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a b s t r a c t

The paper investigates the asymptotic theory for amultivariate GARCHmodel in its general
vector specification proposed by Bollerslev, Engle and Wooldridge (1988) [4], known
as the VEC model. This model includes as important special cases the so-called BEKK
model and many versions of factor GARCH models, which are often used in practice.
We provide sufficient conditions for strict stationarity and geometric ergodicity. The
strong consistency of the quasi-maximum likelihood estimator (QMLE) is proved under
mild regularity conditions which allow the process to be integrated. In order to obtain
asymptotic normality, the existence of sixth-order moments of the process is assumed.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The theory of univariate GARCH models and its various extensions can be considered as well established, due to the
enormous literature that has evolved since the introduction of the model by Engle [1] and Bollerslev [2]. In recent years, an
increasing interest has focused on multivariate GARCH models, for several reasons. One is the importance of multivariate
models in economic and finance theory such as portfolio selection or asset pricing. Second, computing power has risen to a
pointwhere the practical implementation of thesemodels becomes feasible even formany assets and long time series. Third,
many alternative specifications have been proposed to deal with the problem of balancing large numbers of parameters and
flexibility. Fourth, statistical theory ofmultivariateGARCHmodels is not a trivial extension of the theory of univariatemodels
and is not established under weak conditions. Indeed, asymptotic theory for multivariate GARCH models is as yet available
only for particular specifications and under relatively strong conditions. The complex model structure makes the study of
the likelihood function difficult, and the method of the proofs in the univariate case cannot be used directly. For a recent
review of multivariate GARCH models we refer to [3].
This paper derives results for the general multivariate GARCH model, known as the VEC model, which was proposed by

Bollerslev, Engle and Wooldridge [4]. The model contains as important special cases the BEKK model of Engle and Kroner
[5], the factor GARCH models of Diebold and Nerlove [6], and Engle, Ng and Rothschild [7], the orthogonal GARCH model of
Alexander [8], the generalized orthogonal GARCH model of van der Weide [9] and the full factor GARCH model of Vrontos
et al. [10].
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Dealing with a general multivariate conditionally heteroskedastic model, the early paper by Bollerslev and Wooldridge
[11] provides high level assumptions under which the QMLE is consistent and asymptotically normal, even if the true data
generating process is not conditionally normal. Strong consistency of the QMLE has been shown by Jeantheau [12] for the
model of Bollerslev [13] having constant conditional correlations (CCC), for which Ling and McAleer [14] show asymptotic
normality. For the BEKK model, Comte and Lieberman [15] establish consistency and asymptotic normality under the
existence of second-order and eighth-order moments of the data, respectively, which rules out the possibility of integrated
GARCH. Recently, Hafner and Preminger [16] proved asymptotic properties of the QMLE for an integrated factor GARCH
model. Their results are obtained under the finiteness of the fourth-order moment of the innovations.
The existence of a stationary and ergodic solution for the VEC model is important in establishing our asymptotic results.

Bougerol and Picard [17] give necessary and sufficient conditions for strict stationarity and ergodicity of a univariate
GARCH(p, q) model in terms of the top Lyapounov exponent. Their results extend the results of Nelson [18] for the
GARCH(1, 1) model. As for the multivariate GARCH models, Dennis, Hansen and Rahbek [19] give sufficient conditions
for geometric ergodicity of the so-called BEKK representation of the multivariate ARCH(q) model. Ling and McAleer [14]
establish conditions under which the CCC model of Bollerslev [13] has a strictly stationary solution. Recently, Kristensen
[20] provided sufficient conditions for geometric ergodicity for a variety of multivariate GARCH models which includes the
VEC model (see also [21]. However, these results were established under the assumption of covariance stationarity and do
not include the important case of integrated processes.
The main part of this paper establishes asymptotic results for the VEC model. Strong consistency is obtained under

mild regularity conditions which allow for an integrated process and require the existence of moments of order two of
the innovations. Asymptotic normality of the QMLE is shown under the assumption that the moment of order six of the
process is finite. No conditions on the shape of the innovation distribution are required other than the existence of moment
conditions. Further, we provide sufficient conditions for geometric ergodicity of the VEC model. For simplicity, we assume
that the innovations are independently and identically distributed. However, it would be possible to replace this assumption
by one that assumes a strictly stationary and ergodic martingale difference process.
Throughout the paper, we denote by ρ(A) the spectral radius of any square matrix A, i.e., ρ(A) = max{|λi| : λi is an

eigenvalue of A}. We use ‖·‖ as a matrix operator norm induced by some vector norm. Since we use the Euclidean vector
norm, ‖·‖ denotes the spectral norm, i.e. ‖A‖ = ρ1/2(A′A). O(1) (or o(1) denotes a series of nonstochastic variables that are
bounded (or converge to zero); OP(1) (or oP(1)) denotes a series of random variables that are bounded (or converge to zero)
in probability. The symbol→a.s.(→D) denotes convergence almost surely (or in distribution).

