Postnikov systems of special 
kinds of spaces such as spheres and spaces with one or two nonzero 
homology groups. 

Perhaps it is more important to analyse the basic extension problem in 
terms of the Postnikov systems of the spaces involved in the problem. 
Brown has given a partial result in this direction. 

Let X, Y be jnite simplicial conzplexes, let A be a subcomplex of X, and 
let h : A -+ Y be simplicial. Also let Y be simply-connected and such that 
H,( Y; 2) is a finite group for all q > 0. Then there is a jnite procedure 
for deciding whether h is extendable to a mapping X -+ Y. 

This result is obtained by studying a Postnikov system for Y. The 
restriction that each H,(Y) be finite is most severe, and should ultimately 
be unnecessary. 

It may be that what is needed is a method of dissecting a mapping 
(or its homotopy class) similar to the dissection of spaces. One can always 
treat a mapping as an inclusion mapping (into the mapping cylinder). 
This suggests trying to construct simultaneous Postnikov systems for 
a pair consisting of a space and a subspace. Again, a mapping is always 
homotopically equivalent to the projection of some fibre space onto its 
base. Starting with such a projection one can represent it as the composi- 
tion of a sequence of fibre space projections for which the successive 
fibres are Eilenberg-MacLane complexes. This is done by dissecting 
the original fibre a homotopy group at a time. How effective is this 
procedure? How does it behave under compositions of mappings? 
It is easy to ask questions, it is hard to find good ones. 
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