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Two asymptotic methods based upon Stokes and long-wave approximations are 
developed for the study of transporting a heat-conducting fluid through a flexible 
tube by peristaltic motion of the tube well. The asymptotic methods are justified 
rigorously and the existence of a unique generalized solution of the governing 
equations is proved if a condition in terms of the Reynolds number and other 
nondimensional parameters IS satisfied. ‘(1 1987 Academic Press, Inc. 

1. INTR~DUCTION 

The transport of a fluid through a flexible tube by peristaltic motion as a 
fundamental physiological process has found many applications in 
biomechanical and engineering sciences. The early mathematical models for 
peristaltic transport were based upon the Navier-Stokes equations for an 
incompressible viscous fluid subject to a periodic transverse displacement 
of the tube wall. A survey of the research results up to 1971 can be found in 
the article by Jaffrin and Shapiro [l], and a review of the recent work on 
the transport of physiological fluids has been given by Winet [2]. It 
became evident that the early models were inadequate to deal with trans- 
port problems when a fluid-particle mixture was considered, and some 
refined models taking into account the motion of solid particles in a 
viscous fluid were studied by Hung and Brown [3] and Kaimal [4], 
among others. The asymptotic methods developed for the solution of the 
mixture transport problem was justified and the existence of a unique 
solution to the exact equations was proved, in [S]. 

More recently there has been growing interest in the effect of heat trans- 
fer upon the transport of a fluid in a flexible tube due to various technical 
or physiological considerations, for example, the transport of noxious 
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waste through a tube [6, 71. In this paper, we shall adopt the so-called 
OberbeckkBoussinesq equations [S] to investigate the peristaltic transport 
of a heat-conducting fluid. Two asymptotic methods will be developed for 
the study of this problem. One method is an extension of Stokes 
approximation, in which the Reynolds number is assumed small and the 
nondimensional thermal and solute diffusivity coefficients are assumed 
large. The other method is developed within the framework of long-wave 
approximation. In both cases the governing equations are reduced to a 
sequence of linear elliptical problems. The contributions of this paper are 
the following. We show that there exists a unique solution to the exact 
equations if a criterion in terms of the Reynolds number, thermal and 
solute diffusivities, and other coefficients together with a flux condition 
is satisfied. The solutions of the sequence of elliptical problems are 
shown to be successive asymptotic approximations to the exact solution. 
The existence proof given here is an extension of that due to 
Ladyzhenskaya [9]. We also note here that the mixed problem of 
stationary OberbeckkBoussinesq equations in a bounded domain has been 
studied by Mulone and Rionero [lo]. 

In Section 2, we formulate the problem and specify various functions 
spaces to be used later. in Section 3, we develop the formal asymptotic 
methods based upon Stokes and long-wave approximations, In Section 4, 
the asymptotic methods are justified and the error estimates are expressed 
in terms of &-norms. Finally in Section 5, we prove the existence and 
uniqueness of a generalized solution to the governing equations. 

2. FORMULATION 

We consider the motion of a heat-conducting fluid governed by the 
Oberbeck-Boussinesq equations in a flexible tube subject to a prescribed 
peristaltic motion of the tube wall in the form of a progressive wave of 
periodic P* with constant axial speed A and wavelength L. In reference to a 
coordinate system (x*, J’*, z*) moving with the wave, the boundary of the 
tube is stationary and the equations governing the steady flow of the fluid 
are the following: 

v-q*=0 (1) 

p(q*.V*q*)= -V*p*+pg[l-c?F(T*-T,*)-a:(C*-C,*)] F+p(V*)2q*, 

(2) 

cj*.V*T*=k;(V*)'T*+QT(y*,z*), (3) 

g* .v*c* = k,*(v*)*c* + Q?( y*, z*); (4) 
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at the boundary H*(x*, y*, z*) = 0, 

q* = [-A (J/L),f*(-~*, y*, z*), (J/L) g*cx*, y*, z*11, (5) 

T* = T,*( y*, z*), c* = C,*( y*, z*). (6) 

Furthermore, we assume that the flux through a cross section D* of the 
tube is given, and let U* be the velocity component in the x*-direction. 
Then 

