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Abstract

We study the structures of two types of generalizations of intersection-bodies and the problem of whether
they are in fact equivalent. Intersection-bodies were introduced by Lutwak and played a key role in the so-
lution of the Busemann–Petty problem. A natural geometric generalization of this problem considered by
Zhang, led him to introduce one type of generalized intersection-bodies. A second type was introduced
by Koldobsky, who studied a different analytic generalization of this problem. Koldobsky also studied the
connection between these two types of bodies, and noted that an equivalence between these two notions
would completely settle the unresolved cases in the generalized Busemann–Petty problem. We show that
these classes share many identical structural properties, proving the same results using integral geometry
techniques for Zhang’s class and Fourier transform techniques for Koldobsky’s class. Using a functional
analytic approach, we give several surprising equivalent formulations for the equivalence problem, which
reveal a deep connection to several fundamental problems in the integral geometry of the Grassmann man-
ifold.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let Vol(L) denote the Lebesgue measure of a set L ⊂ R
n in its affine hull, and let G(n, k)

denote the Grassmann manifold of k-dimensional subspaces of R
n. Let Dn denote the Euclid-

ean unit ball, and Sn−1 the Euclidean sphere. All of the bodies considered in this note will be
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assumed to be centrally-symmetric star-bodies, defined by a continuous radial function ρK(θ) =
max{r > 0 | rθ ∈ K} for θ ∈ Sn−1 and a star-body K . We shall deal with two generalizations
of the notion of an intersection body, first introduced by Lutwak in [24] (see also [25]). A star-
body K is said to be an intersection body of a star-body L, if ρK(θ) = Vol(L ∩ θ⊥) for every
θ ∈ Sn−1, where θ⊥ is the hyperplane perpendicular to θ . K is said to be an intersection body,
if it is the limit in the radial metric dr of intersection bodies {Ki} of star-bodies {Li}, where
dr(K1,K2) = supθ∈Sn−1 |ρK1(θ) − ρK2(θ)|. This is equivalent (e.g. [6,25]) to ρK = R∗(dμ),
where μ is a non-negative Borel measure on Sn−1, R∗ is the dual transform (as in (1.3)) to the
spherical Radon transform R : C(Sn−1) → C(Sn−1), which is defined for f ∈ C(Sn−1) as

R(f )(θ) =
∫

Sn−1∩θ⊥

f (ξ) dσθ (ξ), (1.1)

where σθ the Haar probability measure on Sn−1 ∩ θ⊥.
The notion of an intersection body has been shown to be fundamentally connected to the

Busemann–Petty problem (first posed in [5]), which asks whether two centrally-symmetric con-
vex bodies K and L in R

n satisfying:

Vol(K ∩ H) � Vol(L ∩ H) ∀H ∈ G(n,n − 1) (1.2)

necessarily satisfy Vol(K) � Vol(L). It was shown in [6,25] that the answer is equivalent to
whether all convex bodies in R

n are intersection bodies, and in a series of results [1,3,6–8,11,18,
23,27,37] that this is true for n � 4, but false for n � 5.

In [36], Zhang considered a generalization of the Busemann–Petty problem, in which
G(n,n − 1) in (1.2) is replaced by G(n,n − k), where k is some integer between 1 and n − 1.
Zhang showed that the generalized k-codimensional Busemann–Petty problem is also naturally
associated to another class of bodies, which will be referred to as k-Busemann–Petty bodies
(note that these bodies are referred to as (n − k)-intersection bodies in [36] and generalized k-
intersection bodies in [21]), and that the generalized k-codimensional problem is equivalent to
whether all convex bodies in R

n are k-Busemann–Petty bodies. It was shown in [4] (see also
a correction in [29]), and later in [21], that the answer is negative for k < n − 3, but the cases
k = n − 3 and k = n − 2 still remain open (the case k = n − 1 is obviously true). Several par-
tial answers to these cases are known. It was shown in [36] (see also [29]) that when K is a
centrally-symmetric convex body of revolution then the answer is positive for the pair K,L with
k = n − 2, n − 3 and any star-body L. When k = n − 2, it was shown in [4] that the answer
is positive if L is a Euclidean ball and K is convex and sufficiently close to L. Several other
generalizations of the Busemann–Petty problem were treated in [29,34,35,38].

Before defining the class of k-Busemann–Petty bodies we shall need to introduce the m-
dimensional spherical Radon transform, acting on spaces of continuous functions as follows:

Rm : C(Sn−1) → C
(
G(n,m)

)
Rm(f )(E) =

∫
Sn−1∩E

f (θ) dσE(θ),

where σE is the Haar probability measure on Sn−1 ∩ E. It is well known (e.g. [17]) that as an
operator on even continuous functions, Rm is injective. The dual transform is defined on spaces
of signed Borel measures M by
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R∗
m :M(

G(n,m)
) →M(Sn−1)∫

Sn−1

f R∗
m(dμ) =

∫
G(n,m)

Rm(f )dμ ∀f ∈ C(Sn−1), (1.3)

and for a measure μ with continuous density g, the transform may be explicitly written in terms
of g (see [36]):

R∗
mg(θ) =

∫
θ∈E∈G(n,m)

g(E)dνm,θ (E),

where νm,θ is the Haar probability measure on the homogeneous space {E ∈ G(n,m) | θ ∈ E}.
We shall say that a body K is a k-Busemann–Petty body if ρk

K = R∗
n−k(dμ) as measures in

M(Sn−1), where μ is a non-negative Borel measure on G(n,n− k). We shall denote the class of
such bodies by BPn

k . Choosing k = 1, for which G(n,n−1) is isometric to Sn−1/Z2 by mapping
H to Sn−1 ∩ H⊥, and noticing that R is equivalent to Rn−1 under this map, we see that BPn

1 is
exactly the class of intersection bodies.

Another generalization of the notion of an intersection body, which was considered by
Koldobsky in [21], is that of a k-intersection body. A star-body K is said to be a k-intersection
body of a star-body L, if Vol(K ∩ H⊥) = Vol(L ∩ H) for every H ∈ G(n,n − k). K is said to
be a k-intersection body, if it is the limit in the radial metric of k-intersection bodies {Ki} of
star-bodies {Li}. We shall denote the class of such bodies by In

k . Again, choosing k = 1, we see
that In

1 is exactly the class of intersection bodies.
In [21], Koldobsky considered the relationship between these two types of generalizations,

BPn
k and In

k , and proved that BPn
k ⊂ In

k (hence our reluctance to use the term “generalized
(n − k)-intersection bodies” for BPn

k ). Koldobsky also asked whether the opposite inclusion is
equally true for all k between 2 and n − 2 (for 1 and n − 1 this is true). If this were true, as
remarked by Koldobsky, a positive answer to the generalized k-codimensional Busemann–Petty
problem for k � n − 3 would follow, since for those values of k any centrally-symmetric convex
body in R

n is known to be a k-intersection body [19–21].
Our first remark in this note is that the two classes BPn

k and In
k share many identical structural

properties, suggesting that it is indeed reasonable to believe that BPn
k = In

k . Some previously
known characterizations of these classes and associated tools are outlined in Section 2, providing
some intuitive motivation and common ground to start from. Some of these previously known
results are also given simplified proofs in this section. It turns out that the natural language
for handling the class In

k is the language of Fourier transforms of homogeneous distributions,
developed extensively by Koldobsky, while the natural language for the class BPn

k is the language
of integral geometry and Radon transforms. In Section 3 we show that both classes share a
common structure, by proving the same results for BPn

k (using Grassmann geometry techniques)
and for In

k (using Fourier transform techniques). We define the k-radial sum of two star-bodies
L1,L2 as the star-body L satisfying ρk

L = ρk
L1

+ ρk
L2

. For each of these classes Cn
k , where C = I

or C = BP and k, l = 1, . . . , n − 1, we show the following.
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Structure Theorem.

(1) Cn
k is closed under full-rank linear transformations, k-radial sums and taking limit in the

radial metric.
(2) Cn

1 is the class of intersection-bodies in R
n, and Cn

n−1 is the class of all symmetric star-bodies
in R

n.
(3) Let K1 ∈ Cn

k1
, K2 ∈ Cn

k2
and l = k1 + k2 � n − 1. Then the star-body L defined by ρl

L =
ρ

k1
K1

ρ
k2
K2

satisfies L ∈ Cn
l . As corollaries:

(a) Cn
k1

∩ Cn
k2

⊂ Cn
k1+k2

if k1 + k2 � n − 1.
(b) Cn

k ⊂ Cn
l if k divides l.

(c) If K ∈ Cn
k then the star-body L defined by ρL = ρ

k/l
K satisfies L ∈ Cn

l for l � k.
(4) If K ∈ Cn

k then any m-dimensional central section L of K (for m > k) satisfies L ∈ Cm
k .

(1) and (2) above are well known and basically follow from the definitions (or from the char-
acterizations in Section 2), but we mention them here for completeness. It should also be clear
that (3) implies the three corollaries following it: (3a) by using K1 = K2, (3b) by successively
applying (3a), and (3c) by using K2 = Dn. (3) for In

k was also noticed independently by Koldob-
sky, but never published. For BPn

k , (4) and (3b) for k = 1 were proved by Grinberg and Zhang in
[16]. In the same paper, a very useful characterization of the class BPn

k was given (see Section 2).
Combining it with (3) and (3c), we get as a corollary the following non-trivial result, which is of
independent interest.

Ellipsoid Corollary. For any 1 � k � n − 1 and k ellipsoids {Ei}ki=1 in R
n, define the body L by

ρL = ρE1 · · · · · ρEk
,

and let k � l � n − 1. Then there exists a sequence of star-bodies {Li} which tends to L in the
radial metric and satisfies:

ρLi
= ρl

E i
1
+ · · · + ρl

E i
mi

,

where {E i
j } are ellipsoids.

Naturally, the case E1 = · · · = Ek is of particular interest. In the same spirit, we give a strength-
ened version of Grinberg and Zhang’s characterization of BPn

k in Section 3. We remark that (3)
from the Structure Theorem may in fact be a characterization of the classes In

k or BPn
k for k > 1.

In other words, it may be that for C = BP or C = I , L ∈ Cn
k iff there exist {Ki}ki=1 ⊂ Cn

1 , such
that ρk

L = ρK1 · · · · · ρKk
. Since in either case Cn

1 is the class of intersection bodies in R
n, a proof

of such a characterization for C = I and a fixed k would imply that BPn
k = In

k for that k.
In order to prove (3) for C = BP , we derive (what seems to be) a new formula for inte-

gration on products of Grassmann manifolds. The complete formulation and proof are given in
Appendix A. A very similar formulation of the case k1, . . . , kr = 1 was given by Blaschke and
Petkantschin (see [26,30] for an easy derivation), and used by Grinberg and Zhang in [16] to
deduce that BPn

1 ⊂ BPn
l for all 1 � l � n − 1. For F ∈ G(n,n − l) and 1 � k < l � n − 1,

we denote by GF (n,n − k) the manifold {E ∈ G(n,n − k) | F ⊂ E}. The volume of the paral-
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lelepiped mentioned in the statement below is defined in Appendix A. A simplified formulation
then reads as follows:

Integration on products of Grassmann manifolds. Let n > 1. For i = 1, . . . , r , let ki � 1
denote integers whose sum l satisfies l � n − 1. For a = 1, . . . , n denote by Ga = G(n,n − a),
and by μa the Haar probability measure on Ga . For F ∈ Gl and a = 1, . . . , l − 1, denote by μa

F

the Haar probability measure on Ga
F . Denote by Ē = (E1, . . . ,Er) an ordered set with Ei ∈ Gki .

Then for any continuous function f (Ē) = f (E1, . . . ,Er) on Gk1 × · · · × Gkr :

∫
E1∈Gk1

. . .

∫
Er∈Gkr

f (Ē) dμk1(E1) . . . dμkr (Er)

=
∫

F∈Gl

∫
E1∈G

k1
F

. . .

∫
Er∈G

kr
F

f (Ē)Δ(Ē) dμ
k1
F (E1) . . . dμ

kr

F (Er) dμl(F ),

where Δ(Ē) = Cn,{ki },l�(Ē)n−l , Cn,{ki },l is a constant depending only on n, {ki}, l, and �(Ē)

denotes the l-dimensional volume of the parallelepiped spanned by unit volume elements of
E⊥

1 , . . . ,E⊥
r .

In Section 4 we attempt to bridge the gap between the languages of integral geometry and
Fourier transforms, by establishing several new identities. As a by-product, we show, for in-
stance, that KerR∗

n−k = Ker(I ◦ Rk)
∗, where I : C(G(n, k)) → C(G(n,n − k)) denotes the

operator defined as I (f )(E) = f (E⊥). Essentially using the latter result, we show the following
equivalence:

1.1. Equivalence between k and n − k

BPn
k = In

k iff BPn
n−k = In

n−k.

In Section 5 we try to attack the BPn
k = In

k question using the results of the previous sections
together with a functional analytic approach. Our results indicate that this question is deeply
connected to several fundamental questions in integral geometry concerning the structure of the
Grassmann manifold. Let C+(Sn−1) denote the set of non-negative continuous functions on the
sphere, and let Rn−k(C(Sn−1))+ denote the set of non-negative functions in the image of Rn−k .
Let A denote the closure of a set A in the corresponding normed space. If μ ∈ M(G(n,n − k)),
let μ⊥ ∈ M(G(n, k)) denote the measure defined by μ⊥(A) = μ(A⊥) for any Borel set A ⊂
G(n, k), where A⊥ = {E⊥|E ∈ A}.

Fixing n and 1 � k � n − 1, the main result of Section 5 is the following:

Equivalence Theorem. The following statements are equivalent:

(1) Equivalence of generalizations of intersection-bodies.

BPn
k = In

k .
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(2) Characterization of non-negative range of Rn−k .

Rn−k

(
C(Sn−1)

)
+ = Rn−k

(
C+(Sn−1)

) + I ◦ Rk

(
C+(Sn−1)

)
. (1.4)

(3) A Negation statement.
There does not exist a non-negative measure μ ∈ M(G(n,n − k)) such that R∗

n−k(dμ) � 1
and R∗

k (dμ⊥) � 1 (where “ν � 1” means that ν − 1 is a non-negative measure), and such
that:

inf
{〈μ,f 〉 ∣∣ f ∈ Rn−k

(
C(Sn−1)

)
+ and 〈1, f 〉 = 1

} = 0.

