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Automorphism groups of graphs and edge-contraction
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Abstract

If a class C of finite graphs is closed under contraction and forming subgraphs, and if every finite abstract group occurs as the
automorphism group of some graph in C, then C contains all finite graphs (up to isomorphism). Also related results concerning
automorphism groups of graphs on given surfaces are mentioned.
© 1974 Published by Elsevier B.V.

1.

The automorphism group A(X) of the graph X consists of all permutations of the vertex set V (X) preserving both
edges and non-edges. As is well known, given any (finite) group G, there exists a (finite) graph X such that A(X) and
G are isomorphic [5]. Later, a number of papers showed that one could also specify that X belong to certain classes
of finite graphs (graphs with given connectivity, chromatic number, graphs which are regular of given degree etc., see
[1,6,8,10,11]). “It was becoming apparent that requiring X to have a given abstract group of automorphisms was not
a severe restriction” [7, p. 170]. In this paper we are going to disprove this last assertion by showing that the given
abstract group of automorphisms of X implies X to be contractible to a large complete graph (Theorem 3.1′). This
result contains as a special case that for any compact surface, one can find a finite group which is not isomorphic to the
automorphism group of any graph which can be drawn on that surface [3,4].

The characterization of the automorphism groups of such classes of finite graphs which are closed under contraction
and forming subgraphs, seems to be an interesting question. For example, the class of finite graphs embeddable in a
fixed surface has this property. The automorphism groups of finite planar graphs have been characterised in [3].

We mention some results concerning finite abelian groups. Given any finite abelian group G, there exists a finite
connected planar graph X such that A(X) and G are isomorphic [2]. 2-connectedness cannot, in general, be required; if
the automorphism group of a 2-connected planar graph has odd order, then this group is cyclic [3]. But given any finite
abelian group G, there exists a finite 2-connected graph X such that A(X) and G are isomorphic and X is embeddable in
any closed surface of Euler characteristic ≤ 0 (see [4]). However, for any closed surface, one can find a finite abelian
group which is not isomorphic even to a subgroup of the automorphism group of any 3-connected graph embeddable
in that surface [4].
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Let Cn denote the class of those finite graphs which are not contractible to Kn, the complete graph on n vertices. We
show that for any finite abelian group G, there are infinitely many (n − 4)-connected graphs X in Cn such that A(X)

and G are isomorphic. This statement, compared with the preceding one, demonstrates that these classes of graphs are
really “wider” (from the point of view of automorphism groups) than those of graphs embeddable in fixed surfaces.

2.

We recall some definitions. We deal only with graphs without loops and multiple edges. V (X) denotes the set of
vertices, E(X) the set of edges of X.

Let X and Y be graphs. A mapping f : V (X) → V (Y ) of the vertex set of X onto the vertex set of Y is called a
connected homomorphism (or contraction) if

(a) [y1, y2] ∈ E(Y ) ⇔ y1 �= y2 and there is an edge [x1, x2] in X for which f (x1) = y1, f (x2) = y2;
(b) for any y ∈ V (Y ), the full subgraph of X on the subset f −1(y) of V (X) is connected.

If f (x)=x holds for all but one vertex of X and for the exceptional one f (x) ∈ V (X), then f is an elementary contraction.
All connected homomorphisms of a finite graph are iterated elementary contractions, up to a graph isomorphism.

The graph Z is said to be homomorphic to the graph X, denoted by X > Z, if Z is a subgraph of some f (X) where f
is a connected homomorphism.

3.

The main result of this paper is the following:

Theorem 3.1. Given a class C of (not necessarily finite) graphs, closed under connected homomorphisms and forming
subgraphs, assume that for any finite group G, there exists a graph inC, the automorphism group of which is isomorphic
to G. Then C contains all finite graphs.

Remark 3.2. Obviously, if X > Z, where Z is finite, then X contains a finite subgraph Y such that Y > Z. Hence in
Theorem 3.1 we may restrict ourselves to requiring C to be closed under forming finite subgraphs and contracting
edges of finite graphs.

Theorem 3.1′. Let G be a finite simple group containing a subgroup isomorphic to Zn
p, the direct product of n copies

of the cyclic group of order p, where p is an odd prime number. Assume that n ≥ M , p ≥ 4M3 where M = 2N−3,
N ≥ 3. Then any graph, the automorphism group of which is isomorphic to G, is homomorphic to the complete graph
on N vertices.

We remark that G can be chosen, e.g., as the alternating group of degree np (np ≥ 5). Thus Theorem 3.1 is a trivial
consequence of Theorem 3.1′. To prove the latter, we need the following:

Theorem 3.3. Let G be a finite simple group, G ⊇ Zn
p, p an odd prime, n ≥ M , p ≥ 4M3, where M = 2N−3. Assume

that the automorphism group of the connected graph X contains a subgroup isomorphic to G, acting fixed-point-free
on V (X). Then X is homomorphic to the complete graph on N vertices. (By fixed-point-free we mean that no vertex is
fixed under the action of the whole group.)

