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We study the problem of exponentially small splitting of sepa-
ratrices of one degree of freedom classical Hamiltonian systems
with a non-autonomous perturbation fast and periodic in time. We
provide a result valid for general systems which are algebraic or
trigonometric polynomials in the state variables. It consists on ob-
taining a rigorous proof of the asymptotic formula for the measure
of the splitting. We obtain that the splitting has the asymptotic be-
havior Kεβe−a/ε , identifying the constants K , β , a in terms of the
system features.
We consider several cases. In some cases, assuming the perturba-
tion is small enough, the values of K , β coincide with the classical
Melnikov approach. We identify the limit size of the perturba-
tion for which this theory holds true. However for the limit cases,
which appear naturally both in averaging and bifurcation theories,
we encounter that, generically, K and β are not well predicted by
Melnikov theory.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider the family of Hamiltonian systems of the form

H

(
x, y,

t

ε
;ε
)

= H0(x, y) + μεη H1

(
x, y,

t

ε
;ε
)

, (x, y) ∈R
2, (1)
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where H0(x, y) is given by a classical Hamiltonian

H0(x, y) = y2

2
+ V (x)

and H1(x, y, τ ;ε) is a 2π -periodic time dependent Hamiltonian with zero average:

〈H1〉 = 1

2π

2π∫
0

H1(x, y, τ ;ε)dτ = 0.

We study the problem of the splitting of separatrices. The parameter ε is a small parameter but this
is not the case for μ, which may be of order one. The results in this paper are valid not only for μ
small, but also for finite values of μ. We will see that the results are significantly different depending
on the other parameter η � 0, which appears in (1), and on the analytic properties of H . Depending
of these properties our results are valid even for (the non-perturbative case) η = 0 and we will see
that, in this case, Melnikov theory gives a wrong prediction of the measure of the splitting.

The perturbative setting is when μεη is small, that is when η > 0. In this case, the Hamiltonian
system associated to H is a small perturbation of the Hamiltonian system associated to H0:

ẋ = y

ẏ = −V ′(x). (2)

Our first observation is that, being the Hamiltonian H fast in time, averaging theory [1,44] tells us
that, even for μεη =O(1), that is for η = 0, the solutions of the Hamiltonian system associated to (1)
are close to the solutions of (2).

We assume that system (2) has a hyperbolic or parabolic critical point at the origin with stable
and unstable manifolds which coincide along a separatrix (q0(u), p0(u)). The coincidence of the stable
and unstable invariant manifolds is not a generic phenomenon for Hamiltonian systems of one and
half degrees of freedom as (1). Therefore, one can expect that the homoclinic connection of (2) breaks
down when we add the non-autonomous part to the system. Nevertheless, the symplectic structure
ensures the existence of intersections between the perturbed invariant manifolds. Hence a natural
question is whether these intersections are transversal or not.

As it is well known, the transversal intersection of invariant manifolds is an obstruction for the
integrability of the system as well as one of the main causes of the appearance of chaos. Even if this
transversality is a generic phenomenon, it is difficult to check it in a concrete given system of type (1).
In this paper we give checkable conditions (see Section 2.1 for the concrete hypotheses) which ensure
that transversality and, moreover, we provide an asymptotic formula, as ε → 0, which measures this
transversality and shows that it is exponentially small with respect to ε.

To check this transversality there are several quantities that can be considered. Due to the 2πε-
periodicity with respect to t of the Hamiltonian H , it is convenient to consider the Poincaré map Pt0

defined in a Poincaré section Σt0 = {(x, y, t0); (x, y) ∈ R
2}. If μ = 0, the phase portrait of Pt0 is given

by the level curves of the Hamiltonian H0(x, y) = y2

2 + V (x). Therefore, the homoclinic connection
(q0(u), p0(u)) is contained in the stable and unstable curves of the fixed point (0,0) of Pt0 .

In the hyperbolic case, a classical result of averaging theory [1,44] is that, for ε small enough, there
exists a hyperbolic fixed point of Pt0 , corresponding to a hyperbolic periodic orbit of H , which has
stable and unstable invariant curves C s(t0) and C u(t0). These curves remain close to the unperturbed
separatrix. In the parabolic case our (standard) hypotheses will ensure that the origin will still be a
fixed point with similar properties.

As Pt0 is a symplectic map, the curves C s(t0) and C u(t0) intersect giving rise to some homoclinic
points zh . The natural quantity that can be used at homoclinic points to measure the transversality of
the intersection is the angle between the curves C s(t0) and C u(t0).
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Fig. 1. Splitting of separatrices.

Once we have proved that this intersection is transversal at two consecutive homoclinic points,
we can measure the splitting by computing the area A enclosed by the invariant curves between
these two points. This area does not depend on the chosen homoclinic points (see Fig. 1) and is also
invariant under symplectic changes of coordinates. For these reasons, in Theorems 2.4 and 2.7 we
measure this area instead of measuring the angle. Another invariant quantity, related to the angle,
is the so-called Lazutkin invariant (see, for instance [36]). From now on, we will use the expression
splitting of separatrices to refer to any of these quantities.

One model where our results can be applied is a classical 2πε-periodic time dependent Hamilto-
nian system:

H

(
x, y,

t

ε

)
= y2

2
+ Ṽ

(
x,

t

ε

)
(3)

taking V (x) = 1
2π

∫ 2π
0 Ṽ (x, τ )dτ and H1(x, y, τ ) = Ṽ (x, τ )− V (x). In this case, under certain hypothe-

ses about V , which are specified in Section 2.1, our result in Theorem 2.7 provides a formula for the
splitting even if in this case μ = 1 and η = 0. In this case, our result improves several partial results
[19,30,4] which, applied to (1), needed to consider an artificial factor εη , η > η0 > 0, in front of the
term H1 to prove an asymptotic formula for the splitting. Moreover, it occurs that this formula is
wrong for the natural case η = 0.

One also encounters the case η = 0, when one studies the splitting of separatrices phenomenon
near a resonance of one and a half degrees of freedom Hamiltonian systems which are close to com-
pletely integrable ones (in the sense of Liouville–Arnold). This setting does not fit exactly in our
hypotheses but, as we will see in a forthcoming paper, the methods used in this paper can be easily
adapted to that case (see Section 2.3 for a discussion of this problem).

Classical perturbation theory applied to our problem provides the so-called Melnikov potential
(called also sometimes Poincaré function, see for instance [12]), which is given by

L(t0) =
+∞∫

−∞
H1
(
q0(u), p0(u), ε−1(t0 + u);0

)
du.

Using this function, Poincaré [55,56], and later Melnikov [48], proved that, if μεη is small enough,
non-degenerate critical points of L give rise to transversal intersections between the invariant curves
C s(t0) and C u(t0), and the area of the lobes is given asymptotically by L(t1

0) − L(t2
0), being t1

0 and t2
0

two consecutive critical points of L.
If H0(x, y) and H1(x, y, τ ;0) are either algebraic or algebraic in y and trigonometric polynomials

in x, the Poincaré function L is asymptotically given by:
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L(t0) 	 Kεβe−a/ε sin

(
t0

ε
+ φ

)
, ε → 0 (4)

being a > 0, K , φ,β ∈ R some computable constants. The constant a is independent of the perturba-
tion: it turns out that the time parameterization of the unperturbed separatrix has always singularities
in the complex plane (see [25,4]) and the constant a is nothing but the imaginary part of the singu-
larity closest to the real axis. It is clear that L(t0) has non-degenerate critical points if K 
= 0.

We want to emphasize that the asymptotic size with respect to ε of the Melnikov potential is given
by (4) provided H0(x, y) and H1(x, y, τ ;0) are either algebraic or algebraic in y and trigonometric
polynomials in x. The study of the Melnikov potential for general analytic Hamiltonian systems with
fast periodic perturbations strongly depends on the analyticity properties of the Hamiltonian H . Even
if the Melnikov potential can be estimated for some concrete systems [47,49,62], a general study of
this function seems to require more powerful analytic tools and, as far as the authors know, has not
been done.

The straightforward application of Melnikov method to Hamiltonian (1) provides a formula for the
area of the lobes which reads:

A = μεη
(
A0 +O

(
μεη
))

, ε → 0, (5)

where

A0 	 2Kεβe−a/ε (6)

is the prediction for the area given by the Melnikov potential (4).
Therefore, either for general algebraic or algebraic in y and trigonometric polynomials in x Hamil-

tonians, the Melnikov potential is exponentially small in ε and a direct application of classical pertur-
bation theory only ensures the validity of such an approximation if K 
= 0 and μεη = o(εβe−a/ε).

To compute the first asymptotic order of the splitting of separatrices for general analytic Hamilto-
nian systems seems nowadays a problem out of reach. Nevertheless, (non-sharp) exponentially small
upper bounds were already obtained by Neishtadt in [52] using averaging techniques and by [26,25]
using complex extensions of the invariant manifolds.

Once we know that the splitting is exponentially small, a natural question which arises is whether
the Melnikov potential gives the correct asymptotic first order of the splitting. In comparison with
the problem of giving exponentially small upper bounds for the splitting, this problem is much
more intricate. The results in this direction strongly depend on the behavior of the homoclinic orbit
(q0(u), p0(u)) around its complex singularities and on the analytical properties of the perturbation.

The previous considerations lead us to consider the problem of splitting of separatrices for general
systems which are either algebraic in (x, y) or trigonometric polynomial in x and algebraic in y.

As we have already explained, inspecting formula (5), one sees that Melnikov theory works pro-
vided μεη = o(εβe−a/ε). Namely, one needs the size of the perturbation to be exponentially small
with respect to ε. This is not the natural setting and therefore the first works dealing with this
problem [40] (see also Section 1.1 about historical remarks) tried to enlarge the size of the per-
turbation μεη H1 for which Melnikov theory actually measures the splitting. In fact, under certain
non-degeneracy conditions, it suffices to take η big enough and μ of order 1.

In this work we have obtained, for Hamiltonians (1) satisfying the hypotheses given in Section 2.1,
the open set of values of η for which the Melnikov prediction works.

Studying the phenomenon of splitting in general Hamiltonian systems, for η in the boundary of
this set, we have found examples where the Melnikov theory does not predict correctly the formula
for the area of the lobes (5) in several aspects.

There are cases where the constant K is not correctly given by the Melnikov formula. This phe-
nomenon has been found before in concrete examples [33,65,53,37]. In these cases, the correct value
of the constant K is obtained from the study of the so called inner equation.
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Moreover, we have found a more surprising phenomenon, namely, there are cases where the Mel-
nikov prediction (6) does not give the correct order of the splitting. More concretely, it fails to predict
the constant K but also the correct power β in (6). In Section 2.2.4 we provide a concrete model
where this phenomenon happens.

Our work shows that all the results validating the prediction of the Melnikov approach require
some artificial conditions about the smallness of the perturbation. The reason, roughly speaking, is
the following. To prove that Melnikov theory gives asymptotically the first order of the splitting one
needs to perform “complex perturbation theory”. Namely, one looks for complex parameterizations
Z u,s
μ (u, t0) of the perturbed invariant curves C u,s(t0) of the Poincaré map Pt0 as a perturbation of the

time parameterization of the unperturbed separatrix Z0(u) = (q0(u), p0(u)). This is the main novelty
in the proofs of exponentially small splitting, and was discovered independently by Lazutkin in [42]
and by Kruskal and Segur in [41]: the perturbed and unperturbed manifolds, as well as the solutions
of the variational equations along them, need to be close enough when one considers complex times
in a domain which contains a suitable real interval and which reaches a neighborhood of order ε
of the singularities of the unperturbed homoclinic orbit. Clearly, when time is real, the homoclinic
orbit is a bounded solution and it is easy to see that the perturbed invariant manifolds are close to
it in suitable intervals. However, when we reach a neighborhood of its singularities, the homoclinic
orbit itself blows up, and it is not always the case that the perturbed invariant manifolds are close
to it anymore. Of course assuming artificially that the perturbation is small enough (increasing η in
the perturbative term in (1)) one can see that the perturbed manifolds are close to the unperturbed
homoclinic orbit in a complex domain which reaches a neighborhood of size ε of the singularities of
the unperturbed homoclinic trajectory. Consequently the Melnikov approach, that is based on the fact
that the perturbed manifolds are well approximated by the unperturbed homoclinic orbit, still works.
This was the approach used in [19,30,4] for η > 	, were the constant 	 was called the order of the
perturbation H1. Roughly speaking, it is the order of the singularities of the unperturbed homoclinic
trajectory (q0(u), p0(u)) closest to the real axis of the function h1(u) = H1(q0(u), p0(u), t/ε;0), for
any t ∈ R.

In the aforementioned works, the condition η > 	 ensures that the perturbed parameterizations
Z u.s
μ are close to the parameterization of the unperturbed separatrix Z0 even up to a distance of order

ε of the singularities of Z0 closest to the real axis. Nevertheless, as we will see in this paper, the
condition η > 	 is sufficient but not necessary to ensure that Melnikov approach still predicts correctly
the size of the splitting. What is important is the relative size between the homoclinic orbit Z0 and
the difference between the homoclinic orbit and the perturbed manifolds, and analogously between
the solutions of the corresponding variational equations. In other words, as the parameterizations of
the invariant manifolds can be written as Z u,s

μ = Z0 + (Z u,s
μ − Z0), the Melnikov method gives the

correct asymptotic term for the size of the splitting provided the homoclinic Z0 is bigger than the
difference Z u,s

μ − Z0. For systems of type (1) this condition can be easily stated as follows. Call r to
the order of the singularities of p0(u) closest to the real axis. Then, the size of p0(u) at points u
which are ε-close to the singularities is O(ε−r). Looking at the relative size of grad H0(q0(u), p0(u))

and μεη grad H1(q0(u), p0(u), τ ;ε), one can guess that the first one is strictly bigger than the second
if η − (	 − r) > −r. Working with the equations associated to Hamiltonian system (1), we prove in
this paper that Z0(u) is strictly bigger than Z u,s

μ (u, t0) − Z0(u) provided η > 	 − 2r, even if u is at a
distance ε of the singularity.

For 	 � 2r, the condition for both the parameterizations and the solutions of the variational equa-
tions to be relatively close coincides and is given by η > η∗ = 	 − 2r. For 	 < 2r we will not consider
values of η such that 	 − 2r < η < 0. In fact, decreasing η, we will reach first the “natural” limit
η = 0, where grad H0(q0(u), p0(u)) and μgrad H1(q0(u), p0(u), τ ;ε) are not close even for real val-
ues of u. Even if for concrete examples [33,37] one can prove the existence of invariant manifolds
and compute the size of their splitting for negative values of η, in this paper we deal with general
Hamiltonians and η � 0. This means that we deal with cases for which the unperturbed system and
the perturbation can have the same size.

When η = 0, one can apply classical averaging theory to see that we are still in a perturbative
setting and the real perturbed invariant manifolds are με-close to the real unperturbed separatrix
and it makes sense to study the splitting of separatrices in this case. Nevertheless, as we will see in
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this paper, the solutions of the variational equations are not close enough near the singularity in this
case. This implies that, as is stated in Theorems 2.4 and 2.7, Melnikov formula (6) generically does
not give the correct first asymptotic term of the splitting.

In conclusion, under certain non-degeneracy conditions, the previous considerations suggest, and
we actually will prove in Theorem 2.4 and Corollary 2.5, that Melnikov theory gives the correct pre-
diction provided

η > η∗ = max{	 − 2r,0}.

The so called “singular” case occurs when the difference Z u,s
μ (u, t0) − Z0(u) has the same size as

the unperturbed homoclinic Z0(u) when u reaches a neighborhood at a distance ε of the singularities
of Z0. Consequently, the invariant manifolds are not well approximated by the unperturbed homo-
clinic in this complex region. Let us note that this singular case can only happen if 	� 2r and η = η∗ .
In this case, we need to obtain a different approximation of the manifolds in this region of the com-
plex plane. Close to a singularity of the homoclinic orbit, an equation for the leading term is obtained
and it is called the inner equation. This is a non-integrable equation whose study is done in [3].

Summarizing, on the one hand, the invariant manifolds are well approximated by the unperturbed
homoclinic orbit in a complex region containing an interval of the real line. On the other hand, the
inner equations provide good approximations of the invariant manifolds near the singularities of the
unperturbed homoclinic. Finally, matching techniques are required to match the different approxi-
mations obtained for the invariant manifolds. Roughly speaking, the difference between two suitable
solutions of the inner equations replaces the Melnikov potential in the asymptotic formula for the
splitting.

We want to emphasize that, as far as the authors know, there are no general results dealing with
the singular case. The previous results in the singular case (see [42,43,33,65,53,37]) only dealt with
particular examples.

In this paper we give results that contain the so-called regular case η > η∗ (see Section 2.1),
in which the Melnikov formula predicts correctly the splitting between the manifolds, but we also
consider the so-called singular case η = η∗ , in which the Melnikov formula does not predict correctly
the splitting between the perturbed manifolds anymore. In this singular case we provide and prove
an alternative formula for the splitting.

We have seen that the behavior of the splitting is extremely sensitive on the sign of 	 − 2r and
the value of η. We summarize the main features of each case:

• η > η∗ = max{	−2r,0}: under certain non-degeneracy conditions, the Melnikov formula (6) gives
the correct first order of the splitting, that is, the correct constants K , β and a. Moreover, the
transversality of the splitting is a direct consequence of the existence of non-degenerate critical
points of the Melnikov potential, which is ensured if K 
= 0.

• 	 − 2r < 0 and η = 0: it appears a (depending on μ) constant correcting term which multiplies
K in the Melnikov formula (6). This term can be obtained through classical perturbation theory
techniques. This correcting term does not vanish for any value of μ. Therefore, the first asymptotic
order is non-degenerate if and only if K 
= 0. Note that in this case, for real values of the variables,
H is not a perturbation of H0.

• 	 − 2r > 0 and η = η∗ = 	 − 2r: it appears a (depending on μ) constant correcting term which
replaces K in the Melnikov formula (6). This correcting term has a significantly different origin
from the one in the previous case, since it comes from the study of the aforementioned inner
equation. In particular, it can vanish for some values of μ. Then, the transversality of the invariant
manifolds is guaranteed provided this correcting term does not vanish. Let us note that for the
range η ∈ [0, 	 − 2r) the problem of the splitting of separatrices remains open.

• 	 − 2r = 0 and η = 0: as in the previous case, we need to consider an inner equation to obtain a
candidate for the first asymptotic order of the splitting. This candidate differs from the Melnikov
formula by both the constant K and the exponent β . Note, that the change in the exponent β

is a substantial qualitative change in the behavior of the splitting. Even if this fact was already
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pointed out in [3], the present paper, as far as the authors know, is the first work that rigorously
proves that this phenomenon actually happens.

This work concludes the general problem, initiated and partially solved in [19,30,4,5] for η > 	,
of the splitting of separatrices in the singular and regular cases η � η∗ , for the general mentioned
perturbations H1 of classical polynomial or trigonometric polynomial Hamiltonian systems H0(x, y) =
y2

2 + V (x).

1.1. Historical remarks

Historically, the results about exponentially small splitting of separatrices can be classified into
three groups: upper bounds, validation of the Melnikov approach and asymptotics for the singular
case.

Some results, dealing with quite general systems, obtain exponentially small upper bounds for
the splitting for Hamiltonian systems. Neishtadt in [52] gave exponentially small upper bounds for
the splitting for two degrees of freedom Hamiltonian systems. For second order equations with a
rapidly forced periodic term, several authors gave sharp exponentially small upper bounds in [24,25,
27] and, for the higher dimensional case, the papers [58,60] gave (non-sharp) exponentially small
upper bounds.

The Poincaré map of a non-autonomous Hamiltonian in the plane is a particular case of a planar
area preserving map. For the Hamiltonian (1) the Poincaré map P is a near the identity area preserv-
ing map. Rigorous upper bounds for the splitting of area preserving maps close to the identity were
given in [26].

The second group of results is concerned with the question of the validity of the asymptotics
provided by the Melnikov theory. Several authors in the last 15 years have tried to ensure the validity
of the formula provided by the Melnikov potential (6) to compute the asymptotic formula for the
area A. As we have already said, the results in this direction strongly depend on the behavior of the
homoclinic orbit around its complex singularities and on the analytical properties of the perturbation.
For this reason, the existing results in this direction mostly deal with specific examples.

The most studied example in the literature has been the rapidly perturbed pendulum with a per-
turbation only depending on time,

ẍ = sin x + μεη sin
t

ε
,

which in our notation corresponds to H0(x, y) = y2/2 + cos x − 1 and H1(x, t/ε) = −x sin(t/ε). The
first result concerning this system was obtained by Holmes, Marsden and Scheurle in [40] (followed
by [59,2]), where they confirmed the prediction of the Melnikov potential establishing exponentially
small upper and lower bounds for the area A provided η � 8, which coincide with the Melnikov
prediction. Later the work [22] validated the same result for η � 3. Delshams and Seara established
rigorously the result in [18] for η > 0 and an analogous result for η > 5 was obtained by Gelfreich
in [29]. The latter two papers used a different approach inspired by the work of Lazutkin [36]. For a
simplified perturbation an alternative proof, using Parametric Resurgence, was done in [57].

The only works which provide (partial) results for some general Hamiltonian as (1) taking η big
enough, are [19,30,4,5]. In [19,30], a proof for the validity of the Melnikov method for general rapidly
periodic Hamiltonian perturbations of a class of second order equations was given. The case of a
perturbed second order equation with a parabolic point was studied in [4,5].

In the papers [58,45] the authors introduced a different approach that avoided the “flow box co-
ordinates” of Lazutkin’s method. The authors worked with the original variables of the problem and
were able to measure the distance between the manifolds without using “flow box coordinates”. The
idea was the following: being both manifolds given by the graphs of suitable functions that are so-
lutions of the same equation, their difference satisfies a linear equation and is bounded in some
complex strip. Studying the properties of bounded solutions of this linear equation, where periodicity
also plays a role, one obtains exponentially small results.
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The method in [58,45] uses the fact that, in the considered systems, the manifolds can be written
as graphs of the gradient of generating functions in suitable domains. These generating functions are
solutions of the Hamilton–Jacobi equation associated to system (1). Solving these partial differential
equations one can obtain parameterizations of the global manifolds.

A Melnikov theory for twist maps can be found in [15] and some results about the validity of the
prediction given by the Poincaré function for area preserving maps were given in [16].

The generalization of the splitting problem to higher dimensional systems has been achieved by
several authors, mainly in the Hamiltonian case. See, for instance, [23,64,45,12] and references therein.
Some results about the validity of the Melnikov method for higher dimensional Hamiltonian systems
can be found in [28,11,13,35,58,14]. Finally, in a non-Hamiltonian setting, in [8] the splitting of a
heteroclinic orbit for some degenerate unfoldings of the Hopf-zero singularity of vector fields in R

3

was found.
As we have already explained, all the results validating the prediction of the Melnikov approach

require some artificial condition about the smallness of the perturbation.
The third group of results deals with the so called “singular case” η = η∗ for which one needs

to study the inner equation and use matching techniques to relate different approximations for the
invariant manifolds.

The first authors who dealt with this singular case were Lazutkin in [42,43] and Kruskal and Segur
in [41] (this work was available as a preprint since 1985). Lazutkin studied the splitting of separa-
trices of the Chirikov standard map and Kruskal and Segur studied the breakdown of a heteroclinic
connection in a third order differential equation which came from a model of crystal growth. In these
works they gave independently the main idea that inspired most of the works in the subject: as we
explained above, one needs to deal with suitable complex parameterizations of the invariant mani-
folds. A complete proof of the splitting of separatrices of the Chirikov standard map was published
years later by Gelfreich in [32]. A fundamental tool in Lazutkin’s work is the use of “flow box coordi-
nates”, called “straightening the flow” in [33], around one of the manifolds. In this way, one obtains
a periodic function whose values are related with the distance between the manifolds and whose ze-
ros correspond to the intersections between them. Consequently, the result about exponentially small
splitting is derived from some properties of analytic periodic functions bounded in complex strips
(see, for instance, Proposition 2.7 in [19]).

After these pioneering works, some authors used analogous methods and obtained results for the
inner equation of several specific equations. In [38] there is a rigorous study of the inner equa-
tion of the Hénon map using Resurgence Theory [20,21], and in [9] the authors studied the inner
system associated to the Hopf-zero singularity using functional analysis techniques. The correspond-
ing inner equation for several periodically perturbed second order equations was given by Gelfreich
in [31] and he called them Reference Systems. In [54] there is a rigorous analysis of the inner equa-
tion for the Hamilton–Jacobi equation associated to a pendulum equation with perturbation term
H1(x, t/ε) = (cos x − 1) sin(t/ε) by using Resurgence Theory. The only result which deals with the
inner equation associated to general polynomial Hamiltonian like (1) is [3], where this analysis is
done using functional analysis techniques. Finally, in [51], the authors study the inner equation of the
McMillan Map.

Besides the works of Lazutkin and Kruskal and Segur, there are very few works with rigorous
proofs in the singular case. In [33] there is a detailed sketch of the proof for the splitting of separatri-
ces of the equation of a pendulum with perturbation H1(x, t/ε) = x sin(t/ε) and η∗ = −2. A complete
rigorous proof which also cover some “under the limit” cases, that is η < η∗ = −2 is done in [37].
Numerical results about the splitting for this problem can be found in [7,31]. In [53] it was obtained a
rigorous proof for the pendulum with perturbation H1(x, t/ε) = (cos x − 1) sin(t/ε), for which η∗ = 0.
Treschev, in a remarkable paper [65], gave an asymptotic formula for the splitting in the case of a
pendulum with certain perturbations, for which η∗ = 0, using a different method called Continuous
Averaging. Concerning two-dimensional symplectic maps, a detailed numerical study of the splitting
can be found in [17,39]. The study of the splitting for the Hénon and McMillan maps have recently
been completed in [6] and [50] respectively. Both cases correspond to η∗ = 0. Finally, in [34], com-
bining numerical and analytical techniques, the authors study the Hamiltonian-Hopf bifurcation.
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Another work dealing with a singular case is [46], where the author proves the splitting of sep-
aratrices for a certain class of reversible systems in R

4. A related problem about adiabatic invariants
for the harmonic oscillator is studied in [61]. See also [1]. The study of this problem using matching
techniques and Resurgence Theory was done in [10].

The structure of this paper goes as follows. First in Section 2 we introduce some notation, the
hypotheses and we state the main results. In Section 3 we give some heuristic ideas of the proof
and we compare our methods to those of some of the aforementioned previous results. Section 4
is devoted to describe the proof of the main theorems. To make this section more readable, the
proof of the partial results obtained in this section are deferred to the following sections, that is,
Sections 5–9.

2. Notation and main results

In this section we present the main problem we consider, the hypotheses we assume and the
rigorous statement of the main results.

2.1. Notation and hypotheses

We consider Hamiltonian systems with Hamiltonian function of the form

H

(
x, y,

t

ε
;ε
)

= H0(x, y) + μεη H1

(
x, y,

t

ε
;ε
)

, (7)

where

H0(x, y) = y2

2
+ V (x) (8)

and V is either a polynomial or a trigonometric polynomial. In the first case we assume that

H1(x, y, τ ;ε) =
N∑

k+l=n

akl(τ ;ε)xk yl (9)

and in the second one

H1(x, y, τ ;ε) = a(τ ;ε)x +
∑

k=−N,...,N
l=0,...,N

akl(τ ;ε)ekix yl =
∑

i+ j�n

âi j(τ ;ε)xi y j, (10)

where the second equality defines n and âi j . Even if in the second case H1 can have terms of the
form a(τ ;ε)x, we will refer to H1 as a trigonometric polynomial. In both cases we will refer to n as
the order of H1.

The equations associated to the Hamiltonian (7) are⎧⎪⎪⎨⎪⎪⎩
ẋ = y + μεη∂y H1

(
x, y,

t

ε
;ε
)

ẏ = −V ′(x) − μεη∂x H1

(
x, y,

t

ε
;ε
)

.

(11)

From now on, we call unperturbed system to the system defined by the Hamiltonian H0 and we refer
to H1 as the perturbation. Let us observe that the term a(τ ;ε)x in (10) corresponds to a term in (11)
which only depends on time (and on the parameter ε).

We devote the rest of the section to state the hypotheses we assume on H .
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2.1.1. Hypotheses on the unperturbed system
We assume the following hypotheses corresponding to the unperturbed system

HP1 H0(x, y) = y2/2 + V (x), where V is either a polynomial or a trigonometric polynomial and sat-
isfies one of the following conditions:
HP1.1 H0 has a hyperbolic critical point at (0,0) with eigenvalues {λ,−λ} with λ > 0, and then

V (x) = −λ2

2
x2 +O

(
x3) as x → 0.

HP1.2 H0 has a parabolic critical point at (0,0) and then

V (x) = vmxm +O
(
xm+1) as x → 0, (12)

for certain m ∈ N, m � 3, which is called the order of V and vm ∈R.
HP2 The critical point (0,0) has stable and unstable invariant manifolds which coincide along a sep-

aratrix.
We denote by (q0(u), p0(u)) a real-analytic time parameterization of the separatrix with some
chosen (fixed) initial condition. It is well known (see [25] for the hyperbolic case and [4] for the
parabolic one) that there exists ρ > 0 such that the parameterization (q0(u), p0(u)) is analytic
in the complex strip {|Im u| < ρ}.
We assume that there exists a real-analytic time parameterization of the separatrix (q0(u), p0(u))

analytic on {|Im u| < a} such that the only singularities of (q0(u), p0(u)) in the lines {Im u = ±a}
are ±ia.
More precisely, Hypothesis HP2 implies that one of the two following situations is satisfied (see
the remarks in Section 2.1.3):
HP2.1 In the polynomial case, the singularities ±ia of the homoclinic orbit are branching points

(or poles) of the same order, i.e. there exists an irreducible rational number r = α/β > 1
(independent of the singularity) and ν > 0 such that (q0(u), p0(u)) can be expressed as

q0(u) = − C±
(r − 1)(u ∓ ia)r−1

(
1 +O

(
(u ∓ ia)1/β

))
p0(u) = C±

(u ∓ ia)r

(
1 +O

(
(u ∓ ia)1/β

))
(13)

for u ∈ C and either |u − ia| < ν and arg(u − ia) ∈ (−3π/2,π/2) or |u + ia| < ν and
arg(u + ia) ∈ (−π/2,3π/2) respectively. Let us point out that the real-analytic character
of (q0(u), p0(u)) implies that C− = C+ .