The approach developed in Section 4 easily shows (once again) that BPn
k ⊂ In

k . Analogously,
it will be evident that the right-hand side of (1.4) is a subset of the left-hand side.

We will say that a set Z ⊂ G(n,n − k) satisfies the covering property if⋃
E∈Z

E ∩ Sn−1 = Sn−1 and
⋃
E∈Z

E⊥ ∩ Sn−1 = Sn−1. (1.5)

The following natural conjecture is given in Section 5 (see Lemma 5.10 and Remark 5.12).

Covering Property Conjecture. For any n > 0, 1 � k � n − 1, if Z ⊂ G(n,n − k) is a closed
set satisfying

⋃
E∈Z E ∩ Sn−1 = Sn−1, then there exists a non-negative measure μ ∈ M(G(n,

n − k)) supported in Z, such that R∗
n−k(dμ) � 1.

Using this conjecture, we extend formulations (1)–(3) from the Equivalence Theorem in the
following.

Weak Equivalence Theorem. The following statements are equivalent to each other:

(4) “Injectivity” of the restricted Radon transform.
For any g ∈ Rn−k(C(Sn−1))+, if Z = g−1(0) satisfies the covering property then g = 0.

(5) Existence of barely balanced measures.
For any closed Z ⊂ G(n,n − k) with the covering property, there exists a measure μ ∈
M(G(n,n − k)) such that μ|ZC � 1 and R∗

n−k(dμ) = 0.

Assuming the Covering Property Conjecture, formulations (1)–(3) imply (4), (5).

For us, the formulation in (5) seems to have the most potential for understanding this problem,
although we have not been able to advance in this direction. Without a doubt, (2) is the most
elegant formulation, and perhaps the most natural for integral geometrists.

We conclude by proposing another natural problem in integral geometry. Consider the opera-
tor Vk : C(G(n, k)) → C(G(n, k)) defined as Vk = I ◦ Rn−k ◦ R∗

k . It is easy to see from general
principles of functional analysis that KerVk is orthogonal to ImVk , and therefore as an operator
from ImVk to itself, Vk is injective and onto a dense set. We show in Section 4 that in addition,
Vk is self-adjoint. In the case k = 1, C(G(n,1)) may be identified with the class of even con-
tinuous functions on the sphere Ce(S

n−1), in which case V1 : Ce(S
n−1) → Ce(S

n−1) becomes
the classical spherical Radon transform R given by (1.1). Elegant inversion formulas for V1 have
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been developed by many authors (see [17] and also [14,15,28,31,33]). Is it possible to do the
same for the general Vk?

2. Additional notations and previous results

In this section we present some previously known results which will be useful for us later on.
For completeness, we try to at least sketch the proofs of the main results, and on some occasions,
provide alternative proofs. We also add several useful notations along the way.

2.1. Additional notations

Let G denote any locally compact topological space. The spaces of continuous and non-
negative continuous real-valued functions on G will be denoted by C(G) and C+(G), respec-
tively. When G has a natural involution operator “−”, we will denote by Ce(G) the space of
continuous even functions on G. Whenever it makes sense, we will denote by C∞(G) the space
of infinitely smooth real-valued functions on G, and define C∞+ (G) and C∞+,e(G) accordingly.
Similarly, the spaces of signed and non-negative finite Borel measures on G will be denoted
M(G) and M+(G), respectively. When a natural involution operator “−” exists, the spaces
Me(G) and M+,e(G) will denote the corresponding spaces of even measures. A measure μ is
called even if μ(A) = μ(−A) for every Borel set A ⊂ G. For μ ∈ M(G) and f ∈ C(G), we
denote by 〈μ,f 〉G the action of the measure μ on f as a linear functional. Whenever it is clear
from the context what the underlying space G is, we will write 〈μ,f 〉 instead of 〈μ,f 〉G.

We will always assume that a fixed Euclidean structure is given on R
n, and denote by |x| the

Euclidean norm of x ∈ R
n. We will denote by O(n) the group of orthogonal rotations in R

n. The
group of volume-preserving linear transformations in R

n will denoted by SL(n). For T ∈ SL(n),
we denote T −∗ = (T −1)∗.

We will always use σ to denote the Haar probability measure on Sn−1. G(n,0) and G(n,n)

will denote the trivial atomic manifolds, and these are equipped of course with the trivial Haar
probability measure.

For a star-body K (not necessarily convex), we define its Minkowski functional as ‖x‖K =
min{t � 0 | x ∈ tK}. When K is a centrally-symmetric convex body, this, of course, coincides
with the natural norm associated with it. Obviously ρK(θ) = ‖θ‖−1

K for θ ∈ Sn−1.

2.2. Closure under basic operations

It is not hard to check from the definitions that the classes BPn
k and In

k are closed under k-
radial sums, full-rank linear transformations and limit in the radial metric. Indeed, the closure
under limit in the radial metric follows from the definition of In

k and from the w∗-compactness
of the unit ball of M(G(n,n − k)) for BPn

k . The closure under k-radial sums is also immediate
for BPn

k , but for In
k this requires a little more thought. Indeed, by polar integration, if Ki is a

k-intersection body of a star-body Li , for i = 1,2, then the body K which is the k-radial sum of
K1 and K2 is a k-intersection body of the n − k-radial sum of L1 and L2, and the general case
follows by passing to a limit. The closure under full-rank linear-transformations requires a little
more ingenuity. It is not so hard to check that if K is a k-intersection body of a star-body L then
T (K) is a k-intersection body of T −∗(L) for T ∈ SL(n), which settles the case of In

k . For BPn
k ,

this requires additional work, and is actually a good exercise to show directly. Instead, we prefer
to trivially deduce this from Theorem 2.1.
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2.3. The class BPn
k

The following characterization of BPn
k , first proved by Goodey and Weil in [12] for

intersection-bodies (the case k = 1), and extended to general k by Grinberg and Zhang in [16],
is extremely useful.

Theorem 2.1. (Grinberg and Zhang [16]) A star-body K is a k-Busemann–Petty body iff it is the
limit of {Ki} in the radial metric, where each Ki is a finite k-radial sums of ellipsoids {E i

j }:

ρk
Ki

= ρk

E i
1
+ · · · + ρk

E i
mi

.

Before commenting on the proof of this theorem, we introduce the following useful notion
used by Grinberg and Zhang. For any G, a homogeneous space of O(n), and measures μ ∈
M(G) and η ∈ M(O(n)), we define their convolution η ∗ μ ∈ M(G) as the measure satisfying
η ∗ μ(A) = ∫

O(n)
μ(u−1(A)) dη(u) for every Borel subset A ⊂ G. The definition is essentially

the same when η ∈ M(H), where H is another homogeneous space of O(n), by identifying
between η and its lifting η̃ ∈ M(O(n)) defined as η̃(A) = η(π(A)) for any Borel subset A ⊂
O(n), where π : O(n) → H is the canonical projection.

Let σF denote the Haar probability measure on Sn−1 ∩ F , so that as a linear functional, for
any f ∈ C(Sn−1), σF (f ) = Rn−k(f )(F ). The key idea underlying Theorem 2.1 is an impor-
tant observation: for any F ∈ G(n,n − k), one may explicitly construct a family of ellipsoids
{Ei (F, ε)}, such that ρk

Ei (F,ε)
tends to σF in the w∗-topology (as ε → 0). The ellipsoid Ei (F, ε)

is defined by

‖x‖2
Ei (F,ε) = |ProjF (x)|2

a(ε)2
+ |ProjF⊥(x)t |2

b(ε)2
,

where ProjE denotes the orthogonal projection onto E, and a(ε), b(ε) are chosen appropriately.
As observed by Grinberg and Zhang, one may write R∗

n−k(dμ) as μ∗σF0 , where F0 = π(e), e is
the identity element in O(n) and π is the canonical projection as above. Since in the w∗-topology,
σF0 may be approximated by ρk

Ei (F0,ε)
, and μ by a discrete measure, the theorem follows after

several technicalities are treated.
We mention a different way to conclude the theorem. It is easy to verify that

Rn−k

(
ρk
E(F,ε)

)
(E) = Rn−k

(
ρk
E(E,ε)

)
(F ) ∀E,F ∈ G(n,n − k).

Denoting G = G(n,n − k) for short, if ρk
K = R∗

n−k(dμ) we have:

Rn−k

(
ρk

K

)
(F ) =

∫
Sn−1

ρk
K(θ) dσF (θ) = lim

ε→0

∫
Sn−1

ρk
E(F,ε)(θ)ρk

K(θ) dσ (θ)

= lim
ε→0

∫
Sn−1

ρk
E(F,ε)(θ)R∗

n−k(dμ)(θ) dσ (θ) = lim
ε→0

∫
G

Rn−k

(
ρk
E(F,ε)

)
(E)dμ(E)

= lim
ε→0

∫
Rn−k

(
ρk
E(E,ε)

)
(F )dμ(E) = Rn−k

(
lim
ε→0

∫
ρk
E(E,ε) dμ(E)

)
(F ),
G G
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where we have used the uniform convergence of all the limits involved and that Rn−k is a con-
tinuous operator with respect to the maximum-norm. The result then follows from the injectivity
of Rn−k on Ce(S

n−1).
Grinberg and Zhang’s characterization of the class BPn

k implies that it is actually generated
from Dn, the Euclidean unit ball, by taking full-rank linear transformations, k-radial sums, and
limit in the radial metric. By starting from any other star-body L and performing these operations,
it is obvious that Dn may be constructed, and therefore we see that BPn

k is the minimal non-
empty class which is closed under these three operations. Since In

k trivially contains Dn and is
also closed under these operations, it immediately implies the following corollary.

Corollary 2.2. BPn
k ⊂ In

k .

This was first observed by Koldobsky in [21] using a different approach. We will give another
proof of this in Corollary 4.4, which is in a sense more concrete.

We conclude this preliminary discussion of the class BPn
k by elaborating a little more on the

operation of convolution between measures on homogeneous spaces of O(n). Let G,H denote
homogeneous spaces of O(n). We identify between a function f ∈ C(G) and the measure on
C(G) whose density with respect to the Haar probability measure on G is given by f , and
consider expressions of the form f ∗ μ and μ ∗ f for μ ∈ M(H). With the same notations, if
f ∈ C∞(G) then a standard argument shows that f ∗ μ ∈ C∞(H) and that μ ∗ f ∈ C∞(G). If
η ∈ M(O(n)), it is immediate to check that 〈μ,η∗f 〉G = 〈η−1 ∗μ,f 〉G, where η−1 ∈M(O(n))

is the measure defined by η−1(A) = η(A−1) and A−1 = {u−1 | u ∈ A} for a Borel set A ⊂ O(n).
If μi ∈M(Gi) for i = 1,2,3, one may verify that this operation is associative:

(μ1 ∗ μ2) ∗ μ3 = μ1 ∗ (μ2 ∗ μ3).

We conclude with the following lemma from [16] which will be useful later on.

Lemma 2.3. There exists a sequence of functions {ui} ⊂ C∞+ (O(n)) called an approximate iden-
tity, such that for any homogeneous space G of O(n):

(1) For any μ ∈ M(G), ui ∗ μ ∈ C∞(G) tends to μ in the w∗-topology.
(2) For any g ∈ C(G), ui ∗ g ∈ C∞(G) tends to g uniformly.

2.4. The class In
k

In order to handle the class In
k , we shall need to adopt a technique extensively used by Koldob-

sky: Fourier transforms of homogeneous distributions. We will only outline the main ideas here,
usually omitting the technical details—we refer the reader to [22] for those. We denote by S(Rn)

the space of rapidly decreasing infinitely differentiable test functions in R
n, and by S ′(Rn) the

space of distributions over S(Rn). The Fourier transform f̂ of a distribution f ∈ S ′(Rn) is de-
fined by 〈f̂ , φ〉 = 〈f, φ̂〉 for every test function φ, where

φ̂(y) =
∫

φ(x) exp
(−i〈x, y〉)dx.

A distribution f is called homogeneous of degree p ∈ R if 〈f,φ(·/t)〉 = |t |n+p〈f,φ〉 for every
t > 0, and it is called even if the same is true for t = −1. An even distribution f always satisfies
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(f̂ )∧ = (2π)nf . The Fourier transform of an even homogeneous distribution of degree p is an
even homogeneous distribution of degree −n−p. A distribution f is called positive if 〈f,φ〉 � 0
for every φ � 0, implying that f is necessarily a non-negative Borel measure on R

n. We use
Schwartz’s generalization of Bochner’s theorem [9] as a definition, and call a homogeneous
distribution positive-definite if its Fourier transform is a positive distribution.

Before proceeding, let us give some intuition about how the Fourier transform of a homo-
geneous continuous function looks like. Because of the homogeneity, it is enough to consider a
continuous function on the sphere f ∈ C(Sn−1), and take its homogeneous extension of degree
p ∈ R, denoted Ep(f ), to the entire R

n (formally excluding {0} if p < 0). When p > −n, the
function Ep(f ) is locally integrable, and its action as a distribution on a test function φ is simply
by integration. Passing to polar coordinates, we have

〈
Ep(f ),φ

〉 = ∫
Sn−1

f (θ)

∞∫
0

rp+n−1φ(rθ) dr dθ.