J.l U* dA = constant. (7) 
D* 

Here 4* is the velocity, p is the constant density, p* is the pressure, T* is 
the temperature, C* is the solute concentration, Q; and Q: are heat and 
solute sources respectively, f* and g* are prescribed functions periodic in 
.Y*, T,* and Cz are prescribed temperature and solute concentration at the 
wall respectively, and the gravitational acceleration g, the viscosity coef- 
ficient p, the temperature and solute concentration gradients a; and cc,*, 
the thermal and solute diffusivity coefficients kz and k,* are all assumed to 
be positive constants. We now measure x*, y*, z*,f*, and g* in units of d, 
the maximum radius of the tube, 4* in units of %, p* in units of pA2, T* in 
units of T,*, C* in units of C,*, and Q+ and Q,* in units of lT,/d and 
/!C,/d, respectively. We also define 

uT = gdT&/i2 u, = gdC,a:li2, 

zT = Id/k,*, z, = id/k,*, 

R = p/id/p, q = q*Jn. + i 

P=P*+L--(~,-~,)lz, u = d/L, 

and i and k are unit vectors in the x* and z* directions, respectively. In 
terms of nondimensional variables and parameters, (1 )-( 7) become 

v.q=o (8) 

-q,+q.Vq= -Vp+(a,T-a,C)E+RPiV2q, (9) 

- T, + 4. VT = r’r ‘V’T + QT( y, z), (10) 

-C,+~4’C=t,‘V2C+Q,(y,z); (11) 

at the boundary H*(x, y, z) = 0, 

4 = 4b = (0, uf, WL (12) 
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T= T,, c= c,; (13) 

I 
(U-l)dA=M, (14) 

n 

where V = (a/&c, a/a-v, a/&), D is an open cross section of the tube, and A4 
is a given constant. 

In the following we introduce some function spaces for later use. Let 
j(sZ) be the space of C” solenoidal vector functions with zero flux through 
a cross section, a support in Q u f and a period P = P*/d in x, where 

Cl= {(x, y,z)~O<.u<P, (y,z)~D}, 

and I- is the union of the two end cross sections of the tube at x = 0, P. We 
consider the completion of j(sZ) with respect to the L,-norm 11.11 associated 
with the scalar product 

(z&t’) = 
i’ 

U.i!dL’. 
R 

Let R(Q) be the completion of j(sZ) with respect to the norm lI.11~ 
associated with the scalar product 

(ii, C)p= 
c 

vu. vv  dQ. 
R 

Similarly we also consider the completion of the C’ scalar functions with a 
support in n u f and the period P in .Y with respect to the &-norm and 
the norm l/.llH associated with the scalar product 

(u.z&=j Vu.VvdsZ. 
f2 

The latter space is denoted by H. The space X = !? x H x H is the direct 
product of n, H, and H with the scalar product 

where U= (U1, u2, u,), V= (2;‘,, u2, Us), U,, 6, E I??, and u2, L’*, uj, vj E H. A 
generalized solution of (7))( 12) is defined as a triplet of functions (9, T, C) 
satisfying the following integral equalities: 

s, [-4~+4.Vy-(r,T-r,C)k].~dSL+K~‘j Vq.V$dQ=O, 
R 

j” (-T,+(I.VT-QT).4=d~+rr’J‘ VT.V&dl2=0, (15) 
R R 

j 
R 

(-C,+s.VC-Qc).Sidn+~,‘!’ VC.V4,dsZ=O, 
R 
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for any (4, &, 4,) E X and for sufficiently smooth periodic functions 5, h, 
and c such that ~-GER, T-h~k, C-CEH, C1=qhr h= T,, and c=C, 
on the boundary H* = 0, and jJD (ti . i- 1) dA = M. 

3. FORMAL ASYMPTOTIC EXPANSIONS 

3.1. Stokes approximation 

Here we essentially extend the derivation of Stokes equations from the 
Navier-Stokes equations for low Reynolds number flow. Assume that there 
is a small parameter E, 0 < E < 1 such that R, rr, r, = O(E). Furthermore, in 
order to take fully into account the effects of pressure change, gravitational 
force and heat, and solute sources, we also assume p = O(E ~ ’ ), ctT, q, Qr, 
Q,= O(E-‘). Without loss of generality, we may set x = 1. If no confusion 
arises, we replace R, rr, rc by ER, ETA, ET, and p, c(~, xc, QT, Q, by EC ‘p, 

& ’ x-r, E 
I 
rc, E- ‘Qn E ‘Q,, respectively. Equations (8)-( 13) become 

v.q=o, (16) 

E(--q,+Lj.vij)= -Vp+(r,T-a,C)k+R ‘V”q, (17) 

E(-T,+~~~~VT)=?~‘V’T+Q,(~,Z,. (18) 

&(-C,+q’VC)=T,.‘V”C+Q,(~,,); (19) 

at the boundary H*(.u, I’, :) = 0, 

4 = qh = (0, .fi 8) (20) 

T= T,( .1’, z), c= C,( ?‘, z). (21) 

We assume that 4, T, C, and p may be expanded in power series of e: 

q = 4” + Eq, + E2& + . . . ) 

T= T,+ET, +E’T?+ . . . . 

