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Abstract 

Previous work by G. Zlotkin and J.S. Rosenschein (1989, 1990, 1991, 1992) discussed inter- 
agent negotiation protocols. One of the main assumptions there was that the agents’ goals remain 
fixed-the agents cannot relax their initial goals, which can be achieved only as a whole and 
cannot be partially achieved. A goal there was considered a formula that is either satisfied or not 
satisfied by a given state. 

We here present a more general approach to the negotiation problem in non-cooperative domains 
where agents’ goals are not expressed as formulas, but rather as worrh functions. An agent 
associates a particular value with each possible final state; this value reflects the degree of 
satisfaction the agent derives from being in that state. 

With this new definition of goal as worth function, an agreement may lead to a situation 
in which one or both goals are only partially achieved (i.e., agents may not reach their most 
desired state). We present a negotiation protocol that can be used in a general non-cooperative 
domain when worth functions are available. This multi-plan deal type allows agents to compromise 
over their degree of satisfaction, and (in parallel) to negotiate over the joint plan that will be 
implemented to reach the compromise final state. The ability to compromise often results in a 
better deal, enabling agents to increase their overall utility. 

Finally, we present more detailed examples of specific worth functions in various domains, and 
show how they are used in the negotiation process. 
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1. Introduction 

1.1. Distributed problem solving versus multi-agent systems 

One of the primary research issues in distributed artificial intelligence (DAI) is how 
to have agents interact coherently. There are two main points of view in DA1 research, 
namely that of distributed problem solving (DPS) and multi-agent (MA) systems; each 
considers the problems of coherent interaction from a different perspective [ 81. 

In DPS, agents are centrally designed, and the system has been built to be dis- 
tributed so as to improve system performance, scalability, modularity, and/or relia- 
bility. In addition, certain problems, through geographical or functional distribution 
of data and knowledge, are appropriately dealt with through a distribution of control 
among distinct agents. The central research issue in DPS is how to have these inde- 

pendent problem solvers work together coherently to solve the global problem, while 

maintaining acceptably low levels of inter-agent communication: agents should not du- 
plicate work unnecessarily, should not distract one another unnecessarily, and should 
share tasks and partial results in a productive way. Work in this field includes [2- 
7, 18,271. 

In multi-agent systems, agents are not assumed to be centrally designed, and no 

assumptions can be made about agents working together cooperatively. On the contrary: 
agents are assumed to be autonomous utility maximizers, who will cooperate only when 
they can benefit from that cooperation (perhaps in the broad sense; what benefits an 
individual agent, of course, is dependent on how it is designed). MA researchers are also 
concerned with the coherence of interaction, but must build agents without having the 
luxury of designing their interaction opponents. The central research issue in MA is how 

to have these autonomous agents identify common ground for cooperation, and choose 
and perform coherent actions. When no common ground can be found, the agents 

must resolve conflict to the best of their ability. Work in this field includes [9, 14- 
16,25,28]. 

DPS and MA research share many concerns, since even centrally designed agents in 
DPS can be in fundamental conflict (having different perspectives, different knowledge, 
and different local goals); thus, DPS can benefit from MA research on how to resolve 

inter-agent conflict. Similarly, MA research concerns itself with finding effective proto- 
cols and interaction frameworks with certain desirable properties-and this is exactly the 

main issue that concerns DPS (although there does not seem to be a complete overlap 
between the properties DPS requires from protocols and the properties required in MA 

systems). 
In effect, DPS and MA systems occupy the extreme poles of what is the full spectrum 

of DA1 research. There also exists work that directly combines the two points of view. 
For example, work described in [20] falls within the general DPS category: agents are 
solving a global problem cooperatively. The technique used by those agents, however, 
stresses the autonomy of each one. Global problem solving behavior is achieved by its 
suitable instantiation as local, independent goals for each of the autonomous agents. 
Similarly, some of Durfee’s research [ 61 assigns great autonomy to DPS agents, as does 
the work of Ferber on eco-problem solving systems [ 131. 
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1.2. Negotiation in distributed arti$cial intelligence 

Since coherent action is central to both DPS and MA systems, the concept of “ne- 
gotiation”, in different guises, has appeared throughout the DAI literature. DPS re- 
searchers [6,17] see negotiation as an important mechanism for assigning tasks to 
agents, for resource allocation, and even for deciding which problem solving tasks to 
undertake. MA researchers [ 30,341 have agents use negotiation to share the work as- 
sociated with carrying out a joint plan (for the agents’ mutual benefit), or to resolve 
outright conflict arising from limited resources (again, to the agents’ mutual benefit). 

In this paper, we are concerned with negotiation among autonomous agents. The 
agents are autonomous in the sense that they have their own utility functions, and no 

global notion of utility (not even an implicit one) plays a role in their design. Thus, 
this research falls squarely in the multi-agent systems camp. 

In our previous work [30,31,33,35-371 we discussed several domains for multi- 
agent negotiation protocols. One of our main assumptions has been that agents’ goals 
remain fixed-agents cannot “relax” their initial goals to reach agreement. Goals can be 
achieved only as a whole and cannot be partially achieved. 

To cope with essential conflict between two agents’ goals, we presented in [ 311 a 

negotiation protocol that allows the agents to reach an agreement in which they cooperate 
until a certain point, and then flip a coin to decide which agent is going to continue 
on alone to achieve its goal. In conflict situations, only one agent will achieve its goal 

(with some probability). 
This paper presents a more general approach to the negotiation problem in non- 

cooperative domains where agents can relax their initial goals. An agreement may lead 

to a situation in which one or both goals are only partially achieved. We also present 
several approaches to the goal relaxation problem and give some examples of domains 

in which each of the different approaches can be used. 
When goals can be relaxed, agents are negotiating both over what parts of their goals 

will be satisfied, and (in parallel) over the joint plan that will be implemented to satisfy 

those parts. A key ingredient of our approach is the notion of worth, which we will use 
to specify the value, to an agent, of total or partial achievement of its goal. Although 
agents can relax their goals, however, they do not fundamentally alter their computation 
of worth during the negotiation process (a process that would be similar, for example, 
to what happens in the PERSUADER system [ 28,291) . 

2. Rules of the game: the overall negotiation framework 

Because two agents coexisting within the same environment might interfere with 
the actions of the other, there needs to be coordination of activity. Depending on the 
particular domain and goals involved, the possibility may exist that the agents will be 
able to help each other and achieve both goals with a lower overall cost. 