When p � −n, we can no longer interpret the action of Ep(f ) as an integral. Fortunately, we will
mainly be concerned with Fourier transforms of continuous functions which are homogeneous
of degree p ∈ (−n,0). This ensures that the Fourier transform is a homogeneous distribution of
degree −p − n, which is in the same range (−n,0). Note that the resulting distribution need not
necessarily be a continuous function on R

n \ {0}, nor even a measure on R
n (although this will

not occur in our context). We will denote by E∧
p (f ) the Fourier transform of Ep(f ). In order to

ensure that E∧
p (f ) is a continuous function, we need to add some smoothness assumptions on

f [22]. We remark that for a continuous function f ∈ C(Sn−1), E∧
p (f ) is always continuous for

p ∈ (−n,n + 1], and that for an infinitely smooth f ∈ C∞(Sn−1), E∧
p (f ) is infinitely smooth

for any p ∈ (−n,0). Whenever E∧
p (f ) is continuous on R

n \ {0}, it is uniquely determined by

its value on Sn−1 (by homogeneity). In that case, by abuse of notation, we identify between
E∧

p (f ) and its restriction to Sn−1, and in particular, consider E∧
p as an operator from C∞(Sn−1)

to C∞(Sn−1).
When f = 1, it is easy to verify that E∧

p (1) is rotational invariant, so by the homogeneity, it
must be a multiple of E−n−p(1). For a rigorous proof we refer to [9, p. 192], and state this for
future reference as:

Lemma 2.4. Fix n and let p ∈ (0, n). Then

E∧−p(1) = c(n,p)E−n+p(1) where c(n,p) = πn/22n−p ((n − p)/2)

(p/2)
.

Since (E∧−p(1))∧ = (2π)nE−p(1), it is clear that

c(n,p)c(n,n − p) = (2π)n.

The following characterization was given by Koldobsky.

Theorem 2.5. (Koldobsky [21]) The following are equivalent for a centrally-symmetric star-body
K in R

n:
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(1) K is a k-intersection body.
(2) ‖x‖−k

K is a positive definite distribution on R
n, meaning that its Fourier-transform (‖ · ‖−k

K )∧
is a non-negative Borel measure on R

n.
(3) The space (Rn,‖ · ‖K) embeds in L−k .

For completeness, we briefly give the definition of embedding in L−k , although we will not
use this later on. Let us denote the class of centrally-symmetric star bodies K in R

n for which
(Rn,‖ · ‖K) embeds in Lp by SLn

p . For p > 0, it is well known (e.g. [21]) that K ∈ SLn
p iff:

‖x‖p
K =

∫
Sn−1

∣∣〈x, θ〉∣∣p dμK(θ), (2.1)

for some μK ∈ M+(Sn−1). Unfortunately, this characterization breaks down at p = −1 since
the above integral no longer converges. However, Koldobsky showed that it is possible to regu-
larize this integral by using Fourier-transforms of distributions, and gave the following definition:
(Rn,‖ · ‖K) embeds in L−p for 0 < p < n iff there exists a measure μK ∈ M+(Sn−1) such that
for any even test-function φ

∫
Rn

‖x‖−p
K φ(x)dx =

∫
Sn−1

∞∫
0

tp−1φ̂(tθ) dt dμK(θ). (2.2)

Let us review the statements of Theorem 2.5. (2) is an extremely useful characterization of
k-intersection bodies, and immediately implies the closure of In

k under the standard three opera-
tions. Characterization (3) provides additional motivation for why it is reasonable to believe that
BPn

k = In
k . For p �= 0, the p-norm sum of two bodies L1,L2 is defined as the body L satisfying

‖ · ‖p
L = ‖ · ‖p

L1
+ ‖ · ‖p

L2
. We will denote by Dn

p , the class of bodies created from Dn by ap-
plying full-rank linear-transformations, p-norm sums, and taking the limit in the radial metric.
Using the characterization in (2.1), it is easy to show (e.g. [16, Theorem 6.13]) that for p > 0, the
class SLn

p coincides with Dn
p . Although this characterization breaks down at p = −1, it is still

reasonable to expect that the property SLn
p = Dn

p should pass over to negative values of p when
SLn

p is (in some sense) extended to this range and becomes SLn
−k = In

k . But by Grinberg and
Zhang’s characterization (Theorem 2.1), this is exactly satisfied by k-Busemann–Petty bodies:
BPn

k = Dn
−k . This suggests that indeed BPn

k = In
k .

In addition to the characterization (3) of In
k as the class of unit-balls of subspaces of scalar

L−k spaces, a functional analytic characterization of BPn
k as the class of unit-balls of subspaces

of vector-valued L−k spaces (in a manner similar to (2.2)), was given in [21]. This provides
additional motivation for believing that BPn

k = In
k , as this would be an extension to negative

values of p of the fact that every separable vector valued Lp space is isometric to a subspace of
a scalar Lp space and vice-versa.

We proceed to explain why (1) and (2) in Theorem 2.5 are equivalent. To this end, we will
need the following spherical Parseval identity, due to Koldobsky.
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Spherical Parseval. (Koldobsky [22]) Let f,g ∈ C∞
e (Sn−1), and p ∈ (0, n). Then

∫
Sn−1

E∧−p(f )(θ)E∧−n+p(g)(θ) dσ (θ) = (2π)n
∫

Sn−1

f (θ)g(θ) dσ (θ).

We prefer to present a self-contained proof of this identity, which seems simpler than the
previous approaches in [22].

Proof. Let f = ∑∞
k=0 fk and g = ∑∞

k=0 gk be the canonical decompositions into spherical har-
monics, where fk, gk ∈ Hk and Hk is the space of spherical harmonics of degree k. Since f and g

are even, it follows that f2k+1 = g2k+1 = 0. It is well known [32] that for q ∈ (−n,0), the linear
operator E∧

q : C∞(Sn−1) → C∞(Sn−1) decomposes into a direct sum of scalar operators acting
on Hk . Indeed, one only needs to check that the Hk’s are eigenspaces of E∧

q , and by Schur’s
representation lemma and the fact that the Fourier transform commutes with the action of the
orthogonal group, it follows that E∧

q must act as a scalar on these spaces. Denote by c
(q)
k the

eigenvalue satisfying E∧
q (hk) = c

(q)
k hk for any hk ∈ Hk . The exact value of c

(q)
k is well known

[32, Theorem 4.1], but is irrelevant to our proof. It remains to notice that since:

E∧−n+p

(
E∧−p(f )

) = (
E−p(f )∧

)∧∣∣
Sn−1 = (2π)nf,

for any f ∈ C∞
e (Sn−1), we must have c

(−n+p)
k c

(−p)
k = (2π)n for all even k’s. Using the fact

that spherical harmonics of different degrees are orthogonal to each other in L2(S
n−1), and that

f,g,E∧−p(f ) and E∧−n+p(g) are all in L2(S
n−1), we conclude:

∫
Sn−1

E∧−p(f )(θ)E∧−n+p(g)(θ) dσ (θ)

=
∫

Sn−1

∞∑
k=0

c
(−p)
k fk(θ)

∞∑
l=0

c
(−n+p)
l gl(θ) dσ (θ)

=
∫

Sn−1

∞∑
k=0

c
(−p)
k c

(−n+p)
k fk(θ)gk(θ) dσ (θ) = (2π)n

∫
Sn−1

∞∑
k=0

fk(θ)gk(θ) dσ (θ)

= (2π)n
∫

Sn−1

∞∑
k=0

fk(θ)

∞∑
l=0

gl(θ) dσ (θ) = (2π)n
∫

Sn−1

f (θ)g(θ) dσ (θ). �

Note that the above argument actually shows that the spherical Parseval identity is also valid
when f,g,E∧−p(f ),E∧−n+p(g) ∈ L2(S

n−1).
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Remark 2.6. Applying the theorem to g = E∧−p(g′) for g′ ∈ C∞
e (Sn−1) and using that

E∧−n+p(g) = (2π)ng′, we note that the spherical Parseval identity has the following equivalent
form, which we will sometimes use:

∫
Sn−1

E∧−p(f )(θ)g(θ) dσ (θ) =
∫

Sn−1

f (θ)E∧−p(g)(θ) dσ (θ).

Another useful result due to Koldobsky, which looks very similar to the spherical Parseval
identity, is the following.

Theorem 2.7. (Koldobsky) Let f ∈ C∞
e (Sn−1), and let k = 1, . . . , n − 1. Then for any H ∈

G(n, k)

∫
Sn−1∩H⊥

E∧−k(f )(θ) dσH⊥(θ) = c(n, k)

∫
Sn−1∩H

f (θ) dσH (θ),

where c(n, k) is the constant from Lemma 2.4.

Informally, the latter theorem may be considered as a special case of the spherical Parse-
val identity, by setting g = dσH and verifying that in the appropriate sense E∧−n+k(dσH ) =
c(n, k)dσH⊥ . The constant in front of the right-hand integral is verified by choosing f = 1 and
using Lemma 2.4. One way to make this argument work is to use Grinberg and Zhang’s approx-
imation of dσH by the functions ρn−k

Ei
, which when written as ‖ · ‖−n+k

Ei
are seen to be already

homogeneous of degree −n + k. Computing the Fourier transform is particularly easy, since
Ei = Ti(Dn), and therefore

(‖ · ‖−n+k
Ti(Dn)

)∧
(x) = (∥∥T −1

i (·)∥∥−n+k

Dn

)∧
(x) = det(Ti)

(‖ · ‖−n+k
Dn

)∧
(T ∗

i (x))

= det(Ti)d(n, k)
∥∥T ∗

i (x)
∥∥−k

Dn
= det(Ti)d(n, k)‖x‖−k

T −∗
i (Dn)

.

Using Grinberg and Zhang’s approximation again, it turns out that det(Ti)d(n, k)ρk

T −∗
i (Dn)

tends

in the w∗-topology to c(n, k)dσH⊥ .
We can now sketch a proof of Koldobsky’s Fourier transform characterization of k-

intersection bodies. By abuse of notation, when (‖ · ‖−k
K )∧ is continuous, we will often use

‖ · ‖−k
K , (‖ · ‖−k

K )∧ to indicate both locally integrable functions on R
n and continuous functions

on Sn−1. By definition, an infinitely smooth star-body K which is a k-intersection body of a
star-body L, satisfies

Vol(K ∩ H⊥) = Vol(L ∩ H) for all H ∈ G(n,n − k).

Passing to polar coordinates, this is equivalent to

Rk

(‖ · ‖−k
K

)
(H⊥) = Vol(Dn−k)

Rn−k

(‖ · ‖−n+k
L

)
(H) ∀H ∈ G(n,n − k).
Vol(Dk)
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But using Theorem 2.7, we see that

Rk

(‖ · ‖−k
K

)
(H⊥) = c(n, k)−1Rn−k

((‖ · ‖−k
K

)∧)
(H) ∀H ∈ G(n,n − k).

From the injectivity of Rn−k on Ce(S
n−1), it follows that

(‖ · ‖−k
K

)∧ = c(n, k)
Vol(Dn−k)

Vol(Dk)
‖ · ‖−n+k

L

on Sn−1, and hence on all R
n by homogeneity. We conclude that (‖ · ‖−k

K )∧ is a non-negative
continuous function on R

n \ {0}, and hence positive as a distribution. For an arbitrary star-body
K which is a k-intersection body of a star-body L, the same conclusion holds by approximation
((‖ · ‖−k

K )∧ is still continuous by the continuity of ‖ · ‖−n+k
L ). One may also invert the argument,

proving that for a star-body K , if (‖ · ‖−k
K )∧ is a continuous function which is non-negative, then

K is a k-intersection body of a star-body L (defined as above). Taking the limit in the radial
metric, (‖ · ‖−k

K )∧ need not necessarily be a continuous function for a general k-intersection
body K which is the limit of the bodies {Ki} (which are k-intersection bodies of star-bodies).
Nevertheless, the non-negative continuous functions (‖ · ‖−k

Ki
)∧ must satisfy:

∫
Sn−1

∣∣(‖ · ‖−k
Ki

)∧
(θ)

∣∣dσ(θ) = c(n, k)

∫
Sn−1

‖θ‖−k
Ki

dσ (θ),

by the spherical Parseval identity with g = 1 and Lemma 2.4, and therefore the integral on
the left-hand side is bounded. Using the compactness of the unit-ball of M(Sn−1) in the w∗-
topology, there must be an accumulation point of {(‖ · ‖−k

Ki
)∧}, which is a non-negative Borel

measure on Sn−1. This argument is the main idea in the proof that for a star-body K , K ∈ In
k iff

(‖ · ‖−k
K )∧ is a non-negative Borel measure on R

n.
When K is infinitely smooth, we summarize this in the following alternative definition for In

k ,
and use it instead of the original one.

Alternative Definition of In
k . For an infinitely smooth star-body K , K ∈ In

k iff (‖ · ‖−k
K )∧ � 0

as a C∞ function on Sn−1.

For a general star-body K , we will use Koldobsky’s characterization in the following spherical
version, which is an immediate consequence of the above reasoning (a rigorous proof is given in
[22, Corollary 3.23]).

Proposition 2.8. For a star-body K , K ∈ In
k iff there exists a non-negative Borel measure μ on

Sn−1, such that for any f ∈ C∞
e (Sn−1)

∫
Sn−1

f (θ)ρk
K(θ) dσ (θ) =

∫
Sn−1

E∧−n+k(f )(θ) dμ(θ).
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3. The identical structures of BPn
k and In

k

In this section we will prove the Structure Theorem, which was formulated in Section 1.
We will skip over item (1) which basically follows from the definitions, and was already

explained in detail in Section 2.
Item (2) also follows immediately: by definition, In

1 = BPn
1 is exactly the class of intersection

bodies in R
n; any star-body K in R

n is an (n − 1)-intersection body of a star-body L, defined
by ρL(θ) = 1/2Vol(K ∩ θ⊥); and by definition, R∗

1 acts as the identity on Ce(S
n−1), hence

ρn−1
K = R∗

1(ρn−1
K ) for any star-body K , implying that K ∈ BPn

n−1.
We therefore commence the proof from item (3). We will prove the theorem for BPn

k and In
k

separately, because of the different techniques involved in the proof.
Before we start, we will need the following useful lemma, which appears implicitly in

[16]. We denote by BPn,∞
k the class of star-bodies K such that ρk

K = R∗
n−k(g), where g ∈

C∞+ (G(n,n − k)). Obviously BPn,∞
k ⊂ BPn

k .

Lemma 3.1. [16] BPn,∞
k is dense in BPn

k . In particular, the class of infinitely smooth bodies in
BPn

k is dense in BPn
k .

