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Monojet and monophoton final states with large missing transverse energy (/E T ) are important for dark
matter (DM) searches at colliders. We present analytic expressions for the differential cross sections for
the parton-level processes, qq̄(qg) → g(q)χχ̄ and qq̄ → γχχ̄ , for a neutral DM particle with a magnetic
dipole moment (MDM) or an electric dipole moment (EDM). We collectively call such DM candidates
dipole moment dark matter (DMDM). We also provide monojet cross sections for scalar, vector and axial-
vector interactions. We then use ATLAS/CMS monojet + /E T data and CMS monophoton + /E T data to
constrain DMDM. We find that 7 TeV LHC bounds on the MDM DM–proton scattering cross section are
about six orders of magnitude weaker than on the conventional spin-independent cross section.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

Collider data have provided an important avenue for dark mat-
ter (DM) searches, especially for candidates lighter than about
10 GeV [1–3], for which direct detection experiments have dimin-
ished sensitivity due to the small recoil energy of the scattering
process. In fact, current assumption-dependent bounds on spin-
dependent DM–nucleon scattering from LHC data, obtained using
an effective field theory framework, are comparable or even supe-
rior to those from direct detection experiments for DM lighter than
a TeV [2,3].

The final states that have proven to be effective for DM studies
at colliders are those with a single jet or single photon and large
missing transverse energy (/E T ) or transverse momentum. Our goal
is study these signatures for DM that possesses a magnetic dipole
moment (MDM) or an electric dipole moment (EDM) [4]; earlier
work can be found in Ref. [5]. Thus, the DM may be a Dirac
fermion, but not a Majorana fermion. We refer to these DM can-
didates as dipole moment dark matter (DMDM). We begin with
a derivation of the differential cross sections for the parton-level
processes that give monojet+/E T and monophoton+/E T final states
at the LHC. We then use 7 TeV j + /E T data from ATLAS [6] and
CMS [7], and γ + /E T data from CMS [8] to constrain DMDM. Fi-
nally, we place bounds on the MDM DM–proton scattering cross
section.
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2. Production cross sections

The monojet + /E T and monophoton + /E T final states for DM
production at the LHC arise from the 2 → 3 parton-level processes
qq̄(qg) → g(q)χχ̄ and qq̄ → γχχ̄ . Since the momenta and spin of
the final state DM particles cannot be measured, their phase space
can be integrated out. Thus, the 2 → 3 processes are simplified to
2 → 2 processes. We use this fact to find analytic expressions for
the parton-level cross sections by first focusing on the DM pair
χχ̄ .

A dark matter particle χ with magnetic dipole moment μχ

interacts with an electromagnetic field Fμν through the interac-
tion L = 1

2 μχχ̄σμν Fμνχ . The corresponding vertex is ΓM
μ =

ū(p)iσμν(p + p′)ν v(p′). Using the Gordon decomposition iden-
tity,

ū(p)γ μv
(

p′) = 1

2mχ
ū(p)

[
pμ − p′μ + iσμν

(
p + p′)

ν

]
v
(

p′),
we write ΓM

μ in terms of the QED scalar annihilation vertex,
Γ0

μ = (p − p′)μ , and the QED vectorial vertex for Dirac fermion
pair production, Γ 1

2

μ = ū(p)γ μv(p′):

ΓM
μ = 2mχΓ 1

2

μ − Γ0
μū(p)v

(
p′).

Consider Γ0
μ . Integrating the 2-body phase space,

dp s2
(

P = p + p′) = (2π)4δ4(P − p − p′) d3 p

(2π)32E

d3 p′

(2π)32E ′
,

p p
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gives∫
dp s2

(
P = p + p′) = 1

8π

√
1 − 4m2

χ/P 2.

The relevant tensor that enters the calculation of the cross section
is

T0
μν ≡

∫
Γ0

μ
(
Γ0

ν
)∗

dp s2
(

P = p + p′).
Gauge invariance, PμT0

μν = 0, dictates that T0
μν take the form,

T0
μν = S0

(
P 2 gμν − Pμ Pν

)
.

i.e., T0
μ

μ = 3P 2 S0. Thus to determine S0, we can circumvent the
more involved tensor calculation by simply evaluating

T0
μ

μ =
∫ (

p − p′)2
dp s2

(
P = p + p′) =

∫ (
2m2

χ − 2p · p′)dp s2

= − q2

8π

(
1 − 4m2

χ/P 2) 3
2

⇒ S0 = −1

3

1

8π

(
1 − 4m2

χ/P 2) 3
2 .