HP2.2 In the trigonometric case, q0(u) has logarithmic singularities at ±ia of the form q0(u) ∼
ln(u ∓ ia) (where we take different branches of the logarithm whether we are close to +ia
or −ia: we take arg(u − ia) ∈ (−3π/2,π/2) and arg(u + ia) ∈ (−π/2,3π/2) respectively).
In this case, one can see that there exists M ∈N such that, if u ∈C, |u ∓ ia| < ν ,

cos
(
q0(u)

)= Ĉ1±
(u ∓ ia)2/M

(
1 +O

(
(u ∓ ia)2/M))

sin
(
q0(u)

)= Ĉ2±
(u ∓ ia)2/M

(
1 +O

(
(u ∓ ia)2/M))

p0(u) = C± (
1 +O

(
(u ∓ ia)2/M)) (14)
(u ∓ ia)



3314 I. Baldomá et al. / J. Differential Equations 253 (2012) 3304–3439
with arg(u − ia) ∈ (−3π/2,π/2) and arg(u + ia) ∈ (−π/2,3π/2) if we are dealing with
the singularity +ia or −ia respectively. We also have that C+ = C− = ±i2/M .
For convenience, in the trigonometric case, we take the convention r = 1 and β = M .

2.1.2. Hypotheses on the perturbation
HP3 The function H1(x, y, τ ;ε) is 2π -periodic in τ and real-analytic in (x, y, τ , ε) ∈ C

2 × T ×
(−ε∗, ε∗), for certain ε∗ > 0. Furthermore, either it is a polynomial of the form (9) if V (x) is
a polynomial or it is a trigonometric polynomial of the form (10) if V (x) is a trigonometric
polynomial. Moreover, it has zero mean

2π∫
0

H1(x, y, τ ;ε)dτ = 0.

HP4 Let us consider the order of H1, n given in (9) or (10). We ask H1 to satisfy:
HP4.1 In the hyperbolic case (H0 satisfies HP1.1), n � 1.
HP4.2 In the parabolic case (H0 satisfies HP1.2), 2n − 2 � m.

Remark 2.1. Let us point out that, in fact, HP4.1 does not add any extra hypothesis on the Hamiltonian,
since it can always be taken with n � 1 (the constant terms in (x, y) do not play any role).

Let us consider the function H1(q0(u), p0(u), τ ;ε) that is: H1 evaluated on the separatrix. Then,
we define 	 to be the order of the branching points ±ia, namely, the maximum of the orders of the
branching points of the monomials of H1. This parameter was already defined in [19,4]. Let us point
out that 	 can be simply defined as

	(ε) = max
n�k+l�N

{
k(r − 1) + lr; akl(τ ;ε) 
≡ 0

}
(polynomial case)

	(ε) = max
|k|�N,0�l�N

{
2|k|/M + l; akl(τ ;ε) 
≡ 0

}
(trigonometric case). (15)

Note that in the trigonometric case, if H1(x, y, τ ;ε) = a(τ ;ε)x, then H1(q0(u), p0(u), τ ;ε) has a log-
arithmic singularity (see Hypothesis HP2.2). In this case we make the convention 	(ε) = 0.

HP5 We assume 	 = 	(0) = 	(ε) for all ε ∈ (−ε∗, ε∗) and η � η∗ = max{0, 	 − 2r}.

2.1.3. Some remarks about the hypotheses
• Let us point out that the time parameterization of the separatrix has always singularities for

complex time (see [25] for the hyperbolic case and [4] for the parabolic one). The real restriction
in HP2 is that there exists only one singularity in the lines {Im u = ±a}. In Remark 4.28 we
explain how to generalize the results obtained in this paper to systems whose separatrix has
more than one singularity with the same minimum imaginary part.

• The conditions satisfied in HP2.1 and HP2.2 are consequence of HP2. Indeed, let u∗ be a singular-
ity of (q0(u), p0(u)). We have that:
– If V is a polynomial, let M be its degree. Then u∗ is a branching points (or pole) of order

2/(M −2). That is, if u belongs to a neighborhood of u∗ , then (q0(u), p0(u)) can be expressed as

q0(u) = − C(M − 2)

2(u − u∗)2/(M−2)

(
1 +O

((
u − u∗)2/(M−2)))

p0(u) = C

(u − u∗)M/(M−2)

(
1 +O

((
u − u∗)2/(M−2)))

with C 
= 0 some adequate constant. This fact is proved in [4].
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From the above equalities, taking into account that the homoclinic connection is a solution of
the unperturbed Hamiltonian system and identifying terms of the same order in (u − ia), one
can deduce that the degree of V is 2r/(r − 1). In fact, there exists a constant v∞ ∈R such that

V (x) = v∞x
2r

r−1
(
1 + o(1)

)
as x → ∞. (16)

– If V is a trigonometric polynomial, let us call M to its degree. Then, for u belonging to a
neighborhood of u∗ , (q0(u), p0(u)) are of the form

q0(u) = C log
(−i
(
u − u∗))+O

((
u − u∗)2/M)

p0(u) = C

(u − u∗)
+O
((

u − u∗)2/M)
with the constant C = ±i2/M depending on Im q0(u) → ∓∞ respectively. Indeed, first we note
that, due to the fact that Re q0(u) ∈ [0,2π ], the condition |q0(u)| → +∞ as u → u∗ forces
to |Im q0(u)| → +∞ as u goes to u∗ . Assume that Im q0(u) → −∞ as u → u∗ . We note that
in this case, since q0(u) is a real-analytic function, then u∗ is also a singularity of q0 and it
satisfies Im q0(u) → +∞ as u → u∗ . We perform the change of variables x = i log w and we
emphasize that, if Im x → −∞, then w → 0. From the fact that

dx

du
=√−2V (x),

we obtain that

du

dw
= iw M/2−1(c0 +O(w)

)
for some constant c0. Henceforth, integrating both sides of the previous differential equa-
tion, we obtain u − u∗ = iw M/2(c1 + O(w)), for some constant c1, which implies that
w = (−i(u − u∗))2/M(c2 + O((u − u∗)2/M)) for a suitable constant c2, and the results follows
going back to the original variables.

• In fact, let us observe that the hypotheses considered about the expansions of (q0(u), p0(u)) given
in (13) and (14) (HP2.1 and HP2.2) are weaker than what usually happens when the potential V
is a polynomial or a trigonometric polynomial as we have seen previously. This weakness comes
from the fact that the second terms in the expansions are, in fact, of greater order. We assume
this weaker hypothesis to show that our results could be applied to more general potentials as
long as Hypothesis HP2 is satisfied.

• Hypothesis HP4.2 is to ensure that the parabolic critical point (0,0) of the unperturbed system
persists when we add the perturbation and that it keeps its parabolic character. Therefore it is
the natural hypothesis to deal with and it is the same one that was considered in [4]. Namely, if
the perturbation has order n with 2n − 2 < m, when the perturbation is added the system might
undergo bifurcations and the invariant manifolds might even disappear. The only study done in
one of these bifurcation cases can be found in [5].

• The class of the perturbed Hamiltonian H1 considered is more restrictive than necessary. In fact,
our result can be applied to any Hamiltonian of the form

H1(x, y, τ ;ε) =
N∑

n=0

εn Hn
1(x, y, τ )

if the functions Hn
1(q0(u), p0(u), τ ) have a singularity of order less or equal than 	 + n. In this

case, the order 	(ε) in (15) does depend on ε (	(0) = 	, and 	(ε) = 	 + N if ε 
= 0) and then
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Hypothesis HP5 is not satisfied. The result in this case would be the same but one has to slightly
adapt the definition of the constant b in Theorem 2.7.

• Note that the hypothesis requiring 	(ε) constant is nothing but a non-degeneracy condition on
the coefficients akl(τ ;ε). This condition is equivalent to ask that one of the pairs (k, l) reaching
the maximum in the definition of 	(ε) in (15) for any value of ε must reach also the maximum
for ε = 0.

• Recall the Hamiltonian

H

(
x, y,

t

ε
;ε
)

= H0(x, y) + μεη H1

(
x, y,

t

ε
;ε
)

.

Let us point out that in the case 	 − 2r � 0, Hypothesis HP5 corresponds to η � 0, which is
optimal in the sense that it includes the case such that the perturbation is of the same order as
the unperturbed system.
The case 	 = 2r is what typically happens in near integrable Hamiltonian systems close to a
resonance and in general periodic systems with slow dynamics, therefore, in this sense Hypothesis
HP5 is optimal in the generic case.
In the case 	 − 2r > 0 one may think to also ask η � 0. Nevertheless, our techniques only provide
optimal exponentially upper bounds if η − 	 + 2r � 0.
For lower values of η, that is 0 � η < 	 − 2r, using similar tools as the ones presented in this
paper, one could easily prove the existence of the perturbed invariant manifolds and obtain (non-
optimal) exponentially small upper bounds for the difference between them. This case can be
called below the singular case (see [37]). To obtain an asymptotic formula for the difference be-
tween the invariant manifolds in the below the singular case is a problem which remains open.
Some ideas to deal with this case by using averaging theory can be found in [37].

2.2. Main results

By Hypothesis HP1, system (7) with μ = 0 has either a hyperbolic or parabolic point at the origin.
In the second case, Hypothesis HP4.2 ensures that the origin is also a critical point of the perturbed
system (μ 
= 0) which is also parabolic. In the hyperbolic case, the next theorem ensures that the
hyperbolic critical point of the unperturbed system becomes a hyperbolic periodic orbit which is
close to the origin.

Theorem 2.2. Let us assume Hypotheses HP1.1, HP3, HP4.1. Take η � 0 and fix any value μ0 > 0. Then,
there exists ε0 > 0 such that for any |μ| < μ0 and ε ∈ (0, ε0), system (7) has a hyperbolic periodic orbit
(xp(t/ε), yp(t/ε)) which satisfies that, for t ∈R,

∣∣∣∣xp

(
t

ε

)∣∣∣∣+ ∣∣∣∣yp

(
t

ε

)∣∣∣∣� K |μ|εη+1

for a constant K > 0 independent of ε and μ.

The proof of this theorem, which was done in [19] for η > 	, is given in Section 5. An alternative
proof for values of η > −1/2 without explicit bounds for the periodic orbit can be found in [25]. For
the case when perturbation only depends on time in [24] the existence of the periodic orbit with
explicit bounds was given for η > −2.

To use the same notation in both the hyperbolic and parabolic cases, in the latter one we define
(xp, yp) = (0,0).

The next step is to study the stable and unstable invariant manifolds of the periodic orbit (xp, yp).
In the unperturbed case (that is μ = 0) we know that they coincide along the separatrix (q0, p0)

given in HP2. When μ 
= 0 they generically split.
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To measure the splitting of the invariant manifolds let us consider the 2πε-Poincaré map Pt0 in
a transversal section Σt0 = {(x, y, t0); (x, y) ∈ R

2}. This Poincaré map has a (hyperbolic or parabolic)
fixed point (xp(t0/ε), yp(t0/ε)). We will see that this fixed point has stable and unstable invariant
curves.

As Pt0 is an area preserving map, we measure the splitting giving an asymptotic formula for the
area of the lobes generated by these curves between two transversal homoclinic points. Moreover, by
the area preserving character of Pt0 , the area A of these lobes does not depend on the choice of the
homoclinic points. Other quantities measuring the splitting, as the distance along a transversal section
to the unperturbed separatrix, or the angle between these curves at a homoclinic point, can be easily
derived from our work.

Assuming HP5, we have that η � η∗ = max{	 − 2r,0} (see Hypothesis HP2 for the definition of r
and (15) for the definition of 	). The quantitative measure of the splitting depends substantially on the
sign of η − (	 − 2r). Therefore, we split these results into two different theorems. First, Theorem 2.4
deals with the regular case η > 	 − 2r and then Theorem 2.7 deals with the singular case η = 	 − 2r,
which can only happen provided 	 − 2r � 0. We will give a complete description of the proof of the
two theorems in Section 4. We also refer to Section 3 for an heuristic idea of the main features of the
proof of our main results.

2.2.1. Main result for the regular case
In this section we will give results concerning the regular case. This case appears in two different

settings. The first one is when η > η∗ = max{	 − 2r,0} and we will see in Theorem 2.4 that Melnikov
predicts the splitting correctly. The second case is when 	 − 2r < 0 and η = η∗ = 0. In this case,
we reach the natural value η = 0 before we reach the singular limit η = 	 − 2r < 0. We will see in
Theorem 2.4 that even if we are in a regular setting, one has to modify slightly the Melnikov function
to obtain the true first asymptotic order.

Since the asymptotic coefficient for the area of the lobe between two consecutive homoclinic
points is strongly related with the Melnikov potential, first of all we are going to obtain an asymptotic
formula for it.

The Melnikov potential (called also sometimes Poincaré function, see for instance [12]), is given by

L

(
u,

t

ε
;ε
)

=
+∞∫

−∞
H1
(
q0(u + s), p0(u + s), ε−1(t + s);ε)ds. (17)

Let us point out that, by Hypothesis HP4, this integral is uniformly convergent. Moreover,

L(u, τ ;ε) = M
(
τ − ε−1u, ε

)
, (18)

where M is the 2π -periodic function

M(s;ε) =
+∞∫

−∞
H1
(
q0(r), p0(r), ε

−1r + s;ε)dr =
∑
k 
=0

M[k](ε)eiks

which, by HP3, has zero mean. Here M[k] denotes the k-Fourier coefficient of M .
In [19] (polar case) and [4] (branching point case), it was seen that Hypotheses HP3 and HP4 allow

us to give an asymptotic formula for the Fourier coefficients of M and henceforth we will obtain an
asymptotic formula for the functions M and L. To state the lemma, we first define the following
Fourier expansion

H1
(
q0(u), p0(u), τ ;0

)= ∑
k∈Z\{0}

H [k]
1

(
q0(u), p0(u);0

)
eikτ .
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Note that, by the definition of 	 in (15), all the Fourier coefficients H [k]
1 (q0(u), p0(u);0) have at u =

±ia a branching point of order less than or equal to 	.

Lemma 2.3. (See [19,4].) Let us assume Hypotheses HP2, HP3 and HP4. Let

f0 = Ai−	−1

Γ (	)
,

where A is the constant defined as

A = lim
u→ia

(u − ia)	H [1]
1

(
q0(u), p0(u);0

)
. (19)

Then:

1. The first Fourier coefficients of M are given by

M[1] = M[−1] = − 1

ε	−1
e− a

ε
(

f0 +O
(
ε

1
β
))

.

2. If |k| 
= 1,

M[k] = O
(

1

ε	−1
e−|k| a

ε

)
.

3. For u ∈R and t ∈ R,

L

(
u,

t

ε
;ε
)

= − 2

ε	−1
e− a

ε
(
Re
(

f0e−i( u−t
ε )
)+O

(
ε

1
β
))

,

where a and β are the constants defined in Hypothesis HP2.

Theorem 2.4 (Main theorem: regular case). Let us assume Hypotheses HP1–HP5 and η > 	 − 2r. Then, given
any μ0 > 0, there exists ε0 > 0 such that for any μ ∈ {|μ|�μ0} and ε ∈ (0, ε0) the area of the lobes between
the invariant manifolds of the periodic orbit given in Theorem 2.2 is given by:

• If η > η∗ ,

A = 4|μ|εη+1−	e− a
ε

(
| f0| +O

(
1

|lnε|ν
))

, (20)

where f0 is the constant given in Lemma 2.3, ν = 1 if 	 − 2r � 0 and ν = 	 − 2r if 	 − 2r > 0.
• If η = 0 (which can only happen if 	 − 2r < 0),

A = 4|μ|ε1−	e− a
ε

(∣∣ f0eiC(μ)
∣∣+O

(
1

|lnε|
))

, (21)

where f0 is the constant given in Lemma 2.3 and C(μ) is an entire analytic function which satisfies
C(μ) =O(μ).

Note that if f0 = 0, this theorem only gives exponentially small upper bounds for of the area A.
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Corollary 2.5. Let us assume the hypotheses of Theorem 2.4 and f0 
= 0, where f0 is the constant given in
Lemma 2.3. Then, the invariant manifolds intersect transversally and the area of the lobes of the Poincaré
map between two consecutive transversal homoclinic points is asymptotically given by the formulas stated in
Theorem 2.4.

Remark 2.6. In Corollary 2.5 we have asked for the hypothesis f0 
= 0, which by Lemma 2.3 corre-
sponds to A 
= 0. This condition is equivalent to ask that the Fourier coefficients H [±1]

1 (q0(u), p0(u);0)

have branching points of order exactly 	 at u = ±ia. Note that this hypothesis is generic since it is
equivalent to assume that some coefficient in the Laurent expansions of H [±1]

1 (q0(u), p0(u);0) at the
points u = ±ia is non-zero.

2.2.2. Main result for the singular case
The case 	 � 2r and η = 	 − 2r is essentially different from the previous cases in the sense that

we are not able to have “a priori” estimates for the asymptotic coefficient of the area of the lobes
between two consecutive homoclinic points. Such asymptotic coefficient depends on an unknown
function ( f (μ) in Theorem 2.7) which comes from the study of the difference between adequate
approximations of the invariant manifolds near the singularities ±ia.

Theorem 2.7 (Main theorem: singular case). Let us assume Hypotheses HP1–HP5, 	 − 2r � 0 and η = 	 − 2r.
Then, given any fixed μ, there exists ε0 > 0 such that if ε ∈ (0, ε0), the area of the lobes between the invariant
manifolds of the periodic orbit given in Theorem 2.2 is given by

• If 	 − 2r > 0,

A = 4|μ|ε1−2re− a
ε

(∣∣ f (μ)
∣∣+O

(
1

|lnε|	−2r

))
(22)

where f (μ) is an entire analytic function.
• If 	 − 2r = 0,

A = 4|μ|ε1−2re− a
ε +μ2 Im b ln 1

ε

(∣∣ f (μ)eiC(μ)
∣∣+O

(
1

|lnε|
))

, (23)

where b ∈ C is a constant, whose explicit expression is given in (81), f (μ) is an entire analytic function
and C(μ) is an entire analytic function such that C(μ) =O(μ).

Corollary 2.8. Let us assume the hypotheses of Theorem 2.7 and f (μ) 
= 0. Then, the invariant manifolds
intersect transversally and the area of the lobes of the Poincaré map between two consecutive transversal
homoclinic points is asymptotically given by the formulas of Theorem 2.7.

2.2.3. Some comments about the results
• It is important to mention that, by applying Theorems 2.4 and 2.7, we do not need to compute

exactly a parameterization (q0(u), p0(u)) of the homoclinic orbit in order to know the size of the
splitting. What we need is the behavior of the homoclinic connection around its singularities ±ia,
which as we pointed out in Section 2.1.3, can be computed explicitly.

• The constant b appearing in Theorem 2.7 can be computed explicitly as it is showed in formula
(81) in Proposition 4.15. In particular, b = 0 when the Hamiltonian H1 in (9) and (10) does not
depend on y. For this reason, in the previous results obtained in the singular case corresponding
to η = 	− 2r = 0, see [65,33,53,37], this term does not appear. The appearance of this logarithmic
term in the asymptotic formula had already been detected in [3]. Let us also point out that an
analogous phenomenon happens in the analytic unfoldings of the Hopf-zero singularity (see [8,9])
and in weak resonances of area preserving maps [63].
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• The constant C(μ) appearing in Theorems 2.4 and 2.7 also satisfies C(μ) = 0 if the Hamiltonian
H1 in (9) and (10) does not depend on y. In Section 9.2.3 we give an explicit expression of C(μ)

in terms of several explicitly computable auxiliary functions.
• If one weakens Hypothesis HP3 to admit Hamiltonian systems with C1 dependence on τ , one can

get analogous results to the ones obtained in Theorems 2.4 and 2.7.
• Comparison with Melnikov. Observe that when η > η∗ , Theorem 2.4 gives a natural result which

generalizes the previous results dealing with the regular case (see Section 1.1 about historical
remarks): if one artificially assumes that the perturbation is small enough, the splitting of sepa-
ratrices is given in first order by the Melnikov function.
If 	 − 2r < 0 and η = 0, the Melnikov function does not predict the area correctly in general.
Nevertheless, since C(μ) ≡ 0 when the perturbation does not depend on y, in this case Mel-
nikov theory gives the asymptotic size of the area of the lobes even if η = 0, that is, when the
perturbation has the same size as the integrable system.
In the singular cases 	 − 2r � 0 and η = η∗ = 	 − 2r, we know that the function f (μ) appearing
in Theorem 2.7, satisfies that for μ small

f (μ) = f0 +O(μ),

where f0 ∈ C is a constant independent of μ. In [3], it is seen that the constant f0 coincides
with the constant that Melnikov theory gives in front of the exponential term (see Lemma 2.3).
In other words, this means that for the case 	 − 2r > 0, if μ is a small parameter and f0 
= 0,
Melnikov theory also predicts the asymptotic behavior of the area of the lobes correctly.
In the case 	 − 2r = 0, f0 also corresponds to the Melnikov theory prediction. Nevertheless, since
a logarithmic term appears in the exponential, the Melnikov prediction is valid provided

|μ| � 1√|lnε| .

Of course, if b = 0, as happens when the perturbation does not depend on y, the Melnikov pre-
diction is valid for any μ small and independent of ε.

2.2.4. Examples
In this section we apply Theorems 2.4 and 2.7 to some examples. We consider the Duffing equation

H0(x, y) = y2

2
− x2

2
+ x4

4

with different perturbations. The Duffing equation has two separatrices forming a figure eight, which
are parameterized by

Γ ±(u) = (±q0(u), p0(u)
)= (± √

2

cosh u
,∓

√
2 sinh u

cosh2 u

)
.

The singularities of these separatrices which are closer to the real axis are u = ±iπ/2 and r = 2 (see
the definition of r in Hypothesis HP2).

We consider two different types of perturbations and we study how the separatrix Γ + splits. The
first perturbation is

H(x, y) = y2

2
− x2

2
+ x4

4
+ μεηxn sin

t

ε

for n ∈ N and η � 0. Then the order of the perturbation is 	 = n (see the definition of 	 in (15)).
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Applying Melnikov theory to these Hamiltonian systems, one obtains the following prediction for
the area of the lobes

A = |μ|εη 2
n
2 +2π

(n − 1)!εn−1
e− π

2ε +O
(
μ2ε2η

)
. (24)

For η > η∗ = max{n − 4,0} or η = 0 and n < 4 (which corresponds to 	 − 2r < 0), one can apply
Theorem 2.4 to see that Melnikov theory predicts correctly the area of the lobes. Note that C(μ) ≡ 0
since the perturbation does not depend on y. Then,

A 	 |μ|εη 2
n
2 +2π

(n − 1)!εn−1
e− π

2ε . (25)

The case n � 4 corresponds to 	 � 2r. In this case for η = η∗ = n − 4, since the perturbation does
not depend on y, we have that b = 0 and C(μ) ≡ 0. Then, applying Theorem 2.7, the area is given by
the formula

A = |μ|4| f (μ)|
εn−1

e− π
2ε

(
1 +O

(
1

|lnε|
))

, (26)

where f (μ) satisfies

f (μ) = 2
n
2 π i

(n − 1)! +O(μ). (27)

Therefore, for η = n − 4 and fixed μ independent of ε, the first order depends on the full jet of f (μ)

and then the Melnikov function does not predict it correctly.
To see how the first asymptotic order of the area of the lobes changes when the perturbation

depends on y, we consider the following perturbation of the Duffing equation, where 	 = 2r = 4 and
η = 	 − 2r = 0,

H(x, y) = y2

2
− x2

2
+ x4

4
+ μ

(
x4 sin

t

ε
+ λx2 y cos

t

ε

)
with λ ∈R. For this example, Melnikov theory predicts that the area of the lobes is

A = |μ| 4π

3ε3
|2 + √

2λ|e− π
2ε +O

(
μ2).

Note that if one takes λ = 0, A coincides with (24) with n = 4 and η = 0. On the other hand, if one
takes λ = −√

2 the Melnikov function is degenerate since the first order vanishes.
Since 	 = 2r and η = 0, one can apply Theorem 2.7. Using formula (81) for the definition of b, one

can easily see that b = −4
√

2λi. Therefore, the true first asymptotic order of the area of the lobes is
given by

A = |μ| 4

ε3
e− π

2ε −4
√

2λμ2 ln 1
ε

(∣∣ f (μ)eiC(μ)
∣∣+O

(
1

|lnε|
))

, (28)

where f (μ) satisfies

f (μ) = π i
(2 + √

2λ) +O(μ).

3
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One can take, for instance, μ = 1 and write formula (28) as

A = 4

ε3−4
√

2λ
e− π

2ε

(∣∣ f (1)eiC(1)
∣∣+O

(
1

|lnε|
))

.

Therefore, the correcting logarithmic term in the exponential implies a drastic change in the power
of ε in the asymptotics. Note that one can take any λ ∈ R and then the power of ε in the first order
can change arbitrarily, both increasing or decreasing. Finally, if one takes λ = 0, one recovers formula
(26).

2.3. Near integrable Hamiltonian systems of 1 1
2 degrees of freedom close to a resonance

The results obtained in this work can be easily adapted to study near integrable Hamiltonian
systems of 1 1

2 degrees of freedom close to a resonance. Let us consider an analytic Hamiltonian
system with Hamiltonian

h(x, I, τ ) = h0(I) + δh1(x, I, τ ), (29)

where δ � 1 is a small parameter, (x, τ ) ∈ T
2, I ∈ R and h1 is a trigonometric polynomial as a function

of x. When δ = 0, the Hamiltonian system is completely integrable (in the sense of Liouville–Arnold)
and the phase space is foliated by invariant tori with frequency ω(I) = (∂I h0(I),1).

In particular, if for certain I , there exists k ∈ Z
2 such that ω(I) · k = 0, the corresponding torus is

foliated by periodic orbits. When δ > 0 (but small enough), it is a well known fact that typically this
torus, a resonant torus, breaks down.

Let us consider the simplest setting and let us assume that

h0(I) = I2

2
+ G(I) with G(I) = O

(
I3).

Then I = 0 corresponds to the resonant vector ω(0) = (0,1). To study the dynamics of the perturbed
system around this resonance, one usually performs the rescaling

I = √
δy and τ = t√

δ

and takes ε = √
δ as a new parameter. Then, one obtains the Hamiltonian

H(x, y, t) = y2

2
+ 1

ε2
G(εy) + V (x) + F

(
x,

t

ε

)
+ R

(
x, εy,

t

ε

)
,

where

V (x) = 〈h1(x,0, τ )
〉= 1

2π

2π∫
0

h1(x,0, τ )dτ

F (x, τ ) = h1(x,0, τ ) − 〈h1(x,0, τ )
〉

R(x, I, τ ) = h1(x, I, τ ) − h1(x,0, τ ),

which can be written as
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H

(
x, y,

t

ε

)
= H0(x, y) + μH1

(
x, y,

t

ε
, ε

)
with

H0(x, y) = y2

2
+ V (x)

H1(x, y, τ , ε) = F (x, τ ) + 1

ε2
G(εy) + R(x, εy, τ ).

Here μ is in fact a fake parameter, since we are interested in the case μ = 1. This system is similar to
the ones considered in this paper. Let us point out also that, by definition, ε−2G(εy) and R(x, εy, τ )

are of order ε.
Let us assume that the Hamiltonian H satisfies Hypotheses HP1–HP4 and instead of HP5 satisfies

the alternative hypothesis that V , which is a trigonometric polynomial, has the same degree as h1
in (29) as a function of x. Then, using the tools considered in this paper, one can give an asymptotic
formula analogous to the one given in Theorem 2.7. Let us point out that in this setting, even if
the terms ε−2G(εy) and R(x, εy, τ ) are of order ε and therefore smaller than F (x, τ ), the function
f (μ) appearing in Theorem 2.7 depends not only on F but also on the full jet in y of G and R . The
reason is that these terms become of the same order as V (x) and F (x, τ ) close to the singularities
of the unperturbed separatrix. Moreover, for these systems, the first asymptotic order also has the
logarithmic term in the exponential as it happens in Theorem 2.7 for 	 − 2r = 0. We plan to study
rigorously these kind of systems in future work.

3. Heuristic ideas of the proof

The rigorous proofs of asymptotic formulas for measuring the splitting of separatrices require a
significant amount of technicalities. For the convenience of the reader, even though in Section 4 we
give a precise description of the entire proof of Theorems 2.4 and 2.7, we first devote this section
to give an heuristic description of our strategy explaining the main differences respect to the ones
already used in the literature. We also explain the main novelties we have introduced to overcome
the difficulties that our general setting involves.

3.1. Measuring the splitting by using generating functions

To measure the splitting using generating functions we use the method in [45,58], based on ideas
by Poincaré [56]. Roughly speaking, if the invariant manifolds can be expressed in a suitable way,
then the area of the lobes generated by the perturbed manifolds between two consecutive homo-
clinic points and also the distance between the manifolds can be simply computed by the difference
between two functions.