Proof. Let K ∈ BPn
k , and assume that ρk

K = R∗
n−k(dμ) where dμ ∈ M+(G(n,n − k)). Let

{ui} ⊂ C∞(O(n)) be an approximate identity as in Lemma 2.3. Let Ki be the star-body for
which ρk

Ki
= ui ∗ ρk

K . Then by Lemma 2.3, {Ki} is a sequence of infinitely smooth star-bodies

which tend to K in the radial metric. As in the proof of Theorem 2.1, we write ρk
K = μ ∗ σH0 ,

and therefore

ρk
Ki

= ui ∗ (μ ∗ σH0) = (ui ∗ μ) ∗ σH0 = R∗
n−k(ui ∗ μ).

Since ui ∗ μ ∈ C∞+ (G(n,n − k)), this concludes the proof of the lemma. �
Remark 3.2. By the lemma and the closure of BPn

k (for any k = 1, . . . , n − 1) under limit in the
radial metric, it is enough to prove all the remaining items for the classes BPn,∞

k .

We will also require the following notations. Given F ∈ G(n,m) and k � m, we denote by
GF (n, k) the manifold {E ∈ G(n, k)|F ⊂ E}. For θ ∈ Sn−1 we identify between θ and the one-
dimensional subspace spanned by it. GF (n, k) is a homogeneous space of O(n), therefore there
exists a unique Haar probability measure on GF (n, k), which is invariant to orthogonal rotations
in O(n) which preserve F . Thus, if we denote by νσ the Haar probability measure on Gσ (n,m)

for σ ∈ Sn−1, then for any g ∈ C(G(n,m)) we may write:

R∗
m(g)(θ) =

∫
Gθ(n,m)

g(E)dνσ (E).

We will need the following fact, which is an immediate corollary of Proposition A.1. We
postpone the formulation and proof of Proposition A.1 for Appendix A, as the technique involved
is different in spirit to the rest of this note.
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Corollary 3.3. Let n > 1 and let k1, k2 � 1 denote integers such that l = k1 + k2 � n − 1. Let
θ ∈ Sn−1. For a = k1, k2, l, denote by Ga = G(n,n−a) and by μa

θ the Haar probability measure
on Ga

θ . For F ∈ Gl and a = k1, k2, denote by μa
F the Haar probability measure on Ga

F . Then for
any continuous function f (E1,E2) on Gk1 × Gk2 :∫

E1∈G
k1
θ

∫
E2∈G

k2
θ

f (E1,E2) dμ
k1
θ (E1) dμ

k2
θ (E2)

=
∫

F∈Gl
θ

∫
E1∈G

k1
F

∫
E2∈G

k2
F

f (E1,E2)Δ(E1,E2) dμ
k1
F (E1) dμ

k2
F (E2) dμl

θ (F ),

where Δ(E1,E2) is some (known) non-negative continuous function on Gk1 × Gk2 .

We will show the following basic property of k-Busemann–Petty bodies, and immediately
deduce (3a), (3b) and (3c) from the Structure Theorem in Section 1.

Proposition 3.4. Let K1 ∈ BPn
k1

and K2 ∈ BPn
k2

for k1, k2 � 1 such that l = k1 + k2 � n − 1.

Then the star-body L defined by ρl
L = ρ

k1
K1

ρ
k2
K2

satisfies L ∈ BPn
l .

Proof. First, assume that Ki ∈ BPn,∞
ki

for i = 1,2, so that ρ
ki

K = R∗
n−ki

(gi) with gi ∈
C∞+ (G(n,n − ki)). Using the notations and result of Corollary 3.3, we have:

ρl
L(θ) = ρ

k1
K1

(θ)ρ
k2
K2

(θ) =
∫

E1∈G
k1
θ

g1(E1) dμ
k1
θ (E1)

∫
E2∈G

k2
θ

g2(E2) dμ
k2
θ (E2)

=
∫

F∈Gl
θ

∫
E1∈G

k1
F

∫
E2∈G

k2
F

g(E1)g(E2)Δ(E1,E2) dμ
k1
F (E1) dμ

k2
F (E2) dμl

θ (F ).

Denoting

h(F ) =
∫

E1∈G
k1
F

∫
E2∈G

k2
F

g(E1)g(E2)Δ(E1,E2) dμ
k1
F (E1) dμ

k2
F (E2),

we see that h(F ) is a non-negative continuous function on G(n,n − l). Therefore

ρl
L(θ) =

∫
F∈Gl

θ

h(F )dμl
θ (F ),

implying that L ∈ BPn
l . The general case, when Ki ∈ BPn

ki
without any smoothness assump-

tions, follows from Remark 3.2. Indeed, by approximating each Ki in the radial metric by smooth
bodies {Km

i } ⊂ BPn
ki

, the bodies {Lm} defined by ρl
Lm = ρ

k1
Km

1
ρ

k2
Km

2
satisfy that Lm ∈ BPn

l and

obviously Lm approximate L in the radial metric, implying that L ∈ BPn. �
l
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Applying Proposition 3.4 with K1 = K2, we have:

Corollary 3.5. BPn
k1

∩BPn
k2

⊂ BPn
k1+k2

for k1, k2 � 1 such that k1 + k2 � n − 1.

By successively applying Corollary 3.5, we see that BPn
k ⊂ BPn

l if k divides l. The question
whether BPn

k ⊂ BPn
l for general 1 � k < l � n − 1 remains open. Nevertheless, we are able

to show the following “non-linear” embedding of BPn
k into BPn

l , which is again an immediate
corollary of Proposition 3.4 (using K2 = Dn ∈ BPn

l−k).

Proposition 3.6. If K ∈ BPn
k then the star-body L defined by ρL = ρ

k/l
K satisfies L ∈ BPn

l for
1 � k � l � n − 1.

We prefer to give another proof of this statement, one which does not rely on Proposition A.1.

Proof. Assume that K ∈ BPn,∞
k , so that ρk

K = R∗
n−k(gK) and gK ∈ C∞+ (G(n,n − k)), and de-

fine the star-body L by ρL = ρ
k/l
K . For θ ∈ Sn−1 and a = k, l denote by μa

θ the Haar probability
measure on Gθ(n,n − a). For F ∈ G(n,n − l), denote by μk

F the Haar probability measure on
GF (n,n − k). Then:

ρl
L(θ) = ρk

K(θ) =
∫

Gθ (n,n−k)

gK(E)dμk
θ (E)

=
∫

Gθ (n,n−l)

∫
GF (n,n−k)

gK(E)dμk
F (E)dμl

θ (F ).

The last transition is justified by the fact that the probability measure dμk
F (E)dμl

θ (F ) on
Gθ(n,n − k) is invariant under orthogonal rotations in O(n) which preserve θ , and there-
fore coincides with dμk

θ (E), the Haar probability measure on Gθ(n,n − k). Defining gL ∈
C+(G(n,n − l)) by gL(F ) = ∫

GF (n,n−k)
g(E)dμk

F (E) for F ∈ G(n,n − l), we see that

ρl
L(θ) = R∗

n−l (gL)(θ).

Together with Remark 3.2, this concludes the proof. �
The Ellipsoid Corollary from Section 1 should now be clear. We repeat it here for convenience.

Corollary 3.7. For any 1 � k � n − 1 and k ellipsoids {Ei}ki=1 in R
n, define the body L by

ρL = ρE1 · · · · · ρEk
,

and let k � l � n − 1. Then there exists a sequence of star-bodies {Li} which tends to L in the
radial metric and satisfies

ρLi
= ρl

E i
1
+ · · · + ρl

E i
mi

,

where {E i } are ellipsoids.
j
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Proof. The body L2 defined by ρk
L2

= ρL is in BPn
k by Proposition 3.4 (applied successively

to the ellipsoids {Ei}, which are in BPn
1). For l > k, Proposition 3.6 implies that the body L3

defined by ρl
L3

= ρk
L2

= ρL is in BPn
l , otherwise this is trivial. Using Grinberg and Zhang’s

characterization of BPn
l (Theorem 2.1), the claim is established. �

Incidentally, Proposition 3.4 also enables us to give the following strengthened version of
Theorem 2.1.

Corollary 3.8. A star-body K is a k-Busemann–Petty body iff it is the limit of {Ki} in the radial
metric, where each Ki is of the following form:

ρk
Ki

= ρE i
1,1

· · · · · ρE i
1,k

+ · · · + ρE i
mi ,1

· · · · · ρE i
mi ,k

,

where {E i
j,l} are ellipsoids.

Proof. Obviously this representation generalizes the one given by Grinberg and Zhang in The-
orem 2.1, so it is enough to show the “if” part. But this follows from the closure of BPn

k under
limit in the radial metric, k-radial sums, and Proposition 3.4 (which as above shows that the body
L defined by ρk

L = ρE1 · · · · · ρEk
is in BPn

k ). �
For completeness, we conclude our investigation of the structure of BPn

k with the following
result of Grinberg and Zhang from [16]. Their argument is the same one used by Goodey and
Weil for intersection bodies (BPn

1), and is an immediate corollary of Theorem 2.1.

Corollary 3.9. (Grinberg and Zhang [16]) If K ∈ BPn
k then any m-dimensional central section

L of K (for m > k) satisfies L ∈ BPm
k .

Proof. Since and central section of an ellipsoid is again an ellipsoid, the claim follows immedi-
ately from Theorem 2.1. �

We now turn to prove the Structure Theorem from Section 1 for In
k . As will be evident, the

techniques involved are totally different from those which were used for BPn
k . The only point

of similarity is Lemma 3.11. We denote by In,∞
k the class of infinitely smooth k-intersection

bodies in R
n. As mentioned in Section 2, this implies for K ∈ In,∞

k that ‖ · ‖−k
K , (‖ · ‖−k

K )∧ ∈
C∞(Rn \ {0}). We begin with the following useful lemma.

Lemma 3.10. For any p ∈ (−n,0), g ∈ C∞(Sn−1) and μ ∈ M(O(n)), E∧
p (μ ∗ g) = μ ∗ E∧

p (g)

as functions on R
n \ {0}.

Proof. First, let us extend the definition of μ ∗ f to any function f ∈ C(Rn), as follows:

(μ ∗ f )(x) =
∫

O(n)

f
(
u(x)

)
dμ(u) for every x ∈ R

n.

Next, notice that for a test function φ, (μ ∗ φ)∧ = μ ∗ φ̂. Indeed, when μ is a delta function at
u ∈ O(n), (φ(u(·)))∧(x) = φ̂(u(x)) because the Fourier transform commutes with the action of
O(n). And for a general μ ∈M(O(n)), by Fubini’s theorem:
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(μ ∗ φ)∧(x) =
∫
Rn

∫
O(n)

φ
(
u(y)

)
dμ(u) exp

(−i〈y, x〉)dy

=
∫

O(n)

∫
Rn

φ
(
u(y)

)
exp

(−i〈y, x〉)dy dμ(u)

=
∫

O(n)

(
φ
(
u(·)))∧

(x) dμ(u) =
∫

O(n)

φ̂
(
u(x)

)
dμ(u) = μ ∗ φ̂.

Since g,μ ∗ g ∈ C∞(Sn−1), it follows that E∧
p (μ ∗ g),μ ∗ E∧

p (g) ∈ C∞(Rn \ {0}), and for any
test function φ:

〈
E∧

p (μ ∗ g),φ
〉 = 〈

Ep(μ ∗ g), φ̂
〉 = 〈

μ ∗ Ep(g), φ̂
〉 = 〈

Ep(g),μ−1 ∗ φ̂
〉

= 〈
Ep(g), (μ−1 ∗ φ)∧

〉 = 〈
E∧

p (g),μ−1 ∗ φ
〉 = 〈

μ ∗ E∧
p (g),φ

〉
.

Therefore E∧
p (μ ∗ g) = μ ∗ E∧

p (g) as functions. �
Lemma 3.11. In,∞

k is dense in In
k .

Proof. Let K ∈ In
k , and let μ ∈ M+(Sn−1) be the measure from Proposition 2.8 satisfying for

every f ∈ C∞(Sn−1) ∫
Sn−1

f (θ)ρk
K(θ) dσ (θ) =

∫
Sn−1

E∧−n+k(f )(θ) dμ(θ).

Let {ui} ⊂ C∞(O(n)) be an approximate identity as in Lemma 2.3, and let Ki be the star-body
for which ρk

Ki
= ui ∗ρk

K . Then by Lemma 2.3, {Ki} is a sequence of infinitely smooth star-bodies
which tend to K in the radial metric. It remains to check that each Ki is a k-intersection body.
Indeed, using the notations of Section 2 and Lemma 3.10, for any f ∈ C∞(Sn−1):

〈
f,ρk

Ki

〉 = 〈
f,ui ∗ ρk

K

〉 = 〈
u−1

i ∗ f,ρk
K

〉 = 〈
E∧−n+k(u

−1
i ∗ f ),μ

〉
= 〈

u−1
i ∗ E∧−n+k(f ),μ

〉 = 〈
E∧−n+k(f ), ui ∗ μ

〉
.

Since ui ∗ μ ∈ C∞+ (Sn−1), again by Proposition 2.8 this implies that Ki ∈ In
k . �

Remark 3.12. By the lemma and the closure of In
k (for any k = 1, . . . , n − 1) under limit in the

radial metric, it is enough to prove all the remaining items for the classes In,∞
k .