Now we study Γ 1
2

μ . By analogy to T0
μν , we define T 1

2

μν via

T 1
2

μν ≡
∑
spin

∫
Γ 1

2

μ
(
Γ 1

2

ν
)∗

dp s2
(

P = p + p′)

= S 1
2

(
P 2 gμν − Pμ Pν

)
.

Taking the trace, we get

3P 2 S 1
2

= Tr
∫

( /p + mχ )γ μ
(
/p′ − mχ

)
γμ dp s2

= Tr
∫ (−2/p/p′ − 4m2

χ 1
)

dp s2

⇒ S 1
2

= −4

3

1

8π

(
1 + 2m2

χ/P 2)(1 − 4m2
χ/P 2) 1

2 .

In the high energy limit (P 2 � 4m2
χ ), S 1

2
= 4S0, as expected by

counting degrees of freedom.
The corresponding SM for the MDM case can be obtained from

the previous calculations and an additional calculation of the in-
terference term,

−2(2mχ )Tr
(
/p′ − mχ

)
γ μ( /p + mχ )

(
p − p′)

μ

= −16m2
χ P 2(1 − 4m2

χ/P 2).
We find

SM = 4m2
χ S 1

2
+ 2q2(1 − 4m2

χ/q2)S0 + S X ,

with S X = − 16
3

1
8π m2

χ (1 − 4m2
χ/q2)

3
2 . Therefore,

SM = −2

3

1

8π
P 2(1 + 8m2

χ/P 2)√1 − 4m2
χ/P 2.

We are interested in, e.g., q(p1) + q̄(p2) → g(p3) + [χχ̄ ](P ),
with s = (p1 + p2)

2, t = (p1 − p3)
2, u = (p2 − p3)

2, and s + t + u =
P 2, the invariant mass squared of the DM pair χχ̄ . This de-
fines our notation. Multiplying the cross sections for Drell–Yan at
high pT [9] by SM(mχ )/S 1

2
(m	 = 0) (with an appropriate modifi-

cation of couplings), we obtain
dσ MDM

dt dP 2

(
qq̄ → b[χχ̄ ])

= Cbe2e2
q

16π s2

μ2
χ

24π2

8

9

(t − P 2)2 + (u − P 2)2

tu

×
(

1 + 8m2
χ

P 2

)(
1 − 4m2

χ

P 2

) 1
2

, (1)

dσ MDM

dt dP 2

(
qg → q[χχ̄ ])

= g2
s e2e2

q

16π s2

μ2
χ

24π2

1

3

(u − P 2)2 + (s − P 2)2

−su

×
(

1 + 8m2
χ

P 2

)(
1 − 4m2

χ

P 2

) 1
2

, (2)

where eq is the quark charge in units of e. If the gauge boson b is
a gluon, Cb = g2

s , and if it is a photon, Cb = 3
4 e2

qe2.
The interaction Lagrangian for a DM particle with EDM dχ is

L = 1
2 dχ χ̄σμνγ5 Fμνχ . A similar procedure gives the EDM DM

cross sections,

dσ EDM

dt dP 2

(
qq̄ → b[χχ̄ ])

= Cbe2e2
q

16π s2

d2
χ

24π2

8

9

(t − P 2)2 + (u − P 2)2

tu

(
1 − 4m2

χ

P 2

) 3
2

, (3)

dσ EDM

dt dP 2

(
qg → q[χχ̄ ])

= g2
s e2e2

q

16π s2

d2
χ

24π2

1

3

(u − P 2)2 + (s − P 2)2

−su

(
1 − 4m2

χ

P 2

) 3
2

. (4)

DMDM interacts with the Z boson via the relevant dimension-5
Lagrangian, L = 1

2 χ̄σμν(dB + dEγ5)χ Zμν , where Zμν = ∂μ Zν −
∂ν Zμ . The fermion line of the final DM state is

ΓZ
μ = ū(p)σμρ(dB + dEγ5)

(
p + p′)

ρ
v
(

p′).
On doing the phase space integration, the following tensor ap-
pears:

T Z
μν =

∑
spin

∫
ΓZ

μ
(
ΓZ

ν
)†

dp s2 = S Z
(

P 2 gμν + Pμ Pν
)
.