Let us explain this approach in more detail. As the main goal is to measure the distance of the
stable and unstable manifolds of the periodic orbit (xp(t/ε), yp(t/ε)) in a Poincaré section Σt0 , it is
useful to obtain these manifolds as graphs. The stable and unstable manifolds of the perturbed system
can be expressed as graphs as

y = ϕ(x, t/ε) = yp(t/ε) + ∂x Ss,u(x − xp(t/ε), t/ε
)

in some complex domains, where the functions Ss,u are called generating functions. The generat-
ing functions Ss,u(q, τ ) are solutions of the Hamilton–Jacobi equation associated to our Hamiltonian
system after the change of variables

q = x − xp(t/ε), p = y − yp(t/ε)

and the change of time τ = t/ε.
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Note that for μ = 0, as the Hamiltonian is autonomous, the Hamilton–Jacobi equation reads:

(∂q S(q))2

2
+ V (q) = 0

which gives ∂q Ss(q, τ ) = ∂q Su(q, τ ) = ∂q S0(q) = √−2V (q) as the homoclinic connection.
Then, to measure the distance between the stable and the unstable manifolds in a Poincaré section

we just need to compute:

d(q, t0) = ∂q Su(q, t0/ε) − ∂q Ss(q, t0/ε) (30)

and it is standard that the area of the lobes is given by

A = Su(q2, t0/ε) − Ss(q2, t0/ε) − (Su(q1, t0/ε) − Ss(q1, t0/ε)
)
, (31)

where q1, q2 are the coordinates of two consecutive homoclinic points in the section Σt0 . Note that,
thanks to the symplectic structure, A does not depend on t0.

We perform the change of variables q = q0(u), where q0(u) is the first component of the unper-
turbed homoclinic orbit. In this way, we work with the function

T u,s(u, τ ) = Su,s(q0(u), τ
)

that is, we write the perturbed manifolds as functions of the time τ and the “time over the homo-
clinic orbit” u, which parameterizes the unperturbed homoclinic orbit. These functions satisfy a new
Hamilton–Jacobi equation, which is easier to deal with.

We consider the difference

�(u, τ ) = T u(u, τ ) − T s(u, τ ).

The first observation is that, when μ = 0, we have p0(u) = ∂q S0(q0(u)). Therefore ∂u T u,s(u, τ ) =
∂u T0(u) = p0(u)∂q Su,s(q0(u), τ ) = (p0(u))2 which corresponds to the parameterization of the un-
perturbed separatrix. Then, by analyticity with respect to the regular parameter μ, we have that
�(u, τ ) =O(μ).

The second observation is that, as the experts in this area know, �(u, τ ) is exponentially small in
the singular parameter ε. To obtain sharp estimates of �(u, τ ), we need to bound it, and consequently
T u(u, τ ) and T s(u, τ ), in a region of the complex plane that, on one hand, contains a segment of the
real line having two values of u giving rise to two consecutive homoclinic points and, on the other
hand, intersects a neighborhood sufficiently close to the singularities ±ia of T0(u).

Assume that we can construct parameterizations T u,s(u, τ ) of the perturbed invariant manifolds
satisfying both that they are 2π -periodic with respect to τ and that they are real-analytic and
bounded in some complex domain which contains two real values of u which give rise to two con-
secutive homoclinic points. Now we are going to explain how an exponentially small upper bound of
the difference � can be derived. The first point is that, being T u and T s solutions of the same partial
differential equation (with different boundary conditions), �(u, τ ) satisfies a homogeneous linear par-
tial differential equation. One can see that this equation is conjugated to (ε∂u + ∂τ )Y (u, τ ) = 0. Let us
assume for a moment that � is a solution of this equation. In fact, in Theorems 4.17 and 4.21, we will
see that this is true after a suitable change of variables. Then, we obtain that �(u, τ ) = Λ(τ − u/ε)

and, since � is 2π -periodic in τ , Λ(s) is a 2π -periodic function in s. This fact implies that

�(u, τ ) =
∑

Λke−ik u
ε eikτ .
k∈Z
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Now, a bound |�(u, τ )| � M for |Im u| � a′ , automatically gives

|Λk|� Me−|k| a′
ε , k 
= 0

which implies that |�(u, τ ) − Λ0| � 4Me− a′
ε for real values of u. The bigger the size of the strip

where we can bound |�(u, τ )| the smaller the exponential that gives the bound for real values of u.
Note that the constant Λ0 does not appear neither in the formula of the area (31), nor in the formula
of the distance (30) If we use Melnikov theory the expected exponential exponent is a, where ±ai
are the singularities of T0. Then, to obtain sharp bounds, it would be enough to take a′ = a − ε.

In some cases, which correspond to η = 0 in (1), the change of variables which conjugates the
original partial differential equation for �(u, τ ) with (ε∂u + ∂τ )Y (u, τ ) = 0 is not close enough to the
identity. This fact implies the appearance of the constant C(μ) and the logarithmic term in the asymp-
totic formulas obtained in Theorems 2.4 and 2.7. This change of variables is obtained, essentially,
studying the variational equation along the perturbed invariant manifolds. Therefore, the existence of
these terms, which were not present in the Melnikov prediction, shows that, to study the exponen-
tially small splitting of separatrices, it is not enough to look for the first order approximations of the
invariant manifolds close to the singularities. One has to look also for the first order of certain solu-
tions of the variational equation of the perturbed invariant manifolds close to the singularities. In fact,
these terms appear when these certain solutions of the variational equation of the perturbed invari-
ant manifolds close to the singularities are not well approximated by the solutions of the variational
equation of the unperturbed separatrix.

Then, roughly speaking one can conclude that Melnikov theory gives the correct answer if:

• The perturbed invariant manifolds are well approximated by the unperturbed separatrix close to
the singularity.

• The solutions of the variational equation along the perturbed invariant manifold are well approx-
imated by certain solutions of the variational equation along the unperturbed separatrix.

In all the other cases, the splitting is given by an alternative formula. This fact, is explained in more
detail Section 3.4.

3.2. The boomerang domains

For the Hamiltonians considered in this paper, the invariant manifolds, in general, are not global
graphs over q. Therefore, the approach explained in the previous section cannot be used straight-
forwardly. Nevertheless, we will see that there are always regions in the phase space where both
manifolds are graphs and we will use one of these regions to measure the splitting. Consequently,
being the area of the lobes an invariant quantity, this will give the wanted result.

As we have explained, we are forced to find parameterizations T u,s of the invariant manifolds
which have to be analytic in a common complex domain which reaches points at a distance ε of the
singularities. Moreover, we also need to guarantee that our domain contains an open set of real values
of u (this will be enough to ensure that the domain contains u1 and u2 that give rise to homoclinic
points since they are ε close).

To this end let us observe that we have no hope to construct parameterizations T u,s(u, τ ) for
values of u such that p0(u) = 0, at least in a general case. In fact, the unperturbed homoclinic con-
nection can be expressed as graph{p = √−2V (q)} ∪ graph{p = −√−2V (q)}. Then if p0(u0) = 0, for
some value u0, the unperturbed homoclinic connection cannot be expressed as a graph over the base
in the original variables (q, p) in a neighborhood of (q0(u0),0). This fact implies that the Hamilton–
Jacobi equation that T u,s has to satisfy is not defined for u = u0.

We will always keep in mind that we need to check this condition (p0(u) 
= 0) if we want to use
the parameterizations T u,s .

For this reason we define the following boomerang domains (see Fig. 2), in which p0(u) 
= 0, and
hence the functions T s,u will be well defined on them.
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Fig. 2. The boomerang domains Du
κ,d and Ds

κ,d defined in (32).

Ds
κ,d = {u ∈C; |Im u| < tanβ1 Re u + a − κε, |Im u| < tanβ2 Re u + a − κε,

|Im u| > tanβ2 Re u + a − d
}

Du
κ,d = {u ∈C; |Im u| < − tanβ1 Re u + a − κε, |Im u| < tanβ2 Re u + a − κε,

|Im u| > tanβ2 Re u + a − d
}

∪ {u ∈ C; |Im u| < − tanβ1 Re u + a − κε, |Im u| > − tan β2 Re u + a − d,

Re u < 0
}
, (32)

where β1 ∈ (0,π/2) is any fixed angle.
To choose β2 we use the following. First we point out that the zeros of p0(u) are isolated in C.

Moreover, close to the singularities u = ±ia, p0(u) cannot vanish. Then, in order to assure that p0(u)

does not vanish in the whole domains Ds
κ,d and Du

κ,d , one has to choose an angle β2 such that β2 > β1
and the lines |Im u| = tan β2 Re u + a do not contain any zero of p0(u). Then, taking ε > 0 and d > 0
independent of ε, both small enough, one can guarantee that p0(u) does not vanish neither in Ds

κ,d
nor in Du

κ,d .
We will use these boomerang domains as fundamental domains to measure the splitting. It is im-

portant to emphasize that both Ds
κ,d and Du

κ,d reach a neighborhood of the singularities ±ia of size ε.

Remark 3.1. Let us observe that the domains Du
κ,d and Ds

κ,d have different shape. We will give all the
proofs in the unstable case. All of them are analogous, and even simpler, in the stable one.

To study the difference between the manifolds, we consider �(u, τ ) = T u(u, τ ) − T s(u, τ ) in the
domain Rκ,d = Ds

κ,d ∩ Du
κ,d which is defined as

Rκ,d = {u ∈C; |Im u| < tanβ2 Re u + a − κε, |Im u| > tanβ2 Re u + a − d,

|Im u| < − tanβ1 Re u + a − κε
}
. (33)

We recall that p0(u) 
= 0 if u ∈ Rκ,d and hence we can use the functions T s,u in this domain.
The domain Rκ,d , where we measure the difference between the invariant manifolds, is consid-

erably different from the ones used in previous works (see for instance [58]), where the analogous
domains look like diamonds. In [58], the author considers systems for which the unperturbed separa-
trix is a graph globally and then he can work in such wide domains.
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Fig. 3. The domain Rκ,d defined in (33).

Once we have the difference � in Rκ,d , using the arguments exposed in the previous subsection
one can obtain exponentially small upper bounds for �.

Recall that our goal is to give an asymptotic formula for the area of the lobe between two consec-
utive homoclinic points. Henceforth, once we find the first asymptotic term of �, which we call �0,
we use the arguments indicated in the previous section to bound the difference �(u, τ ) − �0(u, τ ).
We will come back to the problem of finding �0 in Section 3.4.

3.3. Parameterizations of the invariant manifolds of the perturbed system

In this section we are going to explain the strategy we use to prove the existence of T u,s in the
corresponding boomerang domains Du,s

κ,d . In fact we will always deal with ∂u T u,s .
We begin our construction near the origin (q, p) = (0,0). In terms of the new variable u this

corresponds to take Re u near −∞ for the unstable invariant manifold and near +∞ for the stable
one.

Given ρ1 � 0, we consider the following domains:

Du∞,ρ1
= {u ∈C; Re u < −ρ1}

Ds∞,ρ1
= {u ∈C; Re u > ρ1}. (34)

It is not difficult to prove that the constant ρ1 can be taken big enough so that p0(u) does not vanish
in these domains. Henceforth the Hamilton–Jacobi formulation is allowed in these domains (see (53)
and (54)). The first result is Theorem 4.3, where we prove the existence of ∂u T s,u and we see that both
are well approximated by ∂u T0 in Du,s∞,ρ1 . This result gives the existence of local invariant manifolds
and, moreover, provides suitable properties of them.

In the case that p0(u) 
= 0 the next step is to extend ∂u T u,s to the so-called outer domains (see
Fig. 4) defined by

Dout,u
ρ,κ = {u ∈C; |Im u| < − tan β1 Re u + a − κε, Re u > −ρ

}
Dout,s

ρ,κ = {u ∈C; −u ∈ Dout,u
ρ,κ

}
, (35)

where κ > 0, which might depend on ε, is such that a −κε > 0. The constant ρ will be taken ρ > ρ1,
in order to ensure that D∗∞,ρ1

∩ Dout,∗
ρ,κ 
= ∅ for ∗ = u, s. Since we have already proved the existence of

local invariant manifolds defined in Du,s∞,ρ1 , therefore ∂u T u,s are defined in D∗∞,ρ ∩ Dout,∗
ρ,κ for ∗ = u, s.
1
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Fig. 4. The outer domains Dout,u
ρ,κ and Dout,s

ρ,κ defined in (35).

In Theorem 4.4 it is proved that ∂u T u,s(u, τ ) can be extended to the outer domain Dout,∗
ρ,κ , ∗ = u, s,

and that is well approximated (in some norm) by ∂u T0(u) there.
In the case that p0(u) vanishes in the outer domains the procedure becomes a little technical.

The main idea is to use parameterizations of the invariant manifolds of the form (Q (u, τ ), P (u, τ ))

to extend them to a new domain where p0(u) does not vanish anymore and that overlaps with
the boomerang domain Du,s

κ,d (see Theorem 4.6). We point out that these new domains are still far
away from the singularities ±ia of T0(u), henceforth the obtention of the parameterizations defined
in these domains is straightforward (see Theorem 4.7). Once we have proved the existence of the
parameterizations of the invariant manifolds for values of u far from the singularities but inside the
boomerang domains Du,s

κ,d , we can recover the generating functions ∂u T u,s(u, τ ) and extend them to

the whole boomerang domains Du,s
κ,d in Theorem 4.8.

We want to emphasize here that

• We are able to extend the manifolds up to a distance of order ε of the singularities in all the
cases without using any inner equation even in the singular case 	 − 2r � 0 and η = 	 − 2r.

• The outer domain Dout,∗
ρ,κ contains the boomerang domain D∗

κ,d for ∗ = u, s.

3.4. The asymptotic first order of �

Even though we have proved the existence of the invariant manifolds in the boomerang domains,
we need some extra information to detect the asymptotic first order of their difference. The main
idea is that functions which are of algebraic order with respect to ε near the singularities ±ia are
exponentially small for real values of u. Thus, the main point to compute the difference and capture
the asymptotic first order is to be able to give the main terms of this difference close to the sin-
gularities, concretely, up to distance of order ε of the singularities. For that we need to give better
approximations of the generating functions T u,s(u, τ ) near the singularities ±ia of the homoclinic
connection.

To this end, we define the so-called inner domains (see Fig. 5), which are defined as

D in,+,u
κ,c = {u ∈C; Im u > − tanβ1

(
Re u + cεγ

)+ a, Im u < − tan β2 Re u + a − κε,

Im u < − tanβ0 Re u + a − κε
}

D in,−,u
κ,c = {u ∈C; u ∈ D in,+,u

κ,c

}
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Fig. 5. The inner domains defined in (36).

D in,+,s
κ,c = {u ∈C; −u ∈ D in,+,u

κ,c

}
D in,−,s

κ,c = {u ∈C; −u ∈ D in,+,u
κ,c

}
(36)

for κ > 0, c > 0 and γ ∈ (0,1). On the other hand, β1 and β2 are the angles considered in the
definition of the boomerang domains in (32) and β0 is any angle satisfying that β1 −β0 has a positive
lower bound independent of ε and μ. Let us observe that, if u ∈ D in,±,∗

κ,c , ∗ = u, s, then O(κε) �
|u ∓ ia| �O(εγ ).

Let us observe that simply rewriting μ := μεη−η∗
, one can include the regular case (η > η∗) into

the singular one. This is very convenient since one can prove the results for both cases at the same
time. Therefore, from now on in this section, we will focus on the singular case.

When studying the functions ∂u T u,s evaluated in the inner domains, one can distinguish the cases
	 − 2r < 0 or 	 − 2r � 0. The difference between these two cases, roughly speaking, is that, when
	 − 2r < 0, the approximation of the manifolds in the inner domain is still given by the first order
perturbation theory as is stated in Proposition 4.18. In the case 	−2r � 0 this fact is not true anymore.

Analyzing ∂u T u,s close to the singularity ia, one can see that, if u − ia = O(ε), then ∂u T u,s is
of order O(1/ε2r). For this reason we perform the change of variables u = ia + εz and we study
the functions ψu,s(z, τ ) = ε2r−1T u,s(ia + εz, τ ). The first order in ε of these functions verifies the so
called inner equation. Their solutions ψ

u,s
0 (z, τ ) were studied in [3]. Then, in Theorem 4.16 we provide

a bound for |ψu,s(z, τ ) − ψ
u,s
0 (z, τ )|. This is known as complex matching.

We emphasize that we have not used the inner solutions ψ
u,s
0 (z, τ ) to extend our functions T u,s to

the inner domains since we already knew their existence. Henceforth to bound |ψu,s(z, τ )−ψ
u,s
0 (z, τ )|

we have exploited the same idea as the one used to study the difference � = T u − T s . Let us
explain it in more detail. As we have explained in Section 3.3, we have already proved the exis-
tence of generating functions T u,s in the whole boomerang domains. Henceforth, the new functions
ψu,s(z, τ ) = ε2r−1T u,s(ia + εz, τ ) have the corresponding properties coming from the ones of T u,s .
Now we consider the difference �ψu,s = ∂zψ

u,s − ∂zψ0. Such functions (which are known) satisfy
a non-homogeneous linear equation which can be “easily” studied. Summarizing, we just obtain an
“a posteriori” bound of �ψu,s . This makes our complex matching considerably simpler because we just
need to use Gronwall-like techniques.

In both cases 	 − 2r < 0 and 	 − 2r � 0, we have now accurate approximations for T u,s near the
singularities. Let us call them T u,s

0 . The first order asymptotics for the difference � = T u − T s comes
from T u

0 − T s
0 after a change of variables. Recall that, as we have explained in Section 3.1, in some

cases, this change of variables implies an additional correcting term in T u
0 − T s

0. Finally, we bound the
remainder by using the techniques explained in Section 3.1.
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4. Description of the proofs of Theorems 2.4 and 2.7

We devote this section to prove Theorems 2.4 and 2.7.

4.1. Basic notations

First, we introduce some basic notations which will be used through the paper.
We denote by T = R/(2πZ) the real 1-dimensional torus and by

Tσ = {τ ∈C/(2πZ); |Imτ | < σ
}
,

with σ > 0, the torus with a complex strip.
Given a function h : D ×Tσ →C, where D ⊂ C is an open set, we denote its Fourier series by

h(u, τ ) =
∑
k∈Z

h[k](u)eikτ

and its average by

〈h〉(u) = h[0](u) = 1

2π

2π∫
0

h(u, τ )dτ .

In any Banach space (X ,‖ · ‖), we define the following balls

B(R) = {x ∈ X ; ‖x‖ < R
}

B(R) = {x ∈ X ; ‖x‖ � R
}
.

By Hypothesis HP3, the Hamiltonian H in (7) is analytic in τ = t/ε. By the compactness of T,
there exists a constant σ0 such that H is continuous in Tσ0 and analytic in Tσ0 . From now on, we fix
0 < σ < σ0.

Throughout the proof of Theorems 2.4 and 2.7 we will use the analyticity in μ. We fix an arbitrary
value μ0 > 0. Even if we do not write it explicitly, all functions we will encounter from now on will
be analytic in μ ∈ B(μ0).

From now on, we work with the fast time τ = t/ε. Then, denoting ′ = d/dτ , we have the system

{
x′ = ε

(
y + μεη∂y H1(x, y, τ ;ε)

)
y′ = −ε

(
V ′(x) + μεη∂x H1(x, y, τ ;ε)

)
.

(37)

In order to simplify the notation, through the rest of this paper we will denote by K any constant
independent of μ and ε to state all the bounds.

4.2. The periodic orbit

In the parabolic case, Hypothesis HP4.2 on H1 implies that the origin is still a critical point of
the perturbed system (37) In the hyperbolic case, the next theorem states the existence and useful
properties of a hyperbolic periodic orbit close to the origin of the perturbed system.
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Theorem 4.1. Let us assume Hypotheses HP1.1, HP3, HP4.1 and η � 0. Then, there exists ε0 > 0 such that
for any |μ| < μ0 and ε ∈ (0, ε0), system (37) has a 2π -periodic orbit (xp(τ ), yp(τ )) : Tσ → C

2 which is
real-analytic and satisfies

sup
τ∈Tσ

(∣∣xp(τ )
∣∣+ ∣∣yp(τ )

∣∣)� b0|μ|εη+1,

where b0 > 0 is a constant independent of ε and μ.

This theorem is proved in Section 5.

Remark 4.2. The Hamiltonian H1, the periodic orbit (xp(τ ), yp(τ )), and consequently the Hamiltoni-
ans Ĥ , Ĥ1, Ĥ1

1, Ĥ2
1, which will be defined below, depend on the parameters μ, ε. From now on, we

will not write this dependence explicitly but we will emphasize it when necessary.

Once we know the existence of the periodic orbit, we perform the time dependent change of
variables

{
q = x − xp(τ )

p = y − yp(τ )
(38)

which transforms system (37) into a Hamiltonian system with Hamiltonian function εĤ(q, p, τ ):

Ĥ(q, p, τ ) = p2

2
+ V
(
q + xp(τ )

)− V
(
xp(τ )

)− V ′(xp(τ )
)
q + μεη Ĥ1(q, p, τ ) (39)

with

Ĥ1(q, p, τ ) = H1
(
xp(τ ) + q, yp(τ ) + p, τ

)− H1
(
xp(τ ), yp(τ ), τ

)
− D H1

(
xp(τ ), yp(τ ), τ

)( q
p

)
, (40)

where we have denoted D H1 = (∂x H1, ∂y H1). We have added the terms V (xp(τ )) and H1(xp(τ ),

yp(τ ), τ ) for convenience. Note that they do not generate any term in the differential equations as-
sociated to Ĥ .

Since |(xp(τ ), yp(τ ))| =O(μεη+1), Ĥ1 can be split as

Ĥ1(q, p, τ ) = Ĥ1
1(q, p, τ ) + εĤ2

1(q, p, τ ),

where

Ĥ1
1(q, p, τ ) = H1(q, p, τ ) − H1(0,0, τ ) − D H1(0,0, τ )

(
q
p

)

and Ĥ2
1(q, p, τ ) is the remaining part. In fact, we can give a more precise formula for Ĥ1

1 and Ĥ2
1 in

both the polynomial and the trigonometric cases:
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Ĥ1
1(q, p, τ ) =

∑
2�k+l�N

akl(τ )qk pl (polynomial case)

Ĥ1
1(q, p, τ ) =

∑
k=−N,...,N

ak0(τ )
(
eikq − 1 − ikq

)+ ∑
k=−N,...,N

ak1(τ )
(
eikq − 1

)
p

+
∑

k=−N,...,N
l=2,...,N

akl(τ )eikq pl (trigonometric case) (41)

where akl are the functions defined in (9) and (10) and have zero average, that is

〈
Ĥ1

1

〉= 0. (42)

Let us point out that Ĥ1
1 is H1 subtracting its linear terms in (x, y), and hence it is of order n = 2.

The Hamiltonian Ĥ2
1 is given by:

Ĥ2
1(q, p, τ ) =

∑
2�k+l�N−1

ckl(τ )qk pl (polynomial case)

Ĥ2
1(q, p, τ ) =

∑
k=−N,...,N

ck0(τ )
(
eikq − 1 − ikq

)+ ∑
k=−N,...,N

ck1(τ )
(
eikq − 1

)
p

+
∑

k=−N,...,N
l=2,...,N−1

ckl(τ )eikq pl (trigonometric case) (43)

where ckl are 2π -periodic functions which, in general, do not have zero average. As we will see in
Corollary 5.6 the functions ckl are 2π -periodic and satisfy∣∣ckl(τ )

∣∣� K |μ|εη. (44)

In the case that the unperturbed Hamiltonian has a parabolic point at the origin, since (xp, yp) =
(0,0), we have that ckl = 0.

4.3. Different parameterizations of the invariant manifolds

The next step is to prove the existence of the unstable and stable invariant manifolds of the peri-
odic orbit given in Theorem 4.1.

We will consider two different strategies to find suitable parameterizations of these invariant man-
ifolds depending on the domain we are. On the one hand, when it is possible, we will follow [45,58]
(see also [37]), and we will write the invariant manifolds as graphs of suitable generating functions
which are solutions of a Hamilton–Jacobi equation in appropriate variables. On the other hand, when
this is not possible, we will obtain parameterizations of invariant manifolds formed by families of
solutions of the differential equations.

To introduce the first method, let us consider the symplectic change of variables (see [3]){q = q0(u)

p = w

p0(u)
,

(45)

where (q0(u), p0(u)) is the parameterization of the homoclinic orbit given in Hypothesis HP2. This is
a well defined change for any u ∈C such that p0(u) 
= 0 and leads to a new Hamiltonian given by
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εH(u, w, τ ) = εĤ

(
q0(u),

w

p0(u)
, τ

)
, (46)

where Ĥ is the Hamiltonian defined in (39).
Let us recall that when μ = 0, Ĥ becomes H0 defined in (8). Then, the separatrix of the unper-

turbed system (μ = 0) for H can be parameterized as a graph as w = p0(u)2.
To obtain parameterizations of the perturbed invariant manifolds, we can take into account the

well known fact that, locally, they are Lagrangian and can be obtained as graphs of some functions
which are solutions of the Hamilton–Jacobi equation associated to the Hamiltonian εH . That is, we
look for w = ∂u T u,s(u, τ ), where the functions T u,s satisfy

∂τ T (u, τ ) + εH
(
u, ∂u T (u, τ ), τ

)= 0 (47)

and certain limiting properties.
The solutions of this equation give parameterizations of the invariant manifolds, which, in the

original variables, read

(q, p) =
(

q0(u),
∂u T u,s(u, τ )

p0(u)

)
. (48)

Notice that in variables (q, p) the condition p0(u) = q̇0(u) 
= 0 ensures that the manifolds can be
written as graphs over the variable q through the functions Su,s(q, τ ) = T u,s(q−1

0 (q), τ ) which verify
the classical Hamilton–Jacobi equation associated to the Hamiltonian Ĥ(q, p, τ ).

When this method cannot be used, that is when p0(u) can vanish, we look for the invariant
manifolds as parameterizations:

(q, p) = (Q (v, τ ), P (v, τ )
)

(49)

in such a way that (q(s), p(s)) = (Q (u + εs, s), P (u + εs, s)) are solutions of the differential equation
associated to the Hamiltonian (39). These kind of parameterizations were used in [18,19,30,33,4,5].

Then, it is straightforward to see [30] that (Q , P ) has to satisfy

Lε

(
Q
P

)
=
(

P + μεη∂p Ĥ1(Q , P , τ )

−(V ′(Q + xp(τ )) − V ′(xp(τ ))) − μεη∂q Ĥ1(Q , P , τ )

)
, (50)

where Lε is the operator

Lε = ε−1∂τ + ∂v (51)

and Ĥ1 is the Hamiltonian defined in (40).
Both parameterizations (48) and (50) satisfy that, fixing τ = τ∗ , they give parameterizations of the

invariant curves of the fixed point of the 2π -Poincaré map from the section τ = τ ∗ to the section
τ = τ ∗ + 2π .

4.4. Existence of the local invariant manifolds

In this section we will find the local invariant manifolds of the origin of the Hamiltonian system
(39).

First, we recall the behavior of the separatrix (q0(u), p0(u)) as Re u → ±∞, which is substantially
different depending on whether (0,0) is a hyperbolic or a parabolic point of the unperturbed system.
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In the hyperbolic case, by Hypothesis HP1.1, close to x = 0 the potential behaves as

V (x) = −λ2

2
x2 +O

(
x3). (52)

Therefore, {λ,−λ} are the eigenvalues of the critical point. Moreover, there exist constants c± 
= 0
such that as Re u → ∓∞ the separatrix behaves as

q0(u) = c±e±λu +O
(
e±2λu)

p0(u) = ±λc±e±λu +O
(
e±2λu). (53)

In the parabolic case, using Hypothesis HP1.2, in [4] it is seen that there exists a constant c0 such that
as Re u → ∓∞ the separatrix behaves as

q0(u) = c0

u
2

m−2

+O
(

1

uν

)
p0(u) = − 2c0

(m − 2)u
m

m−2
+O
(

1

uν+1

)
, (54)

where m is the order of the potential (12) and ν > 2/(m − 2).
We look for the parameterizations of the local invariant manifolds in the domains Du,s∞,ρ defined

in (34).
By (53) and (54), the constant ρ can be taken big enough so that p0(u) does not vanish in these

domains. Then, as we explained in Section 4.3, we can look for the invariant manifolds by means of
generating functions T u,s (see (48)) defined in D∗∞,ρ with ∗ = u, s respectively, which are solutions of
the Hamilton–Jacobi equation (47). Moreover, we impose the asymptotic conditions

lim
Re u→−∞ p−1

0 (u) · ∂u T u(u, τ ) = 0 (for the unstable manifold) (55)

lim
Re u→+∞ p−1

0 (u) · ∂u T s(u, τ ) = 0 (for the stable manifold). (56)

We note that when μ = 0 a solution of (47) satisfying both asymptotic conditions (55) and (56) is

T0(u) =
u∫

−∞
p2

0(v)dv, (57)

which corresponds to the unperturbed separatrix.
The next theorem gives the existence of the invariant manifolds in the domains D∗∞,ρ with ∗ = u, s

defined in (34). We state the results for the unstable invariant manifold. The stable one has analogous
properties.

Theorem 4.3. Let us assume Hypotheses HP1.1, HP3, HP4 and take η � 0. Let ρ1 > 0 be a real number
big enough such that p0(u) 
= 0 for u ∈ Du∞,ρ1

. Then, there exists ε0 > 0 such that for ε ∈ (0, ε0) and μ ∈
B(μ0), the Hamilton–Jacobi equation (47) has a unique (modulo an additive constant) real-analytic solution
in Du∞,ρ1

×Tσ satisfying the asymptotic condition (55).
Moreover, there exists a real constant b1 > 0 independent of ε and μ, such that for (u, τ ) ∈ Du∞,ρ1

×Tσ ,∣∣∂u T u(u, τ ) − ∂u T0(u)
∣∣� b1|μ|εη+1.
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The asymptotic behavior of the invariant manifolds when Re u → +∞ is qualitatively different
for the hyperbolic case and the parabolic case. For this reason we prove separately Theorem 4.3 for
these two cases. We deal with the hyperbolic case in Section 6.1 and with the parabolic case in
Section 6.2.

