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a b s t r a c t

We introduce a heuristic for the Multi-Resource Generalized Assignment Problem
(MRGAP) based on the concepts of Very Large-Scale Neighborhood Search and Variable
Neighborhood Search. The heuristic is a simplified version of the Very Large-Scale Variable
Neighborhood Search for the Generalized Assignment Problem. Our algorithm can be
viewed as a k-exchange heuristic; but unlike traditional k-exchange algorithms, we choose
larger values of k resulting in neighborhoods of very large size with high probability.
Searching this large neighborhood (approximately) amounts to solving a sequence of
smaller MRGAPs either by exact algorithms or by heuristics. Computational results on
benchmark test problems are presented. We obtained improved solutions for many
instances compared to some of the best known heuristics for theMRGAPwithin reasonable
running time. The central idea of our heuristic can be used to develop efficient heuristics
for other hard combinatorial optimization problems as well.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

TheMulti-Resource Generalized Assignment Problem (MRGAP) deals with assigning tasks (jobs) to agents (machines) sub-
ject tomulti-resource constraints for each agent. TheMRGAP is a generalization of theGeneralized Assignment Problem (GAP).
Let N = {1, 2, . . . , n} be a set of tasks, M = {1, 2, . . . ,m}, m ≤ n, be a set of agents, and U = {1, 2, . . . , u} be a set of

resources. Each agent i has capacity bil of resource l. Processing task j by agent i takes aijl units of resource l from the agent’s
capacity bil, and costs cij units. Each task has to be assigned to exactly one agent, while each agent can process several tasks
subject to its capacity restrictions. Then theMRGAP seeks aminimum cost assignment of tasks to agents satisfying the agent
capacity constraints.
The MRGAP can be formulated as a 0–1 integer programming problem as follows:

MRGAP : Minimize z =
m∑
i=1

n∑
j=1

cijxij

Subject to
n∑
j=1

aijlxij ≤ bil, i = 1, 2, . . . ,m; l = 1, 2, . . . , u

m∑
i=1

xij = 1, j = 1, 2, . . . , n

xij ∈ {0, 1}, i = 1, 2, . . . ,m; j = 1, 2, . . . , n,
where the decision variable xij takes value onewhen task j is assigned to agent i. Note that anMRGAP solution x = [xij]i∈M,j∈N
is represented as a matrix.
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The MRGAP, being a generalization of the GAP, is NP-hard even for m = 2. The model has many practical applications
in distributed computer systems and in the tracking industry [1–4]. Reviews of applications and solution approaches to the
GAP can be found in the survey papers [5,6].
Various types of exact algorithm are available for the GAP [7–9], primarily based on branch and bound or column

generation. The heuristics developed for the GAP are mostly of local search type[10,11] and its variations [12–14,
6,15,33]. Other notable heuristic approaches include linear relaxation [16,17], set partitioning [18], and Lagrangian
decomposition [19]. However, unlike the GAP, the MRGAP is not very well studied.
For the MRGAP, Gavish and Prikul proposed a branch and bound algorithm and two simple Lagrangian heuristics [20].

Recently, Yagiura et al. [21] developed a very large-scale neighborhood (VLSN) search heuristic. They also generated a set
of MRGAP test instances by extending the GAP instances from the well-known benchmarks containing C, D and E instance
types with 100 and 200 tasks[22,21].
In this paper, we introduce an efficient local search heuristic for the MRGAP drawing ideas from the VLSN search [23,

24] and variable neighborhood (VN) search [25]. The heuristic is a simplified version of the Very Large-Scale Variable
Neighborhood (VLSVN) search we introduced in [26]. The algorithm searches k-exchange neighborhoods with large k. A
large value of k increases the possibility of finding a higher-quality solution in the neighborhood, but at the same time
increases the computational burden. To handle this increased complexity, we use an approximate search of the k-exchange
neighborhood. Our heuristic either outperformed the best known heuristic [21] by achieving better-quality solutions for the
benchmark problems or achieved the same quality solutions with only few exceptions.
The paper is organized as follows. In Section 2 we discuss our k-exchange neighborhood and develop methods to search

the neighborhood using heuristic techniques. Also, we discuss our heuristic algorithm. Section 3 deals with computational
results, while concluding remarks are provided in Section 4.

