of the channel’s opening transition without inhibiting voltage-sensor activation, thus partially uncoupling voltage-sensor activation from channel gating. Electromechanical coupling between the voltage-sensing domain (VSD) and the pore of Kv channels has been shown to depend on specific interactions between the S4-S5 linker and the carboxyl-terminal portion of the S6 segment. Here, we show that a single glycine to valine mutation in the S4-S5 linker of the Kv2.1 channel causes a large energetic destabilization of the channel’s open state. Moreover, the G317V mutation also interferes with the channel’s inhibition by CORM-2, suggesting that there is a cavity at the interphase between the VSD and the pore of the channel, including the S4-S5 linker, and that it is part of the CORM-2 binding site in the channel. These data are consistent with the mechanism of channel inhibition by this compound. Supported by Instituto de Ciencia y Tecnología del Distrito Federal, Grant PIFUTP09-262 to L.D.I.

2704-Pos Board B474
Intraacellular Ions Impede Voltage Sensor Return in Kv1.2 Channels
Samuel J. Goodchild, Hongjian Zhu, Chris Ahern, David Fedida.
University of British Columbia, Vancouver, BC, Canada.
Voltage sensing in Kv channels originates from the coupling of movement between the charged S4 segment and the activation gate at the cytoplasmic region of the pore domain. The voltage sensor moves prior to the pore opening and the pore must shut before the voltage sensor returns to its resting state. However, gating current recordings from Kv channels indicate that frequently voltage sensors return more slowly after depolarisations that populate open states, indicating that the open pore exerts a resistance to S4 return. This process of pore closure therefore intrinsically regulates the deactivation kinetics of Kv channels. We observed slow voltage sensor return (IgOFF) in WT-Kv1.2 channels under non-permeant ion conditions after depolarisations to voltages that caused channel openings. Using TEA+ and NMG+ internal solutions resulted in a slower IgOFF than internal Cs+, suggesting that the intracellular ionic composition was modulating IgOFF. A mutation in the pore lining S6 segment to enlarge the inner cavity (Kv1.2-I402C) removed the slowing of IgOFF in the presence of internal NMG+, suggesting that NMG+ interacted within the inner cavity of the WT channel to prevent pore closure through a ‘foot in the door’ mechanism. Gating currents of a non-conducting, P-type inactivated channel (Kv1.2-W366F, V381T), in the presence of intracellular K+ ions also displayed a slowing of IgOFF after depolarisations that would open the channel pore. These results suggest that internal K+ ions bound in the inner cavity can also slow activation gate closure. We propose that internal ions in the cavity of Kv1.2 allosterically regulate the voltage sensor deactivation kinetics by preventing pore closure and thus rate limiting the return of voltage sensors.

2705-Pos Board B475
Voltage–Dependent Gating of the K+ Channel KvLm Explored through Heterotetramers
Rahmil Syeda1, Jose S. Santos1, Mauricio Montal1, Hagan Bayley2.
1University of California San Diego, San Diego, CA, USA, 2University of Oxford, Manorfield Road, Oxford, OX1 3TA, United Kingdom.
Voltage-gated K+ (Kv) channels are tetrameric assemblies in which each subunit is modular in design and consists of a voltage-sensor and a pore. KvLm, the voltage-gated K+ channel from Listeria monocytogenes differs from other Kv channels in that its voltage-sensor contains only three out of the eight charged residues implicated in voltage-gating. Here we ask how many sensors are required to produce a functional Kv channel by investigating heterotetramers comprising combinations of KvLm full-length (FL) and its sensorless pore-domain (PM). Accordingly, we studied the voltage-dependent properties of KvLm channels with 0, 1, 2, 3 and 4 voltage sensors. We show that KvLm heterotetramers produced by cell-free expression yield functional channels after reconstitution in droplet interface bilayers. Further, we demonstrate that three voltage-sensors are sufficient to recapitulate the voltage-dependent activation features of wild-type KvLm, whereas deletion of two or more sensors severely suppresses the voltage-dependent closure and activation of the assembled channel. The current–voltage relationship of all heteromers remains similar. We also demonstrate that all four voltage-sensors are required to keep the channel closed at hyperpolarizing potentials, and that deletion of all four sensors results in a pore-only assembly, which retains limited voltage-dependence.