2. Geometric ergodicity

A general multivariate GARCH specification has been proposed by Bollerslev, Engle and Wooldridge [4], usually called
the VEC model. It can be written as

yt = H
1/2
t ξt (1)

where ξt is an i.i.d. centered random variables. The conditional covariance matrix is given by E(yty′t |Ft−1) = Ht , where
Ft = σ(yt , yt−1, . . .). In practice, the most common model order is VEC(1, 1), which is given by

ht = ω + Aηt−1 + Bht−1 (2)

where ηt = vec h(yty′t) and ht = vec h(Ht) ∈ Rd, d = N(N + 1)/2. LetM+(N) be the space of real symmetric positive
definite N × N matrices. We assume that A and B are such that Ht ∈ M+(N) for any given choice of yt−1 ∈ RN and
Ht−1 ∈M+(N).
Let xt = (y′t , h

′
t)
′ denote the joint process which can be realized as a homogenous Markov chain with a state space X,

a subset of the Euclidean space. In what follows, we provide a sufficient condition for the existence of a unique stationary
solution. Further, we establish the V -geometric ergodicity of the process. To introduce this notion of ergodicity, suppose
that there exists a real (Borel) measurable function V : X→ [1,∞) and a probability measure π on the Borel sets ofX and
constantsMx <∞ and ρ ∈ (0, 1) such that

sup
v:|v|≤V

∣∣∣∣E(v(xt |x0 = x))− ∫
X

v(u)π(du)
∣∣∣∣ = Mxρt (3)

for all x ∈ X, t ≥ 1. The definition also assumes that Eπ (V (x)) < ∞, where the expectation is taken with respect to π .
If V (·) ≡ 1, the chain refers to the usual notion of geometric ergodicity. Thus, geometric ergodicity entails that the t-step
transition probability measure P t(x, ·) defined by P t(x, A) = P(xt ∈ A|x0 = x) converges at a geometric rate for all x ∈ X
to the probability measure π(·)with respect to the total variation norm. This probability measure is often referred to as the
stationary probability measure of the process. If the process {xt} is initialized from the stationary distribution, V -geometric
ergodicity implies that E(v(xt)) <∞ for all |v(·)| ≤ V . Furthermore, the conditional expectation E(v(xt)|x0 = x) converges
at a geometric rate to the corresponding expectation taken with respect to the stationary distribution. Before establishing
this type of asymptotic stability, we need some further notation. Consider the sequence of N × N matrices {∆t} given by

∆t = ∆(ht , ξt) =
∂ht+1
∂h′t
= AD+N (∆̃t ⊗ IN)DN + B (4)
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where ∆̃t = H
1/2
t ξtξ

′
tH
−1/2
t . For some integerm ≥ 1 and t > m, let

γm(∆) =
1
m
E log

(
sup
h̄m

∥∥∥∥∥ m∏
k=1

∆(hm−k+1, ξm−k+1)

∥∥∥∥∥
)

(5)

where h̄m = {(h′1, . . . , h
′
m)
′
∈ Rmd : vec h−1(ht) ∈M+(N), ‖ht‖ = 1, t = 1, . . . ,m}.

A sufficient condition for γm(∆) < 0 is E log
(
suph̄1 ‖∆(h1, ξ1)‖

)
< 0. In the case of the univariate GARCH(1, 1) model,

our measure coincides with the stability condition of Nelson [18]. We can show that, for any inducedmatrix norm, the term
inside the expectation can be bounded a.s. by an i.i.d. term1 (see Lemma 1 in the Appendix); hence γm(∆) is well defined if
E‖ξt‖q < ∞ for some q > 0. The computation of γm(∆) involves Monte Carlo simulations and can be quite difficult. Next,
we give sufficient conditions for the process to be geometrically ergodic.

Assumption 2.1. The centered random vectors {ξt} have a positive lower semi-continuous density w.r.t. the Lebesgue
measure on the set {ξt ∈ RN : ‖ξt‖ ≤ η}, for some η > 0. The initial condition x0 is independent of {ξt}.

Assumption 2.2. det(A) 6= 0, ρ(B) < 1 and E‖ξt‖4r <∞ for some r > 0.

Assumption 2.3. γm(∆) < 0 for some integerm ≥ 1.

The first assumption is satisfied for a wide range of distributions for the innovations, such as the multivariate Gaussian
and Student distributions. The second assumption is necessary to prove the irreducibility and aperiodicity of the process,
by ensuring that the model is forward accessible and attains a globally attracting state; see e.g. [22,20] for details. The last
assumption allows for integrated processes. To see this, consider for example the simple case N = 2, B = 0 and A = I2. For
m = 4, we find by simulations2 that γ4(∆) = −0.1411 < 0. Our first result is based on Markov chain theory; see e.g. [23].

Theorem 1. Assume that Assumptions 2.1–2.3 hold. Then the Markov chain {xt} is V-geometrically ergodic. Further, E(‖xt‖s) <
∞ for some s ∈ (0, r], where the expectations are taken under the stationary distribution.

Geometric ergodicity implies that, if the VEC model is initiated from its stationary probability measure, the process
is stationary and β-mixing with exponential decay. Furthermore, an important consequence of Theorem 1 is that limit
theorems can be applied to anymeasurable function of the data, for any given starting values, given the existence of suitable
moments; see [23, Ch. 17] for details. As for sufficient conditions for the existence of second-order and fourth-ordermoments
we refer the reader to [5,24], respectively (see also [20]). Under similar conditions, we can also cover the case where the
innovations are a strictly stationary martingale difference sequence, showing the existence of a strictly stationary solution
and some fractional moment for the process. The proof is available from the authors on request, and for simplicity, in what
follows, the i.i.d. assumption is maintained.