2. Solution methodology

Let x = (xij)m×n be a solution to the MRGAP; i.e.

xij =
{
1, if task j is processed by agent i
0, otherwise.

We call x a task–agent assignment or simply an assignment. For each i = 1, 2, . . . ,m, let Qx(i) be the index set of all tasks
processed by agent i under the assignment x. ThenQx(i) = {j|xij = 1}. If

∑
j∈Qx(i) aijl ≤ bil for i = 1, 2, . . . ,m, l = 1, 2, . . . , u,

and if each task is assigned to exactly one agent, then x is called a feasible assignment. The family of all feasible assignments
constitutes the set of feasible solutions of the MRGAP and we denote it by F.
Let S ⊆ {1, 2, . . . , n} and S ′ = {1, 2, . . . , n} \ S. Let x̂ be a given assignment. Define

F(S, x̂) = {x|x ∈ F and xij = x̂ij for j ∈ S, i ∈ M}.

Thus F(S, x̂) consists of all solutions of the MRGAP that ‘agree’ with x̂ on positions corresponding to the columns given by S.
If |S ′| = k, then we call F(S, x̂) an S-restricted k-exchange neighborhood of x̂ or simply an S-restricted neighborhood of x̂. S ′ is
called the ejection set, and S is called the binding set.
For small values of |S|, searching F(S, x̂) is almost equivalent to solving the MRGAP itself, and when |S| is large, the

neighborhood F(S, x̂) becomes weak. Thus to develop a reasonable algorithm using the neighborhood, we need to keep a
balance between these extreme cases. The best member in F(S, x̂) can be obtained by solving the following MRGAP, which
is a subproblem of the original MRGAP:

MRGAP(S, x̂) : Minimize
m∑
i=1

∑
j∈S′
cijxij

Subject to
∑
j∈S′
aijlxij ≤ b̂il, i = 1, 2, . . . ,m; l = 1, 2, . . . , u

m∑
i=1

xij = 1, j ∈ S ′

xij ∈ {0, 1}, i = 1, 2, . . . ,m; j ∈ S ′

where b̂il = bil −
∑
j∈Qx̂(i)∩S

aijl, for i = 1, 2, . . . ,m, l = 1, 2, . . . , u, and summation over empty set is taken as zero.
Any solution to MRGAP(S, x̂) is called an augmenting matrix associated with the binding set S. Given an augmenting matrix
y = (yij), a new solution x̄ = (x̄ij)m×n to the MRGAP can be obtained from x̂ as

x̄ij =
{
x̂ij, if i ∈ M, j ∈ S;
yij, if i ∈ M, j 6∈ S. (1)

By construction, x̄ is feasible and we call it the augmented solution. For clarity, we sometimes use the label A(y, x̂) for the
augmented solution x̄ obtained from y and x̂.
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Formoderately large size of |S ′|, the S-restricted exchange neighborhood F(S, x̂) can be explored exactly with reasonable
efficiency or can be searched approximately by means of an effective MRGAP heuristic. The neighborhood F(S, x̂) can be
viewed as a generalization of a neighborhood considered by [27] when elements of S are selected such that |S ′ ∩ Qx̂(i)| ≤ 1
for all i; i.e. for each agent i, there is at most one task j for which x̂ij is not fixed at value one.
Let Fk(x̂) = ∪S⊂N{F(S, x̂) : |S| = n− k}. We call Fk(x̂) the k-exchange neighborhood of x̂ for the MRGAP. Fk(x̂) is searched

approximately by searching F(S, x̂), for a suitably generated binding set S.