2706-Pos Board B476
Allosteric Stabilization of Fully Resting Voltage Sensors by a Tarantula Toxin
Kenneth S. Eum1, Juan M. Anguerya2, Heesoo Kim2, Luke Zhao3, Bruce E. Cohen1, Jon T. Sack1.2
1University of California Davis, Davis, CA, USA, 2Marine Biological Laboratory, Woods Hole, MA, USA, 3Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
The mechanism of a tarantula toxin’s action on the voltage gating of a K channel was investigated. An oxidation-resistant variant of guanitoxin-1E (GxTX) with methionine 35 replaced by norleucine, was synthesized and found to retain biological activity. When applied to voltage-clamped CHO-K1 cells expressing rat Kv2.1, this GxTX was found to shift channel opening to more positive voltages. In response to short stimulating voltage steps, the voltage shift of conductance saturated at micromolar GxTX concentrations. Prolonged or repetitive pulses to positive potentials ejected GxTX from Kv2.1 channels, revealing the decreased affinity of GxTX for activated voltage sensors. GxTX positively shifted Kv2.1 gating currents, and prevented outward gating charge movement at negative voltages. The modulation of gating charge movement indicates that GxTX stabilizes gating charges in their most internal conformation. Single Kv2.1 channels with GxTX bound exhibited a similar unitary conductance as without tarantula toxin, but had an increased latency to first opening in response to positive voltage steps. A diminished mean open time in the presence of GxTX confirms that channel openings occur with toxin bound and suggests a mechanism for the toxin-induced decrease in peak conductance of macroscopic currents. A simple allostERIC model was developed where GxTX stabilizes the earliest resting state of voltage sensors. In this model, GxTX binds activated voltage sensors with decreased affinity, and exerts only a feeble destabilizing influence on the dominant open state. The difference in binding affinity between resting and activated voltage sensors suggests potential for development of GxTX as a probe of voltage sensor conformation in living cells.

2707-Pos Board B477
Activation Gate Opening Precedes Slow Inactivation in Shaker K+ Channels
Ference Papp, Tibor G. Szanto, Zoltan Varga, Florina Zakany, Gyorgy Panyi.
University of Debrecen, Debrecen, Hungary.
In the absence of N-type inactivation Shaker potassium channels display slow (C-type) inactivation. Functional and structural studies indicated that channel opening precedes slow inactivation in voltage-gated and KcsA K+ channels, whereas others argued for slow inactivation from the closed state of the channel as well. None of the previous studies correlated the opening of the activation gate (A-gate), formed by the bundle crossing of the S6 segments, with the development of inactivation, which is associated with the structural rearrangement in the selectivity filter. These two gates are coupled and thus, the current experiments addressed the hypothesis that opening of the activation gate must precede slow inactivation. To address this hypothesis we compared the voltage dependence of A-gate opening and that of the development of inactivation in T449A/V474C Shaker-IR channels. Opening of the A-gate was monitored by the accessibility of 474C to Cd2+ from the intracellular side. The membrane potential was changed repeatedly from a holding potential of −120 mV to test potentials ranging from −110 mV to −60 mV in the presence or absence of Cd2+. Our results show that the function describing the voltage dependence of Cd2+ block is shifted toward the negative potentials compared to the voltage dependence of steady-state inactivation curve. This indicates that A-gate opening already occurs at such negative potentials where no inactivation can be detected. Furthermore, the curve representing Cd2+ block is also negatively shifted compared to the voltage dependence of steady-state activation (G-V) curve. This suggests that even at fairly negative holding potentials, at which no macroscopic current can be detected, rare channel openings occur yielding access to the channel cavity. Based on these results we suggest that A-gate opening always precedes structural changes associated with slow inactivation. Supported by OTKA K75904

2708-Pos Board B478
Gating Properties and Voltage Sensing in Kv1.2
Itzel G. Ishida, Gisela E. Rangel-Vesacas, Leon D. Islas.
National Autonomous University of Mexico, Mexico City, Mexico.
Kv1.2 is a voltage gated potassium channel whose crystal structure has been solved. There is markedly little electrophysiological information about it, which limits the vast potential usefulness of the structure. In an effort to deepen our functional understanding of the Kv1.2 channel, we set out to characterize its properties through recordings of macroscopic and single ionic and gating currents and develop models for activation based on established models for other Shaker channels. Preliminary data indicate that an electrochemical coupling between the voltage-sensing domain (VSD) and the pore of the channel is required to keep the channel closed at hyperpolarizing potentials, and that deletion of all four sensors results in a pore-only assembly, which retains limited voltage-dependence.
Positioning and Guidance of the Voltage Sensor S4 Within the Omega-Gating-Pore in the Shaker K-Channel
Claudia Lehmann 1, Hendrik Helstad 1, Nikolaus G. Greeff 2, Biophysics Institute Greeff, Uetikon am See, Switzerland.