C=C,+EC, +E2C2+ “‘, 

p=po+E~, +E’p,+ “‘. 

Substitution of the series in (14) and (16)-(21) will yield a sequence of 
approximate equations, boundary and flux conditions. The equations for 
the zeroth approximations are 

v . y. = 0, (22) 

RP’V2q,-Vpo+(cc,TO-u&)k=O, (23) 
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z$V2T,, = -QT, 

TV- rV2C0 = -Qc; 

(24) 

(25) 

at the boundary H*(x, y, z) = 0, 

90 = qh = (O,f, g)3 T= T,, c=c,, 

and the flux condition 

(26) 

il (u,-l)dA=M. 
I) 

If (xT = c(, = 0, (22) and (23) are just the well-known Stokes equations. The 
equations for the nth approximations can be written down as follows: 

v q,, = 0, 

I, I 

R~‘V24,,-Vp,,+(rTT,,-~,C,,)= -q,,p,,v+ c 4,%, 
,=o 

s$v’T,,= -T,,mIk +“I’ q/VT,,+,, 
,=o 

“,- vc,, = -c II ,.v+“f 4;VTn , ii 
/=O 

(27) 

13 (28) 

(29) 

(30) 

at the boundary H*(x, y, z) =O, 

4,, = (0, 0, Oh 

and the flux condition 

T,, = C,, = 0, (31) 

CT 
(a,,) dA = 0. 

0 

In principle, (24) and (25) subject to the boundary conditions (26) can be 
solved respectively first. Then (22) and (23) with To and Co given can be 
dealt with next. Finally, (2’7)-(31) will yield solutions for the successive 
approximations. A discussion of the existence and uniqueness of the 
solutions of (22), (23) (26) and (27), (28), (31) may be found in [ll, 121. 

3.2. Long-wave Approximation 

As seen from (22) and (3 1 ), the equations obtained from Stokes 
approximation are defined in Sz and we have to solve a sequence of three- 
dimensional problems. To simplify them further, we make use of the so- 
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called long-wave approximation, that is, the radius to wave length ratio CI 
is a small parameter in addition to the Stokes approximations. Without 
loss of generality, we let CI = E. The sequence of three-dimensional problems 
can now be reduced to two-dimensional problems over each cross section 
of the tube. As a consequence of the long-wave approximation, we also 
assume that a/a.~ = O(E); u, u’ = O(E); p = O(K’). However, to have a con- 
sistent and justifiable asymptotic scheme, we need to assume that both CI’ 
and x, are Q( I). Tf no confusion arises, we replace a/ax by E S/la& z:, tv by 
EC; ~‘t’, p by c ‘p; and (16)-(21) become 

v.q=o, 

I:‘( -u; + uu; + vu,. + WU,) = -p< + R-‘(&z< +v;u) 

e”( - L’( + UC’< + uv,. + WV,) = -p, + R ‘(rev<; + &‘v;u), 

f:4( -wc + L/M’< + LW, + ww,) = -p, + E*(+ T- g,C) + R-‘(e4wtt 

F’( - T, + q.VT) = T;‘(E’T,< +V;T) + Q,(y, z), 

E’( -c; + 4-vC) = 7; i(&<s +V;C) + Q,(v, z), 

at the boundary H*(x, ~1, Z) = 0, 

s = CT/l = (0, .L g), 

T= T,(Y, ~1, c = C,( Y, z), 

+ 

(32) 

(33) 

(34) 

Ew; w), 

(35) 

(36) 

(37) 

(38) 

(39) 

where Vz = 8/LJy2 + a2/8z2. As seen from (32)-(39) all powers of E are 
even, and we may expand 4, p, T, and C in an asymptotic series with even 
powers of E, 

q=q0+E2qZ+&4qq+ . ..) 

p=po+E2p2+E4p,+ ..., 

T= T,+E’T,+E~T~+ ..., 

C=C,+&‘C2+E4C4+ .“. 

where q,= (u;, u,, w;), i=O, 2, 4. 
As before, we substitute the series in (32))(39) to obtain a sequence of 

equations and boundary conditions for the successive approximations. The 
equations for the zeroth approximation are 

uo< + uo.+ + w(); = 0, (40) 

- R-‘V;u, = pal-, (41) 
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PO? = 0, PO; = 0, 

-5; ‘V; T, = Qr, 

-z,‘V;Co= Q,; 

uo = 0, u0=f, U’o = g, 

To= T,, co= c,. 