A deal between agents is a joint plan, in which agents share the work of transforming 
the world from the initial state to some final state. The plan is “joint” in the sense that 
the agents probabilistically share the load, compromise over which agent does which 
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actions, or even compromise over which agent gets its goal satisfied.* In the broad 
sense, the utility for an agent of a deal is the difference between the worth of the 
agent’s goal achieved through that deal, and the cost of that agent’s part of the deal. 

We assume the interaction between agents occurs in two consecutive stages. First 
the agents negotiate, then they execute the entire joint plan that has been agreed upon. 
No divergence from the negotiated deal is allowed. The sharp separation of stages has 
consequences, in that it rules out certain negotiation tactics that might be used in an 
interleaved process. 

2.1. The concept of a solution 

When we say that we are looking for a “solution” to the negotiation problem, we 
mean we wish to establish three things: 

(1) A precise definition of what a goal is. 

(2) A precise definition of a deal type and utility; these might include probabilistic 
sharing of actions, probabilities associated with achieving final states, partial 
achievement of goals, and many domain dependent attributes, including the nature 

of the conflict deal (the domain dependent default deal that the agents live with 
if no agreement is reached). Our previous work has discussed the pure deal type, 

mixed deal type [ 30,361, and semi-cooperative deal type [ 3 I]. 

(3) A specification of how one should design an agent to negotiate in a particular 
well-defined negotiation environment. 

How should one evaluate a solution? There are several ways of doing this, primarily 

focusing on how we evaluate the properties of deal types. Deal types may have a 
variety of attributes that are considered desirable. For example, certain kinds of deal 

types provide solutions to more general situations. The mixed deal type (discussed 
in [ 30,361)) where agents probabilistically divide the work associated with bringing the 

world to a mutually acceptable state, can only be used in cooperative situations where 
such a mutually acceptable state exists. When such a state does not exist (i.e., there 
exists real conflict), the agents can still each benefit by negotiating using the semi- 
cooperative deal type (discussed in [ 34,371). This deal type allows agents to agree to 
cooperate as far as they can, then flip a coin to see who will continue and accomplish 
his goal alone. The semi-cooperative deal type thus increases the size of the negotiation 
set, the set of possible (rational) agreements. 

Deal types may have other positive attributes, such as requiring less initial information, 
and may also change the availability of negotiation strategies that are pairwise optimal 
and/or stable (in equilibrium). It is also desirable to have negotiating agents converge 

to a pareto optima/ deal (a deal that could only be improved for one agent in ways that 
make it worse for the other agent). 

’ Our use of the term joint plun differs somewhat from other uses in the artificial intelligence (AI) literature 

(for example, [ 19 I ). There, the term joint plan implies a joint goal, and mutual commitment by the agents 

to full implementation of the plan (e.g., if one agent dropped out suddenly, the other would still continue). 

In our use of the term, the agents are only committed to their own goal and their part of the combined plan. 

Each may do its part of the plan for different reasons, because each has a different goal to achieve. Were one 

agent to drop out, the other agent may or may not continue, depending on whether it suited its own goal. 
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As mentioned above, it is highly desirable that an agent’s negotiation strategy be 
in equilibrium. A strategy S is said to be in symmetric Nash equilibrium [22] if 

assuming that your opponent’s agent is using S, the best you can do is to also have your 

agent use S. Thus, no other agent will be able to take advantage of yours by using a 
different negotiation strategy. Moreover, there is no need to exercise secrecy regarding 
the design of your agent-on the contrary, it is actually beneficial to broadcast its 
negotiation strategy, so that the other agent doesn’t blunder and potentially cause both 

harm. 
There is, in a sense, a meta-game going on between the designers of autonomous 

agents [ 24,261. Each one wants to design an agent that maximizes its designer’s utility. 
There are strong motivations to design an agent so that it uses a negotiation strategy in 
equilibrium, in that it results in “best performance” in pairwise competitions between 
your agent and any other given agent. Conflicts will be avoided whenever possible, and 

deals that are reached will be pareto optimal.3 

3. Goal relaxation 

The main distinction between the approach of this paper and our previous work is the 
definition of what constitutes an agent’s goal. In task oriented domains (TODs) [30, 

35,361, a goal specifies a set of tasks that the agent is required to carry out. In state 
oriented domains (SODS) [ 31,34,37], a goal specifies a state or set of states that 
an agent wishes to reach. In contrast, in worth oriented domains (WODs) the goal 
definition is subsumed by a worth function over all possible final states. Those states 
with the highest value of worth might be thought of as those that satisfy the full goal, 

while others, with lower worth values, only partially satisfy the goal. 

We assume that the worth of the final state, and the cost associated with the plan, are 
comparable and can be cast into equivalent units of utility. There is the potential for a 
tradeoff in cost and worth; for example, an agent might accept an outcome with lower 
worth if he ends up doing less work to bring it about. 

The ability to relax one’s goal opens up new opportunities for cooperative agreement. 
In SODS, when both agents’ goals are achievable, agents can agree on a joint plan. The 
division of labor in a joint plan serves as a kind of implicit utility transfer between 

agents. When one agent agrees to do more work in a joint plan that achieves both 
agents’ goals, he increases the utility of the second agent. The ability to transfer utility 
in this fashion is the basis for cooperative activity in SODS; since we do not consider 

explicit utility transfer, these implicit transfers serve a critical role. In worth oriented 
domains, the flexibility of this implicit utility transfer is increased. There is now another 
dimension along which agents can compromise-not only can they tune the amount of 

s However, there may be ecological motivations for designing agents that don’t use equilibrium strategies, 

since multiple non-equilibrium agents might all benefit from their deviant strategies. For example, ecologically 

a group of agents that all play cooperate in the prisoners’ dilemma will do better than a group using the 

equilibrium strategy of defect, even though a defecting agent will win in a head-to-head competition with a 

cooperating agent [ 11. Nevertheless, we here concentrate on pairwise equilibrium, and search for symmetric 

equilibrium negotiation strategies. 
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Fig. I. Agent A, ‘s worth function for a meeting. 

work they do, they can also adjust which linal state they reach and how much worth 

they extract from the plan. 

3.1. Meeting scheduling-un excmple 

As an example, consider two agents that are trying to set up a meeting. The first 

wishes to meet later in the day, and the second wishes to meet earlier in the day. 
Both agents prefer meeting today (regardless of the time) rather than tomorrow. In 

addition, each wishes to have the meeting in his own office (so that the costs associated 
with travel and travel time will be low). While the first agent assigns highest worth 
to a meeting at 4pm, he also assigns (progressively smaller) worths to a meeting at 
3pm, 2pm, and so on. Similarly, the second agent assigns highest worth to a meeting 

at 9am, but also assigns (progressively smaller) worths to a meeting at loam, 1 lam, 

and so on. Having the meeting on another day is assigned a very low worth by both 

agents. 
Agents can reach several different agreements, by showing flexibility both about the 

time and the place of the meeting. By accepting a suboptimal time, an agent accepts a 
lower worth payoff, but may be able to offset this depending on where the meeting is 
held, and how much it will cost him to attend. For example, the first agent might suggest 

having the meeting at the second agent’s office, late in the day. The second agent might 
counter-offer by agreeing to the location but asking for a slightly earlier time. 