3. Consistency and asymptotic normality

The estimation of the MV–GARCH model is usually done by maximum likelihood assuming that the innovation
distribution is normal. Let us decompose the parameter vector as θ = (ω′, vec(A)′, vec(B)′)′ and assume that θ ∈ Θ ⊂ Rp,
p = m + 2m2. Furthermore, denote the true parameter vector by θ0. The log likelihood, up to an additive constant, for a
sample of n observations, takes the form

Ln(θ) = −
1
2n

n∑
t=1

log det(Ht(θ))+ y′tH
−1
t yt = −

1
n

n∑
t=1

lt(θ) (6)

where the starting value H1 is a fixed matrix. Define the QMLE as θ̂n = argmaxθ∈Θ Ln(θ). Let H̃t denote the covariance
process where the starting values are drawn from their stationary distribution and let h̃t , L̃n and l̃t be defined analogously.
These terms will be used in the proofs. Note that in practice the use of these values is not possible. However, we will show
that the choice of the initial values does not matter for the asymptotic properties of the QML estimator. We assume that the
true parameters are such that Ht is positive definite. We allow that the process is a pure ARCH or even i.i.d. When A = 0 the
conditional variance process is completely deterministic, and to identify the model we also set B = 0 in that case. To obtain
strong consistency the following assumptions are made.

Assumption 3.1. The parameter spaceΘ is compact and ρ(B) < 1.

1 Without loss of generality, we take the supremum over the unit ball in Rd , since ∆̃t is invariant to the rescaling of vec h−1(ht ) ∈M+(N).
2 The simulations used the MATLAB optimization toolbox to maximize γ4(∆).
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Assumption 3.2. The observed sequence {yt} is strictly stationary and ergodic and E(‖yt‖s) <∞ for some s > 0.

Assumption 3.3. E‖ξt‖2 <∞, var(ξt) = IN .

Assumption 3.4. The VEC model is identifiable: If for any θ, θ0 ∈ Θ , Ht(θ) = Ht(θ0) a.s., then θ = θ0.

We now have the following theorem.

Theorem 2. Under Assumptions 3.1–3.4, θ̂n→a.s. θ0.

Theorem 2 shows the strong consistency of the QMLE. Assumption 3.2 is satisfied if for the true VEC model
Assumptions 2.1–2.3 hold and the process is initiated from its stationary distribution or in the infinite past. These
assumptions allow for integrated GARCH processes, while, for the BEKKmodel, [15] require the existence of a second-order
moment of the data to obtain consistency. We assume that one observes the stationary solution. One could weaken this
assumption and only assume that there exists a stationary solution; see e.g. [25]. The requirement in Assumption 3.3 that
the variance of ξt equals the identity matrix is made to ensure identifiability and is not restrictive. Assumption 3.4 is a
high level assumption. Jeantheau [12] gives primitive conditions for identification in an extended version of the constant
conditional correlation model of Bollerslev [13]. For the BEKK model we can apply the identification results in [5], while,
for the factor GARCH models, identification conditions are given by Fiorentini and Sentana [27] and Doz and Renault [28].
As the squares and cross-products of a multivariate GARCH process have a VARMA representation, one could apply the
identifiability conditions such as the final form or echelon form given by Lütkepohl ([26], Ch. 7).
We define the following matrices,

V = E

(
∂ l̃t(θ0)
∂θ

∂ l̃t(θ0)
∂θ ′

)
, J = −E

(
∂2 l̃t(θ0)
∂θ∂θ ′

)
.

To establish asymptotic normality the following additional assumptions are made.

Assumption 3.5. The parameter θ0 is an interior point ofΘ .

Assumption 3.6. E‖yt‖6 <∞.

We can now state the asymptotic distribution of QML estimators.

Theorem 3. Under Assumptions 3.1–3.6,
√
n(θ̂n − θ0)→D N(0, J−1VJ−1).

As in [14], to prove the asymptotic normality of theQMLE,we only require the second derivatives of the likelihood. Hence,
the proof is simplified and we can reduce the requirement for higher-order moments. The asymptotic normality result for
the BEKK model which is nested in the VEC specification was established by Comte and Lieberman [15]. They required the
existence of the eighth-order moments.
Assumption 3.5 is needed to establish the asymptotic normality. Otherwise, when the parameters are on the boundary,

other methods should be used. For example, consider the BEKK model A = D+N (A
∗
⊗ A∗)DN and B = D+N (B

∗
⊗ B∗)DN , where

A∗ and B∗ are (N × N) parameter matrices. To obtain identifiability, the upper left element of A∗0 is usually restricted to be
non-negative; see [5]. Thus, if vec(A∗0) = 0, the distribution of

√
nvec(Â∗n) cannot be normal. Andrews [29] and Francq and

Zakoian [30] study in detail the distribution of the QMLE in that case. However, this issue is beyond the scope of this paper.
An alternative specification of the model is ht(θ) = ω(θ)+ A(θ)ηt−1 + B(θ)ht−1 for some smooth functions ω(θ), A(θ)

and B(θ) that depend on some underlying parameter θ such that Ht(θ) is positive definite for all θ ∈ Θ .3 Note that our
results would still be valid for this formulation of the model as well. However, the notation would become slightly more
involved and we decided to keep the current formulation of the model.
In the case where the innovations are indeed multi-normal, maximum likelihood estimation provides the most efficient

estimator and
√
n(θ̂n − θ0)→D N(0, J−1); see [15, Lemma 1]. However, in the presence of non-Gaussian innovations the

QMLE is consistent but not efficient. Given the results of Theorems 2 and 3 andmild regularity conditions on the innovation
terms which appear in [31], one can construct semi-parametric estimators which are asymptotically more efficient than the
QMLE.

4. Conclusions

For the VEC multivariate GARCH model, we have shown consistency of the QMLE under weak conditions that allow for
the empirically relevant case of integrated GARCH. To obtain asymptotic normality, we require finite sixth moments. An
issue that seems very difficult to address is the asymptotic distribution under even weaker assumptions, possibly including
integrated GARCH. Furthermore, asymptotic theory for the dynamic conditional correlation (DCC)model of Engle [38] under
weak conditions is another topic for future research.