For the next fundamental proposition, we will need the following observation. It is classical
that for two test functions φ1, φ2, (φ1φ2)

∧ = φ̂1 � φ̂1 where � denotes the standard convolution
on R

n. In general, the convolution of two distributions does not exist. Nevertheless, when the
two distributions f1,f2 are locally integrable homogeneous functions with the right degrees, their
convolution may be defined as usual. Assume that fi is even homogeneous of degree −n+pi for
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pi > 0 and that p1 + p2 < n. Since fi are locally integrable and at infinity their product decays
faster than |x|−n, the following integral converges for x ∈ R

n \ {0}:

f1 � f2(x) =
∫

f1(x − y)f2(y) dy. (3.1)

It is easy to check that with this definition, f1 � f2 is homogeneous of degree −n + p1 + p2,
hence again locally integrable. Now assume in addition that fi are infinitely smooth functions on
R

n \ {0}, and therefore so are f̂i . We claim that as distributions (f1 � f2)
∧ = f̂1f̂2. To see this,

we define the product and convolution of an even distribution f with an even test-function φ, as
the distributions denoted φf and φ � f , respectively, satisfying for any test function ϕ that:

〈φf,ϕ〉 = 〈f,φϕ〉 and 〈φ � f,ϕ〉 = 〈f,φ � ϕ〉.
When f is a locally integrable function, it is clear that φf and φ �f as distributions coincide with
the usual product and convolution as functions. The same reasoning shows that when f1, f2 are
locally integrable even functions such that f1f2 is integrable at infinity (as before the definition
in (3.1)), we have:

〈f1 � f2, φ〉 = 〈f1, φ � f2〉, (3.2)

where the action 〈·,·〉 is interpreted here and henceforth as integration in R
n. Similarly, when

f1f2 is locally integrable, we have:

〈f1f2, φ〉 = 〈f1, φf2〉. (3.3)

With the above definitions, we see that (φ � f )∧ = φ̂f̂ because for any test function ϕ:

〈φ � f, ϕ̂〉 = 〈f,φ � ϕ̂〉 = 〈f̂ , φ̂ϕ〉 = 〈φ̂f̂ , ϕ〉. (3.4)

Now when f,g are two locally integrable infinitely smooth functions on R
n \ {0}, such that f̂ g

is locally integrable, it is easy to see that we may replace ϕ in (3.4) with g. The reason is that we
may weakly approximate g with test functions gi such that

∫
hgi → ∫

hg and
∫

hĝi → ∫
hĝ, for

any locally integrable continuous function h on R
n \ {0} such that

∫
hg exists. For instance, we

may use gi = (g �δi)δ̂i , where δi are Gaussians tending to a delta-function at 0; by (3.4) it is clear
that ĝi = (ĝδ̂i ) � δi , which weakly tends to ĝ (by testing against a test-function). We summarize
this by writing:

〈φ � f, ĝ〉 = 〈φ̂f̂ , g〉. (3.5)

Combining (3.2), (3.3) and (3.5) and using the fact that fi, f̂i , f̂1f̂2 are infinitely smooth and
locally integrable, we see that for any even test function φ:〈

(f1 � f2)
∧, φ

〉 = 〈f1 � f2, φ̂〉 = 〈f1, φ̂ � f2〉 = 〈f̂1, φf̂2〉 = 〈f̂1f̂2, φ〉.
This proves that under the above conditions:

(f1 � f2)
∧ = f̂1f̂2. (3.6)
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Remark 3.13. Note that the homogeneity of f1, f2 was not used, we only needed the appropriate
asymptotic behavior at 0 and infinity. Using the homogeneity, a different approach to derive
(3.6) was suggested to us by A. Koldobsky, by applying [13, Lemma 1]. With this approach, the
smoothness assumptions on f1, f2 may be omitted, and (3.6) is understood as equality between
distributions.

Using this notion of convolution, we can now show the following basic property of k-
intersection bodies, and immediately deduce (3a), (3b) and (3c) from the Structure Theorem
in Section 1. The following was also recently noticed independently by Koldobsky (but not pub-
lished).

Proposition 3.14. Let K1 ∈ In
k1

and K2 ∈ In
k2

for k1, k2 � 1 such that l = k1 + k2 � n − 1. Then

the star-body L defined by ρl
L = ρ

k1
K1

ρ
k2
K2

satisfies L ∈ In
l .

Proof. First, assume that Ki ∈ In,∞
ki

for i = 1,2, so that (‖·‖−ki

K )∧ ∈ C∞+ (Rn \{0}) and is homo-

geneous of degree −n + ki . Since l < n the convolution (‖ · ‖−k1
K )∧ � (‖ · ‖−k2

K )∧ as distributions
is well defined (as explained above). Therefore:

(‖ · ‖−l
L

)∧ = (‖ · ‖−k1
K ‖ · ‖−k2

K

)∧ = (‖ · ‖−k1
K

)∧
�

(‖ · ‖−k2
K

)∧ � 0,

as a function on R
n \ {0}, which implies that L ∈ In

l . The general case, when Ki ∈ In
ki

without
any smoothness assumptions, follows from Remark 3.12 in the same manner as in the proof of
Proposition 3.4. �

Applying Proposition 3.14 with K1 = K2, we have:

Corollary 3.15. In
k1

∩ In
k2

⊂ In
k1+k2

for k1, k2 � 1 such that k1 + k2 � n − 1.

By successively applying Corollary 3.15, we see that In
k ⊂ In

l if k divides l. As for the class
BP , the question whether In

k ⊂ In
l for general 1 � k < l � n − 1 remains open. Nevertheless,

we are able to show again the following “non-linear” embedding of In
k into In

l , which is again
an immediate corollary of Proposition 3.14 (using K2 = Dn ∈ In

l−k):

Corollary 3.16. If K ∈ In
k then the star-body L defined by ρL = ρ

k/l
K satisfies L ∈ In

l for 1 �
k � l � n − 1.

We conclude this section with our last observation.

Proposition 3.17. If K ∈ In
k then any m-dimensional central section L of K (for m > k) satisfies

L ∈ Im
k .

Proof. Let K be a star-body in R
n, fix k ∈ {1, . . . , n − 2}, and let H ∈ G(n,m) for m > k. In

view of Theorem 2.5, we have to show that as distributions

(‖ · ‖−k
)∧ � 0 implies

(‖ · ‖−k
∣∣ )∧ = (‖ · ‖−k

)∧ � 0.
K K H K∩H
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This becomes intuitively clear, after noticing that for a test function φ:

(φ|H )∧(u) =
∫

u+H⊥

φ̂(y) dy.

Nevertheless, for a more general function f = ‖ · ‖−k
K such that f̂ � 0 as a distribution, we will

need a somewhat different proof. Note that since m > k, f is locally integrable on any affine
translate z + H , and that for any test function φH on H ,

∫
H

f (y + z)φ(y) dy is continuous with
respect to z ∈ H⊥. Now let φH be any non-negative test function on H . For ε > 0, denote by
ϕH⊥,ε the (positive) Gaussian function on H⊥ such that (ϕH⊥,ε)

∧ is the density function of a
standard Gaussian variable on H⊥ with covariance matrix εIH⊥ . For y ∈ H and z ∈ H⊥, define
φε(y + z) = φH (y)ϕH⊥,ε(z). Clearly φε is a test function on R

n, φε � 0, and (φε)
∧(y + z) =

(φH )∧(y)(ϕH⊥,ε)
∧(z). We therefore have:

〈
(f |H )∧, φH

〉 = 〈
f |H , (φH )∧

〉 = ∫
H

f (y)(φH )∧(y) dy (3.7)

= lim
ε→0

∫
H⊥

(ϕH⊥,ε)
∧(z)

∫
H

f (y + z)(φH )∧(y) dy dz (3.8)

= lim
ε→0

∫
Rn

f (x)(φε)
∧(x) dx (3.9)

= lim
ε→0

〈
f, (φε)

∧〉 = lim
ε→0

〈f̂ , φε〉 � 0. (3.10)

Since φH � 0 was arbitrary, it follows that (f |H )∧ � 0. �
4. The connection between Radon and Fourier transforms

We have seen that although the classes BPn
k and In

k share the exact same structure and easily
verify that BPn

k ⊂ In
k , they are defined and handled using very different notions: Radon and

Fourier transforms, respectively. The aim of this section is to establish a common ground that will
enable to attack the question of whether BPn

k = In
k from a unified point of view. Since BPn

k ⊂ In
k ,

it seems natural that this common ground will involve the language of Radon transforms, so we
will have to translate the action of the Fourier transform to this language.

We will use the following notation. If μ ∈M(G(n,n−m)), we denote by μ⊥ ∈M(G(n,m))

the measure defined by μ⊥(A) = μ(A⊥) for any Borel set A ⊂ G(n,m), where A⊥ = {E⊥ |
E ∈ A}. Note that the operation μ → μ⊥ is dual to the operator I : C(G(n,m)) → C(G(n,

n − m)) defined in Section 1, in the sense that 〈μ, I (f )〉G(n,n−m) = 〈μ⊥, f 〉G(n,m). We recall
that I (f )(E) = f ⊥(E) = f (E⊥) for any E ∈ G(n,n−m). We therefore extend I to an operator
I : M(G(n,m)) → M(G(n,n − m)), defined as I (μ) = μ⊥, and by abuse of notation we say
that I is self-dual.

Theorem 2.7 in Section 2 was the first example relating the Radon and Fourier transforms.
Using operator notations, this may be stated as:

Rn−k ◦ E∧−k = c(n, k)I ◦ Rk, (4.1)
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as operators from C∞
e (Sn−1) to C∞

e (G(n,n − k)). In view of the remark immediately after
Theorem 2.7, a generalization of (4.1) is given by the spherical Parseval identity, which in the
formulation of Remark 2.6, shows that E∧−k is a self-adjoint operator on C∞

e (Sn−1):

(
E∧−k

)∗ = E∧−k. (4.2)

Passing to the dual in (4.1) and using (4.2), we immediately have:

E∧−k ◦ R∗
n−k = c(n, k)R∗

k ◦ I, (4.3)

as operators on certain spaces. We formulate this more carefully in the next proposition.

Proposition 4.1. Let f ∈ C∞
e (Sn−1), and assume that f = R∗

n−m(dμ) as measures in M(Sn−1),
for some measure μ ∈ M(G(n,n − m)). Then E∧−m(f ) = c(n,m)R∗

m(dμ⊥) as measures in
M(Sn−1), where c(n,m) is the constant from Lemma 2.4.

Proof. Let g ∈ C∞
e (Sn−1) be arbitrary. Then by the spherical Parseval identity and Theorem 2.7:

∫
Sn−1

E∧−m(f )(θ)g(θ) dσ (θ)

=
∫

Sn−1

f (θ)E∧−m(g)(θ) dσ (θ) =
∫

Sn−1

R∗
n−m(dμ)(θ)E∧−m(g)(θ) dσ (θ)

=
∫

G(n,n−m)

Rn−m

(
E∧−m(g)

)
(F )dμ(F ) = c(n,m)

∫
G(n,n−m)

Rm(g)(F⊥) dμ(F )

= c(n,m)

∫
G(n,m)

Rm(g)(F )dμ⊥(F ) = c(n,m)

∫
Sn−1

R∗
m(dμ⊥)(θ)g(θ) dσ (θ).

Since C∞
e (Sn−1) is dense in Ce(S

n−1) in the maximum norm, the proposition follows. �
In the context of star-bodies, the following is an immediate corollary of Proposition 4.1.

Corollary 4.2. Let K be an infinitely smooth star-body in R
n. Then for a measure μ ∈

M(G(n,n − k)):

‖ · ‖−k
K = R∗

n−k(dμ) iff
(‖ · ‖−k

K

)∧ = c(n, k)R∗
k (dμ⊥),

where c(n, k) is the constant from Lemma 2.4, and the equalities are understood as equalities
between measures in M(Sn−1).

Proof. The “only if” part follows immediately from Proposition 4.1 with m = k and f = ‖·‖−k
K .

The “if” part follows by applying Proposition 4.1 with m = n − k and f = (‖ · ‖−k
K )∧, and using

the fact that E∧−n+k(f ) = (2π)n‖ · ‖−k
K and that the constants c(n, k) from Lemma 2.4 satisfy

c(n, k)c(n,n − k) = (2π)n. �
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Proposition 4.1 has several interesting consequences. The first one is:

Theorem 4.3. Let n > 1 and fix 1 � k � n − 1. Then

BPn
k = In

k iff BPn
n−k = In

n−k.

Proof. Assume that BPn
n−k = In

n−k , and let K ∈ In,∞
n−k . In view of Lemma 3.11, the fact that

BPn
k is closed under limit in the radial metric, and Corollary 2.2, it is enough to show that

K ∈ BPn
k . Since (‖ · ‖−k

K )∧ � 0 by Theorem 2.5, we may define the infinitely smooth star-body
L as the body for which ‖ · ‖−n+k

L = (‖ · ‖−k
K )∧. Therefore (‖ · ‖−n+k

L )∧ = (2π)n‖ · ‖−k
K � 0,

hence L ∈ In
n−k . It follows from our assumption that L ∈ BPn

n−k , so there exists a non-negative

measure μ ∈ M+(G(n, k)) so that (‖ · ‖−k
K )∧ = ‖ · ‖−n+k

L = R∗
k (dμ). By Corollary 4.2, this

implies that ‖ · ‖−k
K = c(n, k)R∗

n−k(dμ⊥). Therefore K ∈ BPn
k , which concludes the proof. �

Another immediate consequence of Proposition 4.1 is another elementary proof of the follow-
ing corollary.

Corollary 4.4.

BPn
k ⊂ In

k .

Proof. Let K ∈ BPn,∞
k , so ‖ · ‖−k

K = R∗
n−k(dμ) for some non-negative Borel measure μ ∈

M+(G(n,n − k)). By Corollary 4.2 it follows that (‖ · ‖−k
K )∧ = c(n, k)R∗

k (dμ⊥), implying that
(‖ · ‖−k

K )∧ � 0, and hence K ∈ In
k . By Lemma 3.1, and the fact that In

k is closed under limit in
the radial metric, this concludes the proof. �

Applying Proposition 4.1 to the function f = 0, once for m = k and once for m = n − k, we
also immediately deduce the following useful proposition.

Proposition 4.5.

KerR∗
n−k = KerR∗

k ◦ I.

This is equivalent by a standard duality argument to the following proposition, which may be
deduced directly from Theorem 2.7.

Proposition 4.6.

ImRn−k = Im I ◦ Rk.

We conclude this section by introducing a family of very natural operators acting on
C(G(n, k)) to itself, and showing a few nice properties which they share. Denote by Vk :
C(G(n, k)) → C(G(n, k)) the operator defined as Vk = I ◦ Rn−k ◦ R∗

k .

Proposition 4.7. Vk is self-adjoint.



