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Sotos syndrome (SoS) is characterized by pre- and postnatal overgrowth with advanced bone age; a dysmorphic
face with macrocephaly and pointed chin; large hands and feet; mental retardation; and possible susceptibility to
tumors. It has been shown that the major cause of SoS is haploinsufficiency of the NSD1 gene at 5q35, because
the majority of patients had either a common microdeletion including NSD1 or a truncated type of point mutation
in NSD1. In the present study, we traced the parental origin of the microdeletions in 26 patients with SoS by the
use of 16 microsatellite markers at or flanking the commonly deleted region. Deletions in 18 of the 20 informative
cases occurred in the paternally derived chromosome 5, whereas those in the maternally derived chromosome were
found in only two cases. Haplotyping analysis of the marker loci revealed that the paternal deletion in five of seven
informative cases and the maternal deletion in one case arose through an intrachromosomal rearrangement, and
two other cases of the paternal deletion involved an interchromosomal event, suggesting that the common micro-
deletion observed in SoS did not occur through a uniform mechanism but preferentially arose prezygotically.

Sotos syndrome (SoS [MIM 117550]), cerebral gigantism,
is an overgrowth syndrome characterized by generalized
overgrowth with advanced bone age, macrocephaly,
frontal bossing, prominent jaw, high hairline, down-
slanting palpebral fissures, mental retardation, and pos-
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sible susceptibility to tumors. We have shown that hap-
loinsufficiency of the NSD1 gene at 5q35 is the major
cause of SoS. Two-thirds of Japanese patients with SoS
had a common deletion involving the whole NSD1 gene
(Kurotaki et al. 2002), and a subset of patients had trun-
cate type of NSD1 point mutations. Such frequent, com-
mon deletions are seen in many genomic disorders and
may occur by low copy repeat (LCR)–mediated chro-
mosomal rearrangements (Shaffer and Lupski 2000). Re-
cently, another group reported a high rate of NSD1 point
mutations but a low rate of microdeletions in patients
with SoS (Douglas et al. 2003). This difference in de-
letion frequency needs further investigation.
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Figure 1 Panel of 26 sporadic SoS cases of microdeletions that were confirmed by FISH analysis. Upper row shows locations of clones
used for FISH (open circle) and polymorphic markers mapped to the deleted regions. Black circle shows a clone that was not deleted in each
patient, and gray circle indicates a clone deleted. P p paternal origin of deletion; M p maternal; ND p not determined.

We observed phenotypic differences between patients
with SoS with microdeletions and those with point mu-
tations (Nagai et al. 2003). Dysmorphic craniofacial ab-
normalities, overgrowth, and mental retardation were
present in both types of patients, whereas major anom-
alies in the central nervous, cardiovascular, and urinary
systems were predominantly exhibited by patients with
the deletion. These different phenotypes could mainly
be due to deletion of other genes in addition to NSD1.

To unravel the underlying mechanisms for the common

deletion, such as the parental origin and the type of chro-
mosome/chromatid rearrangements, we performed ge-
notype and haplotype analyses of polymorphic marker
loci in 26 families with 26 patients with sporadic SoS, 7
of whom were reported elsewhere (Kurotaki et al. 2002).

All 26 subjects (see fig. 1) in this study were referred
to us after a possible diagnosis of SoS was made and
written informed consent forms were obtained from their
parents. Three main symptoms, such as craniofacial dys-
morphology, mental retardation, and a history of over-
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growth, were basically observed in all the patients, but
the diagnostic criteria might not be consistent. Advanced
bone age that could be one diagnostic symptom, as sug-
gested by Cole and Hughes (1994), was not evaluated,
because sufficient data were not available. DNA samples
and chromosome preparations from patients and both of
their parents were available in 21 families. In the other
five families, the samples were available in only patients
and their mothers. Experimental protocols were approved
by the Committee for the Ethical Issues on Human Ge-
nome and Gene Analysis, Nagasaki University.