3 We are grateful to Dennis Kristensen for pointing out this possibility.
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Appendix

Proof of Theorem 1. Since the vec h(·) operator is invertible on vec h(M+(N)) such that there is a one to one relation
between ht and Ht , we have that yt = (vec h−1ht)1/2ξt and (2) can be written in its state space representation

ht = ω + G(ht−1, ξt−1) = F(ht−1, εt) (7)
where εt = ξt−1. This process forms a homogenous Markov chain with state space(D,B), where D = {h ∈ RN(N+1)/2 |
vec h−1(h) ∈ M+(N)} and B is a Borel σ -algebra on D . Following [23, Ch. 7], we can define inductively a sequence of
functions Ft , t ≥ 1, by Ft+1(x, ε1, . . . , εt+1) = F(Ft(x, ε1, . . . , εt), εt+1), so that for any initial value h0 we can solve (7)
recursively for t ≥ 1 to obtain ht = Ft(h0, ε1, . . . , εt), the associated deterministic control model for the nonlinear state
space above; {εt} is called the control sequence.
FromAssumption 2.2 and the continuity of the spectral radius it follows that there exists an ε∗ sufficiently small such that

suph̄1 ρ(∆(·, ε
∗)) < 1 (recall that ρ(B) < 1). Since the function F(ht−1, εt) is Lipschitz, by an application of the contraction

mapping theorem, ht → h∗ for all h0 ∈ D and control sequence {εt = ε∗}. This result implies that the control model
associated with ht attains a globally attracting state, h∗ (for a definition see [23, pp. 163–164]). Assumptions 2.1 and 2.2
imply that conditions C.1 and C.2 of Theorem 16 of Kristensen [20] hold, which implies that the model is forward accessible.
Hence, it is a T-chain by Proposition 7.1.5 of Meyn and Tweedie [23].
Furthermore, the existence of a globally attracting state and forward accessibility imply by Proposition 7.2.5 and Theorem

7.2.6 of Meyn and Tweedie [23] that the chain is irreducible. This also implies that all compact sets inD are small and can be
used as test sets. Aperiodicity follows from the fact that any cycle of the associate control model must contain the globally
attracting state h∗; see the proof of Proposition 7.4.1 in [23]. From a mean-value approximation around h∗ ∈ C , some
compact set inD , and after solving (7) recursively, we get

ht = $(h̄∗t−1, ξt−1)+∆(h̄
∗

t−1, ξt−1)ht−1

= $(h̄∗t−1, ξt−1)+
m−1∑
j=1

j∏
k=1

∆(h̄∗t−k, ξt−k)$(h̄
∗

t−j−1, ξt−j−1)+

m∏
k=1

∆(h̄∗t−k, ξt−k)ht−m (8)

where$(h, ξ) = ω+G(h∗, ξ)−∆(h, ξ)h∗ and h̄∗t−k is on the chord between h
∗ and ht−k, k = 1, . . . ,m. Note that h̄∗t−k ∈ D

since, for all α ∈ [0, 1], vec h−1(αh∗ + (1− α)ht−k) ∈ D . By Assumption 2.3 and the same arguments used in [32, Proof of
Theorem 2.1], we have that

λ = E

(
sup
h̄m

∥∥∥∥∥ m∏
k=1

∆(hm−k+1, ξm−k+1)

∥∥∥∥∥
)s
< 1, s ∈ (0, r). (9)

Next consider the drift function V (h) = 1 + ‖h‖s. Using (8) and (9), the usual properties of the matrix norm and the cr
inequality, we observe that for all h ∈ D

E[V (ht)|ht−m = h0] ≤ (1− λ)+ E sup
h̄1
‖$(·, ξt−1)‖

s

+

m−1∑
j=1

E sup
h̄j

∥∥∥∥∥ j∏
k=1

∆(·, ξt−k)

∥∥∥∥∥
s

E sup
h̄1
‖$(·, ξt−j−1)‖

s
+ λ

(
1+ ‖h0‖s

)
= λV (h0)+ b.

Assumption 2.2 and Lemma 1 imply E(suph̄1 ‖∆(·, ξt)‖
r) < ∞ and E(suph̄1 ‖$(·, ξt)‖

r) < ∞; hence b < ∞. Since the
drift function is continuous and bounded on the compact set C , we have that E(V (ht)|ht−m = h0) ≤ λV (h0)+ b · 1C ; hence
the drift criterion is satisfied. Therefore, by combining the results of Meyn and Tweedie [23, Theorem 16.0.1] and Tjostheim
[33], we have that {ht} is V-geometric ergodic and that E(‖ht‖s) < ∞. The extension of this result to the Markov chain
xt = (y′t , h

′
t)
′ follows from Proposition 1 of Meitz and Saikkonen [34]. �

Proof of Theorem 2. By Assumption 3.4 and similar arguments as in [11], we can show that θ0 is uniquely identifiable, thus
E[lt(θ0)] < E[lt(θ)] for all θ 6= θ0. It remains to show that this result implies strong consistency. Suppose that θ̂n does not
converge to θ0 a.s., so for an arbitrary ε > 0 the eventΩ = {lim supn→∞ ‖θ̂n − θ0‖ ≥ ε} has a positive probability. Hence,
there exists a compact setΛ ⊆ Θ \{‖θ̂n−θ0‖ ≤ ε} and a non-null setΩ ′ ⊆ Ω such that θ̂n(ω)→ θ(ω) ∈ Λ for allω ∈ Ω ′.
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Next, we note that the sequence {infθ∈Λ l̃t(θ)}t results from ameasurable transformation of {yt , yt−1, . . .}, so it is stationary
and ergodic. Lemma 2 implies that E infθ∈Λ l̃t(θ) ∈ R ∪ {+∞}, so by the ergodic theorem (see [35])

lim inf
n→∞

1
n

n∑
t=1

inf
θ∈Λ
l̃t(θ) = E inf

θ∈Λ
l̃t(θ). (10)