In the rest of the paper we will assume the whole set of Hypotheses HP1, HP2, HP3, HP4 and HP5.

4.5. The global invariant manifolds

The next step is to extend the invariant manifolds to a wider domain which contains a region close
to the singularities ±ia of the separatrix (see Hypothesis HP2). In the general case the function p0(u)

can vanish and therefore, the symplectic change (45) is not well defined. For this reason one cannot
use the Hamilton–Jacobi equation (47) anymore. Instead we look for parameterizations

(q, p) = (Q u,s(v, τ ), P u,s(v, τ )
)

which are solutions of the partial differential equation (50).
Nevertheless, there are some cases, as happens for the classical pendulum, where p0(u) does not

vanish for u ∈ C, and then one can use the Hamilton–Jacobi equation in the whole domain, which
makes the proof of Theorems 2.4 and 2.7 remarkably simpler. Section 4.5.1 is devoted to this simpler
case and Section 4.5.2 to the general one.

4.5.1. The global invariant manifolds in the case p0(u) 
= 0
In this section we extend the parameterizations (48) of the invariant manifolds to the outer do-

mains Dout,∗
ρ,κ , ∗ = u, s, (see Fig. 4) defined by (35), in the case that p0(u) 
= 0. We emphasize that these

domains reach a region which is at a distance of O(ε) of the singularities u = ±ia of the unperturbed
separatrix.

The constant ρ will be taken ρ > ρ1, where ρ1 is the constant given by Theorem 4.3, in order to
ensure that Du∞,ρ1

∩ Dout,u
ρ,κ 
= ∅.

Since in this section we are assuming that p0(u) 
= 0 in the whole outer domain, the symplectic
change of variables (45) is still well defined there. Then, it is enough to look for the analytic continu-
ation of the generating functions T u,s obtained in Theorem 4.3.

Theorem 4.4. Let ρ1 be the constant considered in Theorem 4.3 and let us consider ρ2 such that ρ2 > ρ1 ,
κ1 > 0 big enough and ε0 > 0 small enough. Then, for μ ∈ B(μ0), ε ∈ (0, ε0), the function T u(u, τ ) obtained
in Theorem 4.3 can be analytically extended to the domain Dout,u

ρ2,κ1 ×Tσ .

Moreover, there exists a real constant b2 > 0 independent of ε and μ, such that for (u, τ ) ∈ Dout,u
ρ2,κ1 ×Tσ ,

∣∣∂u T u(u, τ ) − ∂u T0(u)
∣∣� b2|μ|εη+1

|u2 + a2|	+1
.

The proof of this theorem is given in Section 7.1. The results for the stable manifold are analogous.

4.5.2. The global invariant manifolds for the general case
We devote this section to obtain parameterizations of the global invariant manifolds for the gen-

eral case, that is, considering Hamiltonian systems for which p0(u) can vanish in the outer domains
defined in (35). We look for parameterizations

(q, p) = (Q u,s(v, τ ), P u,s(v, τ )
)

which are solutions of the partial differential equation (50). Our strategy will be:
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Fig. 6. The transition domains Iu
ρ,ρ and I s

ρ,ρ defined in (58).

• To obtain the parameterizations (Q u,s(v, τ ), P u,s(v, τ )) in a transition domain (Theorem 4.5).
• To extend them up to a region where we can ensure that p0(u) does not vanish (Theorem 4.6).
• To recover in this new region the representations (48) through the generating function T u,s of

the manifolds, which are solution of the Hamilton–Jacobi equation (47) (Theorem 4.7).
• To extend the generating function ∂u T u,s(u, τ ) up to a distance of order ε of the singularity, as it

was done in the easier case p0(u) 
= 0 in Theorem 4.4 (Theorem 4.8).

First we are going to construct the two-dimensional parameterizations of the invariant manifolds
from the parameterizations of the local invariant manifolds given in Theorem 4.3, which were ob-
tained by using the Hamilton–Jacobi equation. We look for them in the transition domains

Iu
ρ,ρ = Dout,u

κ,ρ ∩ Du∞,ρ

I s
ρ,ρ = Dout,s

κ,ρ ∩ Ds∞,ρ (58)

with ρ > ρ (see Fig. 6). Taking into account the change of variables (45), it is natural to look for the
parameterizations of the invariant manifolds (Q u,s, P u,s) of the form

Q u,s(v, τ ) = q0
(

v + Uu,s(v, τ )
)

P u,s(v, τ ) = ∂u T u,s(v + Uu,s(v, τ ))

p0(v + Uu,s(v, τ ))
, (59)

where Uu,s define a change of variables u = v +Uu,s(v, τ ) in such a way that (Q u,s, P u,s) satisfy the
system of Eq. (50).

The results in this section are only stated in the unstable case since the ones for the stable case
are analogous.

The next theorem ensures that the change of variables u = v + Uu(v, τ ) exists and it is well
defined in the transition domain Iu

ρ,ρ .

Theorem 4.5. Let ρ1 be the constant considered in Theorem 4.3 and let ρ3 and ρ4 such that ρ4 > ρ3 > ρ1
and ε0 small enough (which might depend on ρi , i = 1,2,3). Then, for ε ∈ (0, ε0) and μ ∈ B(μ0), there exists
a real-analytic function Uu : Iu

ρ ,ρ ×Tσ →C such that

3 4
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Fig. 7. The domains D̃out,u
ρ,d,κ and D̃out,s

ρ,d,κ defined in (60).

• There exists a constant b3 > 0 independent of ε and μ such that for (v, τ ) ∈ Iu
ρ3,ρ4

×Tσ ,

∣∣Uu(v, τ )
∣∣� b3|μ|εη+1.

• If (v, τ ) ∈ Iu
ρ3,ρ4

×Tσ , then v +Uu(v, τ ) ∈ Du∞,ρ1
.

• The parameterizations of the invariant manifolds (Q u(v, τ ), P u(v, τ )) in (59) satisfy the system of
Eq. (50) and there exists a constant b4 > 0 such that for (v, τ ) ∈ Iu

ρ3,ρ4
×Tσ ,

∣∣Q u(v, τ ) − q0(v)
∣∣ � b4|μ|εη+1∣∣P u(v, τ ) − p0(v)
∣∣� b4|μ|εη+1,

where (q0, p0) is the parameterization of the unperturbed separatrix given in Hypothesis HP2.

The proof of this theorem is deferred to Section 7.2.2.
Having the parameterizations (Q u,s(v, τ ), P u,s(v, τ )) in the transition domains I∗ρ3,ρ4

× Tσ for
∗ = u, s, we extend them until we arrive to a region where we can ensure that p0(u) does not vanish
anymore. This region consists of a piece of the boomerang domains defined in (32) (see Fig. 2), in
which p0(u) 
= 0, and hence the parameterizations (48) will be well defined in them.

The next step is to extend the parameterizations (Q u,s(v, τ ), P u,s(v, τ )) provided in Theorem 4.5
up to domains which intersect the boomerang domains Du

κ,d and Ds
κ,d respectively. To this end, we

define the following domains

D̃out,u
ρ,d,κ = Dout,u

ρ,κ ∩
{

u ∈C; |Im u| < − tan β2 Re u + a − d

2

}
D̃out,s

ρ,d,κ = Dout,s
ρ,κ ∩

{
u ∈ C; |Im u| > tanβ2 Re u + a − d

2

}
, (60)

which are depicted in Fig. 7.
We want to emphasize that to extend the parameterizations (Q u,s(v, τ ), P u,s(v, τ )) to these new

domains, has no technical difficulties since they are far from the singularities u = ±ia. Actually the
next theorem is a classical perturbative result.
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Fig. 8. The domains Iout,u
κ,d and Iout,s

κ,d defined in (61).

Theorem 4.6. Let ρ4 and κ1 be the constants considered in Theorems 4.5 and 4.4, d0 > 0 and ε0 > 0
small enough. Then, for μ ∈ B(μ0) and ε ∈ (0, ε0), there exist functions (Q u(v, τ ), P u(v, τ )) defined in
D̃out,u

ρ4,d0,κ1
×Tσ satisfying Eq. (50) and such that they are the analytic continuation of the parameterizations of

the invariant manifolds obtained in Theorem 4.5.
Moreover, there exists a constant b5 > 0 independent of ε and μ such that for (v, τ ) ∈ D̃out,u

ρ4,d0,κ1
×Tσ ,

∣∣Q u(v, τ ) − q0(v)
∣∣� b5|μ|εη+1∣∣P u(v, τ ) − p0(v)
∣∣� b5|μ|εη+1.

The proof of this theorem is given in Section 7.2.3.
Theorem 4.6 provides parameterizations of the invariant manifolds of the form (49) in the do-

mains D̃out,u
ρ,d,κ and D̃out,s

ρ,d,κ . In particular, they are defined in the following transition domains, which
are depicted in Fig. 8.

Iout,u
κ,d = D̃out,u

ρ,d,κ ∩ Du
κ,d

Iout,s
κ,d = D̃out,s

ρ,d,κ ∩ Ds
κ,d, (61)

where, by construction, p0(u) does not vanish. Then, we can use these domains as transition domains
where we can go back to the parameterizations (48) and where the Hamilton–Jacobi equation (47)
can be used. To obtain them, we look for changes of variables v = u + Vu,s(u, τ ) which satisfy

Q u,s(u + Vu,s(u, τ ), τ
)= q0(u), (62)

where Q u,s are the first components of the parameterizations obtained in Theorem 4.6. Once we
have them, we will define the generating functions T u,s which give the parameterizations (48). Let us
observe that if p0(u) does not vanish in the outer domains, the changes of variables v = u +Vu,s(u, τ )

are defined in the whole domain and they are the inverse of the changes u = v +Uu,s(v, τ ) obtained
in Theorem 4.5.

Theorem 4.7. Let d0 , κ1 , ρ4 be the constants given in Theorem 4.6, κ2 > κ1 , d1 < d0 and ε0 > 0 small enough.
Then, for ε ∈ (0, ε0) and μ ∈ B(μ0), and increasing κ1 if necessary,
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• There exists a real-analytic function Vu : Iout,u
κ2,d1

× Tσ → C which satisfies (62). Moreover, if (u, τ ) ∈
Iout,u
κ2,d1

×Tσ , then u + Vu(u, τ ) ∈ Iout,u
κ1,d0

and

∣∣Vu(u, τ )
∣∣� b6|μ|εη+1

with b6 a constant independent of μ and ε.
• There exists a generating function T u : Iout,u

κ2,d1
×Tσ →C such that

∂u T u(u, τ ) = p0(u)P u(u + Vu(u, τ ), τ
)
,

where P u is the function obtained in Theorem 4.6, and satisfies Eq. (47). Then, we have that (q, p) =
(q0, p0(u)−1∂u T u(u, τ )) is a parameterization of the unstable invariant manifold of the form (48). More-
over, there exists a constant b7 > 0 such that, for (u, τ ) ∈ Iout,u

κ2,d1
×Tσ ,

∣∣∂u T u(u, τ ) − ∂u T0(u)
∣∣� b7|μ|εη+1.

This theorem is proved in Section 7.2.4.
The final step is to extend the just obtained parameterizations of the form (48) to the whole

boomerang domains Du
κ,d and Ds

κ,d defined in (32) (see also Fig. 2). In particular the whole boomerang
domains contain points up to a distance κε of the singularities ±ia.

Theorem 4.8. Let κ2 and d1 be the constants given in Theorem 4.7, d2 < d1 , κ3 > κ2 big enough and ε0 > 0
small enough. Then, for μ ∈ B(μ0) and ε ∈ (0, ε0), the function T u(u, τ ) obtained in Theorem 4.7 can be
analytically extended to the domain Du

κ3,d2
×Tσ .

Moreover, there exists a real constant b8 > 0 independent of ε and μ, such that for (u, τ ) ∈ Du
κ3,d2

×Tσ ,

∣∣∂u T u(u, τ ) − ∂u T0(u)
∣∣� b8|μ|εη+1

|u2 + a2|	+1
,

where T0 is the unperturbed separatrix given in (57).

The proof of this theorem is given in Section 7.2.5.

Remark 4.9. Let us point out that these domains satisfy Du
κ,d ⊂ Dout,u

ρ,κ and Ds
κ,d ⊂ Dout,s

ρ,κ if ρ is big
enough. Therefore, in the case that p0(u) does not vanish, Theorem 4.4 ensures that the functions
T u,s are already defined in Du

κ,d and Ds
κ,d respectively.

Let us observe that, if ε is small enough, D in,±,s
κ,c ⊂ Ds

κ,d and D in,±,u
κ,c ⊂ Du

κ,d .

After Theorem 4.4 and 4.8 there is no difference between the case p0(u) 
= 0, when the invariant
manifolds can be written as graphs globally, and the general case when p0 can vanish: we have
found boomerang domains which intersect the real line and which reach neighborhoods of size κε of
the singularities where both manifolds can be written as graphs. This will be the starting point in our
strategy to measure the distance between the invariant manifolds.

4.6. The asymptotic first order of ∂u T u,s close to the singularities ±ia

Theorems 4.4 and 4.8 are valid for η � max{0, 	 − 2r}. Therefore, when 	 � 2r the results are true
for η � 0. Notice that if 	 < 2r Theorems 4.4 and 4.8 give a classical perturbative result with respect
to the singular parameter ε, in the sense that the main term of ∂u T u,s is given by the unperturbed
separatrix ∂u T0 in the whole outer domains. This fact is not true anymore in the case 	 − 2r � 0 and
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η = 	 − 2r. Then we will have to look for different approximations of the invariant manifolds close to
the singularities u = ±ia, by using suitable solutions of the so-called inner equations. Consequently,
the case 	 < 2r is easier to deal with, because it is always regular and there is no need of using
inner equations to obtain a better approximation of ∂u T u,s near the singularities ±ia of T0. When
	 − 2r � 0, as we have mentioned in Section 3.4, we include the regular case η > 	 − 2r in the
singular one η = 	 − 2r doing the change of parameter μ̂ = μεη−(	−2r) .

We separate both cases 	 < 2r and 	� 2r in the corresponding sections below.

4.6.1. The asymptotic first order of ∂u T u,s for the case 	 < 2r
In this section we will assume that 	 < 2r and henceforth we are dealing with values of η � 0.
To obtain the main term of ∂u T u,s − ∂u T0 we just need to use classical perturbation theory even

in the inner domains D in,±,∗
κ,c , ∗ = u, s, defined in (36) (see Fig. 5). Let us observe that, if u ∈ D in,±,∗

κ,c ,
∗ = u, s, then O(κε) � |u ∓ ia| �O(εγ ).

The next proposition gives the first order asymptotic terms of ∂u T u,s − ∂u T0 close to u = ia, that
is in D in,+,∗

κ,c , ∗ = u, s. The study close to u = −ia can be done analogously.

Proposition 4.10. Let us assume 	 − 2r < 0 and 0 < γ < min{1, 	+1
r+1 } where γ is the constant involved in

the definition of the inner domains in (36). Let us consider the constant κ3 given by Theorem 4.8 and c1 > 0
and let us define the constant

ν∗ = min
{
ν∗

1 , ν∗
2 ,1 − max{0, 	 − 2r + 1}, r, 	, 	 + 1 − (r + 1)γ

}
> 0,

where

ν∗
1 = min

{
(2r − 	)γ ,1

}
ν∗

2 =
{

	(1 − γ ) if 	 > 0
1 − γ if 	 = 0.

Let us also define the functions

T u
0 (u, τ ) = −μεη

0∫
−∞

H1
(
q0(u + t), p0(u + t), τ + ε−1t

)
dt

T s
0 (u, τ ) = −μεη

0∫
+∞

H1
(
q0(u + t), p0(u + t), τ + ε−1t

)
dt, (63)

where H1 is the function defined in (9) and (10) and (q0(u), p0(u)) is the parameterization of the unperturbed
separatrix given in Hypothesis HP2. Then, there exists ε0 > 0 and a constant b9 > 0 such that for any ε ∈
(0, ε0) and μ ∈ B(μ0) the following bounds are satisfied.

• If (u, τ ) ∈ D in,+,u
κ3,c1 ×Tσ ,∣∣∂u T u(u, τ ) − ∂u T0(u) − ∂uT u

0 (u, τ )
∣∣� b9|μ|εη−	+ν∗

.

• If (u, τ ) ∈ D in,+,s
κ3,c1 ×Tσ ,∣∣∂u T s(u, τ ) − ∂s T0(u) − ∂uT s

0 (u, τ )
∣∣� b9|μ|εη−	+ν∗

.

This proposition is proved in Section 7.1.



I. Baldomá et al. / J. Differential Equations 253 (2012) 3304–3439 3341
4.6.2. The first asymptotic order of ∂u T u,s for the case 	 � 2r
Theorems 4.4 and 4.8 give the existence of parameterizations of the invariant manifolds of the

form (48) in Ds
κ,d2

and Du
κ,d2

for ε small enough and κ big enough. Nevertheless, when η = 	−2r the
parameterizations of the perturbed invariant manifolds are not well approximated by the unperturbed
separatrix when u is at a distance of order O(ε) of the singularities u = ±ia. For this reason, to
obtain the first asymptotic order of the difference between the manifolds, we need to look for better
approximations T u,s in the inner domains defined in (36). We obtain them through a singular limit.
Since we are dealing with the case η � 	 − 2r, the first step is to define a new parameter

μ̂ = μεη−(	−2r). (64)

Then, the Hamiltonian Ĥ reads

Ĥ(q, p, τ ) = p2

2
+ V
(
q + xp(τ )

)− V
(
xp(τ )

)− V ′(xp(τ )
)
q + μ̂ε	−2r Ĥ1(q, p, τ ) (65)

and, from Ĥ , one can define the Hamiltonian H in (46) using again the change (45). On the other
hand, from Theorems 4.4 and 4.8, one can obtain bounds for the parameterizations of the invariant
manifolds in terms of μ̂ and ε. We state them for the unstable manifold. The stable manifold satisfies
analogous bounds.

Corollary 4.11. Let us consider the constants κ3 and d2 defined in Theorem 4.8. Then the function T u obtained
in Theorems 4.4 and 4.8, which is defined for (u, τ ) ∈ Du

κ3,d2
×Tσ , satisfies

∣∣∂u T u(u, τ ) − ∂u T0(u)
∣∣� b8|μ̂|ε	−2r+1

|u2 + a2|	+1
,

where T0 is the unperturbed separatrix given in (57).

We want to study the invariant manifolds close to the singularities u = ±ia, that is, in the inner
domains defined in (36). Since the study of both invariant manifolds close either to u = ia or u = −ia
is analogous, we only study them in the domain D in,+,u

κ,c . Then, we consider the change of variables

z = ε−1(u − ia). (66)

The variable z is called the inner variable, in contraposition to the outer variable u. We note that, by
definition of T0 in (57) and using the expansion around the singularities of p0(u) in (13) and (14),
we have that

∂u T0(εz + ia) = C2+
ε2r z2r

(
1 +O

(
(εz)1/β

))
and, using the results of Corollary 4.11, we have that

∣∣∂u T u,s(εz + ia, τ ) − ∂u T0(εz + ia)
∣∣� K

|μ̂|
ε2r |z|	+1

.

Hence, in order to catch the terms of the same order in ε, we scale the generating function as

ψu,s(z, τ ) = ε2r−1C−2+ T u,s(ia + εz, τ ). (67)
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Then, the Hamilton–Jacobi equation (47) reads

∂τψ + ε2r C−2+ H
(
ia + εz, ε−2r C2+∂zψ,τ

)= 0, (68)

where H is the Hamiltonian function defined in (46). The corresponding Hamiltonian is

H(z, w, τ ) = ε2r C−2+ H
(
ia + εz, ε−2r C2+w, τ

)
. (69)

We study Eq. (68) in the domain Din,+,u
κ,c ×Tσ , where

Din,+,u
κ,c = {z ∈C; ia + εz ∈ D in,+,u

κ,c

}
. (70)

To study Eq. (68), as a first step it is natural to study it in the limit case ε = 0. In the polynomial
case it reads

∂τψ0 + 1

2
z2r(∂zψ0)

2 − 1

2z2r
+ μ̂

z	

∑
(r−1)k+rl=	

Ck+l−2+
(1 − r)k

akl(τ )
(
z2r∂zψ0

)l = 0. (71)

The solutions of this equation were studied in detail in [3], where Eq. (71) was rewritten as

∂τψ0 + 1

2
z2r(∂zψ0)

2 − 1

2z2r
+ μ̂

z	

N∑
l=0

Al(τ )
(
z2r∂zψ0

)l = 0, (72)

where

Al(τ ) =
∑

(r−1)k+rl=	

Ck+l−2+
(1 − r)k

akl(τ ), (73)

and akl are the coefficients of H1 in (9) and C+ is given in HP2. This equation is in fact the Hamilton–
Jacobi equation associated to the non-autonomous Hamiltonian

H0(z, w, τ ) = 1

2
z2r w2 − 1

2z2r
+ μ̂

z	

N∑
l=0

Al(τ )
(
z2r w
)l
, (74)

which satisfies that H →H0 as ε → 0, where H is the Hamiltonian function defined in (69).
In the trigonometric case, an analogous equation to (71) is obtained. There are only two differ-

ences. First, one has to consider the definition of 	 given in (15) associated to this type of systems.
Secondly, in the trigonometric case, the coefficients in front of akl(τ ) are expressed in terms of the
coefficients Ĉ1± , Ĉ2± and C± in (14). Taking into account these facts, one can also define the analogous
functions Al .

The solutions of the Hamilton–Jacobi equation (72) were studied in [3] in the complex domains

D+,u
κ,θ = {z ∈ C; |Im z| > θ Re z + κ

}
D+,s

κ,θ = {z ∈ C; −z ∈ D+,u
κ,θ

}
(75)
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Fig. 9. The domains D+,u
κ,θ and D+,s

κ,θ defined in (75).

Fig. 10. The domain R+
κ,θ defined in (76).

for κ > 0 and θ > 0 (see Fig. 9). Let us observe that, for any c > 0, Din,+,∗
κ,c ⊂ D+,∗

κ,tanβ2
for ∗ = u, s.

Nevertheless, since through the proof we will have to change the slope of the domains D+,∗
κ,θ , we start

with a certain fixed slope θ0 < tan β2 which will be determined a posteriori.
The difference between the stable and unstable manifolds of the inner equation was studied in the

intersection domain (see Fig. 10)

R+
κ,θ = D+,u

κ,θ ∩D+,s
κ,θ ∩ {z ∈C; Im z < 0}. (76)

The next theorem gives the main results obtained in [3] about the solutions of Eq. (72) and their
difference.

Theorem 4.12. Let us consider any fixed θ0 > 0. Then, for μ̂ ∈ B(μ̂0) the following statements are satisfied:

1. There exists κ4 > 0 such that, Eq. (72) has solutions ψ∗
0 :D+,∗

κ4,θ0
×Tσ → C, ∗ = u, s, of the form

ψ
u,s
0 (z, τ ) = − 1

2r−1
+ μ̂ψ

u,s
0 (z, τ ) + K u,s, K u,s ∈C (77)
(2r − 1)z
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where ψ
u,s
0 are analytic functions in all their variables. Moreover, the derivatives of ψ

u,s
0 are uniquely

determined by the condition

sup
(z,τ )∈D+,∗

κ4,θ0
×Tσ

∣∣z	+1∂zψ
∗
0(z, τ )

∣∣< ∞

for ∗ = u, s. In fact, one can choose ψ
u,s
0 such that

sup
(z,τ )∈D+,∗

κ4,θ0
×Tσ

∣∣z	ψ∗
0(z, τ )

∣∣< ∞

for ∗ = u, s.
2. There exist κ5 > κ4 , analytic functions {χ [k](μ̂)}k∈Z− defined on B(μ̂0) and g :R+

κ5,2θ0
×Tσ →C such

that two solutions ψ
u,s
0 of Eq. (72) of the form given in (77) with K u = K s, satisfy

(
ψu

0 − ψ s
0

)
(z, τ ) = μ̂

∑
k<0

χ [k](μ̂)eik(z−τ+μ̂g(z,τ )). (78)

Moreover, the function g satisfies that

sup
(z,τ )∈R+

κ5,2θ0
×Tσ

∣∣z	−2r g(z, τ )
∣∣< ∞ if 	 > 2r,

sup
(z,τ )∈R+

κ5,2θ0
×Tσ

∣∣(ln |z|)−1
g(z, τ )

∣∣ < ∞ if 	 = 2r.

The proof of Theorem 4.12 is given in [3].

Remark 4.13. Following the proofs of [3], it can be easily seen that the analytic functions
{χ [k](μ̂)}k∈Z− are entire.

For the case 	 − 2r = 0 we will need better knowledge of the function g given by Theorem 4.12.
The next proposition gives its first asymptotic terms. First, we define certain functions which will be
used in the statement of the next proposition. Let us consider the functions A j defined in (73), then
we define

Q j(τ ) =
N∑

k= j

(
k
j

)
Ak(τ ), (79)

and functions F j such that

∂τ F j = Q j and 〈F j〉 = 0, (80)

which are periodic since 〈Q j〉 = 0.

Remark 4.14. The functions Q j(τ ) can be also defined intrinsically either Ĥ1
1 is a polynomial or a

trigonometric polynomial, as
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Q j(τ ) = 1

j!C j−2
+ lim

u→ia
(u − ia)	−r j∂

j
p Ĥ1

1

(
q0(u), p0(u), τ

)
,

where Ĥ1
1 is the Hamiltonian defined in (41) and C+ is given in (13) and (14).

Proposition 4.15. Let us consider the constant

b = 2r〈Q 0 F1 + 2F0 Q 2〉, (81)

where Q j and F j are the functions defined in (79) and (80) respectively. Then, when 	 − 2r = 0, the function
g obtained in Theorem 4.12, is of the form

g(z, τ ) = −F1(τ ) − μ̂b ln z + g(z, τ )

and g satisfies

sup
(z,τ )∈R+

κ5,2θ0
×Tσ

∣∣zg(z, τ )
∣∣< ∞.

To have a better knowledge of the parameterizations of the invariant manifolds in the inner do-
mains Din,+,∗

κ,c , ∗ = u, s in (70), we need to compare the parameterizations ψu,s , which are solutions
of (68) with ψ

u,s
0 which are solutions of (71) and have been given in Theorem 4.12.

Since we have to use the functions and results obtained in Theorem 4.12, we need that Din,+,u
κ,c ⊂

D+,u
κ,2θ0

. To this end, we impose

θ0 = tanβ2

2
.

We state the next theorem for the unstable invariant manifold. The stable manifold satisfies anal-
ogous properties.

Theorem 4.16. Let γ ∈ (0,1), the constants κ3 and κ5 defined in Theorems 4.8 and 4.12, c1 > 0 and ε0 > 0
small enough and κ6 > max{κ3, κ5} big enough, which might depend on the previous constants. Then, for
ε ∈ (0, ε0) and μ̂ ∈ B(μ̂0), there exists a constant b10 > 0 such that for (z, τ ) ∈Din,+,u

κ6,c1 ×Tσ ,

∣∣∂zψ
u(z, τ ) − ∂zψ

u
0 (z, τ )

∣∣� b10ε
1
β

|z|2r− 1
β

,

where γ enters in the definition of Din,+,u
κ6,c1 , r = α/β has been defined in Hypothesis HP2, ψu

0 is given in
Theorem 4.12 and ψu is the scaling of the generating function T u given in (67).

The proof of this theorem is given in Section 8.

4.7. Study of the difference between the invariant manifolds

Once we have obtained parameterizations of the invariant manifolds of the form (48) in the do-
mains Ds

κ3,d2
and Du

κ3,d2
and studied their first order approximations close to the singularities, the

next step is to study their difference.
We devote Section 4.7.1 to study the (easier) case 	 − 2r < 0 and then in Section 4.7.2 we consider

the case 	 − 2r � 0.
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4.7.1. Study of the difference between the invariant manifolds for the case 	 − 2r < 0
We are going to proceed to study the difference ∂u T u(u, τ ) − ∂u T s(u, τ ). Recall that in the case

	 − 2r < 0, Hypothesis HP5 becomes η � 0. Therefore our study includes the non-perturbative case
η = 0.

To study the difference between the manifolds, we define

�(u, τ ) = T u(u, τ ) − T s(u, τ ) (82)

in the domain Rκ,d = Ds
κ,d ∩ Du

κ,d which is defined in (33).
We recall that p0(u) 
= 0 if u ∈ Rκ,d and hence we can use the Hamilton–Jacobi equation in this

domain.
Subtracting Eq. (47) for both T u and T s , one can see that � satisfies the partial differential equa-

tion

L̃εξ = 0, (83)

where

L̃ε = ε−1∂τ + (1 + G(u, τ )
)
∂u (84)

with

G(u, τ ) = 1

2p2
0(u)

(
∂u T u

1 (u, τ ) + ∂u T s
1(u, τ )

)

+ μεη

p0(u)

1∫
0

∂p Ĥ1

(
q0(u), p0(u) + s∂u T u

1 (u, τ ) + (1 − s)∂u T s
1(u, τ )

p0(u)
, τ

)
ds, (85)

where Ĥ1 is the function defined in (40) and T u,s
1 (u, τ ) = T u,s(u, τ ) − T0(u) with ∂u T0(u) = p2

0(u)

and T u,s are given in Theorems 4.4 and 4.8.
Following [3], to obtain the asymptotic expression of the difference �, we take advantage from

the fact that it is a solution of the homogeneous linear partial differential equation (83). In [3] it is
seen that if (83) has a solution ξ0 such that (ξ0(u, τ ), τ ) is injective in Rκ,d × Tσ , then any solution
of Eq. (83) defined in Rκ,d ×Tσ can be written as ξ = Υ ◦ ξ0 for some function Υ .