Microdeletions of all 26 patients with SoS were con-
firmed by FISH analysis (fig. 1). Six BAC/PAC clones
(CTC-355H11, RP11-1006E8, RP11-606E24, RP1-
118M12, RP11-147K7, and RP11-158F10) were se-
lected for FISH probes, according to the UCSC genome
browser. Cloned DNA was labeled with SpectrumGreen-
11-dUTP or SpectrumOrange-11-dUTP (Vysis) by nick
translation and denatured at 76�C for 10 min. Probe-
hybridization mixtures (10 ml) were applied on the chro-
mosomes, were incubated at 37�C for 16 h, and then
were washed. Fluorescence photomicroscopy was per-
formed under a Zeiss Axioskop microscope equipped
with a quad filter set with single band excitation filters
(84000, Chroma Technology). Images were collected
and merged using a cooled CCD camera (TEA/CCD-
1317-G1, Princeton Instruments) and IPLab/MAC soft-
ware (Scanalytics). RP11-606E24 and RP1-118M12 in-
volving NSD1 were deleted in all cases. RP11-1006E8
was deleted in all but three cases (SS19, SS44, and
SS109). RP11-147K7 is not deleted in SS44 but is deleted
in others. Thus, 23 patients had the same deletion span-
ning a region at least from RP11-1006E8 to RP11-
147K7 (fig. 1). The size of the common deletion was
originally reported as 2.2 Mb, but it turned out to range
from 1.3 Mb to 2.7 Mb, according to the most current
UCSC database (November 2002). A de novo micro-
deletion in 21 individuals and normal karyotypes in both
of their respective parents were confirmed by FISH.
Mothers of the remaining five patients also showed a
normal FISH karyotype.

To trace the parental origin of the deletion in the 26
families, we carried out PCR-based microsatellite analy-
sis using four markers (STS02 [GenBank accession num-
ber BV005166], STS03 [GenBank accession number
BV005165], STS04 [GenBank accession number BV
005168], and STS06 [GenBank accession number BV
005167]) that were newly generated from BAC clones
mapped to the common deletion (figs. 1 and 2) and that
showed high heterozygosity among 10 normal Japanese
control individuals. Twelve other markers included
D5S2111 within the common deleted region, and
D5S436, D5S410, D5S422, D5S400, D5S429, D5S677,
D5S2008, D5S2073, D5S1354, D5S408, and D5S2006,
which flank the deletion, were also used (fig. 2). PCR

amplification was performed in a 20-ml PCR mixture
containing 50 ng genomic DNA, 10 pM of each fluo-
rescent primer and reverse primer, 250 mM dNTP, 0.5
U Ex Taq polymerase (Takara), and 10# PCR buffer
(Takara). PCR was cycled 40 times at 98�C for 10 s,
55–60�C for 30 s, and 72�C for 30 s. PCR products were
electrophoresed in ABI PRISM 377 automated sequencer
(PE Applied Biosystems) and analyzed with fragment
analysis software (PE Applied Biosystems). As a result,
20 of the 26 families were informative for the parent-
of-origin (fig. 1). In 18 of the 20 families, microdeletions
had occurred in the paternally derived chromosome 5,
whereas the occurrence of deletions in the maternally
derived chromosome was confirmed in only two infor-
mative cases. In addition, all the patients from the other
five families in which only the maternal DNA was avail-
able retained the maternally derived alleles at the marker
loci examined; therefore, the finding supports the pa-
ternal origin of their microdeletions.