Therefore, we have with positive probability

El̃t(θ0) ≥ lim inf
n→∞

1
n

n∑
t=1

lt(θ0) ≥ lim inf
n→∞

inf
θ∈Λ

1
n

n∑
t=1

lt(θ)

= lim inf
n→∞

1
n

n∑
t=1

lt(θ̂n(ω))

≥ lim inf
n→∞

1
n

n∑
t=1

inf
θ∈Λ
l̃t(θ)+ o(1) = E inf

θ∈Λ
l̃t(θ). (11)

The first inequality results from the ergodic theorem and Lemma 2. The first equality is obtained by the definition of the
QML estimator. The last inequality results from Lemma 2(ii). Eq. (11) contradicts that θ0 is uniquely identifiable, and, since
ε > 0 can be arbitrarily small, the desired result follows. �

Proof of Theorem 3. By the strong consistency and Assumption 3.5, we have that, for sufficiently large n, θ̂n is contained
a.s. in an arbitrarily small neighborhood of θ0. Hence, the mean-value expansion of the score vector around θ0 gives

0 =
1
√
n

n∑
t=1

∂ lt(θ̂n)
∂θ

=
1
√
n

n∑
t=1

∂ lt(θ0)
∂θ

+

[(
1
n

n∑
t=1

∂2lt(θ̄n)
∂θ∂θ ′

+ J

)
− J

]
√
n(θ̂n − θ0) (12)

where θ̄n is between θ̂n and θ0.
In Lemma 4, we show that 1√n

∑n
t=1

∂ lt (θ0)
∂θ
obeys a CLT and that the first term inside the square brackets in (12) converges

a.s. to zero. In addition, we have that the ij-th element of the expectation of the Hessian is given by E( ∂
2 l̃t (θ0)
∂θi∂θj
|Ft−1) =

Tr( ˙̃H t,iH̃−1t
˙̃H t,jH̃−1t ). Comte and Lieberman [15] show that the expectation of theHessian is positive definite a.s., as otherwise

the model is not identifiable. Hence, by solving (12) and applying the Slutsky theorem, the desired result follows. �

Lemma 1. Under Assumptions 2.1 and 2.2, E(suph̄1 ‖∆(·, ξt)‖r) <∞ for some r > 0.

Proof. It is sufficient to show that suph̄1 ‖∆(·, ξt)‖ is bounded a.s. by an i.i.d. term, where we use the spectral norm. With
the definition of∆t in (4), we have

‖∆t‖ = λmax(∆t∆
′

t) ≤ C1Tr(∆̃t∆̃
′

t)+ C2

where C1 = N‖A‖ · ‖D+N ‖ · ‖DN‖ and C2 = ‖B‖. The inequality results from [36, p. 20, 11(b)]). Now, using inequality 6(b) in
[36, p. 44], we find

Tr(∆̃t∆̃′t) ≤
1
4
[Tr(∆̃t)+ Tr(∆̃′t)]

2
= Tr2(∆̃t) = (ξ ′t ξt)

2.

Thus, by Assumption 2.2, E suph̄1 ‖∆(·, ξt)‖
r
≤ C1E‖ξt‖4r + C2 <∞, and the desired result follows. �

Lemma 2. Under Assumptions 3.1–3.4

(i) E|̃lt(θ)| is well defined and E|̃lt(θ0)| <∞

(ii) lim supn→∞ supθ∈Θ
∣∣∣ 1n∑n

t=1 l̃t(θ)−
1
n

∑n
t=1 lt(θ)

∣∣∣ = 0.
Proof. (i) Let {λit(θ)}Ni=1 be the eigenvalues of H̃t(θ). Note that since this matrix is positive definite by definition, its
eigenvalues are positive. The compactness of the parameter space and the Wielandt–Hoffman theorem imply that
eigenvalues are continuous functions of the matrix elements. Hence, the compactness of the parameter set implies that
there exists a real positive number such that 0 < λ ≤ infθ∈Θ λit(θ), for all i, t; hence

det(H̃t(θ)) =
N∏
i=1

λit(θ) ≥ λ
N > 0
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which implies that El̃t(θ) is well defined and that−∞ < E infθ∈Θ l̃t(θ). By Assumptions 3.2 and 3.3, Jensen’s inequality
and the cr inequality, for some s > 0,

E log det(H̃t(θ0)) = E
1
s
log[det(H̃t(θ0))]s ≤

1
s
log E| det(H̃t(θ0))s|

≤
1
s
log E

N∏
i=1

λ
s/N
i (θ0) ≤ C1 log E‖H̃t(θ0)‖s

≤ C2E log ‖h̃t(θ0)‖s <∞. (13)

Hence, E(|̃lt(θ0)|) <∞.
(ii) By solving (2) recursively, we get

ht = h0Bt +
t−1∑
j=0

Bj(ω + Aηt−j−1); (14)

hence for t ≥ 1

‖Ht − H̃t‖ ≤ ‖Ht − H̃t‖2 ≤ C1‖ht − h̃t‖ ≤ C1‖Bt‖ · ‖h0 − h̃0‖ (15)

where ‖·‖2 is the Frobenius norm. Assumption 3.1 implies that ρ̄ = supθ∈Θ ρ(B) < 1. Hence

sup
θ∈Θ

∥∥Bt∥∥ = O(ρ̄t). (16)