Following this approach, we begin by looking for a solution of the form

ξ0(u, τ ) = ε−1u − τ + C(u, τ ) (86)

being C a function 2π -periodic in τ , such that (ξ0(u, τ ), τ ) is injective in Rκ,d ×Tσ .
From now on the parameter κ will be play an important role in our computations. The next

results will deal with big values of κ = κ(ε) such that κε < a. In particular, in Theorem 4.19 we will
use κ =O(log(1/ε)).

Theorem 4.17. Let d2 > 0 and κ3 > 0 the constants defined in Theorem 4.8, d3 < d2 , ε0 > 0 small enough
and κ7 > κ3 big enough, which might depend on the previous constants. Then, for ε ∈ (0, ε0), μ ∈ B(μ0) and
any κ � κ7 such that εκ < a, there exists a real-analytic function C : Rκ,d3 × Tσ → C such that ξ0(u, τ ) =
ε−1u − τ + C(u, τ ) is a solution of (83) and(

ξ0(u, τ ), τ
)= (ε−1u − τ + C(u, τ ), τ

)
is injective.
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Moreover, there exists a constant b11 > 0 independent of μ, ε and κ , such that for (u, τ ) ∈ Rκ,d3 ×Tσ ,

∣∣C(u, τ )
∣∣� b11|μ|εη∣∣∂uC(u, τ )
∣∣� b11κ

−1|μ|εη−1.

To study the first order of the difference between the invariant manifolds, we need a better knowl-
edge of the behavior of the function C in the inner domains defined in (36). The next proposition gives
the first order asymptotic terms of C close to u = ia, that is in D in,+,u

κ,c ∩ D in,+,s
κ,c . The study close to

u = −ia can be done analogously.

Proposition 4.18. Let κ7 be given by Theorem 4.17 and c1 > 0. Then, for any ε0 > 0 and κ > κ7 such that
κε < a, there exist a constant C(μ,ε) defined for (μ,ε) ∈ B(μ0) × (0, ε0) and depending real-analytically
in μ and a constant b12 > 0 such that |C(μ,ε)| � b12|μ|εη and, if (u, τ ) ∈ (D in,+,u

κ,c1 ∩ D in,+,s
κ,c1 ) ×Tσ ,

∣∣C(u, τ ) − C(μ,ε)
∣∣� b12|μ|εη

κ
.

Moreover, in the case η = 0, there exists a constant C(μ) such that C(μ,ε) = C(μ)+O(εν) for certain ν > 0.

The proofs of Theorem 4.17 and Proposition 4.18 are done in Section 9.2.
As we have explained, since � = T u − T s is a solution of the same homogeneous partial differential

equation as ξ0 given in Theorem 4.17, there exists a function Υ such that � = Υ ◦ ξ0, which gives

�(u, τ ) = Υ
(
ε−1u − τ + C(u, τ )

)
. (87)

Since � is 2π -periodic in τ , we notice that the function Υ is 2π -periodic in its variable. Therefore,
considering the Fourier series of Υ we obtain

�(u, τ ) =
∑
k∈Z

Υ [k]eik(ε−1u−τ+C(u,τ )). (88)

Now we are going to find the first asymptotic term of �. Let us first observe that the Melnikov
potential defined in (17) can be defined through the functions T u,s

0 , given in (63), as

T u
0 (u, τ ) − T s

0 (u, τ ) = −μεηL(u, τ ). (89)

Moreover, by (18),

L(u, τ ) =
∑
k∈Z

M[k]eik(ε−1u−τ ). (90)

In [19] (for the hyperbolic case) and [4] (for the parabolic case), it was seen that for η > 	, the
function L gives the leading term of the difference between manifolds. Nevertheless, for the general
case η � 0, one has to modify slightly this function to obtain the correct first order. Let us define

�0(u, τ ) =
∑
k∈Z

Υ
[k]

0 eik(ε−1u−τ+C(u,τ )), (91)

where
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Υ
[k]

0 = −μεηM[k]e−ikC(μ,ε) if k < 0

Υ
[0]

0 = 0

Υ
[k]

0 = −μεηM[k]e−ikC(μ,ε) if k > 0, (92)

where C(μ,ε) is the constant obtained in Proposition 4.18 and C(μ,ε) is its complex conjugate. Let
us point out that, by Proposition 4.18, these coefficients satisfy

Υ
[k]

0 = −μεηM[k](1 +O
(|k|μεη

))
.

Next theorem shows that this function �0 gives the first asymptotic order of (82). From now on, in
this subsection, we consider real values of τ ∈ T = Tσ ∩ R. In this setting it can be easily seen that
the function �0 is real-analytic in u.

Theorem 4.19. Let us consider the mean value of Υ , Υ [0] , defined in (88), s < ν∗ where ν∗ is the constant
defined in Proposition 4.10 and ε0 > 0 small enough. Then, there exists a constant b13 > 0 such that for
ε ∈ (0, ε0) and μ ∈ B(μ0) ∩R and (u, τ ) ∈ (Rs ln(1/ε),d3 ∩R) ×T, the following statements are satisfied:

∣∣�(u, τ ) − Υ [0] − �0(u, τ )
∣∣� b13|μ|εη+1−	

|lnε| e− a
ε

∣∣∂u�(u, τ ) − ∂u�0(u, τ )
∣∣� b13|μ|εη−	

|lnε| e− a
ε

∣∣∂2
u �(u, τ ) − ∂2

u �0(u, τ )
∣∣� b13|μ|εη−1−	

|lnε| e− a
ε .

Let us observe that, using Lemma 2.3, the definition of the coefficients Υ
[k]

0 in (92) and Propo-
sition 4.18, one can deduce a simpler leading term of � in (82). For this purpose let us define the
function

�00(u, τ ) = 2μεη

ε	−1
e− a

ε Re
(

f0eiC(μ,ε)e−i( u
ε −τ+C(u,τ ))

)
, (93)

where C(μ,ε) is the constant given in Proposition 4.18 and C is the function given by Theorem 4.17.

Corollary 4.20. There exists a constant b14 > 0 such that for ε ∈ (0, ε0), μ ∈ B(μ0) ∩ R and (u, τ ) ∈
(Rs ln(1/ε),d3 ∩R) ×T, the following statements are satisfied:

∣∣�(u, τ ) − Υ [0] − �00(u, τ )
∣∣� b14|μ|εη+1−	

|lnε| e− a
ε

∣∣∂u�(u, τ ) − ∂u�00(u, τ )
∣∣� b14|μ|εη−	

|lnε| e− a
ε

∣∣∂2
u �(u, τ ) − ∂2

u �00(u, τ )
∣∣� b14|μ|εη−1−	

|lnε| e− a
ε .

We devote the rest of this section to prove Theorem 4.19, from which, using also Lemma 2.3,
Corollary 4.20 is a direct consequence.



I. Baldomá et al. / J. Differential Equations 253 (2012) 3304–3439 3349
Proof of Theorem 4.19. For the first part of the proof we consider complex values of μ ∈ B(μ0) and
later we will restrict to μ ∈ B(μ0) ∩R. We define

Υ̃ (ζ ) =
∑
k∈Z

Υ̃ [k]eikζ ,

where Υ̃ [k] = Υ [k] − Υ
[k]

0 . By (88) and (91), the function �̃(u, τ ) = �(u, τ ) − �0(u, τ ) can be written
as

�̃(u, τ ) = Υ̃
(
ε−1u − τ + C(u, τ )

)=∑
k∈Z

Υ̃ [k]eik(ε−1u−τ+C(u,τ )). (94)

Therefore, to obtain the bounds of Theorem 4.19, it is crucial to bound |Υ̃ [k]|.
The first step is to obtain a bound of �̃(u, τ ) for (u, τ ) ∈ Rs ln 1

ε ,d3
× T. First we bound this term

for (u, τ ) ∈ (Rs ln 1
ε ,d3

∩ D in,+,s
s ln 1

ε ,c1
∩ D in,+,u

s ln 1
ε ,c1

) × T. Recalling the definitions in (82), (63), (89), (90), (91)

and (92), we split �̃ as

�̃(u, τ ) = �̃u
1(u, τ ) − �̃s

1(u, τ ) + �̃2(u, τ ) + �̃3(u, τ )

with

�̃
u,s
1 (u, τ ) = T u,s(u, τ ) − T0(u) − T u,s

0 (u, τ ) (95)

�̃2(u, τ ) = −μεη
∑
k<0

M[k]eik(ε−1u−τ )
(
1 − eik(C(u,τ )−C(μ,ε))

)
(96)

�̃3(u, τ ) = −μεη
∑
k>0

M[k]eik(ε−1u−τ )
(
1 − eik(C(u,τ )−C(μ,ε))

)
. (97)

Applying Proposition 4.10, one can see that for (u, τ ) ∈ (Rs ln 1
ε ,d3

∩ D in,+,s
s ln 1

ε ,c1
∩ D in,+,u

s ln 1
ε ,c1

) ×T,

∣∣∂u�̃
u,s
1 (u, τ )

∣∣� K |μ|εη−	+ν∗
,

where ν∗ > 0 is a constant defined in that proposition.
To bound �̃2, it is enough to apply Lemma 2.3, Theorem 4.17 and Proposition 4.18 to obtain that

for (u, τ ) ∈ (Rs ln 1
ε ,d3

∩ D in,+,s
s ln 1

ε ,c1
∩ D in,+,u

s ln 1
ε ,c1

) ×T,

∣∣∂u�̃2(u, τ )
∣∣� K |μ|2ε2η−	+s

|lnε| .

Finally, to bound ∂u�̃3, it is enough to take into account again Lemma 2.3, Theorem 4.17 and Propo-
sition 4.18. Then, one can see that for (u, τ ) ∈ (Rs ln 1

ε ,d3
∩ D in,+,s

s ln 1
ε ,c1

∩ D in,+,u
s ln 1

ε ,c1
) ×T,

∣∣∂u�̃3(u, τ )
∣∣� K |μ|2ε2η−	−se− 2a

ε .
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Therefore, from the bounds of �̃
u,s
1 , �̃2 and �̃3 and recalling that by hypothesis s < ν∗ , we have that

for (u, τ ) ∈ (Rs ln 1
ε ,d3

∩ D in,+,s
s ln 1

ε ,c1
∩ D in,+,u

s ln 1
ε ,c1

) ×T,

∣∣∂u�̃(u, τ )
∣∣� K |μ|εη−	+s

|lnε| . (98)

Reasoning analogously, one can see that for

(u, τ ) ∈ (Rs ln 1
ε ,d3

∩ D in,−,s
s ln 1

ε ,c1
∩ D in,−,u

s ln 1
ε ,c1

)×T,

the function ∂u�̃ satisfies

∣∣∂u�̃(u, τ )
∣∣� K |μ|εη−	+s

|lnε| . (99)

Finally, for (u, τ ) ∈ (Rs ln 1
ε ,d3

∩ Dout,s
c1εγ ,ρ4

∩ Dout,u
c1εγ ,ρ4

) × T, we decompose �̃(u, τ ) = (T u(u, τ ) −
T0(u)) − (T s(u, τ ) − T0(u)) − �0(u, τ ). Using Theorems 4.4, 4.8, and 4.17 and also Lemma 2.3, one
can easily see that

∣∣∂u�(u, τ )
∣∣� K |μ|εη+1−γ (	+1)

provided |u − ia| �O(εγ ). This bound is smaller than (98) and (99) due to the fact that (	 + 1)(1 −
γ ) > ν∗ > s (see Proposition 4.10 for the definition of ν∗).

Taking into account (98) and (99), one can conclude that for μ ∈ B(μ0) ∩R,

∣∣∂u�̃(u, τ )
∣∣� K |μ|εη−	+s

|lnε| . (100)

The second step of the proof is to consider the change of variables (w, τ ) = (u + εC(u, τ ), τ ). By
Theorem 4.17, one can easily see that it is a diffeomorphism from Rs ln(1/ε),d3 × T onto its image
R̃ ×T. Denoting by Υ̃ ′ the derivative of the function Υ̃ (see (94)), we define the function

Θ(w, τ ) = Υ̃ ′(ε−1 w − τ
)
,

on R̃ ×T which, by construction, satisfies

Θ
(
u + εC(u, τ ), τ

)= (1

ε
+ ∂uC(u, τ )

)−1

∂u�̃(u, τ ). (101)

Moreover, as Θ(w, τ ) is periodic in τ , it can be also written as

Θ(w, τ ) =
∑
k∈Z

Θ [k](w)eikτ .

Then, for any w ∈ R̃ , the Fourier coefficients satisfy

ikΥ̃ [k] = Θ [−k](w)e−ik w
ε .
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Now, taking advantage of the fact that the coefficients Υ̃ [k] do not depend on w , we will obtain sharp
bounds for the coefficients Υ̃ [k] with k < 0. Since we are dealing with real-analytic functions, the
coefficients Υ̃ [k] with k > 0 will satisfy the same bounds. Let us consider w = w∗ = u∗ + εC(u∗,0)

with u∗ = i(a − sε ln(1/ε)). Then,

∣∣Υ̃ [k]∣∣� |k|−1 sup
w∈R̃

∣∣Θ [−k](w)
∣∣e− |k|

ε (a−sε ln 1
ε )−|k| Im(C(u∗,0))

� |k|−1 sup
(w,τ )∈R̃×T

∣∣Θ(w, τ )
∣∣e− |k|

ε (a−sε ln 1
ε )−|k| Im(C(u∗,0)).

Then, taking into account (101) and Theorem 4.17, we have that for k < 0,

∣∣Υ̃ [k]∣∣� Kε sup
(u,τ )∈Rs ln(1/ε),d3 ×T

∣∣∂u�̃(u, τ )
∣∣e− |k|

ε (a−sε ln 1
ε )−|k| Im(C(u∗,0)).

Therefore, to obtain the bounds for Υ̃ [k] with k < 0, it only remains to use bounds (100) and the
properties of C given in Theorem 4.17 and Proposition 4.18. Then, we obtain that for k < 0,

∣∣Υ̃ [k]∣∣� K |μ|εηe− a
ε

|lnε|ε	−1
e− |k|−1

ε (a+εs logε+b11|μ|εη+1).

Finally, the bounds of Υ̃ [k] lead easily to the desired bounds of �̃(u, τ ) for (u, τ ) ∈
(Rs ln(1/ε),d3 ∩R) ×T. �
4.7.2. Study of the difference between the invariant manifolds for the case 	 − 2r � 0

Recall that when 	 − 2r � 0, Hypothesis HP5 becomes η � 	 − 2r. For this reason, as we did in
Section 4.6.2, we will denote μ̂ = μεη−	+2r . Let us emphasize, that the regular case η > 	− 2r in this
new setting corresponds to μ̂ → 0 as ε → 0.

As we have done for the case 	 − 2r < 0 in Section 4.7.1, we consider the function �(u, τ ) =
T u(u, τ ) − T s(u, τ ) defined in (82) in the domain Rκ,d = Ds

κ,d ∩ Du
κ,d defined in (33) (see also Fig. 3).

Now � satisfies the partial differential equation

L̃εξ = 0, (102)

where L̃ε is the operator defined in (84) and G now is

G(u, τ ) = 1

2p2
0(u)

(
∂u T u

1 (u, τ ) + ∂u T s
1(u, τ )

)

+ μ̂ε	−2r

p0(u)

1∫
0

∂p Ĥ1

(
q0(u), p0(u) + s∂u T u

1 (u, τ ) + (1 − s)∂u T s
1(u, τ )

p0(u)
, τ

)
ds, (103)

where Ĥ1 is the function defined in (40) and T u,s(u, τ ) = T0(u) + T u,s
1 (u, τ ) with ∂u T0(u) = p2

0(u)

and T u,s
1 are given in Theorems 4.4 and 4.8. Let us point out that the only difference between the

function G defined in (103) from the one defined in (85) is the dependence on the parameters. The
first one depends on μ and ε whereas the second one depends on μ̂, which has been defined in
terms of μ and ε in (64).
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As we have done in Section 4.7.1, to obtain the asymptotic expression of the difference �, we look
for a solution ξ0 of (83) of the form

ξ0(u, τ ) = ε−1u − τ + C(u, τ )

with C a function 2π -periodic in τ , such that (ξ0(u, τ ), τ ) is injective in Rκ,d × Tσ . Then, we will
write � as ξ = Υ ◦ ξ0 for some function Υ .

Theorem 4.21. Let us consider the constants d2 > 0 defined in Theorem 4.8 and κ6 > 0 in Theorem 4.16,
d3 < d2 and ε0 > 0 small enough and κ8 > κ6 big enough, which might depend on the previous constants.
Then, for ε ∈ (0, ε0), μ ∈ B(μ0) and any κ � κ8 such that εκ < a, there exists a real-analytic function
C(u, τ ) : Rκ,d3 ×Tσ →C such that ξ0(u, τ ) = ε−1u − τ + C(u, τ ) is solution of (102) and(

ξ0(u, τ ), τ
)= (ε−1u − τ + C(u, τ ), τ

)
is injective.

Moreover, there exists a constant b15 > 0 independent of μ, ε and κ , such that for (u, τ ) ∈ Rκ,d3 ×Tσ ,

• If 	 − 2r > 0,

∣∣C(u, τ )
∣∣� b15|μ̂|ε	−2r

|u2 + a2|	−2r∣∣∂uC(u, τ )
∣∣� b15|μ̂|ε	−2r−1

κ |u2 + a2|	−2r
.

• If 	 − 2r = 0, ∣∣C(u, τ )
∣∣� b15|μ̂| ln

∣∣u2 + a2
∣∣

∣∣∂uC(u, τ )
∣∣� b15|μ̂|

|u2 + a2| .

To study the first order of the difference between the invariant manifolds when 	−2r = 0, we need
a better knowledge of the behavior of the function C in the inner domains (36). The next proposition
gives the first order asymptotic terms of C close to u = ia. The study close to u = −ia can be done
analogously.

Proposition 4.22. Assume 	 = 2r. Let c1 be a constant as in Theorem 4.16. We consider c2 > c1 and

β

β + 1
< γ < 1, (104)

where r = α/β has been defined in Hypothesis HP2.
Then, for any ε0 > 0, there exist a constant C(μ̂, ε) defined for (μ̂, ε) ∈ B(μ̂0) × (0, ε0) depending real-

analytically in μ̂ and a constant b16 > 0 such that |C(μ̂, ε)| � b16|μ̂| and, if (u, τ ) ∈ (D in,+,u
κ8,c2 ∩ D in,+,s

κ8,c2 )×Tσ ,

∣∣C(u, τ ) − C(μ̂, ε) + μF1(τ ) + μ̂2b ln(u − ia)
∣∣� b16|μ̂|ε

|u − ia| .

We recall that γ enters in the definitions of D in,+,u
κ8,c2 and D in,+,s

κ8,c2 , C is the function given in Theorem 4.21 and
the function F1 and the constant b have been defined in (80) and (81) respectively.
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Therefore, if we consider the function g given in Theorem 4.12, by Proposition 4.15, there exists a constant
b17 > 0 such that, if (u, τ ) ∈ (D in,+,u

κ8,c2 ∩ D in,+,s
κ8,c2 ) ×Tσ ,

∣∣C(u, τ ) − C(μ̂, ε) + μ̂2b lnε − μ̂g
(
ε−1(u − ia), τ

)∣∣� b17|μ̂|ε
|u − ia| .

Moreover, there exists a constant C(μ̂) such that C(μ̂, ε) satisfies C(μ̂, ε) = C(μ̂) + O(εν) for a certain
ν > 0.

The proofs of Theorem 4.21 and Proposition 4.22 are done in Section 9.3.
As we have explained in Section 4.7.1, since � is a solution of the same homogeneous linear

partial differential equation as ξ0 given by Theorem 4.21, there exists a 2π -periodic function Υ such
that � = Υ ◦ ξ0, which gives

�(u, τ ) = Υ
(
ε−1u − τ + C(u, τ )

)
. (105)

and considering its Fourier series we have

�(u, τ ) =
∑
k∈Z

Υ [k]eik(ε−1u−τ+C(u,τ )). (106)

Now we are going to find the first asymptotic term of � which will be strongly related with
(ψu

0 − ψ s
0)(ε

−1(u − ia), τ ), being ψ
u,s
0 the solutions of the inner equation given in Theorem 4.12. We

introduce the auxiliary function

�+
0 (u, τ ) =

∑
k<0

Υ
[k]

0 eik(ε−1u−τ+C(u,τ )) (107)

with

Υ
[k]

0 = C2+μ̂

ε2r−1
χ [k](μ̂)e− |k|a

ε if 	 − 2r > 0 (108)

Υ
[k]

0 = C2+μ̂

ε2r−1
χ [k](μ̂)e− |k|a

ε −i|k|(−C(μ̂,ε)+μ̂2b lnε) if 	 − 2r = 0, (109)

where {χk(μ̂)}k<0 are the coefficients given in Theorem 4.12 and C(μ̂, ε) and b are the constants ob-
tained in Propositions 4.22 and 4.15 respectively. The scaling C2+/ε2r−1 comes from the inner change
in (67).

We also introduce

�−
0 (u, τ ) =

∑
k>0

Υ
[k]

0 eik(ε−1u−τ+C(u,τ ))

with

Υ
[k]

0 = C 2+μ̂

ε2r−1
χ [−k](μ̂)e− |k|a

ε if 	 − 2r > 0 (110)

Υ
[k]

0 = C 2+μ̂
2r−1

χ [−k](μ̂)e− |k|a
ε +i|k|(−C(μ̂,ε)+μ̂2b lnε) if 	 − 2r = 0. (111)
ε



3354 I. Baldomá et al. / J. Differential Equations 253 (2012) 3304–3439
The function �−
0 (u, τ ) corresponds to the difference of the solutions of the inner equation close to

u = −ia if μ̂, τ ∈ R. We note that, taking τ , μ̂ ∈ R, �−
0 is nothing but the complex conjugate of �+

0 .
In fact, as we know that � is a real-analytic function in the u variable for real values of μ̂, τ , we
can define �−

0 as the function that satisfies that �0 = �+
0 + �−

0 is also a real-analytic function in the
same sense as explained before for �.

We will see that the first order of � is given by

�0(u, τ ) = �+
0 (u, τ ) + �−

0 (u, τ ). (112)

Let us point out that it can be written as

�0(u, τ ) =
∑

k∈Z\{0}
Υ

[k]
0 eik(ε−1u−τ+C(u,τ )), (113)

where Υ
[k]

0 are defined either by (108) and (110) in the case 	 − 2r > 0 or by (109) and (111) in the

case 	 − 2r = 0. For convenience we introduce Υ
[0]

0 = 0. From now on, in this subsection, we consider
real values of τ ∈ Tσ ∩R.

Theorem 4.23. Let us consider the mean value of Υ , Υ [0] , defined in (106), s < 1/β , where r = α/β is defined
in Hypothesis HP2, and ε0 > 0 small enough. Then, there exists a constant b18 > 0 such that for ε ∈ (0, ε0)

and μ̂ ∈ B(μ̂0) ∩R and (u, τ ) ∈ (Rs ln(1/ε),d3 ∩R) ×T, the following statements are satisfied.

• If 	 − 2r > 0,

∣∣�(u, τ ) − Υ [0] − �0(u, τ )
∣∣� b18|μ̂|

ε2r−1|lnε|	−2r
e− a

ε

∣∣∂u�(u, τ ) − ∂u�0(u, τ )
∣∣� b18|μ̂|

ε2r |lnε|	−2r
e− a

ε

∣∣∂2
u �(u, τ ) − ∂2

u �0(u, τ )
∣∣� b18|μ̂|

ε2r+1|lnε|	−2r
e− a

ε .

• If 	 − 2r = 0,

∣∣�(u, τ ) − Υ [0] − �0(u, τ )
∣∣� b18|μ̂|

ε2r−1|lnε|e− a
ε +μ̂2 Im b lnε

∣∣∂u�(u, τ ) − ∂u�0(u, τ )
∣∣� b18|μ̂|

ε2r |lnε|e− a
ε +μ̂2 Im b lnε

∣∣∂2
u �(u, τ ) − ∂2

u �0(u, τ )
∣∣� b18|μ̂|

ε2r+1|lnε|e− a
ε +μ̂2 Im b lnε.

We observe that ∂u�0 gives the correct asymptotic prediction of ∂u� if Υ
[−1]

0 
= 0. In fact, we only
need this coefficient to give a simpler leading term of the asymptotic formula. For this purpose let us
define the function

f (μ̂) = C2+χ [−1](μ̂), (114)

where C+ is the constant defined in (13) or (14) and χ [−1](μ̂) is the constant given in Theorem 4.12.
Let us point out that the zeros of f (μ̂) correspond to the zeros of χ [−1](μ̂). We define
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�00(u, τ ) = 2μ̂

ε2r−1
e− a

ε Re
(

f (μ̂)e−i( u
ε −τ+C(u,τ ))

)
if 	 − 2r > 0 (115)

�00(u, τ ) = 2μ̂

ε2r−1
e− a

ε Re
(

f (μ̂)e−i(μ̂2b lnε−C(μ̂,ε))e−i( u
ε −τ+C(u,τ ))

)
if 	 − 2r = 0, (116)

where b is the constant defined in (81), C(μ̂, ε) the constant given in Proposition 4.22 and C the
function given by Theorem 4.21.

Corollary 4.24. There exists a constant b19 > 0 such that for ε ∈ (0, ε0), μ̂ ∈ B(μ̂0) ∩ R and (u, τ ) ∈
(Rs ln(1/ε),d3 ∩R) ×T, the following statements are satisfied.

• If 	 − 2r > 0,

∣∣�(u, τ ) − Υ [0] − �00(u, τ )
∣∣� b19|μ̂|

ε2r−1|lnε|	−2r
e− a

ε

∣∣∂u�(u, τ ) − ∂u�00(u, τ )
∣∣� b19|μ̂|

ε2r |lnε|	−2r
e− a

ε

∣∣∂2
u �(u, τ ) − ∂2

u �00(u, τ )
∣∣� b19|μ̂|

ε2r+1|lnε|	−2r
e− a

ε .

• If 	 − 2r = 0,

∣∣�(u, τ ) − Υ [0] − �00(u, τ )
∣∣� b19|μ̂|

ε2r−1|lnε|e− a
ε +μ̂2 Im b lnε

∣∣∂u�(u, τ ) − ∂u�00(u, τ )
∣∣� b19|μ̂|

ε2r |lnε|e− a
ε +μ̂2 Im b lnε

∣∣∂2
u �(u, τ ) − ∂2

u �00(u, τ )
∣∣� b19|μ̂|

ε2r+1|lnε|e− a
ε +μ̂2 Im b lnε.

We devote the rest of this section to prove Theorem 4.23, from which Corollary 4.24 is a direct
consequence.

Proof of Theorem 4.23. For the first part of the proof we consider complex values of μ̂ ∈ B(μ̂0) and
later we will restrict to μ̂ ∈ B(μ̂0) ∩R. By (106) and (113), the function �̃(u, τ ) = �(u, τ ) − �0(u, τ )

can be written as

�̃(u, τ ) = Υ̃
(
ε−1u − τ + C(u, τ )

)=∑
k∈Z

Υ̃ [k]eik(ε−1u−τ+C(u,τ )), (117)

where Υ̃ [k] = Υ [k] − Υ
[k]

0 . Therefore, to obtain the bounds of Theorem 4.23, it is crucial to bound
|Υ̃ [k]|.

The first step is to obtain a bound of �̃(u, τ ) for (u, τ ) ∈ Rs ln 1
ε ,d3

× T. First we bound this term

for (u, τ ) ∈ (Rs ln 1
ε ,d3

∩ D in,+,s
s ln 1

ε ,c2
∩ D in,+,u

s ln 1
ε ,c2

)×T. Recalling the definitions of (82), (112), (107) and (78),

we split �̃ as

�̃(u, τ ) = �̃u
1(u, τ ) − �̃s

1(u, τ ) + �̃2(u, τ ) + �̃3(u, τ )

with
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�̃
u,s
1 (u, τ ) = T u,s(u, τ ) − C2+

ε2r−1
ψ

u,s
0

(
u − ia

ε
, τ

)
= C2+

ε2r−1

(
ψu,s
(

u − ia

ε
, τ

)
− ψ

u,s
0

(
u − ia

ε
, τ

))
(118)

�̃2(u, τ ) = C2+
ε2r−1

(
ψu

0

(
u − ia

ε
, τ

)
− ψ s

0

(
u − ia

ε
, τ

))
− �+

0 (u, τ ) (119)

�̃3(u, τ ) = −�−
0 (u, τ ). (120)

Applying Theorem 4.16, one can see that for (u, τ ) ∈ (Rs ln 1
ε ,d3

∩ D in,+,s
s ln 1

ε ,c2
∩ D in,+,u

s ln 1
ε ,c2

) ×T,

∣∣∂u�̃
u,s
1 (u, τ )

∣∣� Kε
1
β

−2r

|lnε|2r− 1
β

.

To bound �̃2, one has to proceed in different ways, depending on whether 	 − 2r > 0 or 	 − 2r = 0.
For the first case, let us point out that,

�̃2(u, τ ) =
∑
k<0

Υ
[k]

0

(
eik(ε−1u−τ+μ̂g(ε−1(u−ia),τ )) − eik(ε−1u−τ+C(u,τ ))

)
.