2.1. Heuristic – general framework

The neighborhood F(S, x̂) is searched for improving solutions using a general-purpose Integer Programming (IP) code
by solving MRGAP(S, x̂) to optimality or near optimality. The IP solver is used in a time-restricted manner. Recently,
considerable interest has been observed in developing a heuristic for discrete optimization problems by making use of
general-purpose IP solvers [28–31]. Our results are yet another contribution in this line of research that successfully uses
variable fixing strategies.
A general outline of the heuristic is given in Algorithm 1. Here, x̂ is the current solution of the original problem, x∗ is the

best solution found so far, y is a solution to MRGAP(S, x̂) generated by the IP solver, and A(y, x̂) is the augmented solution
generated by combining y and x̂ as given by Eq. (1). Let z(x) and z(A(y, x̂)) denote the objective function values of the solution
x and of the augmented solution A(y, x̂), respectively.

Algorithm 1
Input: MRGAP, C
begin

generate feasible solution x̂
x∗ ← x̂
while (stopping criterion C is not satisfied)

generate a binding set S using appropriate rules
solve MRGAP(S, x̂) by IP solver, and let y be the solution produced
compute the augmented solution A(y, x̂)
if (z(A(y, x̂)) < z(x̂))

x̂← A(y, x̂)
if (z(x̂) < z(x∗))

x∗ ← x̂
end if

end if
end while
return x∗

end

Note that the neighborhood F(S, x̂) could often be a very large-scale neighborhood (VLSN) for appropriately chosen S.
We use the general-purpose IP solver CPLEX for searching F(S, x̂), i.e. for solving the MRGAP(S, x̂). The algorithm also takes
advantages of a possibility for providing a good (partial) solution as input to CPLEX.

2.2. Choice of the binding set

The selection of the binding set S (tasks that are going to be fixed to a particular agent) is crucial to performance of
our algorithm. Clever choices of S could explore large regions of Fk(x̂) by simply exploring F(S, x̂). We now introduce nine
greedy type heuristics for choosing the binding set S. Each selection of S defines a neighborhood F(S, x̂). Note that Qx̂(i) is
the collection of column indices (tasks) that are assigned to agent i under x̂.
Let Ωi(x̂) = (τ1, τ2, . . . , τqi) be an ordering of elements of Qx̂(i) such that

c1τ1∑
l a1τ1 l

≤
c2τ2∑
l a2τ2 l

≤ · · · ≤
cqiτqi∑
l aqiτqi l

and

qi = |Qx̂(i)|.
Also, let X = {(i, j) : x̂ij = 1} and ΩX (x̂) = ((i1, j1), (i2, j2), . . . , (in, jn)) be an ordering of elements of X such that
ci1 j1∑
l ai1 j1 l

≤
ci2 j2∑
l ai2 j2 l

≤ · · · ≤
cinjn∑
l ainjnl

. We denote the ordering (j1, j2, . . . , jn) of tasks byΩ(x̂).

Let |S ′| = k and thus |S| = n− k. Introduce the parameters αi, 1 ≤ i ≤ m such that
∑m
i=1 αi = n− k, and let βi = b

αi
2 c.

In our experiments we have selected the values of αi such that they are approximately equal to min{b n−km c, |Qx̂(i)|}.
We propose the following rules for choosing the binding set S taking into consideration the corresponding cost and

resource values in various forms and combinations:

(R1) Let Si = {τ1, τ2, . . . , ταi} and set S =
⋃m
i=1 Si.

(R2) Let Ti = {τqi , τqi−1, . . . , τqi−αi+1} and set S =
⋃m
i=1 Ti.

(R3) Let Ui = {τ1, τ2, . . . , τβi} ∪ {τqi , τqi−1, . . . , τqi−βi+1} and S =
⋃m
i=1 Ui.
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(R4) S = {
⋃p
i=1 Si}

⋃
{
⋃m
i=p+1 Ti}where p = bm/2c.

(R5) S = {j1, j2, . . . , jn−k}.
(R6) S = {jn, jn−1, . . . , jn−k+1}.
(R7) S = {j1, j2, . . . , jr}

⋃
{jn, jn−1 . . . , jn−r}where r = b(n− k)/2c.