These results, Assumptions 3.2 and 3.3 and the cr inequality imply that

E sup
θ∈Θ

‖Ht − H̃t‖s/2 = O(ρ̄t) (17)

for some s > 0.
Next we show that supθ∈Θ ‖H

−1
t (θ)‖ < ∞ and supθ∈Θ ‖H̃

−1
t (θ)‖ < ∞. By definition, Ht = D

1/2
t RtD

1/2
t , where

Dt = diag(h11,t(θ), . . . , hNN,t(θ)) and Rt is the positive definite correlation matrix with eigenvalues {ψit(θ)}Ni=1, so
H−1t = D−1/2t R−1t D

−1/2
t . As in Lemma 2(i), we can show that there exist positive real numbers h and ψ such that

0 < h < infθ∈Θ hii,t(θ) and 0 < ψ < infθ∈Θ ψit(θ) for all t . Thus,

sup
θ∈Θ

∥∥H−1t (θ)∥∥ ≤ h−1ψ−1 <∞. (18)

In the first inequality we use that if λ is an eigenvalue of a nonsingular matrix A, then λ−1 is an eigenvalue of A−1; see
[36, p. 64, 3(c)]. Similarly, we can show that supθ∈Θ

∥∥∥H̃−1t (θ)∥∥∥ <∞. A mean-value expansion of the likelihood function
around h̃t gives

lt − l̃t =
∂ lt(h̄t)
∂h′t

(ht − h̃t) =
∂ lt(h̄t)
∂h′t

D+N vec(Ht − H̃t) (19)

where h̄t is evaluated on the chord between ht and h̃t and

∂ l̃t
∂h′t
= vec

(
H̄−1t − y

′

t H̄
−1
t ⊗ H̄

−1
t yt

)′
DN . (20)

We use the fact that, for anym× nmatrices A, B,
(a) ‖vec(A)‖ = ‖A‖2 ≤

√
min(m, n)‖A‖

(b) ‖vec(A⊗ B)‖ = |(Im ⊗ Knm ⊗ Im)(vec(A)⊗ vec(B))| ≤ C1‖A‖ · ‖B‖
where Kmn is the commutation matrix. Assumption 3.2, (18)–(20) and the cr inequality imply

E sup
θ∈Θ

|lt(θ)− l̃t(θ)|s/2 ≤ C1E
[
‖yt‖s sup

θ∈Θ

∥∥H̄−1t ∥∥+ sup
θ∈Θ

∥∥H̄−1t ∥∥s/2] · sup
θ∈Θ

∥∥∥Ht − H̃t∥∥∥s/2 = O(ρ̄t). (21)

This result and the Markov inequality imply that, for an arbitrary ε > 0, we have that
{
P(supθ∈Θ |lt(θ)− l̃t(θ)| ≥ ε)

}
t

is summable. Therefore, by the Borel–Cantelli Lemma supθ∈Θ |lt(θ)− l̃t(θ)|→a.s. 0, and the desired result follows from
Césaro’s mean theorem. �

Lemma 3. Under Assumptions 3.1–3.6,
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(i) E supθ∈Θ
∥∥∥ ˙̃H t,i∥∥∥3 <∞

(ii) E supθ∈Θ
∥∥∥ ¨̃H t,ij∥∥∥3 <∞

where ˙̃H t,i = ∂H̃t
∂θi
and ¨̃H t,ij = ∂2H̃t

∂θi∂θj
.

Proof. (i) The components of ∂ h̃t/∂θi are given in the following.

h̃t = ω + Aηt−1 + Bh̃t−1 =
∞∑
i=0

Bi(ω + Aηt−1−1)

∂ h̃t
∂ω′ (d×d)

= (Id − B)−1 (22)

∂ h̃t
∂a′ (d×d2)

= (η′t−1 ⊗ Id)+
∂ h̃t−1
∂a′

(Id ⊗ B)

=

∞∑
i=0

(Id ⊗ B)i(η′t−i−1 ⊗ Id) =
∞∑
i=0

(η′t−i−1 ⊗ B
i) (23)

∂ h̃t
∂b′ (d×d2)

=

∞∑
i=0

[
(ω + Aηt−i−1)′ ⊗ Id

] ∂vec(Bi)
∂vec(B)′

=

∞∑
i=0

[
(ω + Aηt−i−1)′ ⊗ Id

] [ i∑
j=0

(B′)i−1−j ⊗ Bj
]

(24)

where a = vec(A) and b = vec(B). Let `ij = (i− 1)d+ j and ec`ij be a vector which contains a one at the `ij entry and zeros
elsewhere, and whose dimension is the same as that of the vector c , where c = a, b or ω. By definition,

∂H̃t
∂dij
= vec−1

(
∂ h̃t
∂c ′
ec`ij

)
(25)

where dij = [A]ij,[B]ij or [ω]1j. Hence, to show that E supθ∈Θ
∥∥∥ ˙̃H t,i∥∥∥3 < ∞ it suffices to prove that E supθ∈Θ ∥∥∥ ∂ h̃t∂c′ ∥∥∥3 < ∞.