Then, applying Theorems 4.12 and 4.21 and the mean value theorem one obtains that for (u, τ ) ∈
(Rs ln 1

ε ,d3
∩ D in,+,s

s ln 1
ε ,c2

∩ D in,+,u
s ln 1

ε ,c2
) ×T,

∣∣∂u�̃2(u, τ )
∣∣� K |μ̂|2εs−2r

|lnε|	−2r
.

For the case 	 − 2r = 0, taking into account the definition of Υ
[k]

0 in (109),

�̃2(u, τ ) = C2+μ̂

ε2r−1

∑
k<0

χ [k](μ̂)

× (eik(ε−1(u−ia)−τ+μ̂g(ε−1(u−ia),τ )) − eik(ε−1(u−ia)−τ+C(u,τ )−C(μ̂,ε)+μ̂2b lnε)
)
.

By Theorems 4.12 and 4.21 and Proposition 4.22 for (u, τ ) ∈ (Rs ln 1
ε ,d3

∩ D in,+,s
s ln 1

ε ,c2
∩ D in,+,u

s ln 1
ε ,c2

) × T, we

have that

∣∣∂u�̃2(u, τ )
∣∣� K |μ̂|2εs−2r

|lnε|1+Im(μ̂2b)
.

Finally, to bound ∂u�̃3, it is enough to take into account (78). Then, one can see that for (u, τ ) ∈
(Rs ln 1

ε ,d3
∩ D in,+,s

s ln 1
ε ,c2

∩ D in,+,u
s ln 1

ε ,c2
) ×T,

∣∣∂u�̃3(u, τ )
∣∣� K |μ̂|ε−s−2re− 2a

ε provided 	 − 2r > 0∣∣∂u�̃3(u, τ )
∣∣� K |μ̂|ε−s−2re− 2a

ε +2 Im(μ̂2b) lnε+Im(μ̂2b) ln ln 1
ε provided 	 − 2r = 0.
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Therefore, from the bounds of �̃
u,s
1 , �̃2 and �̃3 and recalling that by hypothesis s < 1/β , we have

that for (u, τ ) ∈ (Rs ln 1
ε ,d3

∩ D in,+,s
s ln 1

ε ,c2
∩ D in,+,u

s ln 1
ε ,c2

) ×T,

∣∣∂u�̃(u, τ )
∣∣� Kεs−2r

|lnε|	−2r
provided 	 − 2r > 0

∣∣∂u�̃(u, τ )
∣∣� Kεs−2r

|lnε|1+Im(μ̂2b)
provided 	 − 2r = 0.

Moreover, taking into account that ∂u�̃(u, τ ) depends analytically on μ̂ and moreover satisfies
∂u�̃(u, τ )|μ̂=0 = 0, one can apply Schwartz Lemma to obtain

∣∣∂u�̃(u, τ )
∣∣� K |μ̂|εs−2r

|lnε|	−2r
provided 	 − 2r > 0 (121)

∣∣∂u�̃(u, τ )
∣∣� K |μ̂|εs−2r

|lnε|1+Im(μ̂2b)
provided 	 − 2r = 0. (122)

Reasoning analogously, one can see that for (u, τ ) ∈ (Rs ln 1
ε ,d3

∩ D in,−,s
s ln 1

ε ,c2
∩ D in,−,u

s ln 1
ε ,c2

) ×T, the function

∂u�̃ satisfies

∣∣∂u�̃(u, τ )
∣∣� K |μ̂|εs−2r

|�00(u, τ ) lnε|	−2r
provided 	 − 2r > 0 (123)

∣∣∂u�̃(u, τ )
∣∣� K |μ̂|εs−2r

|lnε|1−Im(μ̂2b)
provided 	 − 2r = 0. (124)

Finally, by Theorems 4.4, 4.8, 4.12 and 4.21, one can easily see that the bound of ∂u�̃(u, τ ) for (u, τ ) ∈
(Rs ln 1

ε ,d3
∩ Dout,s

c2εγ ,ρ4
∩ Dout,u

c2εγ ,ρ4
) × T is smaller than (121) and (123) (case 	 − 2r > 0) and (122) and

(124) (case 	 − 2r = 0), provided |u − ia| �O(εγ ).
Taking into account (121) and (123) (case 	 − 2r > 0) and (122) and (124) (case 	 − 2r = 0), one

can conclude that for μ̂ ∈ B(μ̂0) ∩R,

∣∣∂u�̃(u, τ )
∣∣� K |μ̂|εs−2r

|lnε|	−2r
provided 	 − 2r > 0 (125)

∣∣∂u�̃(u, τ )
∣∣� K |μ̂|εs−2r

|lnε|1+μ̂2 Im b
provided 	 − 2r = 0. (126)

Analogously to the proof of Theorem 4.19, the second step is to consider the change of variables
(w, τ ) = (u + εC(u, τ ), τ ) and the auxiliary function

Θ(w, τ ) = Υ̃ ′(ε−1 w − τ
)
,

to obtain a bound for the Fourier coefficients of Υ̃ :

∣∣Υ̃ [k]∣∣� Kε sup
(u,τ )∈Rs ln(1/ε),d ×T

∣∣∂u�̃(u, τ )
∣∣e− |k|

ε (a−sε ln 1
ε )−|k| Im(C(u∗,0)).
3
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Therefore, to obtain the bounds for Υ̃ [k] with k < 0, it only remains to use bounds (125) and (126)
and the properties of C given in Theorem 4.21 and Proposition 4.22. Then, we obtain that for k < 0,

∣∣Υ̃ [k]∣∣� K |μ̂|
ε2r−1|lnε|	−2r

e−|k| a
ε +(|k|−1)s ln 1

ε provided 	 − 2r > 0

∣∣Υ̃ [k]∣∣� K |μ̂|
ε2r−1|lnε|e−|k|( a

ε −Im(μ̂2b) lnε)+(|k|−1)(s ln 1
ε +Im(μ̂2b) ln ln 1

ε ) provided 	 − 2r = 0.

Since ∂u�̃(u, τ ) and C(u, τ ) are real-analytic for (μ, τ ) ∈ R, the coefficients Υ̃ [k] for k > 0 satisfy the
same bounds. Finally, the bounds of Υ̃ [k] lead easily to the desired bounds of �̃(u, τ ) for (u, τ ) ∈
(Rs ln(1/ε),d3 ∩R) ×T. �
4.8. Computation of the area of the lobes: proof of Theorems 2.4 and 2.7 and Corollaries 2.5 and 2.8

To prove Theorems 2.4 and 2.7, we rewrite Corollaries 4.18 and 4.22 splitting the results between
the regular case η > 	 − 2r and the singular case η = 	 − 2r.

Corollary 4.25. Let us assume η > 	 − 2r. Then, there exists a constant b20 > 0 such that for ε ∈ (0, ε0),
μ ∈ B(μ0) ∩R and (u, τ ) ∈ (Rs ln(1/ε),d3 ∩R) ×T, the following statements are satisfied:

∣∣�(u, τ ) − Υ [0] − �00(u, τ )
∣∣� b20|μ|εη+1−	

|lnε| e− a
ε

∣∣∂u�(u, τ ) − ∂u�00(u, τ )
∣∣� b20|μ|εη−	

|lnε| e− a
ε

∣∣∂2
u �(u, τ ) − ∂2

u �00(u, τ )
∣∣� b20|μ|εη−1−	

|lnε| e− a
ε ,

where

• If η > η∗ ,

�00(u, τ ) = 2μεη

ε	−1
e− a

ε Re
(

f0e−i( u
ε −τ+C(u,τ ))

)
.

• If η = 0 and 	 − 2r < 0,

�00(u, τ ) = 2μ

ε	−1
e− a

ε Re
(

f0eiC(μ)e−i( u
ε −τ+C(u,τ ))

)
.

Corollary 4.26. Let us assume 	− 2r � 0 and η = η∗ = 	− 2r. Then, there exists a constant b21 > 0 such that
for ε ∈ (0, ε0), μ ∈ B(μ0) ∩R and (u, τ ) ∈ (Rs ln(1/ε),d3 ∩R) ×T, the following statements are satisfied.

• If 	 − 2r > 0,

∣∣�(u, τ ) − Υ [0] − �00(u, τ )
∣∣� b21|μ|

ε2r−1|lnε|	−2r
e− a

ε

∣∣∂u�(u, τ ) − ∂u�00(u, τ )
∣∣� b21|μ|

ε2r |lnε|	−2r
e− a

ε

∣∣∂2
u �(u, τ ) − ∂2

u �00(u, τ )
∣∣� b21|μ|

2r+1 	−2r
e− a

ε ,

ε |lnε|
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where

�00(u, τ ) = 2μ

ε2r−1
e− a

ε Re
(

f (μ)e−i( u
ε −τ+C(u,τ ))

)
.

• If 	 − 2r = 0,

∣∣�(u, τ ) − Υ [0] − �00(u, τ )
∣∣� b21|μ|

ε2r−1|lnε|e− a
ε +μ2 Im b lnε

∣∣∂u�(u, τ ) − ∂u�00(u, τ )
∣∣� b21|μ|

ε2r |lnε|e− a
ε +μ2 Im b lnε

∣∣∂2
u �(u, τ ) − ∂2

u �00(u, τ )
∣∣� b21|μ|

ε2r+1|lnε|e− a
ε +μ2 Im b lnε,

where

�00(u, τ ) = 2μ

ε2r−1
e− a

ε Re
(

f (μ)e−i(μ2b lnε−C(μ))e−i( u
ε −τ+C(u,τ ))

)
.

Let us fix a transversal Poincaré section corresponding to τ = τ0 ∈ R. Being Υ (w) in (87) and
(105) a 2π -periodic function, we know that �(u, τ0) has critical points which are O(ε)-close to each
other. Then, in (Rs ln(1/ε),d3 ∩R) there exist almost two of these points, reducing ε if necessary. These
critical points correspond to homoclinic orbits of system (1). Let us consider two consecutive zeros
u∗− and u∗+ in (Rs ln(1/ε),d3 ∩ R), which depend on τ0. Then, taking into account that the change (45)
is symplectic, it preserves area and recalling the definition of � in (82), the area of the lobes is given
by

A =
∣∣∣∣∣

u∗+∫
u∗−

∂u�(u, τ0)du

∣∣∣∣∣= ∣∣�(u∗+, τ0
)− �

(
u∗−, τ0

)∣∣.
First we take η > 	 − 2r and we prove Theorem 2.4 and Corollary 2.4. The simplest case is when
f0 = 0. In this case Corollary 4.25 directly implies Theorem 2.4 since �00(u, τ ) ≡ 0.

In the case f0 
= 0 we prove Theorem 2.4 and Corollary 2.4 at the same time. It can be easily
seen that the consecutive zeros of ∂u�00(u, τ0) (see (93), (115) and (116)) are also O(ε)-close and
therefore taking ε small enough, in (Rs ln(1/ε),d3 ∩ R) there exist at least two consecutive zeros u−
and u+ in (Rs ln(1/ε),d3 ∩R), which again depend on τ0. It can be easily checked that the function �00
evaluated at these points satisfies

�00(u+, τ0) = −�00(u−, τ0) (127)

and

∣∣�00(u±, τ0)
∣∣= 2μεη+1−	| f0|e− a

ε if η > η∗ (128)∣∣�00(u±, τ0)
∣∣= 2μεη+1−	

∣∣ f0eiC(μ)
∣∣e− a

ε if 	 − 2r < 0 and η = 0. (129)

By Corollary 4.25, since by hypothesis we have that f0 
= 0, we can apply the implicit function
theorem to see that the zeros u∗− and u∗+ of the function ∂u�(u, τ0) satisfy
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u∗± = u± +O
(

ε

|lnε|ν	

)
, (130)

where ν	 = 	 − 2r for 	 > 2r and ν	 = 1 for 	 � 2r.
Using formulas (127)–(130) and the inequalities given in Corollary 4.25, one obtains the asymptotic

formula for the area, which finishes the proofs of Theorem 2.4 and Corollary 2.5.
The proofs of Theorem 2.7 and Corollary 2.7 follow the same lines taking into account that now∣∣�00(u±, τ0)

∣∣= 2μεη+1−	
∣∣ f (μ)

∣∣e− a
ε if η = η∗ and 	 − 2r > 0 (131)∣∣�00(u±, τ0)

∣∣= 2μεη+1−	
∣∣ f (μ)eiC(μ)

∣∣e− a
ε +μ2 Im b lnε if η = η∗and 	 − 2r = 0. (132)

In this case, given a value of μ, one has to split the proof depending whether f (μ) = 0, and therefore
�00(u, τ ) ≡ 0, or f (μ) 
= 0.

Remark 4.27. We emphasize that, by hypothesis HP3, the Hamiltonian perturbation H1 defined in
either (9) in the polynomial case or (10) in the trigonometric case it may depend analytically on
ε. We stress that all the results given in this section are also valid in this setting and consequently
Theorems 2.4 and 2.7 hold true.

Indeed, in this case, what we have is that the 2π -periodically functions ak,l(τ ;ε) defining H1
depend analytically on ε and henceforth the same happens for the functions Ak(τ ) ≡ Ak(τ ;ε) defined
in (73). In this way one has that the inner Eq. (72) depends analytically on ε. Following the proof in
[3], it is straightforward to check that the solutions ψ

u,s
0 of the inner equation given in Theorem 4.12

actually also depend analytically on the parameter ε. Moreover, we have the same property for the
coefficients χ [k] defining the difference ψu

0 −ψ s
0. As a consequence, f (μ) ≡ f (μ;ε) = f (μ;0)+O(ε).

In addition, the constant b given in Proposition 4.15 also depends analytically on ε and henceforth
b ≡ b(ε) = b(0) +O(ε).

After these considerations, it is clear that we can replace f (μ;ε) by f (μ,0) and b(ε) by b(0) in
all the previous arguments and henceforth the claim is proved.

Remark 4.28. The proof that we have just explained works under the assumed hypotheses (see Sec-
tion 2.1), in particular, under Hypothesis HP2, which assumes that there exists only one singularity
on each line {Im u = ±a}. Nevertheless, with little modifications, the same scheme works if there are
more singularities on these lines, at least assuming some smallness condition on the perturbation,
namely in the regular case. Let us explain here how, assuming that the perturbation is small enough,
the problem can be handled.

Assume that the closest singularities to the real axis of the separatrix are located at u = ±α ± ai,
α 
= 0 (and assume moreover that p0(u) does not vanish to simplify the explanation). To prove the
asymptotic formula for the splitting we need to obtain the existence of two generating functions
which parameterize the perturbed invariant manifolds in a common domain containing points with
imaginary part Im u = a − κε. The existence of the invariant manifolds close to the fixed point can
be proved as in this paper, since the singularities are far from the domains D∗∞,ρ1

. Therefore, The-
orem 4.3 is also valid in this case (of course Theorem 4.1 is valid as well since it does not require
Hypothesis HP2).

To extend the invariant manifolds to a common domain containing points with imaginary part
Im u = a − κε, we have to modify the outer domains Dout,u

ρ,κ and Dout,s
ρ,κ . It is enough, for instance to

“center” the stable domain around the singularity with positive real part (that is, the boundary of the
domain intersects the line α + ti, t ∈R at α ± (a − κε)i) and the unstable one around the singularity
with negative real part. The corresponding domains intersect in a strip of “horizontal size” of order
O(1) but of “vertical size” size smaller than a − κε. To achieve that the domains cover a piece of
the imaginary axis that contain points with Im u = a − κ ′ε (for some κ ′ > κ ) one can proceed taking
the angle β1 of order O(ε). Without any extra technical work, this worsens the estimates and is the
reason why we need, under this more general hypothesis, the perturbation to be small. Namely, we
need to take η big enough.
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Once we have proved the existence of suitable parameterizations of the invariant manifolds in this
new outer domain, the proof of the validity of the Melnikov method can be done exactly in the same
way as in this paper (namely Theorems 4.17 and 4.19 are still valid). We have decided not to cover
this case in this work due to the considerable length the paper already has.

5. Existence of the periodic orbit in the hyperbolic case: proof of Theorem 4.1

In this section we prove Theorem 4.1. We look for a periodic orbit (x, y) = (xp(τ ), yp(τ )) which is
close to the hyperbolic critical point of the unperturbed system (0,0).

By HP1.1, the differential of the unperturbed hyperbolic critical point is

εA0 = ε

(
0 1
λ2 0

)
. (133)

Then, defining z = (x, y) and considering the differential operator

D0z(τ ) = d

dτ
z(τ ), (134)

we look for the periodic orbit as a 2π -periodic solution of the following equation,

(D0 − εA0)z = εF (z, τ ), (135)

where

F (z, τ ) =
(

μεη∂y H1(x, y, τ )

−μεη∂x H1(x, y, τ ) − (V ′(x) + λ2x)

)
.

We split F in constant, linear and higher order terms with respect to z,

F (z, τ ) = F0(τ ) + F1(τ )z + F2(z, τ ) (136)

with

F0(τ ) =
(

μεη∂y H1(0,0, τ )

−μεη∂x H1(0,0, τ )

)
(137)

F1(τ ) =
(

μεη∂yx H1(0,0, τ ) μεη∂yy H1(0,0, τ )

−μεη∂xx H1(0,0, τ ) −μεη∂xy H1(0,0, τ )

)
(138)

F2(z, τ ) = F (z, τ ) − F0(τ ) − F1(τ )z. (139)

We devote the rest of the section to obtain a solution of Eq. (135). First in Section 5.1 we define
a Banach space we will use and we state some technical properties. Then, in Section 5.2 we prove
Theorem 4.1.
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5.1. Banach spaces and technical lemmas

For analytic functions z : Tσ →C, z(τ ) =∑k∈Z z[k]eikτ , we define the Fourier norm

‖z‖σ =
∑
k∈Z

∣∣z[k]∣∣e|k|σ .

Then, we define the function space endowed with the previous norm

Sσ = {z : Tσ →C; real-analytic, ‖z‖σ < ∞} (140)

which is a Banach algebra. We also consider the product space Sσ × Sσ with the induced norm

∥∥(z1, z2)
∥∥

1,σ
= ‖z1‖σ + ‖z2‖σ .

Remark 5.1. Let us consider the classical supremum norm

‖z‖∞,σ = sup
τ∈Tσ

∣∣z(τ )
∣∣.

Then, it is a well known fact (see for instance [58]) that for any σ1 < σ2, the supremum and the
Fourier norm satisfy the following relation

‖z‖σ1 < K

(
1 + 1

σ2 − σ1

)
‖z‖∞,σ2

Therefore, since we are assuming that there exists σ0 > 0 such that the functions akl defined in (9)
and (10) are C0 in Tσ0 and analytic in Tσ0 , we can deduce that for any σ < σ0 such that σ0 − σ has
a positive lower bound independent of ε, they satisfy

‖akl‖σ < K .

We will use this fact without mentioning it, in the rest of the section and also in Sections 6.1 to 9.

Since we deal with vector functions, we also consider the norm for 2 × 2 matrices induced by
‖ · ‖1,σ . Let us consider B = (bij) a 2 × 2 matrix such that bij ∈ Sσ . Then, the induced matrix norm is
given by

‖B‖1,σ = max
j=1,2

{∥∥b1 j
∥∥
σ

+ ∥∥b2 j
∥∥
σ

}
.

The next lemma gives some properties of this norm.

Lemma 5.2. The following statements are satisfied.

1. If h ∈ Sσ × Sσ and B = (bij) is a 2 × 2 matrix with bij ∈ Sσ , then Bh ∈ Sσ × Sσ and

‖Bh‖1,σ � ‖B‖1,σ ‖h‖1,σ .



I. Baldomá et al. / J. Differential Equations 253 (2012) 3304–3439 3363
2. If B1 = (bij
1 ) and B2 = (bij

2 ) are 2 × 2 matrices which satisfy bij
1 ,bij

2 ∈ Sσ , then

‖B1 B2‖1,σ � ‖B1‖1,σ ‖B2‖1,σ .

Throughout this section, we will need to solve equations of the form (D0 − εA0)z = w . For that,
we will invert the operator D0 − εA0 acting on Sσ × Sσ . Considering the Fourier series of z(τ ) =
(z1(τ ), z2(τ )), one has that

D0(z)(τ ) =
∑
κ∈Z

ikz[k]eikτ .

Then, one can invert D0 − εA0 as

G0(w)(τ ) = −
∑
k∈Z

1

k2 + λ2ε2

(
ikw[k]

1 + εw[k]
2

ελ2 w[k]
1 + ikw[k]

2

)
eikτ . (141)

Lemma 5.3. The operator G0 : Sσ × Sσ → Sσ × Sσ in (141) is well defined, and for w ∈ Sσ × Sσ ,

∥∥G0(w)
∥∥

1,σ
� K

ε
‖w‖1,σ .

Moreover, if 〈w〉 = 0,

∥∥G0(w)
∥∥

1,σ
� K‖w‖1,σ .

We finally state a technical lemma which will be used in Section 5.2. Its proof is straightforward.

Lemma 5.4. The functions F0 , F1 and F2 defined in (137), (138) and (139) respectively satisfy the following
properties.

1. F0 ∈ Sσ × Sσ , 〈F0〉 = 0 and

‖F0‖1,σ � K |μ|εη.

2. F1 = (F ij
1 ) satisfies F i j

1 ∈ Sσ , 〈F ij
1 〉 = 0 and

‖F1‖1,σ � K |μ|εη.

3. If z, z′ ∈ B(ν) ⊂ Sσ with ν � 1, then

∥∥F2
(
z′, τ
)− F2(z, τ )

∥∥
σ
� Kν

∥∥z′ − z
∥∥
σ
.
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5.2. Proof of Theorem 4.1

We rewrite Theorem 4.1 in terms of the Banach space (140).

Proposition 5.5. Let ε0 > 0 small enough. Then, for ε ∈ (0, ε0), Eq. (135) has a solution (xp, yp) ∈ Sσ .
Moreover, there exists a constant b0 > 0 such that∥∥(xp, yp)

∥∥
1,σ

� b0|μ|εη+1.

Corollary 5.6. The change of variables (38) transforms the Hamiltonian system with Hamiltonian (7) to a new
Hamiltonian system with Hamiltonian (39).

Moreover, the functions ci j in the definition of (39) (see also (43)) satisfy

‖ci j‖σ � K |μ|εη.

We devote the rest of the section to prove Proposition 5.5. We obtain the solution of Eq. (135)
through a fixed point argument. To obtain a contractive operator, first we have to perform a change
of variables, which actually it is only needed in the case 	 − 2r = 0.

Let us consider a function F 1 which satisfies 〈F 1〉 = 0 and ∂τ F 1 = F1, where F1 is the function in
(138). The function F 1 can be defined as

F 1(τ ) =
∑

k∈Z\{0}

1

ik
F [k]

1 eikτ

and satisfies

‖F 1‖1,σ � ‖F1‖1,σ . (142)

We perform the change of variables

z = (Id + εF 1(τ )
)
z (143)

and then Eq. (135) becomes

(D0 − εA0)z = F (z, τ ), (144)

where

F (z, τ ) = ε
(
Id + εF 1(τ )

)−1
F0(τ )

+ ε2(Id + εF 1(τ )
)−1(

A0 F 1(τ ) − F 1(τ )A0 + F 1(τ )F1(τ )
)
z

+ ε
(
Id + εF 1(τ )

)−1
F2
((

Id + εF 1(τ )
)
z, τ
)
. (145)

Since the operator G0 defined in (141) is a left inverse of D0 −εA0, we look for a solution of Eq. (144)
as a fixed point of the operator

F0 = G0 ◦ F . (146)

Then Proposition 5.5 follows from the following lemma.
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Lemma 5.7. Let ε0 > 0 small enough. Then, there exists a constant b0 > 0 such that, for ε ∈ (0, ε0), the
operator F0 in (146) is contractive from B(b0|μ|εη+1) ⊂ Sσ × Sσ to itself.

Then, F0 has a unique fixed point z∗ ∈ B(b0|μ|εη+1) ⊂ Sσ × Sσ .

Proof. It is easily checked that F0 sends Sσ × Sσ into itself. To see that it is contractive we first
consider F0(0), which can be split as

F0(0) = εG0(F0) − ε2G0
(
(Id + εF 1)

−1 F 1 F0
)
.

By Lemma 5.4, 〈F0〉 = 0 and ‖F0‖1,σ � K |μ|εη . Then, applying Lemma 5.3, one has that∥∥G0(F0)
∥∥

1,σ
� K |μ|εη.

For the second term, considering also (142) and Lemmas 5.2, 5.3 and 5.4, one can proceed analogously
to obtain ∥∥G0

(
(Id + εF 1)

−1 F 1 F0
)∥∥

1,σ
� K |μ|ε2η−1.

Therefore, there exists a constant b0 > 0 such that

∥∥F0(0)
∥∥

1,σ
� b0

2
|μ|εη+1.

Let us consider now z1, z2 ∈ B(b0|μ|εη+1) ⊂ Sσ ×Sσ . Then, by Lemmas 5.3, 5.2 and 5.4, and reducing
ε if necessary, one can see that,∥∥F0

(
z2)−F0

(
z1)∥∥

1,σ
� K |μ|εη+1

∥∥z2 − z1
∥∥

1,σ

� 1

2

∥∥z2 − z1
∥∥

1,σ
.

Then, F0 : B(b0|μ|εη+1) → B(b0|μ|εη+1) ⊂ Sσ × Sσ and is contractive. Therefore, it has a unique
fixed point z∗ . �
Proof of Proposition 5.5. It is enough to take

z∗(τ ) = (Id + εF 1(τ )
)
z∗(τ ),

which satisfies Eq. (135) and satisfies the desired bound (increasing b0 slightly if necessary). �
6. Local invariant manifolds: proof of Theorem 4.3

Since the proof for both invariant manifolds is analogous, we only deal with the unstable case. We
look for a solution of Eq. (47) satisfying the asymptotic condition (55). We look for it as a perturbation
of the unperturbed separatrix

T0(u) =
u∫

−∞
p2

0(v)dv (147)

and therefore we work with T1(u, τ ) = T (u, τ ) − T0(u).
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Replacing T in Eq. (47) and taking into account that V (q0(u)) = −p2
0(u)/2, it is straightforward to

see that the equation for T1 reads

LεT1 = F(∂u T1, u, τ ), (148)

where Lε is the operator defined in (51) and

F(w, u, τ ) = − w2

2p2
0(u)

− (V (q0(u) + xp(τ )
)− V

(
xp(τ )

)− V
(
q0(u)

)− V ′(xp(τ )
)
q0(u)

)
− μεη Ĥ1

(
q0(u), p0(u) + w

p0(u)
, τ

)
,

where Ĥ1 is the function defined in (40).
We split F into constant, linear and higher order terms in w as

F(w, u, τ ) = A(u, τ ) + (B1(u, τ ) + B2(u, τ )
)

w + C(w, u, τ ), (149)

with

A(u, τ ) = −(V (q0(u) + xp(τ )
)− V

(
xp(τ )

)− V
(
q0(u)

)− V ′(xp(τ )
)
q0(u)

)
− μεη Ĥ1

(
q0(u), p0(u), τ

)
, (150)

B1(u, τ ) = −μεη p−1
0 (u)∂p Ĥ1

1

(
q0(u), p0(u), τ

)
, (151)

B2(u, τ ) = −μεη+1 p−1
0 (u)∂p Ĥ2

1

(
q0(u), p0(u), τ

)
, (152)

C(w, u, τ ) = − w2

2p2
0(u)

− μεη Ĥ1

(
q0(u), p0(u) + w

p0(u)
, τ

)
+ μεη w

p0(u)
∂p Ĥ1

(
q0(u), p0(u), τ

)+ μεη Ĥ1
(
q0(u), p0(u), τ

)
, (153)

where Ĥ1
1 and Ĥ2

1 are the functions defined in (41) and (43) respectively.

6.1. Local invariant manifolds in the hyperbolic case

In this section we prove the existence of suitable representations of the unstable and stable invari-
ant manifolds in the domains Du∞,ρ ×Tσ and Ds∞,ρ ×Tσ respectively under the hypothesis that the
unperturbed Hamiltonian system has a hyperbolic critical point at the origin.

6.1.1. Banach spaces and technical lemmas
This subsection is devoted to define the Banach spaces which will be used in Section 6.1.2. We also

state some of their useful properties.
We define some norms for functions defined in a domain Du∞,ρ with ρ � 0. Given α � 0, ρ � 0

and an analytic function h : Du∞,ρ → C, we consider

‖h‖α,ρ = sup
u∈Du∞,ρ

∣∣e−αuh(u)
∣∣.
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Moreover, for 2π -periodic in τ , analytic functions h : Du∞,ρ ×Tσ → C, we consider the corresponding
Fourier norm

‖h‖α,ρ,σ =
∑
k∈Z

∥∥h[k]∥∥
α,ρ

e|k|σ .

We consider, thus, the following function space

Hα,ρ,σ = {h : Du∞,ρ ×Tσ →C; real-analytic, ‖h‖α,ρ,σ < ∞}, (154)

which can be checked that is a Banach space for any fixed α > 0 and σ > 0.
In the next lemma, we state some properties of these Banach spaces.

Lemma 6.1. The following statements hold:

1. If α1 � α2 � 0, then Hα1,ρ,σ ⊂Hα2,ρ,σ and

‖h‖α2,ρ,σ � ‖h‖α1,ρ,σ .

2. If α1,α2 � 0, then, for h ∈Hα1,ρ,σ and g ∈Hα2,ρ,σ , we have that hg ∈Hα1+α2,ρ,σ and

‖hg‖α1+α2,ρ,σ � ‖h‖α1,ρ,σ ‖g‖α2,ρ,σ .