(42) 

(43) 

(44) 

(45) 

(46) 

It is seen from (42) that p. is a function of 5 only and may be expressed as 

uo = uoo PO;. 

From (41) and (45), it follows that uoo satisfies the equations 

(47) 

-R ‘V2u =l 2 00 in D, (48) 

u -0 00 - at aD, (49) 

where 8D is the boundary of D. By integrating (47) over a cross section D 
and making use of (14), we have 

Po~=(n+A)(j”j”~z400dA)‘; (50) 

where A is the area of the cross section D. It is easy to show that 
jsD urn dA > 0 if A > 0. 

The equations for the second approximation are 

u2g + 02, + w2; = 0, 

R ‘Vfuz = pzc - R ‘uotS - uOE + uouo< + ugug, + wOuO;, 

R - ‘Vf v, = p2. I ) 

R ~ ‘V; w. = prz - (+ T, - CI, Co), 

TT -‘V;T7= -To,+uoTo,+vOTo,.+woTo,, 

zc- ‘v; c2 = -co, + uo co, + 00 co, + ).t’o co, ; 

at the boundary H*(L$, y, z) = 0, 

u2 = v2 = u’2 = 0, T, = C2 = 0. 

First we introduce an auxiliary function Q,, which satisfies 

V: Qo = -uo< in D, 

Qon =fn, + gn, at i3D, 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 
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where (n,, n2) is the unit outward normal at aD. The Neumann problem 
posed by (58) and (59) is solvable because of (40) and (45). Hence from 
(40) and (58), 

(uo - eo,.,,. + (~~ao - Qo:L = 0, (60) 

and (60) implies that we may define a stream functions Q0 such that 

@o: = 00 - Q,,.~ Qs,, = -w. + Q,;. (61) 

Upon using (61) in (53) and (54) to replace v. and w. in terms of rDo and 
Q,, cross-differentiating the resulting equations, and making use of (45), 
we obtain 

v; cl&) = tlT To.,. - cc, co,. in D, (62) 

@oz =f - Qo,., PO,. = -g + Qo; at 8D. (63) 

Once Q. and Go are obtained form (58), (59), (62) and (63), we can deter- 
mine u. and M’~ from (61). Furthermore, by integrating (53) and (54) along 
some smooth path r, say from (0,O) to ( JI, z), in D, it follows that 

p2=j V2v dl r 2 o ~+(V:wo+a,To-cr,Co)dz+p,,(i’), (64) 

where pzo(5) is a function of r only to be determined later. We may express 
u7 as 

u2 = uoo ‘&o(5) + u21. 

Then from (52) and (57) we have 

v;u,, = 
s V~v~~d~‘+(V~u.~~+c~~T~;-c~,C~~)dz 
I- 

- R ~ ‘uosc - uoc + u. uo5 + uouoJ + w. uo; 

l4 -0 21 - at 8D. 

To determine pzo(<), we make use of (14) which implies 

Jl u2 dA = 0, 
n 

and integrate (65) over D to obtain 

(65) 

in D, (66) 

(67) 

(68) 
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Finally, u2, MIX can be determined from (51), (57), and the equations for the 
fourth approximation 

As before, we may introduce Qz satisfying 

Vf Qz = -u2: in D, 

Qr,, = 0 at OD. 

Then from (51), (57), and the equations for L’~ and LL’~ we can find Dz such 
that 

where Q7 satisfies 

Higher order approximations can be determined similarly and we shall not 
proceed any further. 

4. JUSTIFICATION OF THE ASYMPTOTIC EXPANSIONS 

In this section, assuming the existence of a generalized solution of (8) to 
(14), we show that both asymptotic expansions developed in Section 3 are 
asymptotic approximations to the exact solution in the L, sense. 