A deal in this encounter is a place and a time for the meeting. Let’s flesh out the 
details of this example and see how agents might evaluate the situation. The worth 
function for agent Al can be seen in Fig. 1. The y-axis denotes the worth the agent 
associates with meeting A2 at the time given on the x-axis, regardless of the place the 
meeting is held. The function shown in the figure is logarithmic. 

Of course, some meeting places are better for Al than others, because he will spend 
less to get there. The cost of meeting in his own office is 0, while if he drives across 
town to AZ’S office, it will cost him roughly 70 units. It will cost him 40 to go halfway, 
and 22 to meet A2 a quarter of the way (at University Avenue). The cost is nonlinear, 
as just getting into his car will cost a disproportionate amount of time; the cost function 
is logarithmic. The graph in Fig. 2 shows the utility agent Al assigns to each possible 
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Fig. 3. The sum of the agents’ utilities. 

deal. The height at each point of the plane shows the utility (i.e., worth minus cost) 

that Al assigns to the deal. 
Agent A2 is in the symmetric situation. He most wants to meet at 9am in his own 

office. The graph showing his worth, and the one showing his utility, assume shapes 

symmetric to Figs. 1 and 2. The sum of the agents’ utilities can be seen in the graph in 

Fig. 3. Note that the deals with the highest utility sums are at the four corners of the 
plane. Those deals give to one or both of the agents a best time or place. The meeting 
might be held at 4pm in Al’s office, at 9am in AZ’S office, at 4pm in AZ’S office, or at 
9am in Al’s office. 

Although there are four efficient deals that maximize the sum of the agents’ utilities, 
there are only two that maximize the product of the agents’ utilities (see Fig. 4). Either 

the agents can meet at Al’s preferred time at AZ’S preferred place, or vice versa (9am 
at Al’s office, or 4pm at AT’S office). Any product maximizing mechanism will choose 
one of those two deals. 



a” Antonlo Ave 

Fig. 4. The product ot the agents’ utilities 

Fig. S. Sum and product of utilities with hneur worth and cost functions. 

The shapes of the sum and product graphs are sensitive to the worth and cost functions 
of the agents. For example, if the worth and cost functions were linear (instead of 
logarithmic), the sum of the agents’ utilities would be a constant sum-all deals would 

have the same utility sum (as can be seen on the left side of Fig. 5). The product of 
agent utilities creates a maximal plateau stretching between the previous two maximal 
deals (AI’S time, AZ’S place, and vice versa). Any deal on the plateau might be reached 
(including the previous two deals). If, however, the worth and cost functions were 
exponential, the sum and the product of the agents’ utilities assume the shapes seen 
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Fig. 6. Sum and product of utilities with exponential worth and cost functions. 

in Fig. 6, a kind of mound with a maximal point in the center. A product maximizing 

mechanism would then have the agents meet in the middle at noon. 

3.2. Mechanisms that maximize the product of utilities 

We considered above deals that maximize the sum of agents’ utilities, and those that 
maximize the product of their utilities. In general, we focus on the latter criterion, and 
pay particular attention to product maximizing mechanisms, or PMMs. Our emphasis on 
this class of deal-making mechanisms has its roots in game theory research. 

There are a number of existing approaches to the bargaining problem in game theory. 

One of the earliest and most popular was Nash’s axiomatic approach [ 21,221. Nash 
was trying to axiomatically define a “fair” solution to a bargaining situation. He listed 
the following criteria as ones that a fair solution would satisfy: 

(1) 

(2) 

(3) 

(4) 

Individual rationality (it would not be fair for a participant to get less than he 
would anyway without an agreement). 

Pareto optimality (a fair solution will not specify an agreement that could be 
improved for one participant without harming the other). 
Symmetry (if the situation is symmetric, that is, both agents would get the same 
utility without an agreement, and for every possible deal, the symmetric deal 
is also possible, then a fair solution should also be symmetric, i.e., give both 
participants the same utility). 
Invariance with respect to linear utility transformations. As an example, imagine 
two agents negotiating over how to divide $100. If one agent measures his utility 
in dollars while the other measures his in cents, it should not influence the fair 
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solution. Similarly, if one agent already has $10 in the bank, and evaluates the 
deal that gives him x dollars as having utility 10 + x while the other evaluates 
such a deal as having utility x. it should not influence the fair solution (i.e., 

change of origin doesn’t affect the solution). 

(5) Independence of irrelevant alternatives. Imagine two agents negotiating about 
how to divide 10,000 cents. The Nash solution will be 5,000 cents for each, 
due to the symmetry assumption above. Now imagine that the same agents are 
negotiating over $100. Even though there are now some deals that they can’t 
reach (for example, the one where one agent gets $49.99, and the other gets 
$50.01), the solution should be the same, because the original solution of 5,000 

cents can still be found in the new deal space. 
Nash showed that the product maximizing solution not only satisfies the above criteria, 

but it is the only solution that satisfies them. We use the Nash solution, in general, as a 

reasonable bargaining outcome, when it is applicable. Nash, however, had some assump- 
tions about the space of deals that we do not have. For example, the Nash bargaining 

problem assumes a bounded, convex, continuous, and closed region of negotiation. In 
our agent negotiations we do not assume that the space of deals is convex, nor that it is 

continuous. 

4. Domain definition 

We here present the formal definitions of worth oriented domains and their associated 
encounters, which incorporate the notion of worth functions that assign to every state 
some worth value. 

A worth oriented domain is a tuple (S, A. ,_7, c) where: 
( I ) S is the set of all possible world states. 
(2) A = {Al, AZ,. , A,,} is an ordered list of agents. 
(3) J is the set of all possible joint (i.e., n-agent) plans. A joint plan J E J moves 

the world from one state in S to another (i.e., J : S -+ S). If s E S is the initial 
state of the world, then J(s) E S is the state of the world after the joint plan 

J has been executed. The actions taken by agent k are called k’s role in J, and 
will be written as Jk. We can also write J as (Jl, 52,. . . , _I,,>. 

(4) c is a function c : 3 --i (Et+)“. For each joint plan J in J, c(J) is a vector 
of n positive real numbers, the cost of each agent’s role in the joint plan. c(J), 
denotes the cost of agent i’s role in J. If agent i plays no role in J, his cost 
c( J)i is 0. 