554 E. Milman / Journal of Functional Analysis 240 (2006) 530–567
Proof. It is actually not hard to show this directly, just by using double-integration as in Sec-
tion 3. Nevertheless, we prefer to use Proposition 4.1. Let f,g ∈ C∞(G(n,n − k)). Then by
Proposition 4.1, the spherical Parseval identity and Proposition 4.1 again, we have:

〈
Vn−k(f ), g

〉
G(n,n−k)

= 〈
R∗

n−k(f ), (I ◦ Rk)
∗(g)

〉
= c(n, k)−1〈R∗

n−k(f ),
(
E∧−k ◦ R∗

n−k

)
(g)

〉
= c(n, k)−1〈(E∧−k ◦ R∗

n−k

)
(f ),R∗

n−k(g)
〉

= 〈
(I ◦ Rk)

∗(f ),R∗
n−k(g)

〉 = 〈
f,Vn−k(g)

〉
G(n,n−k)

.

Since C∞(G(n,n − k)) is dense in C(G(n,n − k)) in the maximum norm, and the operators
R∗

n−k and Rk , and hence Vn−k , are continuous with respect to this norm, it follows that the same
holds for any f,g ∈ C(G(n,n − k)). �
Proposition 4.8.

Vn−k = I ◦ Vk ◦ I.

Proof. This time we give the proof in operator style notations. The formal details are filled in
exactly the same manner as above. Using the definition of Vk , and the identities (4.3) and (4.1),
we have:

I ◦ Vk ◦ I = Rn−k ◦ R∗
k ◦ I = c(n, k)−1Rn−k ◦ E∧−k ◦ R∗

n−k

= I ◦ Rk ◦ R∗
n−k = Vn−k. �

It is known (e.g. [10]) that for 1 < k < n − 1, even if we restrict the operators Rm to in-
finitely smooth functions, KerR∗

k �= {0} and ImRn−k �= C∞(G(n,n − k)), and therefore Vk is
neither injective nor surjective onto a dense set for those values of k. Since ImR∗

k = Ce(S
n−1)

and KerRn−k = {0}, it follows that KerVk = KerR∗
k and ImVk = Im I ◦ Rn−k = ImRk (by

Proposition 4.6). A standard duality argument shows that ImRk is orthogonal to KerR∗
k (as

measures acting on continuous functions, and therefore as functions when R∗
k is restricted to

C(G(n, k))), and therefore we may consider Vk as an operator from ImRk to ImRk , which is
injective and surjective onto a dense set. A natural question for integral geometrists would be
to find a nice inversion formula for Vk . Note that by a standard double-integral argument, the
operator R∗

k ◦ I ◦ Rn−k : Sn−1 → Sn−1 is exactly the usual spherical Radon transform R (for
every k), and under the standard identification between G(n,n− 1), G(n,1) and Sn−1, so are V1
and Vn−1.

5. Equivalent formulations of BPn
k = In

k

In this section we use the results and techniques of the previous sections together with basic
tools from functional analysis to derive equivalent formulations of the natural conjecture that
BPn

k = In
k . As mentioned in Section 1, the relevance of this conjecture to convex geometry

stems from the generalized k-codimensional Busemann–Petty problem. It was shown in [36]
that the answer to this problem is positive iff every convex body in R

n is in BPn, and this was
k
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shown to be false [4,21] for k < n − 3, but the cases of k = n − 3 and k = n − 2 remain open.
The analogous question for In

k turned out to be easier using the analytic tools provided by the
Fourier transform, and it was shown by Koldobsky in [20] that In

k contains all n-dimensional
convex bodies iff k � n − 3. Hence, a positive answer to whether BPn

k = In
k would imply a

positive answer to the generalized k-codimensional Busemann–Petty problem, for k � n−3. The
equivalent formulations derived in this section indicate that the BPn

k = In
k question is connected

and equivalent to very natural questions in integral geometry.
Before we start, we would like to give an intuitive equivalent formulation to BPn

k = In
k . By

Grinberg and Zhang’s characterization (Theorem 2.1), BPn
k is exactly the class of star-bodies

generated from the Euclidean ball Dn by means of full-rank linear transformations, k-radial
sums, and limit in the radial metric. Loosely speaking, we say that “modulo these operations,”
Dn is the only member of BPn

k . Since In
k is closed under these operations as well, we can ask

whether “modulo these operations” Dn is the only star-body such (‖ · ‖−k
Dn

)∧ � 0. In terms of
functions on the sphere, this is equivalent to asking whether “modulo these operations,” the only
function f ∈ C∞

e (Sn−1) such that f � 0 and E∧−k(f ) � 0 is the constant function f = 1 (note
that we may restrict our attention to infinitely smooth functions because of Lemma 3.11). This
formulation transforms the problem to the language of Fourier transforms. As opposed to this,
our other formulations in this section will use the language of the Radon transforms and integral
geometry.

We will use the following notations. Rm(C(Sn−1))+ will denote the non-negative functions in
the image of Rm and Rm(C+(Sn−1)) will denote the image of Rm acting on the cone C+(Sn−1)

(which is the same as its image acting on C+,e(S
n−1)). We denote G = G(n,n − k) for short.

It is well known (e.g. [10,17,33]) that Rn−k :Ce(S
n−1) → C(G(n,n − k)) is an injective

operator, but it is not onto for k < n − 1, and ImRn−k �= C(G(n,n − k)) for 1 < k < n − 1. We
will restrict our discussion to this range of k. It follows by an elementary duality argument, that
the image of the dual operator R∗

n−k : M(G(n,n − k)) → Me(S
n−1) is dense in Me(S

n−1) in
the w∗-topology, but R∗

n−k is not injective and has a non-trivial kernel. It is known that the dense
image in Me(S

n−1) contains C∞
e (Sn−1), and in fact an explicit inversion formula was obtained

by Koldobsky in [21, Proposition 3] (which is not unique because of the kernel). It follows from
Koldobsky’s argument (or from the general results of [10]) the following lemma.

Lemma 5.1. If f ∈ C∞
e (Sn−1) then there exists a g ∈ C∞(G(n,n − k)) such that f = R∗

n−k(g).

It will also be useful to note that

KerR∗
n−k = {

μ ∈ M
(
G(n,n − k)

) ∣∣ 〈μ,f 〉 = 0 ∀f ∈ ImRn−k

}
, (5.1)

and to recall Propositions 4.5 and 4.6, which show that

KerR∗
n−k = KerR∗

k ◦ I and ImRn−k = Im I ◦ Rk.

The latter immediately implies:

Rn−k

(
C+(Sn−1)

)
, I ◦ Rk

(
C+(Sn−1)

) ⊂ Rn−k

(
C(Sn−1)

)
+. (5.2)

It will be useful to consider the quotient space:

M(n,n − k) = M
(
G(n,n − k)

)/
KerR∗

n−k,
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which is the space of bounded linear functionals on the subspace ImRn−k of C(G(n,n− k)). By
abuse of notation, we will also think of R∗

n−k as an operator from M(n,n − k) to Me(S
n−1),

and although this does not change its image, it is now injective on M(n,n − k). The same
is true for R∗

k ◦ I , since KerR∗
n−k = KerR∗

k ◦ I , and we may proceed to interpret R∗
n−k(dμ)

and R∗
k (dμ⊥) in the usual way for μ ∈ M(n,n − k), since these values are the same for the

entire co-set μ + KerR∗
n−k . If R∗

n−k were onto Me(S
n−1), or even Ce(S

n−1), we could proceed
by identifying between a star-body K and a signed Borel measure μ in M(n,n − k), by the
correspondence ‖ · ‖−k

K = R∗
n−k(dμ). Unfortunately, the general theory does not guarantee this,

and in fact we believe that some star-bodies do not admit such a representation (although we
have not been able to find a reference for this). But as remarked earlier, C∞

e (Sn−1) does lie in
the image of R∗

n−k , and this is enough for our purposes.
Let us now review the definitions of BPn

k and In
k . Our original definition required that K ∈

BPn
k iff ρk

K = R∗
n−k(dμ) for some non-negative measure μ ∈ M+(G(n,n − k)). We claim that

this is equivalent to requiring that μ ∈ M+(n,n − k), since by a version of the Hahn–Banach
theorem [16, Lemma 4.3], any non-negative functional on ImRn−k may be extended to a non-
negative functional on the entire C(G(n,n − k)), and the converse is trivially true. Defining
M(BPn

k) as the set of non-negative functionals in M(n,n − k):

M
(
BPn

k

) = M+(n,n − k),

we see the following.

Lemma 5.2. Let K be a star-body in R
n. Then K ∈ BPn

k iff ρk
K = R∗

n−k(dμ), for some μ ∈
M(BPn

k).

Let us also define M(In
k ) as

M(In
k ) = {

μ ∈ M(n,n − k)
∣∣ R∗

n−k(dμ) � 0,R∗
k (dμ⊥) � 0

}
,

where “ν � 0” means that ν is a non-negative measure in Me(S
n−1). Using co-set notations, let

us also define

M∞(n,n − k) = {
f + KerR∗

n−k

∣∣ f ∈ C∞(G)
}
,

and denote

M∞(
In

k

) = M
(
In

k

) ∩M∞(n,n − k), and

M∞+ (n,n − k) = M∞(
BPn

k

) = M
(
BPn

k

) ∩M∞(n,n − k).

Unfortunately, we cannot give a completely analogous characterization to Lemma 5.2 for In
k

and M(In
k ). However, we have the following.

Lemma 5.3. Let K be an infinitely smooth star-body in R
n. Then K ∈ In

k iff ρk
K = R∗

n−k(dμ),
for some μ ∈ M∞(In).
k
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Proof. We will first prove the “only if” part. Assume that K ∈ In,∞
k . By Lemma 5.1, there exists

a signed measure μ ∈ M∞(n,n − k) so that ‖ · ‖−k
K = R∗

n−k(dμ). By Corollary 4.2 of Proposi-

tion 4.1, it follows that (‖ · ‖−k
K )∧ = c(n, k)R∗

k (dμ⊥). Since ‖ · ‖−k
K � 0 because K is a star-body

and (‖ · ‖−k
K )∧ � 0 because K ∈ In

k , it follows that R∗
n−k(dμ) � 0 and R∗

k (dμ⊥) � 0, proving
that μ ∈ M∞(In

k ). The “if” part follows from Corollary 4.2 in exactly the same manner, since
(‖·‖−k

K )∧ = c(n, k)R∗
k (dμ⊥) � 0 for a measure μ ∈ M∞(In

k ) such that ‖·‖−k
K = R∗

n−k(dμ). �
Remark 5.4. It seems that any attempt to prove the “only if” part of the lemma for a general
star-body K ∈ In

k by approximating it with Ki ∈ In,∞
k will fail. The reason is that we have no

way of controlling the norm of the (a-priori signed) measures μi ∈ M(In
k ) for which ρk

Ki
=

R∗
n−k(dμi), and therefore it is not guaranteed that μi will converge to some measure (like in

the usual argument which uses the w∗-compactness of the unit-ball of M(n,n − k)). If it were
known that the μi are non-negative (this would follow if M(BPn

k) = M(In
k )), it would follow

that ‖μi‖ = ‖R∗
n−k(dμi)‖ (since R∗

n−k(dμi) is non-negative), and over the latter term we do
have control. The “if” part of the lemma may be proved without any smoothness assumption by
the standard approximation argument.

We now see that we have derived alternative definitions of BPn
k and In,∞

k using a common
language of Radon transforms and without using the Fourier transform. Note that even if we
could remove the restriction of infinite smoothness from Lemma 5.3, it would not be yet clear that
BPn

k = In
k iff M(BPn

k) = M(In
k ), since for a general μ ∈ M(BPn

k) or μ ∈ M(In
k ), R∗

n−k(dμ)

may not be a measure with continuous density (and hence cannot equal ρk
K for a star-body K).

We do, however, have:

Lemma 5.5.

M
(
BPn

k

) ⊂ M
(
In

k

)
.

Proof. If μ ∈M+(n,n− k) then trivially R∗
n−k(dμ) � 0 and R∗

k (dμ⊥) � 0, hence μ ∈ M(In
k ).

Although the proof is trivial, note that underlying this statement are Propositions 4.5 and 4.6
which enabled us to restrict R∗

n−k and R∗
k ◦ I to M(n,n − k). �

We may now formulate the main theorem of this section:

Theorem 5.6. Let n and 1 � k � n − 1 be fixed. Then the following are equivalent:

(1) BPn
k = In

k .

(2) M∞(
BPn

k

) = M∞(
In

k

)
.

(3) M
(
BPn

k

) = M
(
In

k

)
.

(4) Rn−k

(
C(Sn−1)

)
+ = Rn−k

(
C+(Sn−1)

) + I ◦ Rk

(
C+(Sn−1)

)
.

(5) If μ + 1 ∈ M(BPn
k) and μ ∈ M(In

k ), then μ ∈M(BPn
k).

(6) There does not exist a measure μ ∈M∞+ (n,n−k) such that R∗
n−k(dμ) � 1 and R∗

k (dμ⊥) �
1 (where “ν � 1” means that ν − 1 is a non-negative measure), and such that

inf
{〈μ,f 〉 ∣∣ f ∈ Rn−k

(
C(Sn−1)

)
+ and 〈1, f 〉 = 1

} = 0. (5.3)
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We will show (2) ⇒ (1), (1) ⇒ (3), (3) ⇔ (4), (5) ⇒ (6) and (6) ⇒ (2). Obviously, (3) ⇒
(2) and (3) ⇒ (5).