(R8) In this rule, we select S in a ‘controlled’ random way. Select approximately (n − k)/10 elements from the first 10% of
elements ofΩ(x̂), select approximately (n − k)/10 elements from the second 10% of elements ofΩ(x̂), and continue
this process so that n− k elements fromΩ(x̂) are selected and S is the resulting collection.

(R9) Meta-neighborhood: generate d nn−ke different binding sets S by selecting (n − k) consecutive elements from the
ordering Ω(x̂) discussed above. For example, if n = 100 and |S| = 20, the following five versions of the binding
set S are generated: fixing the first 20 assignments, the second 20, the third 20, the fourth 20, and the fifth 20.

For implementation purposes, we need not create the orderingΩX (x) orΩ(x) for each feasible solution x. We can simply
order all the cells (i, j), 1 ≤ i ≤ m; 1 ≤ j ≤ n globally once as per the cost/(sumof capacities) ratio, and the required ordering
ΩX (x) can easily be extracted if and when needed. Likewise, we need not create the orderingΩi(x) = {τ1, τ2, . . . , τqi} for
each solution x. We could simply construct the ordering of the cells (i, j), 1 ≤ j ≤ n as per the cost/(sum of capacities) ratio
for each i = 1, 2, . . . ,m, and the required ordering can be easily extracted.

2.3. Starting solution

To initiate the algorithm, we need a starting solution. Note that computing a feasible solution to the MRGAP is NP-hard.
However, modifying the problem slightly by introducing a dummy agent m + 1 with cm+1,j equal to a large number,
am+1,j,l = 1, and bm+1,l = n, a starting feasible solution can easily be obtained. We call this new problem a fictitious
MRGAP. Note that if the original MRGAP is feasible, an optimal solution to the fictitious MRGAP is also an optimal solution
to the original MRGAP. Thus, we could work with the fictitious MRGAP instead of the original MRGAP. The greedy heuristics
applied on the fictitious MRGAP is similar to the greedy heuristic for finding an initial GAP solution as reported in [26].
Straightforward implementation of this greedy algorithm takes O(m2n2) time but it can be implemented in O(mn log(mn))
time. We omit the details on computing the initial solution. An interested reader may refer to [26].

2.4. Detailed algorithm and parameter settings

Our very large-scale variable neighborhood search or VLSVN search is discussed in detail in this section along with various
parameter settings identified by preliminary experiments.
We observed that if CPLEX was given a high-quality feasible solution as its starting solution, CPLEX required shorter

computational time. If the starting solution is very close to optimal, CPLEX often terminates with an optimal solution
almost instantly. This observation was crucial in the design and parameter settings of our algorithm since we explore the
neighborhoods using CPLEX in a time-restricted manner. Initially the size of the ejection set S ′ is taken to be small so that
the resultingMRGAP(S, x̂) is also small, so that CPLEX can solve it efficiently andmight produce an improved solution. Using
this improved solution as the new starting solution, the size of the ejection set can be increased (i.e. the size of the binding
set is decreased), gradually resulting in stronger neighborhoods but with the advantage that a good starting solution can
be supplied to CPLEX in solving the resulting larger MRGAP(S, x̂). We also gradually increase the time limit for CPLEX to
perform a more aggressive search of the neighborhood.
This strategy of expanding the neighborhood size gradually and increasing the time limit for CPLEX can be viewed as a

gradual intensification step. Thus, our local search algorithm is an intensified local search. The vector Ep = (p1, p2, . . . , ph)
containing the sizes of the binding sets in various iterations is called the binding size vector. The corresponding time limits
for CPLEX recorded in a vector Et = (t1, t2, . . . , th) is called the time limit vector.
The stopping criterion for the algorithm is the pre-specified total time limit T . A binding set S is chosen according to

the rules in the order given in Section 2.2. Note that we have 8 + d nn−ke different types of binding set selection rules. A
solution in the neighborhood F(S, x̂) is selected by running CPLEX for a prescribed amount of time to solve MRGAP(S, x̂).
The algorithm moves to this solution if it is better than the current solution. If no improvement is achieved for q number
of consecutive iterations, the size of the neighborhood is increased and the duration of the neighborhood search time limit
is extended, according to the binding size vector and the time limit vector. Here, q is a pre-specified parameter. When we
reach the end of the intensification schedule, a local search is continued with the last schedule elements {ph, th} until the
stopping criterion is met.
Note that if enough time is available, a diversification step may be added to the algorithm. We skip this extension in this

paper due to the short time limits we used in our experimental study.
We describe the algorithm VLSVN search in the pseudocode below. The definitions of the parameters are as follows:

MRGAP is the problem to be solved, T is the time limit for the algorithm, G is the total number of rules used for generating
the binding sets, x is the current solution, x∗ is the best solution found so far, y is the solution to MRGAP(S, x), and A(y, S) is
the augmented solution. The parameter q indicates when an intensification step will be called upon to change the size of the
neighborhood and the duration of the neighborhood search.
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Table 1
Intensification vectors: |S| and CPLEX time limits.

Schedule

Sch1 Ep = ( 60 40 20 10 5 5 )
Et = ( 5 10 20 40 80 160 )

Sch2 Ep = ( 40 10 5 )
Et = (10 40 80 )

Algorithm VLSVN Search
Input: MRGAP, T, G, Ep, Et, q
begin
generate an initial feasible solution x
x∗ ← x
e← 1
p← pe
t ← te
g ← 0
while (running time< T)

generate a binding set S using rule Rg
solve MRGAP(S, x) by CPLEX within time t, and let y be the solution produced
compute the augmented solution A(y, x)
if (z(A(y, x)) < z(x))
x← A(y, x)
if (z(x) < z(x∗) )
x∗ ← x

end if
end if
if ((x has not been improved in the last q iterations) and (e < h))
e← e+ 1
p← pe
t ← te

end if
g← (g + 1)mod G

end while
return x∗

end

3. Experimental study

The VLSVN search algorithm was coded in C++ and tested on a Dell workstation with an Intel Xeon 2.0 GHz processor,
512MBmemory, GNU g++ compiler version 3.2, and Linux (Mandrake 9.2) operating system. To explore the neighborhoods
we have used CPLEX 9.1 with Concert Technology.
As a test bed we used problem instances generated by [21]. The instances are generated from the standard benchmark

GAP instances of types C, D and E with 100 and 200 tasks. The GAP problem instances of type C and D are generated by
J.E. Beasley and are part of the OR-Library [22]. All other instances are generated by [15].
The stopping criteria for our heuristic are the same as the time limits used in [21]: instances with 100 tasks were solved

with the time limit of 300 s, and instances with 200 tasks were solved with the time limit of 600 s.
The size of the binding set S (the number of task assignments to be fixed) has been expressed as a percentage of the total

number of tasks. The binding size vector Ep contains these percentages. The time limit vector Et contains the time limit in CPU
seconds for CPLEX to solve MRGAP(S, x). Table 1 summarizes the two intensification schedules used in our experiments.
The results are reported for the two schedules in order to show that both are successful, regardless of the fact that there is
a difference in their length.
The CPLEX parameters are set as follows: MIPEmphasis= 4 (hidden feasibility) [32], TiLim= t (in seconds) as given by

components of the vector Et , and MIPStart= 1 (CPLEX is provided with an initial feasible solution).
The initial starting solution is obtained as discussed in Section 2.3. The starting solution for CPLEX when solving

MRGAP(S, x) is generated by restricting the current solution x using the binding set S.
Computational results are summarized in Tables 2–4. The solutions obtained by our heuristic (VLSVN search) are

compared to the solutions obtained by the tabu search algorithm (TS(Yag)) proposed by [21], and by a straightforward
application of CPLEX with MIPEmphasis = 4 (hidden feasibility). Since [21] reported on three versions of the tabu search
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Table 2
Instances of type C. Comparisonwith CPLEX (MIP solver) and the tabu searchmethod by [21]. Algorithm VLSVNS and CPLEXwere run on a Dell workstation
with an Intel Xeon 2.0 GHz processor with time limits of 300 and 600 s for n = 100 and 200, respectively. The tabu search was run on a Sun Ultra 2 Model
2300 with the same time limits. Columns labeled with TTB contain the time when the best solution is reached.