Definition 1. An encounter within a WOD (S, A, J, c) is a tuple (s, (WI, W2,. . . , W,,)) 

such that s E S is the initial state of the world, and for all k E { 1,. . . , n}, Wk : S + R 

is the worth function of agent k. Wk assigns some value to each possible final state of 
the world. Wk will also be called An’s goal. 

We will assume that each worth function Wi is defined for all states. The worth 
function stands in place of and encapsulates the classical artificial intelligence notion of 
a goal as a set of acceptable final states. W;(f) is an indication of how much of agent 
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Ai’s goal has been achieved, or how “close” state f is to the achievement of Ai’s whole 
goal. Note that the worth function makes no reference, for example, to the other agent’s 
goals; it is a (fixed) function over states. A more general formulation might attempt to 

allow an agent to have as a goal blocking the other agent’s goals (whatever they might 
be), but we do not consider that case. 

The definition of worth (value) of a goal in state oriented domains [ 31,34,37], 
which assumed no goal relaxation, was actually a subcase of the current definition. The 

worth value of a goal in an SOD can be thought of as a two-valued worth function, 
which assigned some constant value wi to states that achieved Ai’S goal gi. 

Wi(f) = 2’ L if f I= gi9 

otherwise. 

We write f k gi to mean that goal gi has been achieved in state f. This notation 

relates to the classic approach in artificial intelligence of viewing states and goals as a 
formula. 

The above (SOD-like) function Wi corresponds to a situation in which there does not 
exist a state that partially satisfies agent Ai’s goal. In the general WOD case, Wi can be 
any function whose range is R. 

Definition 2. Given a WOD (S, A, 3, c), we define: 
l P c J to be the set of all one-agent plans, i.e., all joint plans in which only one 

agent has an active role. 
l The cost c(P) of a one-agent plan in which agent k has the active role, P E P, 

is a vector that has at most one non-zero element, in position k. When there is no 

confusion, we will use c(P) to stand for the kth element (i.e., c(P) k) rather than 

for the entire vector. 

The exact (domain-specific) definition of the cost of a plan is not critical to the 
subsequent discussion (for example, whether or not the cost of a plan depends on the 
plan’s initial state). The cost function may, in fact, have parameters other than the plan 

itself, such as the initial state, day of the week, and other domain dependent variables. 

What is important is the ability of an agent to measure the cost of a one-agent plan, and 
his ability to measure the cost of one agent’s part of a joint multi-agent plan. 

Definition 3 (Best plans). 
l s 5 f is the minimal cost one-agent plan in P in which agent k plays the active 

role and moves the world from state s to state f in S. 
l If a plan like this does not exist then s -% f will stand for some constant plan wk 

that costs infinit 
x 

to agent k and 0 to all other agents. 
l If s = f then s -+ f will stand for the empty plan A that costs 0 for all agents. 
l s 5 F (where s is a world state and F is a set of world states) is the minimal cost 

one-agent plan in P in which agent k plays the active role and moves the world 
from state s to one of the states in F: 
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5. Underlying assumptions 

In [30,36], we introduced several simplifying assumptions, some of which are in 

force for our discussion here as well: 

(1) 
(2) 
(3) 

(4) 

(5) 

Utility nuximizer: Each agent wants to maximize his expected utility. 
Complete knowledge: Each agent knows all relevant information. 
Isolated negotiation: An agent cannot commit himself as part of the current 
negotiation to some behavior in a future negotiation, nor can he expect that 
his current behavior will in any way affect a future negotiation. Similarly, an 

agent cannot expect others to behave in a particular way based on their previous 
interaction history. Each negotiation stands alone. 
Bilateral rlegotiution: In a multi-agent encounter, negotiation is done between a 
pair of agents at a time. 
Symmetric abilities: All agents are able to perform the same set of operations in 

the world, and the cost of each operation is independent of the agent carrying it 

out. 

6. One-agent best plan 

Utility for an agent in general is the difference between the worth of a final state and 
the cost that an agent has to pay to bring the world to this final state. If agent i were 
alone in the world, it would bring the world to its “stand-alone optimal” state fi that 

satisties the following condition: 

We define U; to be i’s stand-alone maximal utility, e.g., Wi(f,) - c(s ---f fi), which is 

the maximum utility that agent i could achieve if it were alone in the world. 

Consider the following example of how a single agent might use a worth function to 

decide on its actions. 

6.1. Subgoal set 

One category of multi-valued worth functions would assign some value to each of 
several distinct subgoals that an agent has to achieve. States in which only some of the 
subgoals are achieved would be rated lower than states in which they are all achieved 
(we explore other types of worth functions below). 

An agent i may have a set of distinct subgoals or tasks {gf / k = 1,. . . , rzi} that he 
has to achieve. Each subgoal g$‘s worth to him is NJ!. In this case, his overall goal is 

a conjunction of subgoals, g; = Ai:, (gf). Th e worth function in this case might be 
defined as 
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Fig. 7. Initial state of the world, one agent. 

Fig. 8. Possible final states. 

6.1.1. Example: the blocks world domain 

Let the initial state of the world be as shown in Fig. 7. 
Agent Al has two subgoals: g; is “The black box is clear at slot 2, but not on the 

table” and g: is “The white box is alone at slot 3”. The worth of the two subgoals is 

w! = 4 and WY = 6. If A1 were alone in the world, he could bring the world to one of 
the three stand-alone optimal states, as seen in Fig. 8. 

Agent A1 is indifferent among ff , f: and f:, because in all cases his utility is 2. 

They are all stand-alone optimal states, as can be seen below. 

l f! + gf, therefore Wt(fi) = 4. c(s -+ f,‘) = 2, therefore the utility of agent 1 
from f,’ is 2 = (4- 2). 

l jf + g:, therefore Wl (ff) = 6. c(s -+ ff) = 4, therefore the utility of agent 1 
from f: is 2 = (6 - 4). 

l ff kg! ngf therefore Wl(ff) = lO= (6+4). c(s -+ ff> = 8, therefore the utility 
of agent 1 from fi is 2= (lo- 8). 

Agent 1 is indifferent among f,‘, f: and f: even though f: fully satisfies his goal, 
and fi and j: only partially satisfy his goal. This is due to the definition of WI-an 

agent gets positive utility from achieving a subgoal, and zero utility from unachieved 

subgoals. 
There can be domains where an agent gets some penalty (negative utility) from 

unachieved subgoals. Let p” be the penalty that agent i gets when his subgoal & is not 
achieved (it is convenient to think of penalties as negative numbers). We could then 
redefine the worth function to be 
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In the previous example, if p;, pf < 0 then agent I prefers ff over fl and f:. 