Proof of (2) ⇒ (1). Let K ∈ In,∞
k . In view of Lemma 3.11, the fact that BPn

k is closed under
limit in the radial metric, and Corollary 2.2, it is enough to show that K ∈ BPn

k . By Lemma 5.3,
ρk

K = R∗
n−k(dμ) for some μ ∈ M∞(In

k ). By our assumption that M∞(BPn
k) = M∞(In

k ) and
by Lemma 5.2, it follows that K ∈ BPn

k (in fact K ∈ BPn,∞
k ). �

Proof of (1) ⇒ (3). In view of Lemma 5.5, it is enough to prove M(In
k ) ⊂ M(BPn

k). Let
μ ∈ M(In

k ), so R∗
n−k(dμ) � 0 and R∗

k (dμ⊥) � 0. Let {ui} ⊂ C∞(O(n)) be an approximate
identity as in Lemma 2.3. Let Ki denote the infinitely smooth star-body defined by

‖ · ‖−k
Ki

= ui ∗ R∗
n−k(μ) � 0

(we used R∗
n−k(μ) � 0 to verify that Ki is indeed a star-body). As in the proof of Lemma 3.1, it

is easy to see that ‖ · ‖−k
Ki

= R∗
n−k(ui ∗ μ), so by Corollary 4.2 we have:

(‖ · ‖−k
Ki

)∧ = c(n, k)R∗
k

(
(ui ∗ μ)⊥

) = R∗
k (ui ∗ μ⊥) = ui ∗ R∗

k (μ⊥) � 0.

Hence Ki ∈ In
k , and by our assumption that BPn

k = In
k , it follows that Ki ∈ BPn

k . By Lemma 5.2,
this implies that ‖ · ‖−k

Ki
= R∗

n−k(dηi), where ηi ∈ M(BP n
k ). The injectivity of R∗

n−k on
M(n,n − k) implies that ui ∗ μ = ηi ∈ M(BP n

k ). Lemma 2.3 shows that ui ∗ μ tends to μ

in the w∗-topology, and since M(BP n
k ) is obviously closed in this topology, it follows that

μ ∈M(BP n
k ). �

For the proof of (3) ⇔ (4) and for later use, we will need to recall a few classical notions
from functional analysis (e.g. [2]). A cone P in a Banach space X is a non-empty subset of X

such that x, y ∈ P implies c1x + c2y ∈ P for every c1, c2 � 0. The dual cone P ∗ ⊂ X∗ is defined
by P ∗ = {x∗ ∈ X∗|〈x∗,p〉 � 0 ∀p ∈ P }. Therefore P ∗ is always closed in the w∗-topology, and
P ∗ = (P )∗. It is also easy to check that P1 ⊂ P2 implies P ∗

2 ⊂ P ∗
1 , (P1 + P2)

∗ = P ∗
1 ∩ P ∗

2 and
(P1 ∩P2)

∗ = P ∗
1 +P ∗

2 . An immediate consequence of the Hahn–Banach theorem is that P1 = P2
iff P ∗

1 = P ∗
2 .

Proof of (3) ⇔ (4). All the sets appearing in (3) and (4) are clearly cones. It remains to show
that the cones in both sides of (3) are exactly the dual cones to the ones in both sides of (4). The
equivalence then follows by the Hahn–Banach theorem, as in the last statement of the previous
paragraph.

By definition, M(BPn
k) is dual to Rn−k(C(Sn−1))+. The cones

{
μ ∈ M(n,n − k)

∣∣ R∗
n−k(dμ) � 0

}
and{

μ ∈ M(n,n − k)
∣∣ R∗

k (dμ⊥) � 0
}

are immediately seen to be dual to Rn−k(C+(Sn−1)) and I ◦ Rk(C+(Sn−1)), respectively. Since
(P1 + P2)

∗ = P ∗
1 ∩ P ∗

2 , it follows that

M
(
In

k

) = (
Rn−k

(
C+(Sn−1)

) + I ◦ Rk

(
C+(Sn−1)

))∗
.
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This concludes the proof. �
Remark 5.7. By (5.2), we have:

Rn−k

(
C(Sn−1)

)
+ ⊃ Rn−k

(
C+(Sn−1)

) + I ◦ Rk

(
C+(Sn−1)

)
.

By duality, we see again that

M
(
BPn

k

) ⊂ M
(
In

k

)
.

Proof of (5) ⇒ (6). This follows immediately from the definitions. Assume that (6) is false, so
that there exists a measure μ ∈ M∞+ (n,n − k) such that R∗

n−k(dμ) � 1 and R∗
k (dμ⊥) � 1 and

such that (5.3) holds. Define μ′ = μ − 1, and so μ′ + 1 ∈ M(BPn
k), μ′ ∈ M(In

k ), and (5.3)
shows that μ′ is not in M(BPn

k). Therefore μ′ is a counterexample to (5). �
Proof of (6) ⇒ (2). Assume that (2) is false, so M∞(BPn

k) �= M∞(In
k ). By Lemma 5.5, this

means that there exists a measure μ′ ∈M∞(In
k ) \M(BPn

k). Since μ′ ∈M∞(n,n − k), we can
write μ′ = g + KerR∗

n−k with g ∈ C∞(G(n,n − k)). Assume that min(g) = −C where C > 0,
otherwise we would have μ′ ∈M(BPn

k).
Now consider the measure μλ = (1−λ)μ′ +λ ∈M∞(n,n−k) for λ ∈ [0,1]. Since M(BPn

k)

is convex, contains the measure 1, and is closed in the w∗-topology, it follows that there exists
a λ0 ∈ (0,1] so that μλ ∈ M∞(BPn

k) iff λ ∈ [λ0,1]. But for λ1 = C/(1 + C) we already see
that μλ1 ∈ M(BPn

k), because μλ1 = gλ1 + KerR∗
n−k and gλ1 = 1/(1 + C)g + 1 − 1/(1 + C) ∈

C∞+ (G(n,n − k)). We conclude that λ0 ∈ (0,1).
Now define μ = μλ0/λ0 ∈ M(BPn

k), and notice that μ − 1 = (1 − λ0)/λ0μ
′ ∈ M∞(In

k ),
implying that R∗

n−k(dμ) � 1 and R∗
k (dμ⊥) � 1. It remains to show (5.3). Assume by negation

that

inf
{〈μ,f 〉 ∣∣ f ∈ Rn−k

(
C(Sn−1)

)
+ and 〈1, f 〉 = 1

} = δ > 0.

But then it is easy to check that for λ2 = λ0(1 − δ)/(1 − δλ0) < λ0, 〈μλ2, f 〉 � 0 for all

f ∈ Rn−k(C(Sn−1))+, and hence for all f ∈ Rn−k(C(Sn−1))+. Therefore μλ2 ∈ M∞(BPn
k),

in contradiction to the definition of λ0. Therefore (5.3) is shown, concluding the proof. �
Remark 5.8. In formulation (6), it is equivalent to require that μ ∈ M+(n,n − k) and also
μ ∈ M(G(n,n − k)) instead of μ ∈ M∞+ (n,n − k). The equivalence of μ ∈ M+(n,n − k)

follows since we have not used the fact that μ ∈ M∞(n,n − k) in the proof (by negation) of
(5) ⇒ (6). The equivalence of μ ∈M(G(n,n−k)) follows by the previously mentioned version
of the Hahn–Banach theorem (which was used to derive Lemma 5.2). This is the formulation
which was used in Section 1.

We proceed to develop several more formulations of the BPn
k = In

k question. Unfortunately,
we cannot show an equivalence with the original question, but rather a weak type of implication.
We formulate a very natural conjecture, and show that together with a positive answer to the
BPn

k = In
k question, the new formulations are implied.

Given an Borel set Z ⊂ G(n,n − k), we define the restriction of a measure μ ∈ M(G(n,

n − k)) to Z, denoted μ|Z ∈M(G(n,n − k)), as the measure satisfying μ|Z(A) = μ(A∩ Z) for
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any Borel set A ⊂ G(n,n−k). We will say that μ is supported in a closed set Z, if μ|ZC = 0, and
define the support of μ, denoted supp(μ), as the minimal closed set Z in which μ is supported
(it is easy to check that this is well defined). It is also easy to check the following lemma.

Lemma 5.9. If f ∈ C(G(n,n − k)), μ ∈ M(G(n,n − k)) and supp(μ) ⊂ f −1(0) then
〈μ,f 〉 = 0. Conversely, if f ∈ C+(G(n,n − k)), μ ∈ M+(G(n,n − k)) and 〈μ,f 〉 = 0, then
supp(μ) ⊂ f −1(0).

We also recall the definition of the covering property from Section 1. A set closed set Z ⊂
G(n,n − k) is said to satisfy the covering property if⋃

E∈Z

E ∩ Sn−1 = Sn−1 and
⋃
E∈Z

E⊥ ∩ Sn−1 = Sn−1. (5.4)

Our starting point is formulation (6) in Theorem 5.6, which involves both a function f

and a measure μ. Note that the requirement that if f ∈ Rn−k(C(Sn−1))+ and 〈1, f 〉 = 1, then
〈μ,f 〉 is bounded away from zero, is stronger than demanding that 〈μ,f 〉 �= 0. The motiva-
tion for the following discussion stems from the impression that the conditions on μ, namely
that μ ∈ M+(G(n,n − k)) (following Remark 5.8), R∗

n−k(dμ) � 1 and R∗
k (dμ⊥) � 1, may be

equivalently specified by some condition on the support of μ. In that case, the condition that
〈μ,f 〉 �= 0 becomes a condition on the set f −1(0). Let us show the following necessary condi-
tion on the support of such a μ as above.

Lemma 5.10. Let μ ∈ M+(G(n,n−k)) so that R∗
n−k(dμ) � 1 and R∗

k (dμ⊥) � 1. Then supp(μ)

satisfies the covering property.

Proof. Denote by Z = supp(μ) and Z̃ = ⋃
E∈Z E ∩ Sn−1. We will show that if μ ∈ M+(G(n,

n − k)) and R∗
n−k(dμ) � 1 then Z̃ = Sn−1. The other “half” of the covering property follows

similarly from R∗
k (dμ⊥) � 1.

Notice that for E1,E2 ∈ G(n,n − k), the Hausdorff distance between E1 ∩ Sn−1 and E2 ∩
Sn−1 is equivalent to the distance between E1 and E2 in G(n,n − k). It follows that since Z is
closed, so is Z̃. Now assume that Z̃ �= Sn−1, so there exists a θ ∈ Sn−1 and an ε > 0, so that
B̃ = BSn−1(θ, ε) ∪ BSn−1(−θ, ε) ⊂ Z̃C . Let f ∈ Ce,+(Sn−1) be any non-zero function supported
in B̃ . Since B̃ ⊂ Z̃C it follows that B = supp(Rn−k(f )) ⊂ ZC , and therefore:〈

R∗
n−k(μ),f

〉 = 〈
μ,Rn−k(f )

〉 = 0.

But on the other hand, since R∗
n−k(dμ) � 1 and f ∈ Ce,+(Sn−1) is non-zero:〈

R∗
n−k(μ),f

〉
� 〈1, f 〉 > 0,

a contradiction. �
We conjecture that the covering property is also a sufficient condition in the following sense.

Covering Property Conjecture. For any n > 0, 1 � k � n−1, if Z ⊂ G(n,n−k) is a closed set
satisfying

⋃
E∈Z E ∩Sn−1 = Sn−1, then there exists a measure μ ∈M+(G(n,n− k)) supported

in Z, such that R∗ (dμ) � 1.
n−k



E. Milman / Journal of Functional Analysis 240 (2006) 530–567 561
Under this conjecture, we immediately have the following counterpart to Lemma 5.10.

Lemma 5.11. Assume the Covering Property Conjecture, and let Z ⊂ G(n,n−k) be a closed set
satisfying the covering property. Then there exists a measure μ ∈ M+(G(n,n − k)) supported
in Z, such that R∗

n−k(dμ) � 1 and R∗
k (dμ⊥) � 1.

Proof. Apply the conjecture to the closed sets Z ⊂ G(n,n − k) and Z⊥ ⊂ G(n, k), and let
μ1 ∈ M+(G(n,n − k)) and μ2 ∈ M+(G(n, k)) be the resulting measures. Then μ1 + μ⊥

2 is
supported in Z and satisfies the requirements. �
Remark 5.12. A very natural way to approach the proof of the Covering Property Conjecture,
is to assume that the closed set Z satisfying

⋃
E∈Z E ∩ Sn−1 = Sn−1 is minimal with respect to

set inclusion (indeed, by Zorn’s lemma it is easy to verify that there exists such a minimal set).
The natural candidate for a measure supported on Z is simply the Hausdorff measure HZ on Z,
and it remains to show that HZ is a finite measure and that R∗

n−k(dHZ) � ε for some ε > 0,
using the minimality of Z. In particular, one has to show that the Hausdorff dimension of Z is k.
Although having some progress in this direction, we have not been able to give a complete proof.
We also remark that it is easy to construct a non-bounded measure μ supported on Z for which
R∗

n−k(dμ) � 1, simply by using the counting measure on Z, i.e. μ(A) = |{A ∩ Z}| for any Borel
set A ⊂ G(n,n − k) (where |A| denotes the cardinality of A).

As opposed to Theorem 5.6, where R∗
n−k was treated as an operator on M(n,n − k), we now

go back to the original definition of R∗
n−k as an operator acting on the entire M(G(n,n − k)).

We summarize this in the following lemma, abbreviating as usual G = G(n,n − k):

Lemma 5.13.

(1) M(n,n − k) = M(G)/KerR∗
n−k.

(2) M+(n,n − k) = {
μ + KerR∗

n−k

∣∣ μ ∈M+(G)
}
.

(3)
{
μ ∈M(G)

∣∣ 〈μ,f 〉 � 0 ∀f ∈ Rn−k

(
C(Sn−1)

)
+
} = M+(G) + KerR∗

n−k.

Proof. (1) is simply the definition of M(n,n − k). (2) follows from (3), since M+(n,n − k)

is defined as the cone of non-negative linear functionals on ImRn−k , and any linear functional
on the subspace may be extended to the entire space, hence to μ ∈ M(G). (3) was already
implicitly used in the proof of Lemma 5.2, but we repeat the argument once more. The right-
hand set is clearly a subset of the left-hand set, since KerR∗

n−k is perpendicular to ImRn−k by
(5.1). Conversely, any μ in the left-hand set is a non-negative linear functional on ImRn−k , and
by a version of the Hahn–Banach theorem (as in the proof of Lemma 5.2), may be extended
to a μ′ ∈ M+(G). Again by (5.1), the difference μ′ − μ must lie in KerR∗

n−k , concluding the
proof. �

We now state several more formulations, which are shown to be equivalent each to the other.
We then show that under the Covering Property Conjecture, a positive answer to the BPn

k = In
k

question would imply these new statements. For a closed set Z ⊂ G(n,n − k), we denote by
M(Z) the set of all measures in M(G(n,n − k)) supported in Z.
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Theorem 5.14. Let n and 1 � k � n−1 be fixed, and let Z ⊂ G(n,n−k) denote a closed subset.
Then the following are equivalent:

(1) There does not exist a non-zero f ∈ Rn−k(C(Sn−1))+ such that Z ⊂ f −1(0).