Its trace is

T Z
μ

μ = 3P 2 S Z

= (−π P 4) 1

(2π)2

[
d2

B

(
1 + 8m2

χ

P 2

)
+ d2

E

(
1 − 4m2

χ

P 2

)]

×
(

1 − 4m2
χ

P 2

) 1
2

⇒ S Z = −π

3
P 2 1

(2π)2

[
d2

B

(
1 + 8m2

χ

P 2

)

+ d2
E

(
1 − 4m2

χ

P 2

)](
1 − 4m2

χ

P 2

) 1
2

.

In general, we expect interference from the photon MDM μχ and
EDM dχ amplitudes. After integrating out the 2-body phase space
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of the final state DM, the differential cross sections are

dσγ ,Z

dt dP 2

(
qq̄ → g[χ̄χ ])

= 1

16π s2

g2
s e2

27π2

(P 2 − u)2 + (P 2 − t)2

tu

(
1 − 4m2

χ

P 2

) 1
2

×
∑

i=E,B

(
1 + Fim2

χ

P 2

)
P 4

[∣∣∣∣ gq
Adi

P 2 − M2
Z + iM Z ΓZ

∣∣∣∣
2

+
∣∣∣∣eqdγ

i

P 2
+ gq

V di

P 2 − M2
Z + iM Z ΓZ

∣∣∣∣
2]

, (5)

dσγ ,Z

dt dP 2

(
qg → q[χ̄χ ])

= 1

16π s2

g2
s e2

72π2

(P 2 − u)2 + (P 2 − s)2

−su

(
1 − 4m2

χ

P 2

) 1
2

×
∑

i=E,B

(
1 + Fim2

χ

P 2

)
P 4

[∣∣∣∣ gq
Adi

P 2 − M2
Z + iM Z ΓZ

∣∣∣∣
2

+
∣∣∣∣eqdγ

i

P 2
+ gq

V di

P 2 − M2
Z + iM Z ΓZ

∣∣∣∣
2]

, (6)

where we use the notation, dγ
B ≡ μχ and dγ

E ≡ dχ , to keep Eqs. (5)
and (6) compact. Here, F B = 8, F E = −4, and xW = sin2 ϑW ≈ 0.23,
gq

V sin ϑW cosϑW = 1
2 (T q

3)L − eq sin2 ϑW and gq
A sin ϑW cosϑW =

− 1
2 (T q

3)L define the quark–Z boson couplings. In what follows, we
set dB = dE = 0.

For the sake of completeness, we also work out the mono-
jet cross sections for the scalar, vector, and axial-vector interac-
tions. The amplitudes are Gq,0(q̄q)(χ̄χ), Gq,V (q̄γμq)(χ̄γ μχ), and
Gq,A(q̄γμγ5q)(χ̄γ μγ5χ), respectively.

For the scalar case,

dσ S

dt dP 2

(
qq̄ → g[χχ̄ ]) = g2

s G2
q,0

16π s2

P 2

16π2

8

9

s2 + P 2

tu

(
1 − 4m2

χ

P 2

) 3
2

,

(7)

dσ S

dt dP 2

(
qg → q[χχ̄ ]) = g2

s G2
q,0

16π s2

P 2

16π2

1

3

t2 + P 2

−su

(
1 − 4m2

χ

P 2

) 3
2

.