7. Negotiation over suboptimal states 

Assume now that two agents. each with their own worth function, find themselves in 
a shared environment. It may be impossible for them to each perform their single-agent 

best plan (because of resource constraints, interfering actions, or conflicting goals). On 
the other hand, they may actually be able to benefit from the presence of the other agent, 

if their actions are chosen and coordinated correctly. Designers of such agents would 

likely be interested in having them come to an agreement that resolves their conflicts or 
exploits cooperative opportunities. 

7. I. Using mixed joint plans with multi- value worth functiom 

Agents can negotiate over joint plans J that move the world from the initial state s 
to a final state. To overcome the problem of indivisible operations, they may negotiate 

over mixed joint plans. 

Definition 4 (Mixed joint plan). Given a joint plan / E 3, a mixed joint plan is J:p, 

O<p<lER. 

The semantics of a mixed joint plan is that the agents will perform the joint plan 
J = (J, , J2) with probability p, or the symmetric joint plan (Jz, JI ) with probability 

I - p (i.e., where the agents have switched roles in J). Under the symmetric abilities 
assumption (5) from Section 5, both agents are able to execute both parts of the joint 

plan, and the cost of each role is independent of which agent executes it. 
In situations where goals cannot be relaxed (e.g., no worth functions exist), agents 

negotiate over mixed joint plans. In such cases, the agents consider only plans that bring 
the world to a state satisfying both agents’ goals (fully). The utility of a deal to an 
agent is then the stand-alone cost to reach that final state, minus the (expected) cost of 
his role in the plan. In worth oriented domains, the basic approach is the same, but now 
agents are able to agree on a plan that carries them to any final state, not necessarily 
one that fully satisfies both agents’ goals. Therefore, although the agents are explicitly 

negotiating over mixed joint plans, they are implicitly negotiating over two separate 
items: 

( 1) What will be the final state of the world? 
(2) How will they share the work of bringing the world to that final state? 
There is a tradeoff between these two items. As mentioned above, an agent might 

accept an outcome with lower worth if he ends up doing less work to bring it about. This 
was exactly the situation that we saw above in the scheduling example (in Section 3.1), 
where time of the meeting (final state) was traded off with location of the meeting 
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Fig. 9. Initial state of the world, two agents. 

(cost) (the symmetric definition of final state and cost would also have been possible). 
Several deals with different time and location choices were equally valued. 

The WOD utility for an agent of a mixed joint plan is thus simply the difference 
between the final state’s worth to him, and the expected work to which the deal commits 

him. 

Definition 5. 
l If 6 is a mixed joint plan, then Utility,(S) is defined to be Wi( 6(s)) - s(6) 

(where ci(S) is the expected cost for agent i of the mixed joint plan 6, i.e., 
ci(S) =p~(J)~t (1 -p)c(J),, where k is i’s opponent). 

l Failure to reach a deal will result in the two agents doing nothing, leaving the 

world in the initial state. The con$ict deal 8 is thus defined to be the empty joint 
plan (A, A) : p for any p. 

Note that, given the above definitions, if the initial state has nonnegative worth to 

both agents, the negotiation set (i.e., the set of all individual rational and pareto optimal 

deals) will never be empty. In the worst case, it will include the conflict deal. 

7.1.1. A mixed joint plan negotiation 
Consider the following example of two-agent negotiation over mixed joint plans, using 

a worth function of the same type as was presented above (i.e., a worth function that 
assigns value to distinct subgoals). 

Let the initial state of the world be as in Fig. 9. 
l Agent A1 has two subgoals: gl is “The black box is on the white box at slot 1” 

and g: is “The gray box is clear at slot 3”. The worths of the two subgoals are 

W: = 10 and w: = 4. The penalties for unachieved goals are pf = p: = -2. 
l Agent A2 has two subgoals: gk is “The black box is on the white box at slot 1” 

and gi is “The gray box is clear at slot 4”. The worths of the two subgoals are 

w$ = 10 and w$ = 4. The penalties for unachieved goals are pi = pi = -2. 
The agents share one subgoal (gt = g:) and have a conflict over the other subgoals. 

If each agent were alone in the world, to fully achieve his goal he would have a cost of 
at least 10 = (8 + 2)) which would give him a utility of Ui = 4 = ( 10 + 4) - 10. There 

is no final state that fully achieves both goals, but there are final states that partially 
achieve them. The best joint plan T that achieves the swap in slot 1 (g’, and g$> costs 

2 for each agent. 
There are two deals that maximize the product of the agents’ utility, one preferred 

by A1 and one preferred by AZ. A1 prefers the mixed joint plan in which they both 
cooperate in performing the swap, and then Al brings the gray block to slot 3 (deal 
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Fig. IO. Possible final states. two agents. 

61, whose final state is shown in Fig. IO). A2 prefers the mixed joint plan in which 
they both cooperate in performing the swap, and then A2 brings the gray block to slot 4 

(deal 82). This is a symmetric situation, and any product maximizing mechanism will 
choose one or the other arbitrarily (see Section 3.2). 

Utility,(6,) =Utility,(&) =(lO+4) - (2+2) = 10, 

Utility, (82) = Utility,( 61 ) = C IO ~- 2 ) - 2 = 6. 

The expected utility for both agents, who have flipped a coin to choose between the 
above two alternatives, is s-which is greater than U;, which is 4. In other words, even 
though the two goals can be only partially achieved, there exists a deal that is better for 
both agents than full achievement of their own goal by themselves. 

Although negotiating over mixed joint plans can be used with worth functions, it is 

possible for agents to “do better”, in the sense that they will have more utility to divide 
between themselves. A more general negotiation protocol would be to negotiate over 
deals that are puic~ of mixed joint plans, i.e., multi-plun deals. 

Definition 6. 
l A multi-plan deal is (61 , 82, q) where 8; are mixed joint plans and 0 < q < 1 E lR 

is the probability that the agents will perform 61 (they will perform 82 with 
probability I - q). 

l Utility,(&,S2,q) =q(W,(6i(S)) -C;(6;)) +(I -q)(Wi(aj(S)) -Ci(Sj)). 

Agents are thus able to use a multi-plan deal based unified negotiation protocol, 
such as the one introduced in 134,371, using worth functions as the base of the utility 
evaluation. Note that, unlike the SOD analysis there where we had several types of 
discrete interactions (cooperative, compromise, conflict), we here have a continuous 
situation. In an SOD cooperative or compromise interaction, both agents’ goals are fully 
achieved, and in the conflict situation, only one is. In a WOD, both agents’ goals may 
be fully achieved, or one may be fully achieved, or both may be partially achieved, and 
so on. The range of possibilities increases. 
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Fig. 11. Relationship of the multi-plan deal type to mixed joint plans. 