Inwardly leaking omega-currents in resting Shaker K-channels were first found when the long charged residue R362 on S4 was made short, creating a pore in the voltage-sensing domain (Tombola et al., 2005, 2007). We recently demonstrated that in fact a pair of adjacent charged residues on S4 must be short to build a double-gap (Gamal El-Din et al., 2010). These residues located at every third position A359, R362, R365, R368, R371, K374 can be seen as a rail, shorthand notation “aRRRRK”. Omega-currents were obtained for the double-gap constructs “aRRRRK”, “RssRRK” and “aRRsRK” (short residues lower case). In a mechanistic view, the long residues slide like bolts in a guidance groove which becomes the leaking omega-pore when two occluding bolts are shortened.

Presently, we study the wall and length of this guidance groove. Especially, we checked in the closed state of S4 whether at the outer end of the groove, E283 on S2 opposes A359 on S4, and whether E293, F290 form the inner end and oppose R362 on S4. Firstly, we kept the inner part open (R362S2) and studied different mutant pairs at positions 283(S2) and 359(S4). The size of the resulting omega-current clearly corresponded to the cleft width obtained from molecular modeling. Secondly, leaving the outer part open with A359, we demonstrated that the omega-currents now depended on the cleft width between residues at 362(S4) and 293, 290 on S2. In conclusion, the omega-pore represents a guidance groove for the gating charges of S4. E283 and E293 located at the outer and inner end of the groove determine the length of the membrane voltage drop. This length also guarantees that during gating always at least one residue senses the field in the pore.

The Silent K⁺ Channel Subunit, K⁺.6.4, Influences the Gating Charge Movement of Kv:2.1 in a Heterotetrameric Channel Complex
Elke Bocksteins 1,2, Alain J. Labro 1, Dirk J. Snyders 1, Durga P. Mohapatra 2.
1University of Antwerp, Antwerp, Belgium, 2University of Iowa, Iowa City, IA, USA.

Voltage-gated K⁺ (Kv) channels are tetramers of α-subunits that detect changes in membrane potential (V) by a positively charged (Q) voltage-sensing domain (VSD). Molecular movements of VSDs lead to charge displacement that can be recorded as transient gating currents (Ig), which subsequently results in channel gating. The Kv2.1/Kv6.4 channel does not form functional homotetramers; however, it can tetramerize with Kv2.1 subunits to form functional Kv2.1/Kv6.4 heterotetramers, with a proposed 3:1 stoichiometry. Previously we showed that Kv6.4 subunits exert a significant (~40 mV) hyperpolarizing shift in the voltage-dependent inactivation of heterotetrameric Kv2.1/Kv6.4 channels, as compared to Kv2.1 homotetramers, without significant effects on activation gating. However, the underlying mechanism remains unclear. To address this we analyzed the Ig recorded from heterotetrameric Kv2.1/Kv6.4 channels transiently expressed in HEK293A cells. Half-maximal displacement of gating charge (g(1/2)) for Kv2.1 homotetramers was ~26 mV, as determined from the charge-voltage (Q-V) curve. Analysis of the decay time constant of I(GV)ON as a function of voltage resulted in a bell shaped curve with a maximal time constant around the midpoint potential of ~20 mV. Co-expressing Kv6.4 with Kv2.1 resulted in earlier charge movement as evident from a ~16 mV hyperpolarizing shift in the Q-V curve. Furthermore, we observed a double bell shaped curve for the decay time constant, with maximal time constants around ~20 mV and ~70 mV; the latter corresponding to the Kv6.4-induced ~40 mV hyperpolarizing shift in the voltage-dependence of channel inactivation. Therefore, we suggest that this more negatively located ON-gating component presumably reflects the voltage-dependence of the Kv6.4 subunit within the Kv2.1/Kv6.4 heterotetramer, and that the VSD movement of only the Kv6.4 subunit is sufficient to induce closed state channel inactivation.