4.1. Stokes E.upunsion 

Let 

q=q,+q, +q*> 

T= T,,+cT, + T,, 

C=C,-ec, +c*. 

(69) 

(70) 

(71) 

We substitute (69)-(71) in (15) and obtain 
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J R I[-4*1-+(40+&q1+4*).V4*+4r.V(40+Egl) 

+(c~lcc,T*-E~la,.c*)k-G’,l.~dn+(ER)~’J vq*~v@dsz=o. 
R 

(72) 

s [-T,,+(~~+E~,+~*).VT*+~*.V(T~+ET,)-G~] 
R 

xg,dfl+(a$‘j” VT;V~~dQ=O 
R 

(73) 

I C-C,,.+(&+Eq, +q, +q,).VC,+q;V(Co+&C,)-G31 B 

x 4, dL? + (ET, ) ’ j VC, .V4, ds2 = 0, (74) 
R 

where 

G, =(40+Eq,)v-(40+E41)‘V(?O+Eq,) 
+I;[E~‘cIAT~+ET,)-E ‘~~,.(C,+EC,)]+(ER) ‘V2(&+e&). (75) 

G~=(T,,+ET,)~-(~~~+E~,).V(T~+ET,) 

+(Ez~) ‘V2(TO+~T,)+~m’Qr, (76) 

G,=(C,+EC,)~-(~~+E~,).V(C~+EC~) 

+(&T,.) ‘v2(c,+&c,)+&-‘Q<. (77) 

We choose (4, dT, d,,) = (q.+, T,, C,) in (72)-(74), performs integration by 
parts, and make use of the periodicity property of 4*, T,, and C, to 
obtain 

i’ /jO+~ql +q.J.V&$dQ=O, 

J a (40+Eq,+q*).V~.~dn=0, 

where 4 stands for 4, or q&. Hence (72t(74) become 
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ll9z+ll$=~R is G, ‘j* dsz- q;v(q,+pq,).q* dQ n s R 
-j &(a7.T*-cr,.C*)k& dsZ . 1 (78) 

R 

IIT&=~+ 
[j 

G,T, ds2- (5;V(T,,+eT1)T.+ dQ , (79) 
R s R 1 

IK*lI2,=~~T [j R G,C, dQ- j q;V(Co+& C, dQ , n 1 
(80) 

In the following we establish some lemmas for the estimates of the right- 
hand sides of (78)-( 80). 

LEMMA 1. 

where K is a generic constant depending upon the zeroth and first 
approximations of 4, T, and C. 

Proo$ It is found by (22)-(25) and (27)-(30) that 

G, -&-‘Vpo-Vp, =&(qlr- 41.Vq,-q,.Vq,-Eq,.Vg,), 

G,=E(T,.-~~.VT,-~,.VT,-E~,.VT,), 

G3 = E( C, ~ - &. VC, - 4, . VC, - &ql . VC, ). 

We assume that the boundary conditions (26) and the heat and solute 
sources are sufficiently smooth so that qO, 4r E q(Q), VP,,, Vp, EL,(Q), 
and C,, C,, TO, T, E w:(Q) [ 1 I]. First we estimate IsQ C, .4* dl2I. Note 
that Vp, and Vp are orthogonal to S*. Therefore, 

(G, 4VpO-Vp,)& dQ 

=E 

I j 
(4,.1-9,.Vq,-q,.Vq,-&q,.Vq,).q,d~ 

R 

d~~,~l/~,ll~+~ll~*lIHlI9~llA+ ll~1ll$)ll~*llR 

d m4*IIR> 
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where we have used the Poincari: inequality, Sobolev inequalities, and 
integration by parts. Similarly, 

d EM II T, II H + ll~oll R II T, II H + 1141 II R II Toll H 

LEMMA 2. 

I j q;V(qo+~q,).q* dQ <kII&+E~, lIdl4J&~ 
R 

I j 
q*.V(T,,+&T,) T,dL’ 6kll~,+~~,II~Il~~ll~Il~~/l~~ 

R 

where k is a constant. 