We then genotyped six 3-generation families and two
2-generation families with an unaffected sib. Haplotype
analysis disclosed the type of chromosome/chromatid
rearrangements in the patients. Five instances of paternal
deletion and an instance of maternal deletion had intra-
chromosomal type of rearrangements, whereas rear-
rangements in the other two instances of paternal de-
letion were interchromosomal type (fig. 2). Occurrence
of double recombination between the two closest mark-
ers flanking the microdeletion is very unlikely, because
the genetic distance between them is only 7.8 (D5S677–
D5S2008) to 15.8 cM (D5S429–D5S2073). Therefore,
it is reasonable that the rearrangements in the former
six subjects are interpreted to be intrachromosomal (fig.
2). The absence of somatic mosaicism was confirmed in
100 mitotic cells by FISH in each of these eight subjects.

Parental origin of microdeletions and/or duplications
have been investigated in several genomic disorders. De-
letions in Williams syndrome (WS) at 7q11.23 and velo-
cardiofacial syndrome (VCFS) at 22q11.2 were of equally
paternal and maternal origin (Nickerson et al. 1995;
Dutly and Schinzel 1996; Urban et al. 1996; Baumer et
al. 1998). Deletions at 17p11.2 in Smith-Magenis syn-
drome (SMS) and their reciprocal chromosomal events,
duplications of 17p11.2, tended to occur more fre-
quently in the paternally derived chromosomes than the
maternally derived chromosomes, but a significant par-
ent-of-origin bias was not observed (Shaw et al. 2002).
Instead, duplications in Charcot-Marie-Tooth disease
type 1A (CMT1A) at 17p11.2–p12 (Palau et al. 1993;
Bort et al. 1997; Lopes et al. 1997) were of preferential
paternal origin. In contrast, microdeletions in neurofi-
bromatosis type 1 (NF1) at 17q11.2 were of predomi-
nantly maternal origin (Lazaro et al. 1996; López Correa
et al. 2000). A 15q11–q13 deletion occurring in the pa-
ternally and the maternally derived chromosome results
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in Prader-Willi (PWS) and Angelman (AS) syndromes,
respectively, because of the imprinting effect at the chro-
mosomal region. Furthermore, some terminal deletion
syndromes also showed biased parental origin. Deletions
in Wolf-Hirschhorn syndrome (WHS) at 4p16.3 (Quar-
rell et al. 1991; Tupler et al. 1992; Wieczorek et al. 2000)
and cri du chat syndrome (CCS) at 5p15.3 (Mainardi
et al. 2001) are of preferential paternal origin, and the
1p36 deletion syndrome showed predominant maternal
deletions (Wu et al. 1999). Mechanisms resulting in ter-
minal deletions may be different from those in interstitial
deletions in genomic disorders.

Preferential paternal origin of microdeletions in our
patients with SoS may be explained by either (1) the
influence of the parental origin of microdeletions on the
SoS phenotype or (2) more susceptibility of a region at
or around the microdeletion on the paternally derived
chromosomes to abnormal chromosomal rearrange-
ments than that on the maternally derived chromosome.
Since the two patients with the maternal deletion had
typical clinical manifestations for the syndrome, and no
imprinted genes have been identified in the region (Brzus-
towicz et al. 1994; Ledbetter and Engel 1995; Morison
and Reeve 1998), the first possibility is unlikely. We fa-
vor the second hypothesis. Predominant paternal origin
of de novo point mutations as well as of de novo struc-
tural chromosome abnormalities has repeatedly been re-
ported (Chandley 1991; Moloney et al. 1996; Wirth et
al. 1997). Most of such de novo mutations may arise at
spermatogenesis, and paternal age effect has been docu-
mented in many diseases (Wirth et al. 1997). The average
paternal age in our patients with paternal deletions is 32.3
years (range 27–43 years), not significantly deviating from
31.8 years for the general Japanese population (Web site
of Ministry of Health, Labor and Welfare of Japan).
Chromosomal rearrangements mediated by possible LCR
may not be affected by paternal age.