3. Let α � 0 and ρ ′ > ρ > 0 be such that ρ ′ − ρ has a positive lower bound independent of ε. Then for
h ∈Hα,ρ,σ we have that ∂uh ∈Hα,ρ ′,σ and

‖∂uh‖α,ρ ′,σ � K‖h‖α,ρ,σ .

Throughout this section we are going to solve equations of the form Lεh = g , where Lε is the
differential operator defined in (51). Note that if α > 0, KerLε = {0} and hence Lε is invertible. It
turns out that its inverse is Gε defined by

Gε(h)(u, τ ) =
0∫

−∞
h
(
u + t, τ + ε−1t

)
dt. (155)

We also introduce

Gε(h)(u, τ ) = ∂u
[
Gε(h)(u, τ )

]
. (156)

We will consider Gε defined in Hα,ρ,σ with α > 0 in order the integral in (155) to be convergent.

Lemma 6.2. Let α > 0. Then, the operators Gε and Gε in (155) and (156) respectively satisfy the following
properties.

1. Gε is linear from Hα,ρ,σ to itself, commutes with ∂u and Lε ◦ Gε = Id.
2. If h ∈Hα,ρ,σ , then

∥∥Gε(h)
∥∥ � K‖h‖α,ρ,σ .

α,ρ,σ
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Furthermore, if 〈h〉 = 0, then

∥∥Gε(h)
∥∥
α,ρ,σ

� Kε‖h‖α,ρ,σ .

3. If h ∈Hα,ρ,σ , then Gε(h) ∈Hα,ρ,σ and

∥∥Gε(h)
∥∥
α,ρ,σ

� K‖h‖α,ρ,σ .

Proof. It follows the same lines as the proof of Lemma 5.5 in [37]. �
Finally, we state a technical lemma about estimates of the functions A, B1, B2 and C defined in

(150), (151), (152) and (153) respectively.

Lemma 6.3. Let {λ,−λ} be the eigenvalues of the hyperbolic critical point of the unperturbed Hamiltonian
system and Gε the operator defined in (156). Let us fix ρ0 big enough such that p0(u) 
= 0 in Du∞,ρ0

defined in
(34). Then, for any ρ > ρ0 , the functions A, B1 , B2 and C defined in (150), (151), (152) and (153) satisfy the
following properties.

1. A, ∂u A ∈H2λ,ρ,σ and satisfy

∥∥Gε(A)
∥∥

2λ,ρ,σ
� K |μ|εη+1, ‖∂u A‖2λ,ρ,σ � K |μ|εη. (157)

2. B1, ∂u B1, B2 ∈H0,ρ,σ and satisfy

‖B1‖0,ρ,σ � K |μ|εη, ‖∂u B1‖0,ρ,σ � K |μ|εη, ‖B2‖0,ρ,σ � K |μ|εη+1. (158)

3. Let h1,h2 ∈ B(ν) ⊂H2λ,ρ,σ . Then,

∥∥C(h2, u, τ ) − C(h1, u, τ )
∥∥

2λ,ρ,σ
� Kν‖h2 − h1‖2λ,ρ,σ .

Proof. For the first bounds, we split A = A1 + A2 + A3 as

A1(u, τ ) = −(V (q0(u) + xp(τ )
)− V

(
xp(τ )

)− V
(
q0(u)

)− V ′(xp(τ )
)
q0(u)

)
(159)

A2(u, τ ) = −μεη Ĥ1
1

(
q0(u), p0(u), τ

)
(160)

A3(u, τ ) = −μεη+1 Ĥ2
1

(
q0(u), p0(u), τ

)
, (161)

where Ĥ1
1 and Ĥ2

1 are the functions defined in (41) and (43).
For A1, using the mean value theorem and Hypothesis HP1.1, one can see that

A1(u, τ ) = −q2
0(u)

1∫
0

(
V ′′(xp(τ ) + s1q0(u)

)− V ′′(s1q0(u)
))

(1 − s1)ds1

= −q2
0(u)xp(τ )

1∫ 1∫
V ′′′(s2xp(τ ) + s1q0(u)

)
(1 − s1)ds1 ds2. (162)
0 0
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Therefore, A1 ∈H2λ,ρ,σ and ‖A1‖2λ,ρ,σ � K |μ|εη+1. Applying Lemma 6.2, we obtain

∥∥Gε(A1)
∥∥

2λ,ρ,σ
� K |μ|εη+1.

For the other terms, let us point out that, by construction, Ĥ1
1 and Ĥ2

1 are quadratic in (q, p) and
therefore A2, A3 ∈ H2λ,ρ,σ . To bound Gε(A2), using that 〈A2〉 = 0 and taking into account that A2 is
analytic in Du∞,ρ0

×Tσ and ρ > ρ0, by Lemmas (6.1) and 6.2,

∥∥Gε(A2)
∥∥

2λ,ρ,σ
� Kε‖A2‖2λ,ρ,σ � K |μ|εη+1.

On the other hand, since by Corollary 5.6, ‖A3‖2λ,ρ,σ � K |μ|2ε2η+1, we have that ‖Gε(A3)‖2λ,ρ,σ �
K |μ|2ε2η+1. Therefore

∥∥Gε(A)
∥∥

2λ,ρ,σ
� K |μ|εη+1.

The bound for ∂u A can be obtained just differentiating Ai , i = 1,2,3.
The other bounds are straightforward. �

6.1.2. Proof of Theorem 4.3 in the hyperbolic case
We devote this section to prove Theorem 4.3 for the case in which the unperturbed Hamiltonian

has a hyperbolic critical point. First we rewrite it in terms of the Banach spaces defined in (154).

Proposition 6.4. Let {λ,−λ} be the eigenvalues of the unperturbed hyperbolic critical point, ρ1 > 0 big
enough and ε0 > 0 small enough. Then, for ε ∈ (0, ε0), there exists a function T1(u, τ ) defined in Du∞,ρ1

×Tσ

which satisfies Eq. (148) and the asymptotic condition (55). Moreover, there exists a constant b1 > 0 such that

‖∂u T1‖2λ,ρ1,σ � b1|μ|εη+1.

Theorem 4.3 is a straightforward consequence of this proposition.
Let us observe that the operator F defined in (149) has linear terms in w which are not small

when η = 0. Therefore, if one wants to prove the existence of T through a fixed point argument, first
we must look for a change of variables. Let us point out that this change of variables is not necessary
for the case η > 0.

Lemma 6.5. Let ρ1 > ρ ′
0 > ρ0 > 0, where ρ0 is big enough such that p0(u) 
= 0 for u ∈ Du∞,ρ0

. Then, for
ε > 0 small enough, there exists a function g ∈H0,ρ ′

0,σ such that 〈g〉 = 0 and is solution of

Lε g = −B1(v, τ ), (163)

where Lε is the operator defined in (51) and B1 is the function defined in (151). Moreover, it satisfies that

‖g‖0,ρ ′
0,σ � K |μ|εη+1, ‖∂v g‖0,ρ ′

0,σ � K |μ|εη+1

and v + g(v, τ ) ∈ Du∞,ρ0
for (v, τ ) ∈ Du

∞,ρ ′ ×Tσ .

0
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Furthermore, (u, τ ) = (v + g(v, τ ), τ ) is invertible and its inverse is of the form (v, τ ) = (u + h(u, τ ), τ ),
where h is a function defined for (u, τ ) ∈ Du∞,ρ1

×Tσ and satisfies that h ∈H0,ρ1,σ ,

‖h‖0,ρ1,σ � K |μ|εη+1

and that u + h(u, τ ) ∈ Du
∞,ρ ′

0
for (u, τ ) ∈ Du∞,ρ1

×Tσ .

Proof. From the definition of B1 in (151) we have that 〈B1〉 = 0. On the other hand, using the defini-
tion of Ĥ1

1 and λ in (41) and (52) respectively, B1 can be split as

B1(v, τ ) = B10(τ ) + B11(v, τ ),

where, using (53),

B10(τ ) = lim
Re v→−∞ B1(v, τ ) = −μεη

(
a11(τ )

λ
+ 2a02(τ )

)
and B11(v, τ ) = B1(v, τ ) − B10(τ ). Both terms have zero mean. Moreover, B10 ∈ H0,ρ ′

0,σ and satisfies
‖B10‖0,ρ ′

0,σ � K |μ|εη and B11 ∈Hλ,ρ ′
0,σ and satisfies ‖B11‖λ,ρ ′

0,σ � K |μ|εη .

Since B10(τ ) =∑k∈Z\{0} B[k]
10 eikτ has zero average, we can define a 2π -periodic primitive with zero

average as

B10(τ ) =
∑

k∈Z\{0}

B[k]
10

ik
eikτ

which satisfies ‖B10‖0,ρ ′
0,σ � K |μ|εη .

By the linearity of Eq. (163), we can take g as

g(v, τ ) = −εB10(τ ) − Gε(B11)(v, τ ),

where Gε is the operator defined in (155). Moreover, using the first statement of Lemma 6.1 and
Lemma 6.2,

‖g‖0,ρ ′
0,σ � ε‖B10‖0,ρ ′

0,σ + ∥∥Gε(B11)
∥∥

λ,ρ ′
0,σ

� K |μ|εη+1 + Kε‖B11‖λ,ρ ′
0,σ � K |μ|εη+1.

Moreover, by Lemma 6.2,

∂v g = −∂vGε(B11) = −Gε(∂v B11)

and then,

‖∂v g‖0,ρ ′
0,σ � ‖∂v g‖λ,ρ ′

0,σ = ‖Gε(∂v B11)‖λ,ρ ′
0,σ � Kε‖∂v B11‖λ,ρ ′

0,σ � K |μ|εη+1.

Since ‖g‖0,ρ ′
0,σ � K |μ|εη+1, we have that v + g(v, τ ) ∈ Du∞,ρ0

for (v, τ ) ∈ Du
∞,ρ ′

0
× Tσ provided ε is

small enough and ρ ′
0 > ρ0.

To obtain the inverse change and its properties it is straightforward. �
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If we apply the change of variables u = v + g(v, τ ) to Eq. (148), one can see that

T̂1(v, τ ) = T1
(

v + g(v, τ ), τ
)

is solution of

Lε T̂1 = F̂(∂v T̂1), (164)

where

F̂(h)(v, τ ) = Â(v, τ ) + B̂(v, τ )h(v, τ ) + Ĉ
(
h(v, τ ), v, τ

)
, (165)

with

Â(v, τ ) = A
(

v + g(v, τ ), τ
)

(166)

B̂(v, τ ) = B1(v + g(v, τ ), τ ) − B1(v, τ ) + B2(v + g(v, τ ), τ )

1 + ∂v g(v, τ )
(167)

Ĉ(w, v, τ ) = C

(
1

1 + ∂v g(v, τ )
w, v + g(v, τ ), τ

)
, (168)

where the functions A(u, τ ), B1(u, τ ) and B2(u, τ ) are defined in (150), (151) and (152).
We look for T̂1 by using a fixed point argument for ∂v T̂1 instead of T̂1 itself. Therefore, we look

for a fixed point of the operator

F = Gε ◦ F̂, (169)

where Gε is the operator in (156), in the Banach space H2λ,ρ ′
0,σ defined in (154).

Lemma 6.6. Let ρ ′
0 be defined in Lemma 6.5 and ε0 > 0 small enough. Then, for ε ∈ (0, ε0) there exists a

function T̂1(v, τ ) defined in Du
∞,ρ ′

0
× Tσ such that ∂v T̂1 ∈ H2λ,ρ ′

0,σ is a fixed point of the operator (169).

Furthermore, there exists a constant b1 > 0 such that,

‖∂v T̂1‖2λ,ρ ′
0,σ � b1|μ|εη+1.

Proof. It is straightforward to see that F is well defined from H2λ,ρ ′
0,σ to itself. We are going to

prove that there exists a constant b1 > 0 such that F sends B(b1|μ|εη+1) ⊂ H2λ,ρ ′
0,σ to itself and it

is contractive there.
Let us first consider F(0). From the definition of F in (169) and the definition of F̂ in (165), we

have that

F(0)(v, τ ) = Gε( Â)(v, τ ) = Gε(A)(v, τ ) + Gε( Â − A)(v, τ ).

The first term was already bounded in Lemma 6.3. For the second one, it is enough to use mean value
theorem and Lemmas 6.3 and 6.5 to bound ∂u A and g respectively, to obtain

∥∥A
(

v + g(v, τ ), τ
)− A(v, τ )

∥∥
2λ,ρ ′ ,σ � K |μ|2ε2η+1.
0
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Thus, applying Lemma 6.2, there exists constant a b1 > 0 such that

∥∥F(0)
∥∥

2λ,ρ ′
0,σ

� b1

2
|μ|εη+1.

Now, let h1,h2 ∈ B(b1|μ|εη+1) ∈ H2λ,ρ ′
0,σ . Then, using the properties of Gε in Lemma 6.2 and the

definition of F̂ in (165)∥∥F(h2) −F(h1)
∥∥

2λ,ρ ′
0,σ

� K
∥∥F̂(h2) − F̂(h1)

∥∥
2λ,ρ ′

0,σ

� K
∥∥B̂ · (h2 − h1) + Ĉ(h2, u, τ ) − Ĉ(h1, u, τ )

∥∥
2λ,ρ ′

0,σ
.

Taking into account the definitions of B̂ and Ĉ in (167) and (168) respectively and applying Lem-
mas 6.1, 6.3 and 6.5, we obtain∥∥F(h2) −F(h1)

∥∥
2λ,ρ ′

0,σ
� K |μ|εη+1‖h2 − h1‖2λ,ρ ′

0,σ .

Therefore, reducing ε if necessary, LipF � 1/2 and therefore F is contractive from the ball
B(b1|μ|εη+1) ⊂H2λ,ρ ′

0,σ into itself, and it has a unique fixed point h∗ . Since it satisfies∣∣h∗(v, τ )
∣∣� b1|μ|εη+1e2λ Re v

for (v, τ ) ∈ Du
∞,ρ ′

0
×Tσ , we can take T̂1 as

T̂1(v, τ ) =
v∫

−∞
h∗(w, τ )dw. �

Finally, to prove Proposition 6.4 from Lemma 6.6, it is enough to consider the change v = u +
h(u, τ ) obtained in Lemma 6.5, take T1(u, τ ) = T̂1(u +h(u, τ ), τ ) and increase slightly b1 if necessary.

6.2. Local invariant manifolds in the parabolic case

We devote this section to prove the existence of suitable representations of the unstable and stable
invariant manifolds in the domains Du∞,ρ ×Tσ and Ds∞,ρ ×Tσ respectively, under the hypotheses that
the unperturbed Hamiltonian system has a parabolic critical point at the origin. We proceed as we
have done in Section 6.1 for the hyperbolic case, that is, solving Eq. (148). Let us point out that in the
parabolic case, by Hypothesis HP4.2, the perturbation is taken in such a way that the periodic orbit
remains at the origin.

6.2.1. Banach spaces and technical lemmas
Given α � 0, ρ � 0 and an analytic function h : Du∞,ρ → C, we define

‖h‖α,ρ = sup
u∈Du∞,ρ

∣∣uαh(u)
∣∣.

Moreover, for 2π -periodic in τ , analytic functions h : Du∞,ρ × Tσ → C, we define the corresponding
Fourier norm

‖h‖α,ρ,σ =
∑∥∥h[k]∥∥

α,ρ
e|k|σ .
k∈Z
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We introduce, thus, the following function space

Pα,ρ,σ = {h : Du∞,ρ ×Tσ →C; real-analytic, ‖h‖α,ρ,σ < ∞}, (170)

which can be checked that is a Banach space for any fixed α � 0.
In the next lemma, we state some properties of these Banach spaces.

Lemma 6.7. The following statements hold:

1. If α1 � α2 � 0, then Pα1,ρ,σ ⊂Pα2,ρ,σ and

‖h‖α2,ρ,σ � ‖h‖α1,ρ,σ .

2. If α1,α2 � 0, then, for h ∈Pα1,ρ,σ and g ∈Pα2,ρ,σ , we have that hg ∈Pα1+α2,ρ,σ and

‖hg‖α1+α2,ρ,σ � ‖h‖α1,ρ,σ ‖g‖α2,ρ,σ .

As in Section 6.1, we need to use the operators Gε and Gε formally defined in (155) and (156)
respectively.

Lemma 6.8. The operators Gε and Gε acting on the spaces Pα,ρ,σ with α > 1 satisfy the following properties.

1. For any α > 1, Gε :Pα,ρ,σ →Pα−1,ρ,σ is well defined and linear continuous. Moreover, commutes with
∂u and Lε ◦ Gε = Id.

2. If h ∈Pα,ρ,σ for some α > 1, then ∥∥Gε(h)
∥∥
α−1,ρ,σ

� K‖h‖α,ρ,σ .

Furthermore, if h ∈Pα,ρ,σ for some α > 0 and 〈h〉 = 0, then∥∥Gε(h)
∥∥
α,ρ,σ

� Kε‖h‖α,ρ,σ .

3. If h ∈Pα,ρ,σ for some α � 1, then Gε(h) ∈Pα,ρ,σ and∥∥Gε(h)
∥∥
α,ρ,σ

� K‖h‖α,ρ,σ .

We also state a technical lemma about properties of the functions A, B1 and C defined in (150),
(151) and (153) respectively. Notice that now the function B2 defined in (152) satisfies B2 = 0 since,
by hypothesis, the perturbation fixes the periodic orbit at the origin.

We first fix ρ0 > 0 such that p0(u) does not vanish in Du∞,ρ0
and we define the constant

α0 = 2n

m − 2
> 1, (171)

where m is the order of the potential (12) and n is the order of the perturbation (9). We observe that
q0(u) ∈P 2

m−2 ,ρ,σ and p0(u) ∈P m
m−2 ,ρ,σ for any ρ big enough and any σ > 0.

Lemma 6.9. Let us consider ρ > ρ0 . Then, the functions A, B1 and C defined in (150), (151) and (153) satisfy
the following properties.
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1. A ∈Pα0,ρ,σ and ∂u A ∈Pα0+1,ρ,σ . Moreover, 〈A〉 = 〈∂u A〉 = 0 and

‖∂u A‖α0+1,ρ,σ � K |μ|εη,
∥∥Gε(A)

∥∥
α0+1,ρ,σ

� K |μ|εη+1. (172)

2. B1 ∈P 2n−m−2
m−2 ,ρ,σ and ∂u B1 ∈P 2n−m−2

m−2 +1,ρ,σ . Moreover, they satisfy

‖B1‖ 2n−m−2
m−2 ,ρ,σ � K |μ|εη, ‖∂u B1‖ 2n−m−2

m−2 +1,ρ,σ � K |μ|εη. (173)

3. Let h1,h2 ∈ B(ν) ⊂Pα0+1,ρ,σ with ν � 1. Then,∥∥C(h2, u, τ ) − C(h1, u, τ )
∥∥
α0+1,ρ,σ

� Kν‖h2 − h1‖α0+1,ρ,σ .

Proof. We prove the lemma in the polynomial case. The trigonometric one can be done analogously.
For the first statement, recall that in the parabolic case the periodic orbit is located at the origin by
Hypothesis HP4.2. Then

A(u, τ ) = −μεη H1
(
q0(u), p0(u), τ

)
,

where H1 is the function defined in (9) and has zero mean. On the other hand, it is clear that the
monomial with lowest order as Re u → +∞ corresponds to an0qn

0(u) which behaves as

an0(τ )qn
0(u) ∼ 1

uα0
.

Then A ∈Pα0,ρ,σ , that implies ∂u A ∈Pα0+1,ρ,σ and

‖∂u A‖α0+1,ρ,σ � K |μ|εη.

Moreover, by Lemma 6.8,∥∥Gε(A)
∥∥
α0+1,ρ,σ

= ∥∥Gε(∂u A)
∥∥
α0+1,ρ,σ

� K |μ|εη+1.

For the second statement, let us recall that

B1(u, τ ) = −μεη
N∑

i+ j=n
j�1

aij(τ )qi
0(u)p j−2

0 (u).

As Re u → −∞, the monomials of B1 behave as

aij(τ )qi
0(u)p j−2

0 (u) ∼ u−( 2
m−2 i+( 2

m−2 +1)( j−2)).

Taking into account that 2n − 2 � m by Hypothesis HP5 and that i + j � n and j � 1,

2

m − 2
i +
(

2

m − 2
+ 1

)
( j − 2) = 2

m − 2
(i + j) + j − 2m

m − 2

� 2n + 1 − 2m
.

m − 2 m − 2
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Therefore B1 ∈ P 2n−m−2
m−2 ,ρ,σ and satisfies ‖B1‖ 2n−m−2

m−2 ,ρ,σ � K |μ|εη . For ∂u B1, it is enough to differen-

tiate. For the case 2n − 2 > m we have that ∂u B1 ∈ P 2n−m−2
m−2 +1,ρ,σ . In the case 2n − 2 = m we have

that

∂u B1 ∈ P 1
m−2 +1,ρ,σ ⊂ P 2n−m−2

m−2 +1,ρ,σ .

In both cases, we have that ‖∂u B1‖ 2n−m−2
m−2 +1,ρ,σ � K |μ|εη .

We bound the third term in the polynomial case. We split C = C1 + C2 as

C1(w, u, τ ) = − w2

2p2
0(u)

C2(w, u, τ ) = −μεη
N∑

i+ j=n
j�1

aij(τ )qi
0(u)p j

0(u)

((
1 + w

p2
0(u)

) j

− 1 − j
w

p2
0(u)

)
.

Let h1,h2 ∈ B(ν) ⊂Pα0+1,ρ,σ . Then, for the first term,

∥∥C1(h2, u, τ ) − C1(h1, u, τ )
∥∥
α0+1,ρ,σ

� K
∥∥p0(u)−2(h2 + h1)

∥∥
0,ρ,σ

‖h2 − h1‖α0+1,ρ,σ

� K‖h2 + h1‖2m/(m−2),ρ,σ ‖h2 − h1‖α0+1,ρ,σ .

By Hypotheses HP5, we have 2n − 2 � m which implies 2m/(m − 2) � α0 + 1 and therefore

‖h2 + h1‖2m/(m−2),ρ,σ � ‖h2 + h1‖α0+1,ρ,σ � Kν.

Reasoning analogously, one can see that

∥∥C2(h2, u, τ ) − C2(h1, u, τ )
∥∥
α0+1,ρ,σ

� K |μ|εην‖h2 − h1‖α0+1,ρ,σ . �
6.2.2. Proof of Theorem 4.3 in the parabolic case

We devote this section to prove Theorem 4.3 for the case in which the unperturbed Hamiltonian
has a parabolic critical point. First we rewrite it in terms of the Banach spaces defined in (170).

Proposition 6.10. Let the constant α0 be defined in (171), ρ1 > 0 big enough and ε0 > 0 small enough.
Then, for ε ∈ (0, ε0), there exists a function T1(u, τ ) defined in Du∞,ρ1

×Tσ which satisfies Eq. (148) and the
asymptotic condition (55). Moreover, ∂u T1 ∈Pα0+1,ρ1,σ and there exists a constant b1 > 0 such that

‖∂u T1‖α0+1,ρ1,σ � b1|μ|εη+1.

Theorem 4.3 is a straightforward consequence of this proposition.
The proof of this proposition follows the same steps as the proof of Proposition 6.4.
The first step is to perform a change of variables which reduces the size of the linear term of F

in (149). This change is not necessary for the case η > 0.
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Lemma 6.11. Let ρ ′
0 be such that ρ0 < ρ ′

0 < ρ1 . Then, for ε > 0 small enough, there exists a function g ∈
P0,ρ ′

0,σ such that 〈g〉 = 0 and is a solution of (163). Moreover, it satisfies that

‖g‖0,ρ ′
0,σ � K |μ|εη+1, ‖∂v g‖0,ρ ′

0,σ � K |μ|εη+1,

and v + g(v, τ ) ∈ Du∞,ρ0
for (v, τ ) ∈ Du

∞,ρ ′
0
×Tσ .

Furthermore, (u, τ ) = (v + g(v, τ ), τ ) is invertible and its inverse is of the form (v, τ ) = (u + h(u, τ ), τ ),
where h is a function defined for (u, τ ) ∈ Du∞,ρ1

×Tσ and satisfies that h ∈P0,ρ1,σ ,

‖h‖0,ρ1,σ � K |μ|εη+1

and that u + h(u, τ ) ∈ Du
∞,ρ ′

0
for (u, τ ) ∈ Du∞,ρ1

×Tσ .

Proof. Since B1 ∈ P 2n−m−2
m−2 ,ρ,σ and it might happen that 2n−m−2

m−2 < 1, we cannot apply directly

Lemma 6.8 to invert Lε . Let us observe that, by Lemma 6.9, 〈B1〉 = 0 and then we can define a
function B1 such that

∂τ B1 = B1 and 〈B1〉 = 0,

which satisfies ‖B1‖ 2n−m−2
m−2 ,ρ,σ � K |μ|εη .

We can define g as

g(v, τ ) = −εB1(v, τ ) + εGε(∂v B1)(v, τ ).

Then, applying Lemmas 6.8 and 6.9 one obtains the bounds for g and ∂v g .
The proof of the other statements is analogous to the proof of Lemma 6.5. �
As in Section 6.1.2, we define

T̂1(v, τ ) = T1
(

v + g(v, τ ), τ
)
,

which is a solution of (164). Then, we look for ∂v T̂1 as a fixed point of the operator (169) in the
Banach space Pα0+1,ρ ′

0,σ .

Lemma 6.12. Let α0 be the constant defined in (171) and ε0 > 0 small enough. Then, for ε ∈ (0, ε0) there
exists a function T̂1(v, τ ) defined in Du

∞,ρ ′
0
×Tσ such that ∂v T̂1 ∈Pα0+1,ρ ′

0,σ is a fixed point of the operator

(169). Furthermore, there exists a constant b1 > 0 such that

‖∂v T̂1‖α0+1,ρ ′
0,σ ,0 � b1|μ|εη+1.

Proof. It is straightforward to see that F is well defined from Pα0+1,ρ ′
0,σ to itself. We are going to

prove that there exists a constant b1 > 0 such that F is contractive in B(b1|μ|εη+1) ⊂Pα0+1,ρ ′
0,σ .

Let us consider first F(0). From the definition of F in (169) and the definition of F̂ in (165), we
have that

F(0)(v, τ ) = Gε

(
Â(v, τ )

)= Gε

(
A(v, τ )

)+ Gε

(
A
(

v + g(v, τ ), τ
)− A(v, τ )

)
.
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The first term has been bounded in Lemma 6.9. For the second one, we apply Lemmas 6.9 and 6.11
and the mean value theorem to obtain

∥∥A
(

v + g(v, τ ), τ
)− A(v, τ )

∥∥
α0+1,ρ ′

0,σ
� ‖∂u A‖α0+1,ρ0,σ ‖g‖0,ρ ′

0,σ � K |μ|2ε2η+1.

Thus, applying Lemma 6.8, there exists a constant b1 > 0 such that

∥∥F(0)
∥∥
α0+1,σ

� b1

2
|μ|εη+1.

Let h1,h2 ∈ B(b1|μ|εη+1) ⊂ Pα0+1,ρ ′
0,σ . Then, using the properties of Gε in Lemma 6.8 and the defi-

nition of F̂ in (165),

∥∥F(h2) −F(h1)
∥∥
α0+1,ρ ′

0,σ
� K
∥∥F̂(h2) − F̂(h1)

∥∥
α0+1,ρ ′

0,σ

� K
∥∥B̂ · (h2 − h1) + Ĉ(h2, v, τ ) − Ĉ(h1, v, τ )

∥∥
α0+1,ρ ′

0,σ
.

Taking into account the definitions of B̂ and Ĉ in (167) and (168), recalling that B2 = 0 and applying
Lemmas 6.7, 6.9 and 6.11,we obtain

∥∥F(h2) −F(h1)
∥∥
α0+1,ρ ′

0,σ
� K |μ|εη+1‖h2 − h1‖α0+1,ρ ′

0,σ .

Then, reducing ε if necessary, LipF < 1/2 and then F is contractive from B(b1|μ|εη+1) ⊂Pα0+1,σ to
itself and has a unique fixed point h∗ . Moreover, since it satisfies

∣∣h∗(v, τ )
∣∣� b1|μ|εη+1 1

|v|α0+1

for (v, τ ) ∈ Du
∞,ρ ′

0
×Tσ , we can define T̂1 as

T̂1(v, τ ) =
v∫

−∞
h∗(w, τ )dw. �

To prove Proposition 6.10 from Lemma 6.12, as we have proceeded in Section 6.1.2, it is enough
to consider the change of variables v = u + h(u, τ ) obtained in Lemma 6.11, take T1(u, τ ) =
T̂1(u + h(u, τ ), τ ) and increase slightly b1 if necessary.

7. Invariant manifolds in the outer domains: proof of Theorems 4.4 and 4.8

7.1. Invariant manifolds in the outer domains when p0(u) 
= 0: proof of Theorem 4.4

In this section we prove the existence of the invariant manifolds in the domains Dout,∗
ρ,κ × Tσ

for ∗ = u, s defined in (35) provided p0(u) 
= 0 in these domains. Since the proof for both invariant
manifolds is analogous, we only deal with the unstable case.

First in Section 7.1.1 we define some Banach spaces and we state some technical lemmas. Then, in
Section 7.1.2 we prove Theorem 4.4.
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7.1.1. Banach spaces and technical lemmas
We start by defining some norms. Given ν ∈ R and an analytic function h : Dout,u

ρ,κ → C, where
Dout,u

ρ,κ is the domain defined in (35), we consider

‖h‖ν,ρ,κ = sup
u∈Dout,u

ρ,κ

∣∣(u2 + a2)νh(u)
∣∣.