Consider the following example, which shows the increased utility available for the 
agents to share when they negotiate over multi-plan deals instead of over mixed joint 
plans. 

The initial state s of the world can be seen in Fig. 11. A’s goal is to swap the position 
of the blocks in slot 1, but to leave the blocks in slot 2 in their initial position (there is 

only one state that satisfies this goal; call it f~). B’s goal is to swap the position of the 
blocks in slot 2, but to leave the blocks in slot 1 in their initial position (f~). 

To achieve his goal alone, each agent needs to do at least 8 PickUp/PutDown opera- 

tions (each with a cost of 1) . Assume that A’s worth function assigns 10 to f~ and 0 to 
all other states, and that B’s worth function assigns 10 to J”s and 0 to all other states. In 
this case, the negotiation set over mixed joint plans includes the deals (s -+ f~, A) : 1 
and (A, s ---f fs) : 0. Using some product maximizing mechanism, the agents will break 

the symmetry of this situation by flipping a coin. The utility of each agent from this 
deal is 1 = ;(lO- 8). 

Negotiation over the multi-plan deal type will cause the agents to agree on (SA, 88 ) : i, 
where Si is the mixed joint plan in which both agents cooperatively achieve i’s goal. The 

best joint plan for doing the swap in one of the slots costs 2 PickUp/PutDown operations 
for each agent. The utility for each agent from this deal is 3 = ( $ ( 10 - 2) + i( -2) ) . 
By negotiating using the multi-plan deal type instead of mixed joint plans, there is more 

utility for the agents to share, 6 instead of 2. 

8. Examples of worth functions 

Now that we’ve seen the definition of a worth oriented domain, and considered several 

ways that agents might reach agreements in a WOD, we have another question to address. 

What should an agent’s worth function look like? There is no single best answer, since 
it depends to a large degree on the domain in which the agent is operating. An agent’s 
designer might have one reasonable way of assigning worth in one environment, and 
use a completely different method in a different environment. Below, we examine a few 
of the possibilities that might be used by that designer. 

8.1. Subgoal se1 

Above, we mentioned one type of worth function, that which assigns some value to 

each of several distinct subgoals that an agent wants to achieve. States in which only 
some of the subgoals are achieved are rated lower than states in which they are all 
achieved. 
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Fig. 12. The multi-agent tileworld 

Examples of domains in which this type of worth function is appropriate include 
those in which an agent has a collection of independent subgoals to achieve. The agent’s 

degree of satisfaction is monotonically related to the set of subgoals satisfied-the more 
subgoals achieved, the better off he is. For example, an electronic mail server has a set 
of messages to forward, and might assign varying value to different messages. The total 
worth of any state is the sum of the values of messages that have been successfully 
delivered. The individual subgoals are decoupled. An agent is happy with each separate 
subgoal’s completion, independent of other subgoals’ completion. 

8. /. I. The multi-agent tileworld 

Let’s examine another domain, the multi-agent version of the tileworld [23] (see 

Fig. 12).4 
A single hole in the grid is represented by a set of contiguous grid squares, marked 

by repetitions of the same number. The number represents the vaIue of filIing in the 

entire set of squares, i.e., the hole’s worth. In principle, different agents might assign 

different worth to filIing the same hole. If the two agents do associate different worth to 
the same hole, two numbers appear in the grid square (e.g., the 3 and 4 in the sample 

figure: the lower left number denotes lower left agent’s worth, so 3 is A I ‘s worth). Tiles 
are represented by black squares (m) inside the grid squares. Obstacles are represented 
by thick black lines (I). 

Agents can move from one grid square to another horizontally or vertically (unIess 

the square is occupied by a hole or an obstacle-multiple agents can be in the same 
grid square at the same time). While moving, the agent can push a tile or a chain of 
tiles in the same direction, unless they would then run into an agent or an obstacle. 
When a tile is pushed into any grid square that is part of a hole, the square is filled and 

4 The use of simplified domains like the tileworld or the blocks world has sometimes been criticized because 

these domains do not deal with the genuine issues involved in building robots in the real world. However. 
we are nor using these domains in order to understand robot action. Instead, we use these domains with their 

original intent--to explore abstract issues of goal interaction. These abstract issues will arise, for example, 

when software agents [ I2 ] , sharing limited resources (such ;LS memory, communication lines, printers), need 

to coordinate. The management of these resources among software agents maps well to artificial domains such 
as the tileworld, blocks world, postmen domain, and so on. The problems of perception and action, which 

make (for example) the blocks world inappropriate for planning research in robotics, are not directly relevant 
to our research agenda. 
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Fig. 13. Initial state. 

becomes navigable as if it were a regular grid square. The domain is static except for 
changes brought about by the agents. When there is a potential collision between two 
objects that are attempting to move into the same grid square at the same time (agent 
and block, block and block), neither motion can be performed. 

In the original tileworld, there was only one agent. We are interested in the case where 

two or more agents are pursuing their goals concurrently within the same grid. For the 

sake of simplicity, we maintain symmetry and assume that the two agents A1 and A2 
start at the same location (e.g., the upper left-hand grid square). Thus both agents are 

able to carry out a given plan at equivalent cost. The cost of moving from one square 
to another is 1, whether or not the agent is pushing a tile or chain of tiles. 

In this domain, an agent’s goal is a subset of holes that he wants to see filled. Each 
hole has an associated worth for an agent, which is the value that agent associates with 

having the hole filled (regardless of who did the work). The worth of a world state for 
an agent is the sum of the worths for that agent of the holes that are filled in that state. 
This is an example of a subgoal set worth function. The utility for an agent of bringing 
the world to some specific state is, as above, the worth of that state for him minus the 
cost of the work he had to perform to reach that state. Each additional hole that gets 
filled, from among the holes he wants to have filled, independently contributes to the 

agent’s worth. 
Consider a tileworld encounter whose initial state is shown in Fig. 13. We will use 

the notation (x, y) to refer to specific grid squares, with the bottom left square having 
coordinates ( 1, 1), as shown in the figure. 

Note that, since there are three holes and only two tiles, not all goals can be achieved. 
The agents appear to be in a conflict situation. One will have both of his goals achieved, 
while the other will have only one of his goals achieved. Note, also, that our agents are 
not assumed to be “reactive” (in the artificial intelligence sense), the agent architecture 
normally associated with the tileworld domain. 