The proof of this lemma is similar to the proof of Lemma 1 

THEOREM 1. Zf 1 - Ki R(cc,- + cr,)/2 - .sk(R llq,, + ~q, II A + zT I/ TO + 
ET, II H + 5, II G + EC, II H) > 0, then 

llQ*ll., = a&2)1 

where Q, =(G*, T,, C,) and IIQ,!‘, = M+ll~+ IIT,\\?,+ llC,llL 

Proof From (78)-(80), Lemmas 1 and 2, and the Poincark inequality, 
we have 
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by adding, replacing llq*llH, llT,ll,, IIC,lI, by lIQ,llx on the right-hand 
side, and using ah < (a2 + h2)/2, 

This shows that if 

1 - KZ, R(~T + ~63 - Ek(R IIYo + EC?, II B + ?T II To + &T,ll H 

+ Tc I/C” + EC, II H) > 0, 

llQ,ll x = WE*). 

We note that the constant K, appears in the Poincart inequality 
lldll 6 K, Ildll,,. 

Remurks. Theorem 1 indeed has established that up to the first order 

II4 - 4” + @,/I = o(&*h 
IIT-T”-&TIII =O(Ez2), 

11 c - c,, - EC, 11 = 0(&Z). 

By following the same argument, it can be shown that 

II ~~ I 
g- c &kc& = O(&‘l) 

k=O II 

,1- I 
T- c ckTk =0(C), 

k=O II 

ii 
c - y EkCk = 0(&y, 

k=O II 

if 1 - Ki Rcc, + a,)/2 > 0 and E is sufficiently small. 

4.2. Long-wave Expansion 

The justification of long-wave approximation is similar to the one given 
in Section 4.1. However, there are also some differences between both cases. 
Here we assume that czr and ~1, are of 0( 1) instead of 0(&-r). Furthermore, 
the wave length of the peristaltic motion is long, that is, the nondimen- 



PERISTALTIC TRANSPORT 63 

sional period P= l/c, and v, w  = O(E) and p = O(E-*). As before, we 
express 

q=qo+&*q*+q*, 

T== T,+E’T,+ T,, 

c=c,+&*c,+c*, 

q = (24,&V, EW), 40 = (u,, EVO, EWO), 

q2 = (u2, EU*, EM’*), q, = (u,, v*, u’*). 

By substituting (69)-(71) in (15) and using the assumptions in the long- 
wave approximation, the resulting equalities are 

c [I-q*<+ (~o+&*~*+q*)~V*q*+q*‘V*(qO+E*q*) 0, 
+(r,T,-r,C,)k-G,,].~d~,+(zR)~‘J’ V,~;V,cj+dL’,=O, 

Q* 
(81) 

s [--ET*5+(qo+&292+4u).V*T*+4*.V(To+E2T,)-G2,].~Td~, 
Q* 

+ (UT)-] i’ V, T, . V,c+& dQ, = 0, (82) 0, 
s [-EC*;+(~~+E~~~+~*)~V*C*+~*.V(C~+E’C,)-G,,].~,~~, 
** 

+ (Et,) -’ j V,C;V,&dQ, =o, (83) 
Q* 

where 

c, * = QSO + E2S2)g - (40 + E2q2). V*(& + E2q2) 

-I- Ce(To + E*T,) - x,(C, + E’C,)] + (ER) ‘V:(&, + &*q2), 

G2* = E( To + E*T,)< - (Go + e*&) .V,( To + E*T,) 

+(E~~)~‘VZ*(T~+E*T~)+E-‘Q~, 

4!l9)9i127/1-5 
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G,, = E(C~ + c2C& - (& + E*&) V,( C, + E'C,) 

+ (ET,) 'Vz,(C, + c2Cz) + E 'Q,. 

Let (4,) &., d2) = (4.+, T,, C,) in (81)-(83), and we obtain 

ll~,ll~~ =&R c,,.y*d~,-j q*.VJqo+~2q2).q*dsZ* 
Q* 

- s (~(J*-a,C,)kj, dQ, , 1 (84) 

l,T&k=e~{Q G,,T, dR,-j q,*v,(T,+~~Tz) T, dQ, , (85) 
* 0, 1 

~~C&.=ET, 
I 

jQ G,,C,dQ*-jQ 4r.Vr(Co+E’CI)C*d~*]; (86) 
* * 

where H, , H, denote spaces of functions defined on Q2,, and 

LEMMA 3. 