(8)

For the vector case,

dσ V

dt dP 2

(
qq̄ → g[χχ̄ ])

= g2
s G2

q,V

16π s2

P 2

12π2

8

9

(t − P 2)2 + (u − P 2)2

tu

×
(

1 − 4m2
χ

P 2

) 1
2
(

1 + 2m2
χ

P 2

)
, (9)

dσ V

dt dP 2

(
qg → q[χχ̄ ])

= g2
s G2

q,V

16π s2

P 2

12π2

1

3

(s − P 2)2 + (u − P 2)2

−su

×
(

1 − 4m2
χ

P 2

) 1
2
(

1 + 2m2
χ

P 2

)
. (10)

For the axial-vector case,
dσ AV

dt dP 2

(
qq̄ → g[χχ̄ ])

= g2
s G2

q,A

16π s2

P 2

12π2

8

9

(t − P 2)2 + (u − P 2)2

tu

(
1 − 4m2

χ

P 2

) 3
2

, (11)

dσ AV

dt dP 2

(
qg → q[χχ̄ ])

= g2
s G2

q,A

16π s2

P 2

12π2

1

3

(s − P 2)2 + (u − P 2)2

−su

(
1 − 4m2

χ

P 2

) 3
2

. (12)

The kinematic limits for the subprocess are P 2 ∈ [(2mχ )2, s], −t ∈
[0, s − P 2]. For /pT cuts, there are additional kinematic constraints.

The above equations apply for Dirac fermion DM. For Majo-
rana DM, there are only scalar and axial-vector interactions. All the
other interactions are absent. The results for Majorana DM can be
obtained from the corresponding equations by dividing by 2 (since
the 2-body phase space for two identical particles is half that for
two distinct particles).

3. Constraints

The vertices defining DMDM interactions with the electromag-
netic field are

Vγχχ̄ (MDM) = e

ΛMDM
σμα Pμ,

Vγχχ̄ (EDM) = e

ΛEDM
σμα Pμγ5,

where P is the photon’s 4-momentum vector and α is the Dirac
index of the photon field. The effective cutoff scales ΛMDM and
ΛEDM are defined so that μχ = e/ΛMDM and dχ = e/ΛEDM , in order
to facilitate comparison. They may be related to compositeness or
short distance physics, but are not necessarily new physics scales.

Since monojet + /E T data from ATLAS and CMS [6,7], and
monophoton +/E T data from CMS [8], at the 7 TeV LHC, are consis-
tent with the SM, we may use these data to constrain the DMDM
cutoff scales. From an analysis of 1/fb of monojet data, with the
requirement that the hardest jet have pT > 350 GeV, or pT >

250 GeV, or pT > 120 GeV, and pseudorapidity |η| < 2, the ATLAS
Collaboration has placed 95% C.L. upper limits on the production
cross section of 0.035 pb, 0.11 pb and 1.7 pb, respectively [6]. In
5/fb of data, CMS has observed 1142 monojet events with lead-
ing jet pT > 350 GeV and |η| < 2.4 [7], to be compared with the
standard model (SM) expectation, NSM ± σSM = 1225 ± 101. We
will calculate both observed and expected 95% C.L. upper limits
from CMS monojet data. Using 5/fb data, CMS has searched for
the γ + /E T final state with photon pT > 145 GeV and |η| < 1.44,
and set a 90% C.L. upper limit on the production cross section of
about 0.0143 pb [8].

To place constraints using the total event rate, we calculate
the cross sections relevant to each detector, σATLAS and σCMS , of
the processes qq̄ → gχχ̄ , qg → qχχ̄ and qq̄ → γχχ̄ , by con-
volving Eqs. (1)–(4) with the parton distribution functions from
CTEQ6 [10]. For MDM DM, we have checked that we get the same
results from a calculation that begins with an evaluation of the
amplitude squared and the 3-body phase space. Using CMS j + /E T

data, we place 95% C.L. lower limits on the cutoff scales by requir-
ing [3]

χ2 ≡ [
N − NDM(mχ ,Λ)]2

NDM(mχ ,Λ) + NSM + σ 2
SM

= 3.84,

where [7]


N =
{

200 expected bound,
158 observed bound,
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Fig. 1. The black lines are the 95% C.L. lower limits on the cutoff sales from ATLAS (solid) and CMS (dash-dotted: observed, dashed: expected) monojet data with leading jet
pT > 350 GeV and |η| < 2 for ATLAS and |η| < 2.4 for CMS, and the solid blue lines are the 90% C.L. lower limits from the CMS monophoton data.
Fig. 2. 95% C.L. lower limits from ATLAS j +/E T data on ΛSI and ΛMDM .