If At were alone in the world, he could fill the (5,s) hole with cost 1O;5 since it 
has worth 15, he gets a utility of 5. Filling just the (8,9) hole would cost him 12, with 
a negative utility of -3. If A1 were alone in the world, he could fill both the (5,s) and 



the (8,9) holes at a cost of 16; ’ since together the goals’ worth is 24, he would get a 
utility of 8. Thus AI (alone) would choose to till both his holes (Z/t = 8). 

If A2 were alone in the world, he could also fill the (5,8) hole with cost 10 (using 
the same plan as A 1 ), and also getting a utility of 5 (U2 = 5). If A2 were alone in the 

world, he could fill his (8,7) hole at a cost of 6; 7 with worth of 9, his utility is 3. 

Alone in the world, A2 can achieve his two subgoals at a cost of 22;* their combined 
worth is 24, leaving him with a utility of 2. Thus, A2 (alone) would prefer to fill only 
the (5,8) hole, and get a utility of 5; he has no motivation to fill the other hole. 

The best two-agent plan to achieve Al’s goals has a cost of 13 (agent Al does 8 
while agent A2 does S).” The accomplishment of these two goals has a worth of 24 

for A 1, and a worth of IS lor A?. A 1 would get 16 points of utility while AZ would get 

IO points of utility-both agents would benefit from this deal. 
The best two-agent plan to achieve A?‘s goals also has a cost of I3 (agent Al does 

4 while agent A2 does 9). ” The accomplishment of these two goals has a worth of 24 
for A?, and a worth of 15 for Al. A2 would get 15 points of utility, while Al would get 
1 I points of utility-both agents would also benefit from this deal. 

Negotiating over mixed joint plans they would agree on the latter of the above joint 
plans (since the product of the agents’ utilities is larger, 165 = 11 * 15 > 16* 10 = 160). 

However. negotiating over multi-plan deals actually allows them to “split” the expected 
utility equally, getting 13 each. The multi-plan deal that they will agree on assigns a 
probability of i that Al’s preferred two-agent plan will be carried out, and a probability 

of G that A~‘s preferred two-agent plan will be carried out. This results in an expected 

utilityofl3foreachoftheagents(((~)*10~+((~)*15)=((~)*16)+((~)*l1)= 
13). 

Note that the situation, where the agents appeared to be competing over resources, 
actually ended up being highly cooperative. Both agents benefit by having the other 

agent around, even if they lose the coin toss. In the worst case, AI would get 11 
(instead of (It = 8), and Ax would get 10 (instead of Uz = 5). 

8.2. Distance between states 

It is not always the case that an agent has independent subgoals that he is trying to 

achieve. Sometimes, it is more reasonable to model the situation differently. An agent 
might want to reach a certain ideal target state, but be partially satisfied the closer he 

can get to that state. The question is, closer in what sense? There may exist a reasonable 
distance measure over world states, and a correspondence between this measure and the 

“(7(7,7): (7.8): (7,7); (6.7): (S.71: (5.6). (4.6); (4.7); (3.7): (3,8); (4,8); (4,9); (5.9) , 1 
(6.9); (7,9). 

’ (6.5): (5.5); (5.6); (S.7): (6,7): (7.7) 

’ (7.6): (7.7); (697); (5,7); (5,6); (4,6). (4.7). (3,7): (3,8); (4,s); (5.8); (5,9): (6,9); (7,Y) 

(738); (729); (609); (X9); (S,8): (S.7); (6,7): (7.7). 

“AZ’S role = (7,6): (7,7); (6.7): (7.7); (7.8); A,’ role = (6,s); (5.5); (S,6); (5.7); (5,8); (S,Y) 

(6.9): (7.9). 

“‘AI’s initial role = (7.6); (7,71: (6.71. A?‘\ role = th.5): (-5.5); (S,6): (5.7); (5,8): (S,9); (6,‘)) 
(7.9); (7.8): Al’s final role= (7.7). 
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degree of satisfaction that an agent assigns to an arbitrary state. In other words, the 
“closer” that a state is to the ideal state, using this measure, the greater the amount of 
the goal that has been achieved. If a state is farther from the ideal state, less of the goal 
has been achieved. 

Imagine that you are to attend a concert in Central Park. Since you want to really feel 

like you’re up there on stage with the performers, you would ideally like to be in the 
first row of the audience, in the center. The further your seat is from that location, the 
less your seat is worth to you-and you will be willing to pay less to get it. The distance 
of your seat from front row, center, might be an appropriate base for establishing your 

worth function over all possible final states. This distance is a natural way of comparing 
final states in this situation. 

As another example, imagine that you are assembling a new PC to be used in your 
job. Your ideal machine might have a very fast processor with a large amount of RAM, 
a large and fast hard disk, a cache, and a floating point coprocessor. Other configurations 
will be inferior, but how do you compare a machine without a floating point coprocessor 
to one with a coprocessor but without a cache? And how do either of these compare to 

your ideal? The way to solve this evaluation problem is to impose some distance measure 
over the possible configurations. For example, we could use some standard benchmark to 
quantify the performance of any given PC. The ideal configuration produces a particular 
performance benchmark. Other, less ideal, configurations might be measured by their 
deviation from that performance benchmark. The closer the benchmark is to the ideal, 
the higher the machine’s worth to you. The further the benchmark, the less the machine 
is worth. 

The above examples give an intuitive sense of what we mean by evaluating worth 
using a distance measure between states. Below, we formalize the intuitions a bit and 
present two examples showing different approaches to the measurement of inter-state 

distance. 

8.2.1. The one-agent plan distance measure 

One useful prototypical distance measure between states is the cost of the one-agent 

plan that moves the world from one to the other [ 10 1. 

Definition 7. The distance between two world states s, f E S will be marked as d( s, f), 
and will be defined as c( s ---f f). 

This definition can be thought of (informally) as a metric over S; it is reflexive and 
satisfies the triangle inequality. 

l Rejkxivity: Vt E S: d(t, t) = 0. 
l Triangle inequality: V’s, t, f E S: d( s, t) + d( t, f) > d( s, f). 

This distance measure, however, is not necessarily symmetric: 
l Symmetric: ‘dt, f E S: d( t, f) = d( f, t). This property of symmetry should strictly 

be true when talking about metrics, but in our domains it is not always true-nor 
do we need it to be true. 

Using this distance measure, we can measure the worth of any particular state relative 
to the worth of some state that fully satisfies some particular goal g. Assuming that the 
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full achievement of g has an associated worth of W, we can define the worth function 
over a state t to be 

W(f) =w -mll(d(f,.f’)). 

i.e.. it is the difference between the worth of the goal and the distance from t to the 
closest state that achieves it. For further discussion about alternative worth functions of 
this type, see [ 1 I]. 