Proof. (A) There exists a finite graph X′ with the following properties:

(∗)

⎧⎪⎨
⎪⎩

X′ < X;
X′ is connected;
A(X′) contains a subgroup G′ isomorphic to G;
G′ acts on V (X′) fixed-point-free.
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As a matter of fact, let us consider any vertex x ∈ V (X); let Z be a connected finite subgraph of X containing the
vertex orbit xG′; and put X′ = ZG′ (the finite and obviously connected subgraph of X consisting of all edges of the
form e�(e ∈ E(Z), � ∈ G′)).

Let Y have the minimal number of edges among these finite graphs X′.
(B) We assert that G′ acts transitively on the edges ofY. Let e denote an edge ofY and eG′ the edge-orbit containing e.
Assume first that the graph eG′ is disconnected. Let � denote the connected homomorphism of Y which maps the

components of eG′ onto single points; let �(Y )=Y1. Obviously, Y1 < X, Y1 is connected, and G′ induces a permutation
group G′′ ⊆ A(Y1) on V (Y1) which acts fixed point-free. As G′′ is a homomorphic image of the simple group G′ and
|G′′| �= 1 (because G′′ acts transitively on the set of components of eG′), it follows that G′�G′′. This contradicts the
minimality of Y since |E(Y1)| < |E(Y )|.

Thus we have shown that the graph Y2, consisting of the edge set eG′, is connected. Obviously, Y2 < X, and G′
induces a permutation group G′′′ ⊆ A(Y2) on V (Y2) which acts fixed-point-free. Consequently, |G′′′| �= 1, and hence
(as G′′′ is a homomorphic image of the simple group G′) G′�G′′′. So Y2 complies with the requirements (∗). By the
minimality of Y, we have |E(Y2)| ≥ |E(Y )|. But Y2 is a finite subgraph of the connected graph Y, hence Y2 = Y . So we
have proved that G′ acts transitively on the edges of Y.

(C) The Cayley color-graph XH,S of the group H with respect to the subset S of H is defined as follows:

V (XH,S) = H ,

E(XH,S) = {[h, sh] : h ∈ H, s ∈ S, s �= 1}.
[4, Lemma 3] asserts the following:

Let Y be a connected graph, H a subgroup of A(Y ). Assume that none of the non-identity elements of H has a fixed
point. Then Y is homomorphic to XH,S for some generating system S of H.

If H denotes a subgroup of G′ isomorphic to Zn
p, than the cardinality of any generating system S of H is not less than

n, hence the valency of the vertices of XH,S is not less than 2n ≥ 2M . Hence

|E(XH,S)| ≥ M · |V (XH,S)| = 2N−3 · |V (XH,S)|.
W. Mader proved the following theorem [9]:

If for the graph U, |E(U)| ≥ 2N−3|V (U)|, then U > KN . (KN denotes the complete graph on N vertices).
Hence by the above, if the non-identity elements of H have no fixed points, then we are through:

X > Y > XH,S > KN .

(D) In the remaining cases we have a permutation � ∈ G′ of order p which fixes some vertex of Y. As � is not the
identity and Y is connected, we can find an edge [x, y] in Y such that x� = x, y� �= y. As p is prime, y� �= y implies
that y, y�, y�2, . . . , y�p−1 are different vertices, hence the valency of x is at least p.

If the valencies of all vertices of Y are ≥ 2M , then using the theorem of Mader we are finished.
Assume now that the set

B = {b1, . . . , bs}
of vertices of valency < 2M is not empty. p ≥ 4M3 > 2M implies by the above that x /∈ B. Let A = xG′ denote
the orbit of x. By the edge-transitivity of G′, there are at most two orbits of G′ in Y, hence A and B are these
orbits.

Let us consider the graph W on the vertex set V (W) = A, where two vertices are adjacent if and only if they have
a common neighbour in Y. (The common neighbour belongs to B because of the edge-transitivity.) W is connected.
G′ induces a group GIV ⊆ A(W) which acts fixed-point-free on A. Hence |GIV| �= 1, GIV�G′. Consequently, the
restriction of � to A is not the identity permutation, but x� = x. From this, one can deduce – as at the beginning of this
section – that there is a vertex in W the valency of which is not less than p. But GIV acts transitively on A, hence all
vertices of W have valency ≥ p. Thus

|E(W)| ≥ 1
2p · |A| ≥ 2M3 · |A|.
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Let

(i) E(W) = E1 ∪ . . . ∪ Es

be the partition of E(W) defined by:
[a1, a2] ∈ Ei if and only if i is the least index for which bi is a common neighbour of a1 and a2.
The sets Ei are pairwise disjoint.
Let m denote the valency of the vertices of B in Y. Then

|Ei | ≤ (m
2 ) < 1

2m2 < 2M2.