Proof: As in Lemma 1, we replace G, * by c, * - Ee2V, p. -V, p2 and 
obtain from (40)-(44 and (51)-(56) that 

c,* =E2[(&- Itc,+&2q2)5 - (40 +&2q2)T*q2 

-92.V40+(~(~T~-~lcC2)+R~‘(q2~~+V:q2) 

+ (4ci - kJ~~1~ 
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where i is the unit vector in the r-direction. We make the same assumption 
as in Section 4.1 that qo, 42~ W:(Q), VP,,, Vp2~L2(SZ,), To, T,, C,, and 
C’?E W:(Q,). Then by integration by parts, periodicity, and the Poincart: 
inequality I\$11 * d K, ll$jlrn*, where II&II, is the norm for L,(Q,), it is 
shown that 

G ,*‘G*dQ* d I Ii (G,*-E ‘vpo-Vp2)xj.+ dQ, 
f2* 

Similarly, we also obtain 

where K depends upon Go, 2jz, To, T?, C,,, and C,. 

LEMMA 4. 

II 4,.V*(40+tE?qZ).LJ*dSZ* GE ‘~ZKll~,,+~~~,ll~~lI~~II~.~ 
a* 

11 
y, .V,( T,, + ~~7’2) T, dQ, ~~~“~KlI~~+~~~~/l~,ll4~ll~,l/~,ll,~~ 

Q* 

IJ 
&.V,(C,,+EZC2) c, dQ, <Ep ‘~2Kjl~,+~Z~~lI~~ll~~ll~,I/~~/I~,~ 

a* 

Prmf: 

4*+‘&o+~*4&q* dQ, 

d lkj,ll L; Ii& + E*421/ L; IILt,li FT. 

~K~~‘~~ll~o+~~4211~,114~11~,~ 
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where 114,/I L; d K, E - v4 114,II 8* as a consequence of the inequality 

l/4*IlLq < K, 114, II H by changing x to l/s and Lt is the space of L,-functions 
on Q.+. The proof of the remaining two inequalities are similar. 

THEOREM 2. Zf 

1 - &““K(R II& + ~~42lln, + TT II To + e*T,ll H, + TC II C, + E~C,I! H, 

- EK* R[ci, + a,)/21 > 0, 

then, for Q*=(q*, T,, C,)E~~=~*XH*XH* 

llQ,II x I ~~l~~,~l~,+II~,II,~+llC,l12,~~“2=~~~3~~ 

Proof By adding (84) to (86) and making use of Lemmas 3 and 4 it is 
obtained that 

This shows that if E is sufficiently small, then 

llQ,ll.n, = O(E3). 

COROLLARY 1. 

IIu - uoI/ * = O(E’)> /ID-Ed*> IIW--“‘oIi* = O(E3)> 

I/T- Toll,, IIC- Cdl, = O(F~). 

Proqf: Since 

The proof of the remaining estimates is the same. 

Remark. By following the same argument, it can be shown that 

/I 

II ~ I 
U - c E2kU2k = O(EZn), 

k=O * 
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;I 
n-1 n-1 

w= 1 &2k+1w2k = 0(&2n+ ‘), 

k=O k=O * 

5. EXISTENCE OF A GENERALIZED SOLUTION 

In this section we prove that there exists a unique generalized solution 
satisfying the integral relations (15). We choose a = q. + sql, b = To + ET,, 
c=c,+c,, the solutions obtained for Stokes approximation in Sec- 
tion 3.1, and replace q, T and C by ti+q,, b+ T,, and c+C, in (15), 

i 
R [-4*.~+((a+q,).Vq,+q,.Va+(a,T,-cr,C,)k-F,l.~aot8 

+ R ’ 
s 

Vq,V$dsZ=Q; (87) 
R 

s [-T,,+(a+q,).VT,+q,.Vb-F,l.~,dS2 
R 

+z;’ 
s 

VT&h, ds2 = 0; (88) 
R 

s 
[-C,.+(a+q,).VC,+q;Vc-F,].~,d~ 

D 

+z,’ s VC, . Vd, dl2 = 0, (89) 
R 

where 

F, =a,-a.Va+ [a,b-a,c]li+Rp’V2ii, 

F,=b.,-ii4’b+t;‘V2b+Q,. 

F,=C.,-Si.Vcfz,‘V’c+Q,. 

We show that the integrals in (87)-(89) are bounded functionals on I? or 
H. We take up (87) first, 

R-Ii‘ Vq,VddS2=R(q,,b;)n, 
R 
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IJ R C-4*\-+~~+~*~~~~*+~*~~~+~~,~*-~,~*~~1~~~~ 

d~(llq*ll,+~ll~ll”Il~*l/,+ ll4*ll~+~.ll~*I/,+~,II~*lI~~~Il~lI~ 

lb I 
(7 .qs&! <K(llal/R+ (l~~lk+~,Il~llH+~~Il~Il,+~~~‘Il~ll~~ll~ll,. 