Type n m u LB CPLEX TS (Yag) VLSVNS (Sch1) VLSVNS (Sch2)
Cost TTB Time Cost TTB Cost TTB Cost TTB

C 100 5 1 Ď1931 *1931 <1 0.65 *1931 1.25 *1931 0.64 *1931 0.64
C 100 5 2 Ď1933 *1933 <1 0.86 *1933 2.39 *1933 0.86 *1933 0.87
C 100 5 4 Ď1943 *1943 <3 9.56 *1943 172.35 *1943 5.14 *1943 9.56
C 100 5 8 Ď1950 *1950 34 86.51 *1950 61.19 *1950 22.57 *1950 56.71
C 100 10 1 Ď1402 *1402 4 6.39 *1402 5.49 *1402 8.41 *1402 6.43
C 100 10 2 Ď1409 *1409 9 9.97 *1409 133.34 *1409 8.3 *1409 10.09
C 100 10 4 Ď1419 *1419 5 6.12 *1419 37.40 *1419 5.14 *1419 6.1
C 100 10 8 Ď1435 *1435 50 283.3 *1435 147.34 *1435 24.56 *1435 145.28
C 100 20 1 Ď1243 *1243 <1.77 1.77 1245 55.48 *1243 1.82 *1243 1.8
C 100 20 2 Ď1250 *1250 3 3.6 1251 45.39 *1250 3.62 *1250 3.6
C 100 20 4 Ď1254 *1254 12 12.44 1256 186.09 *1254 12.18 *1254 16.9
C 100 20 8 Ď1267 *1267 10 155.1 *1267 205.60 *1267 5.25 *1267 10.64

C 200 5 1 Ď3456 *3456 <1 1.18 *3456 170.10 *3456 1.21 *3456 1.2
C 200 5 2 Ď3461 *3461 17 49.19 *3461 47.64 *3461 17.3 *3461 23.68
C 200 5 4 Ď3466 *3466 2 77.24 *3466 167.53 *3466 5.25 *3466 10.31
C 200 5 8 Ď3473 *3473 102 248.05 *3473 530.30 *3473 34.91 *3473 183.06
C 200 10 1 Ď2806 *2806 88 110.32 2807 46.23 *2806 18.9 *2806 124.21
C 200 10 2 Ď2811 *2811 188 331.13 2812 316.68 *2811 156.56 *2811 54.02
C 200 10 4 Ď2819 *2819 6 374.64 2821 399.99 *2819 112.81 *2819 10.29
C 200 10 8 2833 *2837 5 – *2837 344.24 *2837 5.44 *2837 10.41
C 200 20 1 Ď2391 *2391 37 50.16 2393 369.54 *2391 182.21 *2391 60.9
C 200 20 2 Ď2397 *2397 14 183.77 2398 313.10 *2397 16.01 *2397 61.52
C 200 20 4 2408 *2409 36 – *2409 430.56 *2409 245.36 *2409 261.17
C 200 20 8 2415 *2417 490 – 2422 47.29 *2417 77.05 *2417 309.55

Table 3
Instances of type D. Comparisonwith CPLEX (MIP solver) and the tabu searchmethod by [21]. AlgorithmVLSVNS and CPLEXwere run on a Dell workstation
with an Intel Xeon 2.0 GHz processor with time limits of 300 and 600 s for n = 100 and 200, respectively. The tabu search was run on a Sun Ultra 2 Model
2300 with the same time limits. Columns labeled with TTB contain the time when the best solution is reached.