There have been several studies on the type of chro-
mosomal rearrangements. In WS, VCFS, CMT1A, and
NF1, most deletions/duplications were associated with
interchromosomal rearrangements (Urban et al. 1996;
Lopes et al. 1997; Baumer et al. 1998; López Correa et
al. 2000). Deletions and duplications of 17p11.2 in SMS
were caused by either intra- or interchromosomal events
(Potocki et al. 2000; Shaw et al. 2002) and by deletions
in PWS, as well (Carrozzo et al. 1997; Robinson et al.
1998). It is most likely that interchromosomal rearrange-
ments arise by an unequal crossing-over at the meiosis
I through paralogous LCRs between homologous chro-
mosomes. However, intrachromosomal type of rearrange-
ments may occur by an LCR mispairing–mediated un-
equal sister-chromatid exchange. Alternatively, the rear-
rangements arise through the formation of an intrach-
romosomal loop that is also mediated by LCRs within
a chromatid. Although both events may occur in a so-

matic cell, and possibly in a spermatogonial cell (Lopes
et al. 1997), its occurrence during meiosis remains un-
known. Since somatic mosaicism for deletion was never
observed in our patients with SoS, the postzygotic oc-
currence of the intrachromosomal rearrangements is un-
likely, and thus all these abnormalities in our series of
patients may have arisen at a prezygotic period.

An interesting correlation between the parental origin
and the type of deletion/duplication has been recognized
(Lopes et al. 1997). Paternal duplications in CMT1A are
always associated with interchromosomal rearrange-
ments, whereas maternal duplications/deletions, both in
CMT1A and in hereditary neuropathy with liability to
pressure palsies, are associated with intrachromosomal
rearrangements. Thus, the mechanism for such rearrange-
ments occurring in females and males may be different
in these diseases. However, this is not the case for SoS,
since both events were observed in our series of patients.

In conclusion, we observed that microdeletions in SoS
are mostly of paternal origin, and intra- or interchro-
mosomal rearrangements are both involved in the mi-
crodeletion. A physical map construction that covers the
common deleted region and its flanking regions is now
in progress. It remains to be seen whether LCRs or other
repetitive sequences present in the 5q35 region mediate
the deletion.

Acknowledgments

The authors are greatly indebted to the patients and their
parents. We also thank Keiichi Ozono and Kouji Inui at De-
partment of Developmental Medicine (Pediatrics), Osaka Uni-
versity Graduate School of Medicine, Suita, Japan, for recruiting
their patients; and Ms. Yasuko Noguchi, Kazumi Miyazaki,
Naoko Takaki, and Naoko Yanai, for their technical assis-
tance. This work was supported by a grant from the Core
Research for Evolutional Science and Technology unit of the
Japan Science and Technology Corporation.

Electronic-Database Information

Accession numbers and URLs for data presented herein are
as follows:

GenBank, http://www.ncbi.nlm.nih.gov/GenBank/ (for mark-
ers deposited: STS02 [accession number BV005166], STS03
[accession number BV005165], STS04 [accession number
BV005168], and STS06 [accession number BV005167])

Marshfield genetic map, http://research.marshfieldclinic.org/
genetics

Ministry of Health, Labor and Welfare in Japan, http://
wwwdbtk.mhlw.go.jp/toukei/cgi/j_kensaku (for average pa-
rental age at birth in Japan) (in Japanese)

Online Mendelian Inheritance in Man (OMIM), http://www
.ncbi.nlm.nih.gov/Omim/ (for Sotos syndrome)



1336 Am. J. Hum. Genet. 72:1331–1337, 2003

UCSC genome informatics, http://genome.ucsc.edu/ (for human,
mouse, and rat genomes)

References

Baumer A, Dutly F, Balmer D, Riegel M, Tukel T, Krajewska-
Walasek M, Schinzel AA (1998) High level of unequal meiotic
crossovers at the origin of the 22q11.2 and 7q11.23 dele-
tions. Hum Mol Genet 7:887–894