and NDM(mχ ,Λ) = σCMS × luminosity. The above-mentioned
bounds on the production cross sections obtained by the ATLAS
and CMS Collaborations from the j + /E T and γ + /E T final states
can be used directly to constrain the cutoff scales. Fig. 1 shows
lower limits on ΛMDM and ΛEDM; the bound from ATLAS corre-
sponds to the pT > 350 GeV cut on the hardest jet. We see that
for mχ < 100 GeV, the 95% C.L. lower limit on the cutoff scales is
only about 35 GeV. For conventional spin-independent (SI) ampli-
tudes of dimension-6, e.g.,

(q̄γμq)
(
χ̄γ μχ

)
/Λ2

SI, q = u,d (13)

typical bounds on ΛSI are a few hundred GeV for mχ < 100 GeV,
as shown in Fig. 2. The result is counterintuitive since we naively
expect the lower limit on ΛMDM and ΛEDM to be stronger than on
ΛSI since the DMDM operators are dimension-5. We now explain
this result.

Consider MDM DM and the amplitude of Eq. (13). Neglecting
mχ , and evaluating the cross sections at the peak of the product
of the phase space and PDFs for a chosen pT cut, we find

σ SI(pp → j + /E T )

σ MDM(pp → j + /E T )
≈ 8p2

T Λ2
MDM

e4Λ4
SI

.

The left hand side of the equation is unity for an experimental
upper bound on the cross section. Then, the lower bound on ΛMDM
Fig. 3. 95% C.L. upper limits on the conventional SI and MDM DM–proton cross
sections from ATLAS j + /E T data.

for a known lower bound on ΛSI is e2Λ2
SI/(2

√
2pT ). From Fig. 2,

the 95% C.L. lower limit on ΛSI is 700 GeV for a pT cut of 350 GeV,
which translates into a 95% C.L. lower limit on ΛMDM of 45 GeV.

4. Scattering cross sections

Including the SI and spin-dependent contributions, and setting
the electric and magnetic form factors to unity, the MDM DM–
proton cross section is [12,11]1

σ MDM
p = e4

2πΛ2
MDM

(
1 − m2

r

2m2
p

− m2
r

mpmχ
+

(
μp

e
2mp

)2 m2
r

m2
p

)
,

where mr = mχ mp
mχ +mp

is the reduced mass of the DM–proton sys-

tem, and μp = 2.793e/(2mp) is the MDM of the proton [13]. We
employ the 95% C.L. lower limit on ΛMDM obtained in Fig. 1 from
ATLAS data, to determine the 95% C.L. upper limit on the MDM
DM–proton cross section σ MDM

p . This is shown in Fig. 3.
We now relate limits from the j + /E T final state on the MDM

DM–proton scattering cross section to limits on the conventional SI

1 The total cross section is divergent since the Coulomb interaction is singular.
Here, we use the energy transfer cross section [12] that is the same as the usual
total cross section for constant differential cross sections.



V. Barger et al. / Physics Letters B 717 (2012) 219–223 223
DM–proton cross section. The DM–proton scattering cross section
for the amplitude of Eq. (13) is

σ SI
p = 9m2

r

πΛ4
SI

.

The 95% C.L. upper limit on σ SI
p from ATLAS data is shown in

Fig. 3. Note that the constraint on σ SI
p is about six orders of mag-

nitude more stringent than on σ MDM
p . This is evident from

σ SI
p

σ MDM
p

≈ 2m2
pΛ2

MDM

e4Λ4
SI

,

with the limits on ΛMDM and ΛSI from Fig. 2.
The CoGeNT event excess [14] can be explained by a 7 GeV DM

particle with a MDM with ΛMDM = 3 TeV [11]. In fact, this can-
didate can also explain the signals seen by the DAMA [15] and
CRESST [16] experiments, and may survive conservative bounds
from other direct detection experiments [17]. From Fig. 1, we con-
clude that LHC bounds are far from ruling out this candidate. This
is in contrast to conventional SI scattering, which for light DM,
finds strong constraints in collider experiments.
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