8.2.2. The delivery problem 

To illustrate the use of the above definition of worth, we define the delivery domain 
with bounded storage space. Delivery agents are using trucks to move containers between 
warehouses. To do the deliveries, agents can rent trucks, an unlimited supply of which 

are available for rental at every node. A truck can carry a limited number of containers. 

Each warehouse also has a limited capacity. The operations that can be done in this 
domain are Load and Unload (each costs 1). and Drive (which costs 1 per each distance 
unit). There is another activity that can occur: consumers come from time to time to 
take containers from the warehouses. 

Agents can cooperate by using the same truck for delivery of both agents’ containers. 

The only conflict that can occur is when the two agents need to deliver containers to the 
same warehouse, and there is not enough space for all the containers. In this case, one 
or both agents would not be able to fully achieve his goal. The goal may be completed 
later when some containers have been “consumed”, i.e., removed from the warehouse 

by a consumer. 
The one-agent plan metric is a reasonable heuristic measure to use when an agent 

whose goal has root been fully achieved can later achieve his whole goal. The one-agent 

distance as defined in this domain, for example, is an upper bound on how much the 
agent will need to spend to achieve his goal, when (or if) that achievement becomes 
possible. 

A simple delivery problem. Consider the graph in Fig. 14. The weight (length) of 
each edge is written beside it. There is place for only two more containers in warehouses 
JJ and z. Truck capacity is equal to 4. 

A 1 ‘s goal is to deliver two containers Ct and C? from x to z. AZ’S goal is to deliver 
container Cj from x to ~1, and Cd from .r to z. Each agent assigns a worth of 50 to the 
full achievement of his goal. 

If Al were alone in the world, he could achieve his goal by renting a truck at 
warehouse x to take his two containers to :. The best one-agent plan to do this is 
to load the two containers (with cost of 2 ). drive them to z (with cost of 40), then 
unload them both at ; (with cost of 2, and worth of 50). There is exactly enough room 
at z to accommodate the two containers. This plan gives Al a utility of Ui = 6 (i.e., 
50- (I+ 1+40+ 1 + 1)). 

If A2 were alone in the world he could achieve his goal by renting a truck at warehouse 
x to take his two containers to y and z. The best one-agent plan to do this gives him a 
utility of U2 = 6 also (i.e., 50 - ( I + 1 + 30 + 1 + 10 + 1) ). 
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Fig. 14. Simple delivery problem 

The two goals cannot both be fully satisfied, because there isn’t room for three 
additional containers in warehouse z. However, the agents can cooperate by using only 

one truck to make a partial delivery of the four containers. From one point of view, the 
agents are in conflict. However, from another point of view, they have a clear opportunity 
to benefit from cooperation. In this way, it is similar to the tileworld example above in 
Section 8.1.1. 

The agents will agree to rent only one truck at x which will be loaded with the four 
containers-each will rent the truck with probability 0.5. The truck will unload container 

Cs at y. C4 or Cl (each with probability 0.5) will also be unloaded at y. The truck 
will continue to z where the rest of the containers will be unloaded. Each agent has a 
0.5 chance of fully achieving his goal. In both cases each agent is expected to pay half 
of the cost of the whole journey. If the agent’s goal is only partially achieved, he will 
be at a “distance” of 12 from the achievement of his whole goal (one Load, a drive of 
length 10, and one Unload). The utility for both agents from this deal is: Utility, = 20 

(i.e., 0.5 x (50 - 12) + 0.5 x 50 - 0.5 x 40 - 4). Both agents have benefited from 
cooperating, even though one agent has not fully achieved his goal. 

8.3. Probabilistic distance 

Consider two chip manufacturers who are interested in high yield production of 
integrated circuits. They know that if they purify the air in their factories, accurately 
measure kiln temperatures, etc., they will increase the likelihood of their producing 
working chips. Since there are a limited number of air filters, accurate thermometers, 
and so on, they must negotiate over who gets how many of each. 

Having these resources is not the agents’ goal; production of working chips is the 

goal. The agents, however, cannot directly negotiate over the final states where each has 
a certain number of working chips (reaching such a given final state cannot, in any case, 
be guaranteed due to uncertainty in the production process). They are constrained to 
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negotiate over intermediate states that can bc deterministically generated. Nevertheless, 
there is a probabilistic relationship between the resource allocation in this intermediate 

state and the final (non-deterministic) state. Given a resource allocation configuration, 
an agent can estimate the distribution of possible final states. Using this distribution, 
he can evaluate the worth of a given resource configuration, and it is this resource 
configuration that is negotiable. 

This bears a resemblance to the PC assembly example above. We impose a distance 

measure over possible configurations, and evaluate how good a state is by how far it is 
from the ideal state. 

Some negotiation domains, as above, consist of such intermediate states that can be 
reached deterministically, and final states that are then reached non-deterministically. 
Agents will be negotiating over the intermediate states in the domain. They can evaluate 
the worth of these intermediate states by considering the “probabilistic distance” between 
intermediate and final states, and those final states’ worth values. 

Definition 8. Given a set of tinal states F. and a worth function that is defined for all 
members of F, we define the worth of an intermediate state t $l F to be 

where p( f 1 f) is the probability of reaching final state f given that we are in interme- 
diate state t. That is, the worth of t is the weighted average of the worths of the final 
states likely to result. 

The above detinition does not take into account the cost to the agent of the non- 
deterministic process, which could be subtracted from this worth. 

9. Conclusion 

We have presented an approach to the negotiation problem in non-cooperative domains 

where agents’ desires are encapsulated in worth functions. These worth functions serve in 
place of the more traditional notion of goal. Agreements may lead to a situation in which 
agents compromise, and do not reach their most desired state. The negotiation protocol 

that was presented (using multi-plan deals) has agents compromise over their degree of 
satisfaction, and (in parallel) negotiate over the joint plan that will be implemented to 
reach the compromise final state. 

These two aspects of negotiation, what final state will be reached and how it will be 
reached, are both captured in the multi-plan deal formalism. Moreover, the multi-plan 
deal makes these two aspects comparable, in that an agent can trade off one for the 
other. An agent, for example, could offer to do more work if a state more to his liking 
will result. 

Domain dependent approaches can be used in defining the worth function. We here 
presented several different definitions of the worth function, including one for a domain 
in which a goal can be a set of independent subgoals, one in which a conflict can be 
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later resolved (and distance between world states is thus an appropriate measure), and 
one in which a non-deterministic process follows a deterministic setup phase (and the 
negotiation is over the intermediate states at the end of the setup phase). 
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