We see immediately that the derivatives with respect to the elements of ω are naturally bounded.
Note that, for anym× nmatrices A, B,

‖A⊗ B‖ = λmax[(A′ ⊗ B′)(A⊗ B)] = λmax[(A′A⊗ B′B)] = ‖A‖ · ‖B‖, (26)

and hence, from (16) and (26),

sup
θ∈Θ

j∑
k=0

∥∥(B′)j−1−k ⊗ Bk∥∥ ≤ j∑
k=0

sup
θ∈Θ

‖Bj−1−k‖ sup
θ∈Θ

‖Bk‖ ≤ C1jρ̄ j. (27)

Further, by using (23), (24), (26) and (27) and applying the Hölder and Minkowski inequalities, we get

E sup
θ∈Θ

∥∥∥∥∥∂ h̃t∂b′
∥∥∥∥∥
3

≤

 ∞∑
i=0

iρ̄ i
[
E
(
sup
θ∈Θ

∥∥(ω + Aηt−i−1)′ ⊗ Im∥∥)3]1/3

3

≤

 ∞∑
i=0

iρ̄ i
[
E
(
sup
θ∈Θ

‖ω + Aηt−i−1‖
)3]1/3

3

≤

{
∞∑
i=0

iρ̄ i(C1 + C2E1/6‖yt‖6)

}3
<∞ (28)

and

E sup
θ∈Θ

∥∥∥∥∥∂ h̃t∂a′
∥∥∥∥∥
3

≤

 ∞∑
i=0

[
E
(
sup
θ∈Θ

‖B‖i · ‖η′t−1−i‖
)3]1/3

3
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≤

(
∞∑
i=0

ρ̄ iE1/6|yt |6
)3
≤ C1

(
∞∑
i=0

ρ̄ i

)3
<∞ (29)

and the desired result follows.
(ii) The components of ∂2h̃t/∂θi∂θj are given in the following.

∂vec
∂b′

(
∂ h̃t
∂a′

)
(d3×d2)

=

(
Id2 ⊗

∂ h̃t−1
∂a′

)
(d3×d4)

C(d4×d2) +
[
(Id ⊗ B′)⊗ Id

]
d3×d3

∂vec
∂b′

(
∂ h̃t−1
∂a′

)
d3×d2

=

∞∑
i=0

[
(Id ⊗ B′

i
)⊗ Id

](
Id2 ⊗

∂ h̃t−1−i
∂a′

)
· C(d4×d2)

=

∞∑
i=0

[
(Id ⊗ B′

i
)⊗ Id

] [
Id2 ⊗

∞∑
j=0

η′t−2−j−i ⊗ B
j

]
· C(d4×d2) (30)

where C = (Id ⊗ Kd1 ⊗ Id) and Kd1 is the commutation matrix.

∂vec
∂b′

(
∂ h̃t
∂b′

)
(d3×d2)

=

∞∑
i=0

∂vec
∂b′

(
h̃′t−1−i ⊗ B

i
)

= C1
∞∑
i=0

(
∂ h̃t−1−i
∂b′

⊗ vec(Bi)+ h̃t−1−i ⊗
∂vec(Bi)
∂b′

)

= C1
∞∑
i=0

∞∑
j=0

[
(ω + Aηt−2−i−j)′ ⊗ Id

] [ j∑
k=0

(B′)j−1−k ⊗ Bk
]
⊗ vec(Bi)

+ h̃t−1−i ⊗

[
i∑
k=0

(B′)i−1−k ⊗ Bk
]

(31)

where h̃t−1−i =
∑
∞

k=0 B
k(ω + Aηt−2−i−k).

LetM = ∂vec
∂c′

(
∂ h̃t
∂c′

)
. Then,

∂2H̃t
∂dij∂dgk

= vec−1
{
vec−1

(
Mec`ij

)
ec`gk

}
(32)

where dij and dgk are defined above. Hence, to show that E supθ∈Θ
∥∥∥ ¨̃H t,ij∥∥∥3 < ∞ it suffices to establish that

E supθ∈Θ
∥∥∥ ∂vec∂c′

(
∂ h̃t
∂c′

)∥∥∥3 is bounded.
We note that

E sup
θ∈Θ

‖h̃t−1−i‖3 ≤

{
∞∑
k=0

sup
θ∈Θ

‖Bk‖
(
E sup
θ∈Θ

‖ω + Aηt−2−i−k‖3
)1/3}3

≤

{
∞∑
k=0

ρ̄k(C1 + C2E‖yt‖6)1/6
}3
<∞ (33)

and recall that ‖vec(Bi)‖ = ‖Bi‖2 ≤ d‖Bi‖ ≤ dρ̄ i.
From (31) and (33), and by applying the Hölder and Minkowski inequalities,E supθ∈Θ

∥∥∥∥∥∂vec∂b′

(
∂ h̃t
∂b′

)∥∥∥∥∥
3

1/3

≤ C1
∞∑
i=0

ρ̄ i
∞∑
j=0

jρ̄ j
(
E sup
θ∈Θ

∥∥ω + Aηt−2−i−j∥∥3)1/3

+ C2
∞∑
i=0

iρ̄ i
(
E sup
θ∈Θ

‖h̃t−1−i‖3
)1/3

<∞.

Similarly, we can show that E supθ∈Θ
∥∥∥ ∂vec∂b′

(
∂ h̃t
∂a′

)∥∥∥3 <∞, which completes the proof. �



C.M. Hafner, A. Preminger / Journal of Multivariate Analysis 100 (2009) 2044–2054 2053

Lemma 4. Under Assumptions 3.1–3.6,

(i) 1
√
n

∑n
t=1

∂ lt (θ0)
∂θ
→D N(0, V )

(ii) − 1n
∑n
t=1

∂2 lt (θ̄n)
∂θ∂θ ′

→a.s. J , a positive definite matrix, where θ̄n is between θ̂n and θ0.