Therefore, all three integrals above are bounded functional on 8, and by 
Reisz’s representation theorem, there exist operators M,on H, N,, and S, 
on H and a fixed element ,f, E H such that, for any $E H, 

(R~‘q,,~),=(M,y,+N,T,+S,C,+f,,~),-,. 

and we have 

Yz+ = R(M, 4, + N, T, + S, C, +.f, 1. (90) 

Similarly, there exist operators M,, M, on 17, Nz, and S, on H and fixed 
elements ,fi, ,LJ E H such that 

T,=~T(M~~,+N,T,+.~,), (91) 

c, = TAM,q* + s,(‘* +A). (92) 

We may express (90))(92) in matrix form 

Q=A4Q+F, (93 1 

where Q = (4*, T,, C, IT, F= (.f, , .f , .fi I’, and 

M= [z; :ji I;]. 

First we show M is completely continuous on H. Consider a weakly 
convergent sequence {Q,,},;*=, = {4,Z, T,,, C,,} in J?, and make use of the 
following results: 

(1) The embedding 

C(Q) + LY(Q!), I <q<6 

is compact. 

(2) A weakly convergent sequence in fV:(KL’) is bounded. 

(3) For a bounded L’, 

11~11 G Cll9ll Lq. 
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It is not difficult to show, for any @E X, 

Let @ = MQ,, - MQn. This proves that {MQ,};=, converges strongly in 
2 and M is completely continuous. Next we show that if 

1-~2,~~~~+~,~/~-~~~Il~ll,+~,Il~ll,+~,Il~ll,~~~~ (94) 

then all solutions of 

Q-o(MQ+F)=O (95) 

are uniformly bounded for u E [0, 11. We consider the dot product of both 
sides of (95) with Q itself and obtain 

(0, & = o(MQ, Q)~Y + 46 QLY. (96) 

By (87))(89), (96) is equivalent to 

- 
I 

(c+T*-cx,C.+)~Qj* dQ 
1 

(97) 
R 

IlT,ll?,=~~~ 
[j 

F,T,d- 
s cj;VbT,dQ 2 

1 
(98) 

R R 

5 q*. VcC, dQ . 
R 1 

As before, we estimate the right-hand sides of (97))(99) and obtain 

IIQII:, dW~+~,+~,HQllx 

+~~~~ll~ll~+~,ll~ll~+~~ll~ll~~IIQll~~ 

+@CN~,+WU llQll$. (100) 

This shows that I/Q 11 ,K is uniformly bounded for B E [IO, 1 ] if (94) holds. By 
the Leray-Schauder fixed point theorem [9], there exists a solution Q E X. 

Finally we show that under the same condition (94) the solution is uni- 
que. Let Q(,)= (4c,,, T(,,, C,,,) and Qc2)= (qc2), Tc2), Cc,,) be two solutions 
of ( 15) and set 

Q,,,=Q,,,+Q,, 
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where Q, = (4*, T,, C,). Then Q, satisfies (87)-(89) with a, 6, c replaced 

by q(2), To,J’o,> respectively, and F= 0, F2 = F3 = 0, since Q,,, satisfies 
( 15). Therefore, 

IIQJ: d [~(~ll~~2,ll~+~TliT,z,ll~+~,ll~~2,ll,) 

+ K’,NcG + c~)Pl llQ,lC,. (101) 

For Stokes approximation, 

Ilq,2)-4o-WII, lITI,,-To-ETAI, IIC,21-G-~C,II =O(e’); 

if (94) holds and E is sufficiently small, then 

where R, rr and r,=O(e). Hence IIQ,l/$ =0 and Qc,,=Q,2,. 
For long-wave approximation, we just replace 5, b, c in (87)-(89) by 

4+~‘&, To+E’q,, and C, + E’C, obtained in Section 3.2. The existence of 
a solution follows, and the uniqueness of a solution is established by use of 
the error estimates given in Theorem 2. We summarize our results as 

THEOREM 3. The systems 9fEqs. ( 16)-(21) and (32k( 39) possess unique 
generalized solutions lf E is sefficiently small and 1 - K: R(cc, + z,)/Z > 0 for 
Stokes approximation. 
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