Type n m u LB CPLEX TS (Yag) VLSVNS (Sch1) VLSVNS (Sch2)
Cost TTB Time Cost TTB Cost TTB Cost TTB

D 100 5 1 Ď 6353 6354 107 – 6357 109.87 6356 221.35 * 6353 111.95
D 100 5 2 6352 *6355 87 – 6359 136.10 6358 21.78 6357 112.37
D 100 5 4 6362 *6370 208 – 6379 207.25 6377 174.2 6373 71.44
D 100 5 8 6388 6420 193 – 6425 67.89 6417 173.57 *6411 112.84
D 100 10 1 6342 *6359 254 – 6361 246.00 6360 66.1 *6359 243.96
D 100 10 2 6340 *6367 54 – 6378 174.39 6370 168.65 *6367 243.59
D 100 10 4 6361 6421 204 – 6430 274.92 *6416 178.11 6428 152.79
D 100 10 8 6388 6476 25 – 6478 241.80 *6474 203.72 6477 20.48
D 100 20 1 6177 *6216 155 – 6231 194.94 6232 228.46 6217 285.64
D 100 20 2 6165 6249 229 – 6261 253.83 6241 60.79 *6228 122.82
D 100 20 4 6182 6271 232 – 6321 277.59 *6270 241.65 6286 112.51
D 100 20 8 6206 6436 100 – 6481 234.49 6453 228.59 *6429 243.84

D 200 5 1 12741 *12744 228 – 12751 191.63 12745 107.5 12745 30.83
D 200 5 2 12751 12759 66 – 12766 441.53 12760 245.48 *12756 132.95
D 200 5 4 12745 12754 163 – 12775 178.92 12754 189.39 *12749 601.19
D 200 5 8 12755 12781 580 – 12805 527.78 *12777 417.47 12778 605.8
D 200 10 1 12426 12440 538 – 12463 330.52 *12439 529.34 12447 203.86
D 200 10 2 12431 *12455 358 – 12477 476.07 12459 326.57 12459 601.48
D 200 10 4 12432 *12460 135 – 12496 471.01 12462 485.3 12466 448.93
D 200 10 8 12448 12532 275 – 12571 481.10 12527 590.77 *12522 600.72
D 200 20 1 12230 12273 96 – 12312 230.72 *12271 357.2 12277 602.33
D 200 20 2 12227 *12290 554 – 12332 597.11 *12290 500.25 12291 507.88
D 200 20 4 12237 *12319 330 – 12396 576.45 12321 112.36 12349 498.2
D 200 20 8 12254 12448 80 – 12485 337.27 12460 512.35 *12424 599.49

heuristic, in our tables we list the best solutions achieved by these three versions. For our algorithmwe report the outcomes
for the two different intensification schedules in separate columns.
The best solutions are marked by *. The time in seconds to reach a solution is reported in the column labeled TTB (time-

to-best). The column labeled by LB contains lower bounds for the problem instances. The LB equal to the optimal value is
marked by Ď. The CPLEX columns contain the time-to-best (TTB) and the running times of CPLEX (time). These time-to-best
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Table 4
Instances of type E. Comparisonwith CPLEX (MIP solver) and the tabu searchmethod by [21]. Algorithm VLSVNS and CPLEXwere run on a Dell workstation
with an Intel Xeon 2.0 GHz processor with time limits of 300 and 600 s for n = 100 and 200, respectively. The tabu search was run on a Sun Ultra 2 Model
2300 with the same time limits. Columns labeled with TTB contain the time when the best solution is reached.

Type n m u LB CPLEX TS (Yag) VLSVNS (Sch1) VLSVNS (Sch2)
Cost TTB Time Cost TTB Cost TTB Cost TTB