Proof. (i) We first show that the normalized score function obeys the CLT. The components of the score function are given
by

∂ l̃t(θ0)
∂θi

= Tr[(IN − yty′t H̃t(θ0)
−1)
˙̃H t,i(θ0)H̃−1t (θ0)]. (34)

From (1) and Assumption 3.2, it is clear that the score function is strictly stationary, ergodic and a martingale difference;

that is, E
[
∂ l̃t (θ0)
∂θ
|Ft−1

]
= 0. If E

∥∥∥ ∂ l̃t (θ0)∂θ

∂ l̃t (θ0)
∂θ

′
∥∥∥ < ∞, we can apply the CLT of Scott [37] and the Cramér–Wold device to

establish the asymptotic normality of the score function. We have

E

∣∣∣∣∣∂ l̃t(θ0)∂θi

∂ l̃t(θ0)
∂θj

∣∣∣∣∣ ≤ C1E
(∥∥∥IN − yty′t H̃t(θ0)−1∥∥∥2 ∥∥∥ ˙̃H t,i(θ0)∥∥∥ · ∥∥∥ ˙̃H t,j(θ0)∥∥∥)

≤ 2C1E
[(
1+

∥∥∥H̃1/2t (θ0)ξtξ
′

t H̃
−1/2
t (θ0)

∥∥∥2)∥∥∥ ˙̃H t,i(θ0)∥∥∥ · ∥∥∥ ˙̃H t,j(θ0)∥∥∥]
≤ 2C1

(
E‖ξt‖4 + 1

)
E
(∥∥∥ ˙̃H t,i(θ0)∥∥∥ · ∥∥∥ ˙̃H t,j(θ0)∥∥∥)

≤ C2

[
E
(∥∥∥ ˙̃H t,i(θ0)∥∥∥)2]1/2 [E (∥∥∥ ˙̃H t,j(θ0)∥∥∥)2]1/2 <∞. (35)

The first inequality uses (34) and the fact that, if A and B areN×N matrices, then |Tr(AB)| ≤ N‖A‖·‖B‖; see [36, p. 111, 6(a)].

The second inequality uses the cr inequality. We can show that
∥∥∥H̃1/2t (θ0)ξtξ

′
t H̃
−1/2
t (θ0)

∥∥∥2 ≤ C1 ∥∥ξtξ ′t∥∥2 ≤ C2 ‖ξt‖4 a.s. as in
Lemma 1. The third inequality is implied by the independence between ξt and H̃t and its derivatives. Further, from
Assumption 3.6 and (18),

E‖ξt‖4 = E(Tr(ξ ′t ξt))
2
= E(Tr(y′tH

−1
t yt))

2
≤ C1E‖yt‖4 <∞.

This result and the Cauchy–Schwarz inequality imply the third inequality. The last inequality results from Lemma 3(i). Next,
by Lemma 3 and using similar arguments as in [16, Lemma 4(i)], we can show that∣∣∣∣∣n−1/2 n∑

t=1

∂ lt(θ0)
∂θi

−
∂ l̃t(θ0)
∂θi

∣∣∣∣∣ = oP(1). (36)

Eq. (36) and the asymptotic equivalence lemma imply the desired result.
(ii) The second derivative is given by

∂2 l̃t(θ)
∂θi∂θj

= Tr
[(
I − yty′t H̃

−1
t

) (
¨̃H t,ijH̃−1t −

˙̃H t,iH̃−1t
˙̃H t,jH̃−1t

)
+ yty′t H̃

−1
t
˙̃H t,jH̃−1t

˙̃H t,iH̃−1t
]

(37)

using the notation ¨̃H t,ij = ∂2H̃t
∂θi∂θj

. As in Lemma 4(i) above, using Lemma 3, the Cauchy–Schwarz inequality and Minkowski’s
inequality, we get

E sup
θ∈Θ

∣∣∣∣∣∂2 l̃t(θ)∂θi∂θj

∣∣∣∣∣ ≤ C1E supθ∈Θ

[
‖yty′t‖

(∥∥∥ ¨̃H t,ij∥∥∥+ 2 ∥∥∥ ˙̃H t,i∥∥∥ · ∥∥∥ ˙̃H t,j∥∥∥)]+ C2E(sup
θ∈Θ

∥∥∥ ¨̃H t,ij∥∥∥)+ C3E(sup
θ∈Θ

∥∥∥ ˙̃H t,i∥∥∥ · ∥∥∥ ˙̃H t,j∥∥∥)

≤ C1
(
E (‖yt‖)4

)1/4
E
(
sup
θ∈Θ

∥∥∥ ¨̃H t,ij∥∥∥2)1/2 + 2C2 [E (‖yt‖6)]1/6 [E(sup
θ∈Θ

∥∥∥ ˙̃H t,i∥∥∥3)]1/3 [E(sup
θ∈Θ

∥∥∥ ˙̃H t,j∥∥∥3)]1/3
+ C3E

(
sup
θ∈Θ

∥∥∥ ¨̃H t,ij∥∥∥)+ C4 [E(sup
θ∈Θ

∥∥∥ ˙̃H t,j∥∥∥2)]1/2 E(sup
θ∈Θ

∥∥∥ ˙̃H t,i∥∥∥2)1/2 <∞.
From the ergodic theorem (see [35])

sup
θ∈Θ

∣∣∣∣∣1n
n∑
t=1

∂ l̃t(θ)
∂θi∂θ

′

j
− E

(
∂ l̃t(θ)
∂θi∂θ

′

j

)∣∣∣∣∣→a.s 0. (38)



2054 C.M. Hafner, A. Preminger / Journal of Multivariate Analysis 100 (2009) 2044–2054

By Lemma 3, and using the same arguments as in [16, Lemma 4(ii)], we obtain

sup
θ∈Θ

∣∣∣∣∣1n
n∑
t=1

∂ lt(θ)
∂θi∂θ

′

j
−
1
n

n∑
t=1

∂ l̃t(θ)
∂θi∂θ

′

j

∣∣∣∣∣→a.s 0. (39)

Hence, by (38) and (39), Theorem 2 and direct calculation, the desired result follows. �
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