(2) Rn−k

(
C(Sn−1)

)
+ ∩ {

f ∈ C(G)
∣∣ f |Z = 0

} = {0}.
(3) M+(G) + KerR∗

n−k +M(Z) = M(G).

(4) There exists a measure μ ∈ M(G) such that R∗
n−k(dμ) = 0 and μ = μ1 + μ2 where μi ∈

M(G), μ1 � 1 and μ2 is supported in Z.

It is clear that (2) is just a convenient reformulation of (1). We will show that (2) ⇔ (3) and
(3) ⇔ (4).

Proof of (2) ⇔ (3). Again, we use the Hahn–Banach theorem which shows that for cones,
P1 = P2 iff P ∗

1 = P ∗
2 . The dual cone (in M(G)) to Rn−k(C(Sn−1))+ is by definition:

{
μ ∈M(G)

∣∣ 〈μ,f 〉 � 0 ∀f ∈ Rn−k(C(Sn−1))+
}
,

which by Lemma 5.13 is equal to M+(G) + KerR∗
n−k . The dual cone to CZ(G) = {f ∈ C(G) |

f |Z = 0} is obviously M(Z). Indeed, by definition, if μ ∈ M(G) is not supported in Z, there
exists a f ∈ CZ(G) such that 〈μ,f 〉 �= 0 (since Z is closed). Since also −f ∈ CZ(G), either
〈μ,f 〉 or 〈μ,−f 〉 is negative, and therefore μ cannot be in the dual cone to CZ(G). The dual
cone to {0} is of course M(G). Using (P1 ∩ P2)

∗ = P ∗
1 + P ∗

2 , this concludes the proof. �
Proof of (3) ⇒ (4). Apply (3) with the measure −1 ∈ M(G) on the right-hand side. Then
there exist measures ν1 ∈ M+(G), ν2 ∈ KerR∗

n−k and ν3 ∈M(Z), such that ν1 + ν2 + ν3 = −1.
Denoting μ = −ν2, μ1 = ν1 + 1 and μ2 = ν3, (4) follows immediately. �
Proof of (4) ⇒ (3). C(G) is dense in M(G) in the w∗-topology, so it is enough to show that (4)

implies C(G) ⊂ M+(G) + KerR∗
n−k +M(Z), as the cones on the right-hand side are closed in

this topology. Let g ∈ C(G), so there exists a constant C � 0 such that g +C � 0, and hence g +
C + KerR∗

n−k ∈ M+(n,n − k). By Lemma 5.13, this means that g + C ∈ M+(G) + KerR∗
n−k ,

and we see that it is enough to show that the measure −C is in M+(G) + KerR∗
n−k + M(Z).

Since all of the involved sets are cones, it is enough to show the claim for the measure −1.
But this follows from formulation (4) in the same manner is in the previous proof. Indeed, let
μ = μ1 + μ2 as assured by (4), where μ ∈ KerR∗

n−k , μ1 − 1 ∈ M+(G) and μ2 ∈ M(Z). Then
−1 = (μ1 − 1) − μ + μ2 ∈M+(G) + KerR∗

n−k +M(Z). This concludes the proof. �
Comparing formulations in Theorems 5.6(6) and 5.14(1) for a set Z satisfying the covering

property, and using Lemmas 5.10 and 5.11, the following should now be clear.

Proposition 5.15. Let n and 1 � k � n−1 be fixed. Assuming the Covering Property Conjecture,
if any of the formulations in Theorem 5.6 hold, then so do any of the formulations in Theorem 5.14
for any closed Z ⊂ G(n,n − k) satisfying the covering property.

Proof. The statement follows immediately from the remark before the proposition, taking into
account Remark 5.8 and Lemma 5.9. �
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Appendix A

In the appendix, we formulate and prove Proposition A.1, which is an extended version of
the statement from Section 1 and of Corollary 3.3. We have left the proof of Proposition A.1
for the appendix, since the technique involved differs from those used in the rest of this note.
Although the proposition is of elementary nature and fairly simple to prove, we have not been
able to find a reference to it in the literature, so we give a self contained proof here. A similar
formulation of the case k1, . . . , kr = 1 was given by Blaschke and Petkantschin (see [26,30] for
an easy derivation), and used by Grinberg and Zhang in [16] to deduce that BPn

1 ⊂ BPn
l for all

1 � l � n − 1.
We assume some elementary knowledge of exterior products of differential forms on homo-

geneous spaces. A rigorous derivation may be found in [30], but we recommend the intuitive
exposition in [26, Sections 2, 3]. We will also use the notations from Section 3.

We will use the following terminology. For a set of m vectors v̄ = {v1, . . . , vm} in a Euclid-
ean space V , denote by Volm(v̄) = det({〈vi, vj 〉}mi,j=1)

1/2, which is exactly the m-dimensional

volume of the parallelepiped spanned by v̄. If m = ∑r
i=1 ki , let Ui be a ki -dimensional sub-

space of V . Choose an arbitrary basis ūi = {ui
1, . . . , u

i
ki

} of Ui such that Volki
(ūi ) = 1, and let

ū = ⋃r
i=1 ūi . Then the m-dimensional volume of the parallelepiped spanned by unit volume ele-

ments of U1, . . . ,Ur is defined as Volm(ū). It is easy to verify that this definition indeed does not
depend on the basis ūi chosen for Ui , as long as Volki

(ūi ) = 1 (this will also be clear from the
proof of Proposition A.1).

Proposition A.1. Let n > 1 be fixed, let d be an integer between 0 and n − 1, and let D ∈
G(n,d). For i = 1, . . . , r , let ki � 1 denote integers whose sum l satisfies l � n − d . For a =
1, . . . , n − d denote by Ga = G(n,n − a), and by μa

D the Haar probability measure on Ga
D .

For F ∈ Gl and a = 1, . . . , l − 1, denote by μa
F the Haar probability measure on Ga

F . Denote
by Ē = (E1, . . . ,Er) an ordered set with Ei ∈ Gki . Then for any continuous function f (Ē) =
f (E1, . . . ,Er) on Gk1 × · · · × Gkr

∫
E1∈G

k1
D

. . .

∫
Er∈G

kr
D

f (Ē) dμ
k1
D(E1) . . . dμ

kr

D(Er)

=
∫

F∈Gl
D

∫
E ∈G

k1

. . .

∫
Er∈G

kr

f (Ē)Δ(Ē) dμ
k1
F (E1) . . . dμ

kr

F (Er) dμl
D(F ),
1 F F
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where Δ(Ē) = Cn,{ki },l,d�(Ē)n−d−l , Cn,{ki },l,d is a constant depending only on n, {ki}, l, d , and
�(Ē) denotes the volume of the l-dimensional parallelepiped spanned by unit volume elements
of E⊥

1 , . . . ,E⊥
r .

Remark A.2. One way to compute the constant Cn,{ki },l,d is to use the function f = 1 in Propo-
sition A.1. Perhaps a better way is to follow the proof, which gives

Cn,{ki },l,d = |G(n − d,n − d − l)|�r
i=1|G(l, l − ki)|

�r
i=1|G(n − d,n − d − ki)| ,

where |G(a,b)| denotes the volume of the Grassmann manifold G(a,b), and is given by [26]

∣∣G(a,b)
∣∣ = |Sa−1| · · · |Sa−b|

|Sb−1| · · · |S0| , (A.1)

where |Sm| denotes the volume of the Euclidean unit sphere Sm of dimension m (and |S0| = 2).

Proof of Proposition A.1. We will show that the densities dμ
k1
D(E1) . . . dμ

kr

D(Er) and

Δ(Ē)dμ
k1
F (E1) . . . dμ

kr

F (Er) dμl
D(F ) with F = ⋂r

a=1 Ea coincide on a set of measure 1 with
respect to both measures. It is easy to verify that the set consisting of all (E1, . . . ,Er) such that
dim(

⋂r
a=1 Ea) = n − l satisfies this requirement, and therefore F above is in G(n,n − l), hence

the second measure is well defined. Indeed, this set is exactly complementary to the set of all
(E1, . . . ,Er) such that �(Ē) = 0, which defines a lower-dimensional analytic submanifold of
Gk1 × · · · × Gkr , hence having measure 0 with respect to the first (Haar) measure.

If J ∈ G(a, c), it is well known [26] that the volume element of GJ (a, b) for b > c at H ∈
GJ (a, b) is given by

dGJ (a, b)(H) =
b∧

i=c+1

a∧
j=b+1

wi,j , (A.2)

where wi,j = 〈ei, dej 〉, and {e1, . . . , ea} is any orthonormal basis of R
a such that J =

span{e1, . . . , ec} and H = span{e1, . . . , eb}. Indeed, it is easy to verify that this formula does
not depend on the given orthonormal basis satisfying these conditions, by changing basis and
applying a change of variables formula. With this normalization, the total volume of GJ (a, b)

is |G(a − c, b − c)|, as defined in (A.1) [26]. Since d1 ∧ d2 = −d2 ∧ d1, the volume element is
signed, corresponding to the assumed orientation of the element. However, we will henceforth
ignore the orientation and implicitly take the absolute value in all exterior products, except where
it is mentioned otherwise. Note also that the skew-symmetry implies d ∧ d = 0.

Let {f1, . . . , fd} be an orthonormal basis of D, and let {f1, . . . , fn−l} be a completion to
an orthonormal basis of F . For a = 1, . . . , r let {ea

n−l+1, . . . , e
a
n−ka

} be an orthonormal basis of

F⊥ ∩Ea , and let {ea
n−ka+1, . . . , e

a
n} be an orthonormal basis of E⊥

a . For every a we define ea
i = fi

for i = 1, . . . , n − l. Then

dμ
k1
D(E1) · · · dμ

kr

D(Er) = C1
n,{ki },l,d

r∧ n−ka∧ n∧
wa

i,j ,
a=1 i=d+1 j=n−ka+1
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where wa
i,j = 〈ea

i , dea
j 〉 and C1

n,{ki },l,d = (�r
i=1|G(n − d,n − d − ki)|)−1 accounts for the fact

that the measure on the left is normalized to have total mass 1. Notice that by (A.2)

r∧
a=1

n−ka∧
i=n−l+1

n∧
j=n−ka+1

wa
i,j = C2{ki },l dμ

k1
F (E1) . . . dμ

kr

F (Er),

where C2{ki },l = �r
i=1|G(l, l − ki)|. It remains to show that

r∧
a=1

n−l∧
i=d+1

n∧
j=n−ka+1

wa
i,j = C′

n,{ki },l,dΔ(Ē) dμl
D(F ). (A.3)

Now let {gn−l+1, . . . , gn} denote an orthonormal basis of F⊥, and denote λa
j,v = 〈ea

j , gv〉 for
j, v = n− l+1, . . . , n. Hence ea

j = ∑n
v=n−l+1 λa

j,vgv and dea
j = ∑n

v=n−l+1(dλa
j,vgv +λa

j,vdgv).
Denoting wj,v = 〈fj , dgv〉, we see that since 〈fi, gv〉 = 0, then for i = 1, . . . , n − l and j =
n − l + 1, . . . , n

wa
i,j =

n∑
v=n−l+1

λa
j,vwi,v. (A.4)

As evident from (A.3), we will be interested in the values of λa
j,v only in the range j = n −

ka + 1, . . . , n. We therefore rearrange these values by defining a bijection u : ⋃r
a=1{(a,n − ka +

1), . . . , (a, n)} → {1, . . . , l}, and denote Λu(a,j),v = λa
j,v . Plugging (A.4) into (A.3), we have:

r∧
a=1

n−l∧
i=d+1

n∧
j=n−ka+1

wa
i,j =

n−l∧
i=d+1

r∧
a=1

n∧
j=n−ka+1

n∑
v=n−l+1

λa
j,vwi,v

=
n−l∧

i=d+1

l∧
u=1

n∑
v=n−l+1

Λu,vwi,v =
n−l∧

i=d+1

det(Λ)wi,n−l+1 ∧ · · · ∧ wi,n.

The last transition is standard and is explained by the skew-symmetry of the exterior product:
all terms for which wi,v1 ∧ · · · ∧ wi,vl

contains a recurring vi = vj are 0, and we are only left
with the case vi = π(i), where π is a permutation of {n − l + 1, . . . , n}; these terms are equal to
(−1)sign(π)wi,n−l+1 ∧ · · · ∧ wi,n, producing the determinant of Λ. Continuing, since Λ does not
depend on i and using (A.2), we see that

r∧
a=1

n−l∧
i=d+1

n∧
j=n−ka+1

wa
i,j = det(Λ)n−l−d

n−l∧
i=d+1

n∧
j=n−l+1

wi,j = det(Λ)n−l−dC3
n,l,d dμl

D(F ),

where C3
n,l,d = |G(n − d,n − d − l)|. To deduce (A.3), it remains to show that det(Λ) = Ω(Ē).

Recall that λa
j,v = 〈ea

j , gv〉, and in the range j = n − ka + 1, . . . , n, these are exactly the

coefficients of the orthonormal bases ēa = {ea
n−ka+1, . . . , e

a
n} of E⊥

a with respect to the ortho-

normal basis ḡ = {gn−l+1, . . . , gn} of F⊥. Using the orthogonality of ḡ, it is immediate that
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(ΛΛt)u(a1,j1),u(a2,j2) = 〈ea1
j1

, e
a2
j2

〉, and therefore det(Λ) = VolF⊥(ē) for ē = {ē1, . . . , ēr}, which

is exactly the definition of Ω(Ē). Incidentally, this also shows that VolF⊥(ē) is invariant to taking
an arbitrary (not necessary orthonormal) basis ēa of E⊥

a with VolE⊥(ēa) = 1, since this is easily
checked for det(Λ). �
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