E 100 5 1 Ď12681 *12681 9 22.09 *12681 54.08 *12681 15.02 *12681 27.4
E 100 5 2 Ď12692 *12692 1 47.96 *12692 120.93 *12692 5.11 *12692 10.08
E 100 5 4 Ď12810 *12810 7 – 12812 104.03 *12810 133.5 *12810 10.18
E 100 5 8 Ď12738 *12738 88 – *12738 53.98 *12738 220.89 *12738 20.84
E 100 10 1 Ď11577 *11577 147 193.02 *11577 90.03 *11577 35.5 *11577 228.4
E 100 10 2 Ď11582 11587 51 – 11587 179.65 11587 184.47 *11582 261.3
E 100 10 4 11636 11673 262 – 11676 289.32 *11672 298.83 11684 192.37
E 100 10 8 11619 *11657 184 – 11701 260.90 11665 122.33 11693 111.74
E 100 20 1 Ď 8436 8446 208 – 8447 142.39 * 8445 143.57 8450 97.92
E 100 20 2 10123 10157 280 – 10150 207.09 *10149 263.96 10163 283.81
E 100 20 4 10794 11092 110 – *11029 160.57 11070 255.17 11097 293.16
E 100 20 8 11224 11806 257 – *11610 265.33 11824 294.12 11685 272.9

E 200 5 1 Ď24930 24931 8 9.15 24933 43.21 *24930 7.54 24931 9.17
E 200 5 2 Ď24933 *24933 12 12.31 24936 430.29 *24933 8.19 *24933 13.04
E 200 5 4 24990 *24991 302 456.44 24999 537.27 *24991 252.06 *24991 233.42
E 200 5 8 Ď24943 *24943 8.5 8.8 24950 192.28 *24943 26.61 *24943 8.9
E 200 10 1 Ď23307 *23307 107 130.74 23312 411.12 *23307 76.2 *23307 103.43
E 200 10 2 23310 *23312 12 131.36 23317 436.01 *23312 86.91 *23312 104.58
E 200 10 4 23344 23361 463 – 23363 376.65 23365 506.35 *23360 486.84
E 200 10 8 23339 23373 422 – 23410 198.96 *23376 472.77 23386 91.74
E 200 20 1 Ď22379 *22379 360 – 22386 178.16 *22379 490.36 *22379 243.48
E 200 20 2 22387 22406 450 – 22408 333.97 *22405 518.12 22415 141.7
E 200 20 4 22395 22450 428 – *22439 462.53 22449 467.6 *22439 132.36
E 200 20 8 22476 22701 510 – *22614 317.52 22793 453.93 22631 558.84

values are approximate because the time-to-best is not explicitly available fromCPLEX. The time is reported for the instances
solved to optimality by CPLEX within the pre-specified time limits. Otherwise, this column contains ‘−’.
The solutions achieved by our heuristic are better or equal in quality compared to the solutions reported in the literature,

with a few exceptions. For these instances [21] reported better results or CPLEX achieved better solutions.
For the C instances, the best solutions were achieved by CPLEX and by our heuristic (VLSVNS) for all 24 instances. For the

D instances, the best solutions were achieved by CPLEX in 10 cases, by VLVNS with intensification schedule Sch1 in 7 cases
and by VLVNS with intensification schedule Sch2 in 10 cases. Unique best solutions were achieved by CPLEX for 7 instances,
by VLVNS (Sch1) for 6 instances and by VLVNS (Sch1) for 8 instances. For the E instances, the best solutions were achieved
by CPLEX in 12 cases, by the tabu search TS(Yag) in 8 cases, by VLVNS (Sch1) in 17 cases and by VLVNS (Sch2) in 14 cases.
Unique best solutions were achieved by CPLEX for 1 instance, by TS(Yag) for 2 instances, by VLVNS (Sch1) for 6 instances
and by VLVNS (Sch1) for 3 instances.

4. Conclusion

In this paper we introduced an efficient local search heuristic for MRGAP. The intensified local search is a VLSVN search
since it combines ideas of VLSN search and VN search. The general-purpose IP solver CPLEX is used in a novel way to explore
the underlying very large-scale neighborhoods. We have obtained improved solutions for several benchmark problems
available in the literature with reasonable computational effort. Our algorithms are particularly of interest when good-
quality solutions need to be obtained quickly. Since our local search algorithm may be embedded in any metaheuristic, we
believe that a combination with the tabu search algorithm of [21] may result in a superior algorithm. The ideas used in the
paper are applicable to solving several other combinatorial optimization problems.
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