Bort S, Martinez F, Palau F (1997) Prevalence and parental origin
of de novo 1.5-Mb duplication in Charcot-Marie-Tooth dis-
ease type 1A. Am J Hum Genet 60:230–233

Brzustowicz LM, Allitto BA, Matseoane D, Theve R, Michaud
L, Chatkupt S, Sugarman E, Penchaszadeh GK, Suslak L,
Koenigsberger MR, Gilliaam TC, Handelin BL (1994) Pa-
ternal isodisomy for chromosome 5 in a child with spinal
muscular atrophy. Am J Hum Genet 54:482–488

Carrozzo R, Rossi E, Christian SL, Kittikamron K, Livieri C,
Corrias A, Pucci L, Fois A, Simi P, Bosio L, Beccaria L,
Zuffardi O, Ledbetter DH (1997) Inter- and intrachromo-
somal rearrangements are both involved in the origin of
15q11-q13 deletions in Prader-Willi syndrome. Am J Hum
Genet 61:228–231

Chandley AC (1991) On the parental origin of de novo mu-
tation in man. J Med Genet 28:217–223

Cole TRP, Hughes HE (1994) Sotos syndrome: a study of the
diagnostic criteria and natural history. J Med Genet 31: 20–32

Douglas J, Hanks S, Temple IK, Davies S, Murray A, Upadhyaya
M, Tomkins S, Hughes HE, Cole TRP, Rahman N (2003)
NSD1 mutations are the major cause of Sotos syndrome and
occur in some cases of Weaver syndrome but are rare in
other overgrowth phenotypes. Am J Hum Genet 72:132–143

Dutly F, Schinzel A (1996) Unequal interchromosomal rear-
rangements may result in elastin gene deletions causing the
Williams-Beuren syndrome. Hum Mol Genet 5:1893–1898

Kurotaki N, Imaizumi K, Harada N, Masuno M, Kondoh T,
Nagai T, Ohashi H, Naritomi K, Tsukahara M, Makita Y,
Sugimoto T, Sonoda T, Hasegawa T, Chinen Y, Tomita H-
A, Kinoshita A, Mizuguchi T, Yoshiura K, Ohta T, Kishino
T, Fukushima Y, Niikawa N, Matsumoto N (2002) Hap-
loinsufficiency of NSD1 causes Sotos syndrome. Nat Genet
30:365–366

Lazaro C, Gaona A, Ainsworth P, Tenconi R, Vidaud D, Kruyer
H, Ars E, Volpini V, Estivill X (1996) Sex differences in mu-
tational rate and mutational mechanism in the NF1 gene in
neurofibromatosis type 1 patients. Hum Genet 98:696–699

Ledbetter DH, Engel E (1995) Uniparental disomy in humans:
development of an imprinting map and its implications for
prenatal diagnosis. Hum Mol Genet 4:1757–1764

Lopes J, Vandenberghe A, Tardieu S, Ionasescu V, Levy N,
Wood N, Tachi N, Bouche P, Latour P, Brice A, LeGuern E
(1997) Sex-dependent rearrangements resulting in CMT1A
and HNPP. Nat Genet 17:136–137
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czak M, Müller-Myhsok B, Schönling J, Zerres K (1997) De
novo rearrangements found in 2% of index patients with



Reports 1337

spinal muscular atrophy: mutational mechanisms, parental
origin, mutation rate, and implications for genetic counsel-
ing. Am J Hum Genet 61:1102–1111

Wu Y-Q, Heilstedt HA, Bedell JA, May KM, Starkey DE, Mc-

Pherson JD, Shapira SK, Shaffer LG (1999) Molecular re-
finement of the 1p36 deletion syndrome reveals size diversity
and a preponderance of maternally derived deletions. Hum
Mol Genet 8: 313–321


	Preferential Paternal Origin of Microdeletions Caused by Prezygotic Chromosome or Chromatid Rearrangements in Sotos Syndrome
	Acknowledgments
	Electronic-Database Information
	References