Hence if t denotes the number of non-empty sets on the right-hand side of (i), we have

t >
|E(W)|

2M2 ≥ 2M3 · |A|
2M2 = M · |A|.

Let us define a connected homomorphism � of Y by:
�(a) = a if a ∈ A,
�(bi) is a vertex of an arbitrary element of Ei if Ei �= ∅,
�(bi) is an arbitrary neighbour of bi if Ei = ∅.
(The vertex set of the obtained graph �(Y ) = Z is V (Z) = A.)
By definition, |E(Z)| ≥ t . Hence

|E(Z)| > M · |A| = M · |V (Z)|.
Consequently, an application of Mader’s theorem shows that

Z > KN ;

thus by

X > Y > Z > KN ,

the proof of Theorem 3.3 is complete.

Proof of Theorem 3.1′. Let X0 be a graph with A(X0)�G. Let V0 be the set of all those vertices of X0 which are
fixed under all automorphisms of X0. Let {Xi : i ∈ I } be the set of connected components of the graph obtained by
deleting V0 (and the incident edges) from X. Let Gi denote the subgroup of A(Xi) consisting of those automorphisms
of Xi which are restrictions of automorphisms of X to V (Xi). Clearly, the direct product D of the groups Gi is a
normal subgroup of A(X) (the graphs Xi can be moved independently), and the factor group A(X)/D is isomorphic
to the direct product of some symmetric groups (some of the X′

i can be permuted arbitrarily).1 Hence as G is simple,
some Gi is isomorphic to G, and all the others are trivial. Consequently, X0 has a subgraph X which complies with the
requirements of Theorem 3.3. An application of Theorem 3.3 proves Theorem 3.1′.

Remark 3.4. The same proof is valid for relational systems containing only unary and binary relations. The shadow of
such a relational system means the graph defined on the same set by connecting a pair of distinct vertices iff it belongs
to at least one of the relations (see [2]). The above proof yields:

Given a class K of relational systems having the property that for any finite group G, there is an object X in K such
that A(X)�G, then for any finite graph Y, there is an object in K the shadow of which is homomorphic to Y.

Remark 3.5. Theorem 3.1 fails to be true if instead of forming subgraphs we restrict ourselves to forming full sub-
graphs. This is shown by the following counterexample:

Let C denote the class of those finite graphs the complements of which are bipartite.
Contraction and forming full subgraphs do not increase the chromatic number of the complement of a graph.

1 We could exactly describe the group A(X) in terms of the wreath product (called also composition of permutation groups [7, p. 164]), but there
is no need to do this.
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As the automorphism group of a graph coincides with that of its complement, we have to refer to a theorem in [11]
which says that any finite group is isomorphic to the automorphism group of a finite bipartite graph.

4.

Now we give the simple construction for abelian groups.

Theorem 4.1. Given any finite abelian group G and an integer n ≥ 5, there are infinitely many finite (n−4)-connected
graphs X such that A(X) and G are isomorphic, and X is not homomorphic to the complete graph on n vertices.

Proof. [2, Theorem 3] asserts that there is a connected finite planar graph X0 such that A(X0)�G. Moreover, X0 has
a vertex x0 which is fixed under all automorphisms of X0.

Let Y denote a 2-connected planar graph which is asymmetric (has no nontrivial automorphisms) such that V (Y ) ∩
V (X0) = {x0}, |V (Y )| ≥ n − 5, and the valency of the vertices of Y does not exceed 3. (E.g., a large circuit with two
diagonals of lengths 2 and 3, respectively.)

Let S denote a set of n − 5 elements. S is assumed to be disjoint from V (X0) ∪ V (Y ). We define the graph X by

V (X) = V (X0) ∪ V (Y ) ∪ S,

E(X) = E(X0) ∪ E(Y ) ∪ {[a, b] : a ∈ V (X0) ∪ V (Y ), b ∈ S, a �= f (b)}
∪ {[a, b] : a, b ∈ S, a �= b},

where f denotes a one-to-one function from S into V (Y ).
The n-connectedness of X is clear. X≯Kn because by deleting the n − 5 vertices belonging to S we obtain a planar

graph (which is not homomorphic to K5).
The set S is invariant under A(X) since S contains the only vertices of X of valency |V (X)| − 2.
By the construction, the vertices of Y are fixed under all automorphisms of X0 ∪ Y , hence also under A(X). As f

is one-to-one, this implies that the vertices of S are likewise fixed. Hence A(X) is isomorphic to its restriction to X0,
which is A(X0)�G.

The various possible choices of Y result in an infinite collection of graphs X.

Added in proof. A strengthened form of Theorem 3.1′ based on the above proof will appear in Acta Math. Acad. Sci.
Hungar.
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