Moreover, for 2π -periodic in τ , analytic functions h : Dout,u
ρ,κ ×Tσ → C, we consider the corresponding

Fourier norm

‖h‖ν,ρ,κ,σ =
∑
k∈Z

∥∥h[k]∥∥
ν,ρ,κ

e|k|σ .

We consider, thus, the following function space

Eν,ρ,κ,σ = {h : Dout,u
ρ,κ ×Tσ →C; real-analytic, ‖h‖ν,ρ,κ,σ < ∞}, (174)

which can be checked that is a Banach space for any ν ∈R.
If there is no danger of confusion about the domain Dout,u

ρ,κ , we will denote

‖ · ‖ν,σ = ‖ · ‖ν,ρ,κ,σ and Eν,σ = Eν,ρ,κ,σ .

In the next lemma, we state some properties of these Banach spaces. In the estimates we will
make explicit the dependence of the constants with respect to κ .

Lemma 7.1. The following statements hold:

1. If ν1 � ν2 , then Eν1,σ ⊂ Eν2,σ and moreover if h ∈ Eν1,σ ,

‖h‖ν2,σ � K (κε)ν2−ν1‖h‖ν1,σ .

2. If ν1 � ν2 , then Eν1,σ ⊂ Eν2,σ and moreover if h ∈ Eν1,σ ,

‖h‖ν2,σ � K‖h‖ν1,σ .

3. If h ∈ Eν1,σ and g ∈ Eν2,σ , then hg ∈ Eν1+ν2,σ and

‖hg‖ν1+ν2,σ � ‖h‖ν1,σ ‖g‖ν2,σ .

4. Let ρ ′ < ρ be such that ρ −ρ ′ has a positive lower bound independent of ε, κ ′ and κ such that κ < κ ′ < 0
and h ∈ Eν,ρ,κ,σ . Then ∂uh ∈ Eν,ρ ′,κ ′,σ and satisfies

‖∂uh‖ν,ρ ′,κ ′,σ � K

ε|κ ′ − κ | ‖h‖ν,ρ,κ,σ .
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Throughout this section we are going to solve equations of the form Lεh = g , where Lε is the dif-
ferential operator defined in (51). Note that Lε acting on Eν,ρ is not invertible. Indeed for any smooth
function f , f (u/ε − τ ) ∈ KerLε . We consider a left inverse of the operator Lε , which we call Gε , de-
fined acting on the Fourier coefficients. Let us consider u1, u1 ∈ C the vertices of the domain Dout,u

ρ,κ

(see Fig. 4). Then, we define Gε as

Gε(h)(u, τ ) =
∑
k∈Z

Gε(h)[k](u)eikτ , (175)

where its Fourier coefficients are given by

Gε(h)[k](u) =
u∫

u1

eikε−1(t−u)h[k](t)dt for k < 0

Gε(h)[0](u) =
u∫

−ρ

h[0](t)dt

Gε(h)[k](u) =
u∫

u1

eikε−1(t−u)h[k](t)dt for k > 0.

Remark 7.2. Let us observe that the definition of the operator Gε depends on the domain, since in its
definition we use its vertices u1, u1 and also ρ .

Lemma 7.3. The operator Gε in (175) satisfies the following properties.

1. If h ∈ Eν,σ for some ν � 0, then Gε(h) ∈ Eν,σ and

∥∥Gε(h)
∥∥
ν,σ

� K‖h‖ν,σ .

Furthermore, if 〈h〉 = 0,

∥∥Gε(h)
∥∥
ν,σ

� Kε‖h‖ν,σ .

2. If h ∈ Eν,σ for some ν > 1, then Gε(h) ∈ Eν−1,σ and

∥∥Gε(h)
∥∥
ν−1,σ

� K‖h‖ν,σ .

3. If h ∈ Eν,σ for some ν ∈ (0,1), then Gε(h) ∈ E0,σ and

∥∥Gε(h)
∥∥

0,σ
� K‖h‖ν,σ .

4. If h ∈ Eν,σ for some ν � 0, then Gε(∂uh) ∈ Eν,σ and

∥∥Gε(∂uh)
∥∥
ν,σ

� K‖h‖ν,σ .
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5. If h ∈Xν,σ for some ν � 0, Lε ◦ Gε(h) = h and

Gε ◦Lε(h)(v, τ ) = h(v, τ ) −
∑
k<0

eikε−1(−u1−u)h[k](−u1) − h[0](u0)

−
∑
k>0

eikε−1(u1−u)h[k](u1).

6. If h ∈Xν,σ for some ν � 0, Lε ◦ Gε(h) = h and

Gε ◦Lε(h)(v, τ ) = h(v, τ ) −
∑
k<0

eikε−1(−u1−u)h[k](−u1) − h[0](u0)

−
∑
k>0

eikε−1(u1−u)h[k](u1).

Proof. It is a consequence of Lemma 5.5 in [37]. �
7.1.2. Proof of Theorem 4.4

We prove Theorem 4.4, by looking for the analytic continuation of the function T1 = T − T0 ob-
tained in Propositions 6.4 and 6.10 as a solution of Eq. (148). First we rewrite the result in terms of
the Banach spaces defined in (174).

Proposition 7.4. Let ρ1 be the constant introduced in Theorem 4.3 and let ρ2 > ρ1 , ε0 > 0 small enough
and κ1 > 0 big enough. Then, for ε ∈ (0, ε0), there exists a function T1 ∈ E	+1,ρ2,κ1,σ which satisfies equa-
tion (148) and is the analytic continuation of the analytic function T1 obtained in Propositions 6.4 and 6.10.
Moreover, there exists a constant b2 > 0 such that

‖∂u T1‖	+1,ρ2,κ1,σ � b2|μ|εη+1.

This proposition gives the existence of the invariant manifolds in Dout,∗
ρ2,κ1 ×Tσ , ∗ = u, s.

We devote the rest of the section to prove Proposition 7.4.
First, we state a technical lemma about properties of the functions A, B1, B2 and C defined in

(150), (151), (152) and (153) respectively.

Lemma 7.5. Let ρ > 0 and κ > 0. Then, the functions A, B1 , B2 and C defined in (150), (151), (152) and (153)
satisfy the following properties.

1. A ∈ E	,ρ,κ,σ and ∂u A ∈ E	+1,ρ,κ,σ . Moreover, ∂u A satisfies

‖∂u A‖	+1,ρ,κ,σ � K |μ|εη∥∥Gε(∂u A)
∥∥

	+1,ρ,κ,σ
� K |μ|εη+1. (176)

2. If 	 − 2r < 0, B1, ∂u B1, B2 ∈ E0,ρ,κ,σ and satisfy 〈B1〉 = 0 and

‖B1‖0,ρ,κ,σ � K |μ|εη

‖∂u B1‖max{0,	−2r+1},ρ,κ,σ � K |μ|εη

‖B2‖0,ρ,κ,σ � K |μ|2ε2η+1. (177)
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3. If 	 − 2r � 0, B1, B2 ∈ E	−2r,ρ,κ,σ , ∂u B1 ∈ E	−2r+1,ρ,κ,σ and satisfy 〈B1〉 = 0 and

‖B1‖	−2r,ρ,κ,σ � K |μ|εη

‖∂u B1‖	−2r+1,ρ,κ,σ � K |μ|εη

‖B2‖	−2r,ρ,κ,σ � K |μ|2ε2η+1. (178)

4. Let us consider h1,h2 ∈ B(ν) ⊂ E	+1,ρ,κ,σ with ν � 1. Then,
• If 	 − 2r < 0,

∥∥C(h2, u, τ ) − C(h1, u, τ )
∥∥

	+1,ρ,κ,σ
� K

ν

εmax{0,	−2r+1} ‖h2 − h1‖	+1,ρ,κ,σ .

• If 	 − 2r � 0,

∥∥C(h2, u, τ ) − C(h1, u, τ )
∥∥

2	−2r+2,ρ,κ,σ
� Kν‖h2 − h1‖	+1,ρ,κ,σ .

Proof. For the first bounds, we split A = A1 + A2 + A3, where Ai , i = 1,2,3, are the functions defined
in (159), (160) and (161) respectively.

Using (162) and (16), one can see that A1 ∈ Er+1,ρ,δ,σ ⊂ E	+1,ρ,δ,σ and

‖A1‖	+1,ρ,δ,σ � ‖A1‖r+1,ρ,δ,σ � K |μ|εη+1. (179)

Applying Lemma 6.2, we obtain ‖Gε(∂u A1)‖	+1,ρ,δ,σ � K |μ|εη+1.
Moreover, by the definition of 	, A2, A3 ∈ E	,ρ,δ,σ . Therefore ∂u A2, ∂u A3 ∈ E	+1,ρ,δ,σ and satisfy

‖∂u A2‖	+1,ρ,δ,σ � K |μ|εη and ‖∂u A3‖	+1,ρ,δ,σ � K |μ|2ε2η+1.
To bound Gε(A2), let us point out that 〈A2〉 = 0 and then, by Lemma 6.2,

∥∥Gε(∂u A2)
∥∥

	+1,ρ,δ,σ
� Kε‖∂u A2‖	+1,ρ,δ,σ � K |μ|εη+1.

Applying again Lemma 6.2 we have ‖Gε(∂u A3)‖	+1,ρ,δ,σ � K |μ|2ε2η+1. Therefore

∥∥Gε(∂u A)
∥∥

	+1,ρ,δ,σ
� K |μ|2ε2η+1.

The other bounds are straightforward. �
To prove Proposition 7.4, we proceed as in the proofs of Propositions 6.4 and 6.10. That is, we first

perform a change of variables which reduces the size of the linear terms of F in (149). Notice that
in order to prove Proposition 7.4 we could look for this change as the analytic continuation of the
changes obtained in Lemmas 6.5 and 6.11. Nevertheless, since we want the proof of Theorem 4.4 be
also valid for Theorem 4.8, we look for a change g which is not necessarily continuation of the one
obtained in Lemmas 6.5 and 6.11.

Lemma 7.6. Let κ1 > κ ′
0 > κ0 > 0 and ρ ′′

1 > ρ ′
1 > ρ2 > ρ ′

0 , where ρ ′
0 is the constant introduced in Lem-

mas 6.5 and 6.11. Then, for ε > 0 small enough and κ ′
0 big enough, there exists a function g which is solution

of (163) and satisfies:
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• If 	 − 2r < 0, g ∈ E0,ρ ′
1,κ ′

0,σ and

‖g‖0,ρ ′
1,κ ′

0,σ � K |μ|εη+1

‖∂v g‖0,ρ ′
1,κ ′

0,σ � K |μ|εη+1.

• If 	 − 2r � 0, g ∈ E	−2r,ρ ′
1,κ ′

0,σ and

‖g‖	−2r,ρ ′
1,κ ′

0,σ � K |μ|εη+1

‖∂v g‖	−2r+1,ρ ′
1,κ ′

0,σ � K |μ|εη+1.

Moreover, v + g(v, τ ) ∈ Dout,u
ρ ′′

1 ,κ0
for (v, τ ) ∈ Dout,u

ρ ′
1,κ ′

0
×Tσ .

Furthermore, the change of variables (u, τ ) = (v + g(v, τ ), τ ) is invertible and its inverse is of the form
(v, τ ) = (u + h(u, τ ), τ ). The function h is defined in the domain Dout,u

ρ2,κ1 ×Tσ and it satisfies

• If 	 − 2r < 0,

‖h‖0,ρ2,κ1,σ � K |μ|εη+1.

• If 	 − 2r � 0,

‖h‖	−2r,ρ2,κ1,σ � K |μ|εη+1.

Moreover, u + h(u, τ ) ∈ Dout,u
ρ ′

1,κ ′
0

for (u, τ ) ∈ Dout,u
ρ2,κ1 ×Tσ .

In the case 	 − 2r < 0 we need more precise bounds of both functions g and h restricted to the
inner domain D in,+,u

κ1,c defined in (36). These bounds are given in the next corollary.

Corollary 7.7. Let us assume 	 − 2r < 0 and let c1 > 0. Then, the functions g and h obtained in Lemma 7.6,
restricted to the inner domain D in,+,u

κ1,c1 , satisfy the following bounds

sup
∣∣g(u, τ )

∣∣
(u,τ )∈D in,+,u

κ1,c1
×Tσ

� K |μ|εη+1+ν∗
1 and sup

∣∣h(u, τ )
∣∣
(u,τ )∈D in,+,u

κ1,c1
×Tσ

� K |μ|εη+1+ν∗
1

with ν∗
1 = min{(2r − 	)γ ,1}.

Proof of Lemma 7.6 and Corollary 7.7. To define g , let us recall first that, by Lemma 7.5, 〈B1〉 = 0. Then
we can define a function B1 such that ∂τ B1 = B1 and 〈B1〉 = 0. Then, one can see that a solution of
Eq. (163), can be given by

g(v, τ ) = −εB1(v, τ ) + εGε(∂v B1)(v, τ ), (180)

where Gε is the integral operator defined in (175).
By Lemma 7.5 one has: if 	 − 2r � 0,

‖B1‖	−2r,ρ2,κ ′
0,σ � K |μ|εη

‖∂v B1‖	−2r+1,ρ ,κ ′ ,σ � K |μ|εη, (181)

2 0
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if −1 � 	 − 2r < 0,

‖B1‖0,ρ2,κ ′
0,σ � K |μ|εη

‖∂v B1‖	−2r+1,ρ2,κ ′
0,σ � K |μ|εη, (182)

and finally, if 	 − 2r < −1,

‖B1‖0,ρ2,κ ′
0,σ � K |μ|εη

‖∂v B1‖0,ρ2,κ ′
0,σ � K |μ|εη. (183)

From these inequalities, using Lemma 7.3 we conclude that:∥∥g(v, τ ) + εB1(v, τ )
∥∥

max{	−2r+1,0},ρ2,κ ′
0,σ

� Kμεη+2,

which, together with (181) when 	 − 2r � 0 and with (182) and (183) when 	 − 2r < 0, gives the
desired bounds for g . For the proof of the bound of ∂v g it is enough to apply again Lemmas 7.3
and 7.5 and (181).

The rest of the statements are straightforward.
To proof Corollary 7.7 we just need to use the definition of B1 in (151), and observe that it has a

singularity or order 	 − 2r if 	 − 2r � 0 and a zero of order 2r − 	 if 	 − 2r � 0. �
Once we have the change g , we proceed as in Section 6.1.2, defining

T̂1(v, τ ) = T1
(

v + g(v, τ ), τ
)

(184)

which is solution of (164), that is:

Lε T̂1 = F̂(∂v T̂1).

We look for it using a fixed point argument on ∂v T̂1. Nevertheless, since we want ∂u T1 to be the ana-
lytic continuation of the function ∂u T1 obtained in Propositions 6.4 and 6.10, we have to impose initial
conditions. Nevertheless, since we invert Lε by using the operator Gε defined in (175) adapted to the
domain Dout,u

ρ ′
1,δ

× Tσ , we consider a different initial condition depending on the Fourier coefficient.

Recall that we are looking for ∂v T̂1 defined in Dout,u
ρ ′

1,δ
×Tσ . Thus, we define

A0(v, τ ) =
∑
k<0

∂v T̂ [k]
1 (v1)e−ikε−1(v−v1)eikτ

+
∑
k>0

∂v T̂ [k]
1 (v1)e−ikε−1(v−v1)eikτ

+ ∂v T̂ [0]
1

(−ρ ′
1

)
, (185)

where v1, v1 are the vertices of the outer domain Dout,u
ρ ′

1,δ
(see Fig. 4) and ∂v T̂1 can be obtained differ-

entiating (184), since T1 is already known in a neighborhood of these points. Note that v1, v1,ρ
′
1 ∈

Du∞,ρ1
. Applying the bounds obtained in Propositions 6.4 and 6.10 and Lemma 7.6, one can see that

‖A0‖0,ρ ′ ,κ ′ ,σ � K |μ|εη+1. (186)

1 0
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Let us define S(v, τ ) as the solution of

S(v, τ ) = A0(v, τ ) + Gε

(
∂v F̂(S)

)
(v, τ ),

where Gε and F̂ are the operators defined in (175) and (165) respectively. Let us point out that the
definition of F̂ involves the functions Â, B̂ and Ĉ defined in (166), (167) and (168). Even if we keep
the same notation, now the definitions involve the function g obtained in Lemma 7.6 instead of the
ones given in Lemmas 6.5 and Lemma 6.11.

We will see that S is the analytic continuation of the function ∂u T1(v + g(v, τ ), τ )(1 +
∂v g(v, τ ))−1, where T1 is obtained from Propositions 6.4 and 6.10.

Thus, we look for a fixed point S ∈ E	+1,ρ ′
1,κ ′

0,σ of the operator

J (S)(v, τ ) = A0(v, τ ) + Gε

(
∂v F̂(S)

)
(v, τ ). (187)

Lemma 7.8. Let ε0 > 0 be small enough and κ ′
0 > κ0 big enough. Then, for ε ∈ (0, ε0), there exists a function

S ∈ E	+1,ρ ′
1,κ ′

0,σ defined in Dout,u
ρ ′

1,κ ′
0
× Tσ such that it is a fixed point of the operator (187) and is the analytic

continuation of the function ∂u T1(v + g(v, τ ), τ )(1 + ∂v g(v, τ ))−1 , where T1 is obtained from Proposi-
tions 6.4 and 6.10 and g is given in Lemma 7.6.

Moreover, there exists a constant b2 > 0 such that

‖S‖	+1,ρ ′
1,κ ′

0,σ � b2|μ|εη+1.

Proof. We recall that, during the proof, g is the function given in Lemma 7.6.
It is straightforward to see that J is well defined from E	+1,ρ ′

1,δ,σ to itself. We are going to prove

that there exists a constant b2 > 0 such that J is contractive in B(b2|μ|εη+1) ⊂ E	+1,ρ ′
1,κ ′

0,σ .

First we deal with J (0). From the definition of J in (187) and the definition of F̂ in (165), we
have

J (0)(v, τ ) = A0(v, τ ) + Gε

(
∂v Â(v, τ )

)
,

where Â is the function in (166).
Taking into account the definition of Â, we split J (0) as

J (0)(v, τ ) = A0(v, τ ) + Gε

(
∂v A(v, τ )

)+ Gε

(
∂v
[

A
(

v + g(v, τ ), τ
)− A(v, τ )

])
,

where A is given in (150). The first term has already been bounded in (186) and the second one
in Lemma 7.5. For the third one, using ρ ′′

1 introduced in Lemma 7.6, and applying Lemmas 7.3, 7.5
and 7.6 and the mean value theorem,

∥∥Gε

(
∂v
[

A
(

v + g(v, τ ), τ
)− A(v, τ )

])∥∥
	+1,ρ ′

1,κ ′
0,σ

�
∥∥A
(

v + g(v, τ ), τ
)− A(v, τ )

∥∥
	+1,ρ ′

1,κ ′
0,σ

� ‖∂u A‖	+1,ρ ′′
1 ,κ0ε,σ ‖g‖0,ρ ′

1,κ ′
0,σ

� K |μ|2ε2η+1.

Thus, there exists a constant b2 > 0 such that

∥∥J (0)
∥∥

	+1,ρ ′ ,κ ′ ,σ � b2 |μ|εη+1.

1 0 2
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Now let h1,h2 ∈ B(b2|μ|εη+1) ⊂ E	+1,ρ ′
1,κ ′

0,σ . Using the definitions of J and F̂ in (187) and (165)
respectively, and applying Lemma 7.3,∥∥J (h2) −J (h1)

∥∥
	+1,ρ ′

1,κ ′
0,σ

� K
∥∥F̂(h2) − F̂(h1)

∥∥
	+1,ρ ′

1,κ ′
0,σ

� K
∥∥B̂ · (h2 − h1) + Ĉ(h2, v, τ ) − Ĉ(h1, v, τ )

∥∥
	+1,ρ ′

1,κ ′
0,σ

.

To bound the Lipschitz constant of J , one has to take into account the definitions of B̂ and Ĉ in (167)
and (168) respectively, and to apply Lemmas 7.5 and 7.6. We bound it in different ways depending
whether 	 − 2r < 0 or 	 − 2r � 0. In the first case we obtain∥∥J (h2) −J (h1)

∥∥
	+1,ρ ′

1,κ ′
0,σ

� K |μ|εη+1−max{0,	−2r+1}‖h2 − h1‖	+1,ρ ′
1,κ ′

0,σ ,

and in the second,

∥∥J (h2) −J (h1)
∥∥

	+1,ρ ′
1,κ ′

0,σ
� K |μ| εη−(	−2r)

(κ ′
0)

	−2r+1
‖h2 − h1‖	+1,ρ ′

1,κ ′
0,σ .

Therefore, since η � max{0, 	 − 2r}, taking ε < ε0 and κ ′
0 big enough, LipJ < 1/2 and then J is

contractive in B(b2|μ|εη+1) ⊂ E	+1,ρ ′
1,κ ′

0,σ and it has a unique fixed point S(v, τ ).

Now, we have to prove that S(v, τ ) is the analytic continuation of the function S̃(v, τ ) =
∂u T1(v + g(v, τ ), τ )(1 + ∂v g(v, τ ))−1 obtained from Propositions 6.4 and 6.10. First let us observe
that the operator (187) is well defined for functions in (Du∞,ρ1

∩ Dout,u
ρ ′

1,κ ′
0
) × Tσ . Moreover, both func-

tions S(v, τ ) and S̃(v, τ ) are defined in (Du∞,ρ1
∩ Dout,u

ρ ′
1,κ ′

0
) ×Tσ and for (v, τ ) in this domain both are

fixed points of the operator (187) and

‖̃S‖	+1,σ � b1μεη+1.

Then, using the norms defined in Section 7.1.1 but for functions defined in (Du∞,ρ1
∩ Dout,u

ρ ′
1,κ ′

0
) ×Tσ ,

one can see that ∥∥S(v, τ ) − S̃(v, τ )
∥∥

	+1,σ
�
∥∥J (S(v, τ )

)−J
(̃

S(v, τ )
)∥∥

	+1,σ

� 1

2

∥∥S(v, τ ) − S̃(v, τ )
∥∥

	+1,σ
.

Then S(v, τ ) = S̃(v, τ ) for (v, τ ) ∈ (Du∞,ρ1
∩ Dout,u

ρ ′
1,κ ′

0
) × Tσ and S(v, τ ) is the analytic continuation of

the function ∂u T1(v + g(v, τ ), τ )(1 + ∂v g(v, τ ))−1 to Dout,u
ρ ′

1,κ ′
0
× Tσ . Finally, one can easily recover T̂1

from S . �
Proof of Proposition 7.4. To prove Proposition 7.4 from Lemma 7.8, it is enough to consider the change
of variables v = u + h(u, τ ) obtained in Lemma 7.6 and to take T1(u, τ ) = T̂1(u + h(u, τ ), τ ) which by
construction is the analytic continuation of the function T1 obtained in Propositions 6.4 and 6.10. �
7.2. Invariant manifolds in the outer domains in the general case: proof of Theorems 4.5, 4.6, 4.7 and 4.8

We devote this section to prove the existence of the invariant manifolds in the outer do-
mains, in the general case, that is assuming that p0(u) can vanish. We split the proofs into Theo-
rems 4.5, 4.6, 4.7 and 4.8.
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7.2.1. The variational equation along the separatrix
In order to prove the existence of the perturbed stable and unstable invariant manifolds in cer-

tain domains, we will need to consider a real-analytic fundamental matrix solution of the variational
equations along the unperturbed separatrix

ξ̇ = A(u)ξ, (188)

where

A(u) =
(

0 1
−V ′′(q0(u)) 0

)
(189)

and (q0(u), p0(u)) is the parameterization of the unperturbed separatrix given in Hypothesis HP2.
It is a well known fact that the derivative of the parameterization of the separatrix, that is

(p0(u), ṗ0(u)) (recall that q̇0(u) = p0(u)), is a solution of (188). A second independent solution can
be given by (ζ(u), ζ̇ (u)), where

ζ(u) = p0(u)

u∫
u0

1

p2
0(v)

dv, (190)

where u0 ∈ R is such that p0(u0) 
= 0. We consider then the following fundamental matrix

Φ(u) =
(

p0(u) ζ(u)

ṗ0(u) ζ̇ (u)

)
. (191)

Remark 7.9. Notice that the function ζ defined in (190) is well defined and analytic even if p0(u) can
vanish for some u ∈ C and even that a priori it could seem that the integral depends on the path of
integration.

Indeed, since p̈0(u) = −V ′′(q0(u))p0(u), one can see that the Taylor expansion around any zero
u∗ ∈ C of p0(u) is of the form

p0(u) = ṗ0
(
u∗)(u − u∗)+O

(
u − u∗)3

(observe that ṗ0(u∗) 
= 0) and then, the residue of the integrand appearing in the definition of ζ in
(190) is zero. Finally, even if the integral might be divergent if one takes u∗ as the upper limit of
integration, limu→u∗ ζ(u) = −1/ṗ0(u∗).

7.2.2. Proof of Theorem 4.5
In this section we prove the existence of a change of variables which allow us to obtain a param-

eterization of the invariant manifolds which satisfies Eq. (50) from the parameterization obtained in
Theorem 4.3.

It is straightforward to see that the functions defined in (59) satisfy Eq. (50) provided Uu satisfies

Lεh = M
(

v + h(v, τ ), τ
)
, (192)

where

M(u, τ ) = 1

p2
0(u)

∂u T1(u, τ ) + μεη

p0(u)
∂p Ĥ1

(
q0(u), p0(u) + 1

p0(u)
∂u T1(u, τ ), τ

)
, (193)

Ĥ1 is the Hamiltonian defined in (40) and T1 is the function obtained in Proposition 6.4.
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Decomposing the right hand side of Eq. (192) into constant, linear and higher order terms in h, it
can be rewritten as

Lεh = M(h), (194)

where

M(h)(v, τ ) = M(v, τ ) + (N1(v, τ ) + N2(v, τ )
)
h(v, τ ) + R

(
h(v, τ ), v, τ

)
(195)

and

N1(v, τ ) = μεη∂v

[
1

p0(v)
∂p Ĥ1

1

(
q0(v), p0(v), τ

)]
(196)

N2(v, τ ) = ∂v M(v, τ ) − N1(v, τ ) (197)

R(h, v, τ ) = M(v + h, τ ) − ∂v M(v, τ )h − M(v, τ ), (198)

where Ĥ1
1 and M are defined in (41) and (193) respectively.

We now define appropriate Banach spaces. For analytic functions h : Iu
ρ3,ρ4

×Tσ → C, where Iu
ρ3,ρ4

is the domain defined in (58), we define the Fourier norm

‖h‖σ =
∑
k∈Z

∥∥h[k]∥∥∞e|k|σ ,

where ‖ · ‖∞ is the classical supremum norm in Iu
ρ3,ρ4

. We consider the following function space

Aσ = {h : Iu
ρ3,ρ4

×Tσ →C; real-analytic, ‖h‖σ < ∞} (199)

which is straightforward to see that is a Banach algebra.
Throughout this section we will need to solve equations of the form Lεh = g , where Lε is the

differential operator defined in (51). We take the operator Gε defined in (175) as right inverse of
Lε . In Section 7.1.1 it was applied to functions belonging to Eν,ρ,δ,σ (see (174)) but it is clear that
it can also be applied to functions in Aσ if we take as the constant integration limits of the Fourier
coefficients of Gε as v1, v1, the vertices of the domain Iu

ρ3,ρ4
, and −ρ4 (see Fig. 6).

Lemma 7.10. The operator Gε in (175) satisfies the following properties.

• Gε is linear from Aσ to itself and satisfies Lε ◦ Gε = Id.
• If h ∈Aσ , then ∥∥Gε(h)

∥∥
σ
� K‖h‖σ .

Furthermore, if 〈h〉 = 0, then ∥∥Gε(h)
∥∥
σ
� Kε‖h‖σ .

Finally, we state a technical lemma which gives some properties of the functions M , N1, N2 and R
defined in (193), (196), (197) and (198) respectively.

Lemma 7.11. The functions M, N1 , N2 and R defined in (193), (196), (197) and (198) satisfy the following
properties:
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1. M ∈Aσ and satisfies

‖M‖σ � K |μ|εη,
∥∥Gε(M)

∥∥
σ
� K |μ|εη+1. (200)

2. N1, N2 ∈Aσ . Moreover, they satisfy 〈N1〉 = 0 and

‖N1‖σ � K |μ|εη, ‖N2‖σ � K |μ|εη+1. (201)

3. Let us consider h1,h2 ∈ B(ν) ⊂Aσ with ν � 1. Then,

∥∥R(h2, v, τ ) − R(h1, v, τ )
∥∥
σ
� Kν‖h2 − h1‖σ .

Proof. The first bound is straightforward taking into account the bounds for clk and T1 obtained in
Corollary 5.6 and Propositions 6.4 and 6.10. For the second one, one has to split M as M = M1 + M2,
where

M1(u, τ ) = μεη 1

p0(u)
∂p Ĥ1

1

(
q0(u), p0(u), τ

)
,

where Ĥ1
1 is the Hamiltonian in (41), and M2 = M − M1. Since 〈M1〉 = 0 and satisfies ‖M1‖σ �

K |μ|εη , by Lemma 7.10 we have that ‖Gε(M1)‖σ � K |μ|εη+1. On the other hand, by the bound of clk
in Corollary 5.6 and the bound of T1 given by Proposition 6.4, M2 satisfies ‖M2‖σ � K |μ|εη+1, and
therefore ‖Gε(M2)‖σ � K |μ|εη+1.

The bounds of N1, N2 and R can be obtained analogously taking into account the definition of M
in (193) and that R is quadratic in h. �

We split Theorem 4.5 in the following proposition and corollary, which are rewritten in terms of
the Banach space defined in (199). Theorem 4.5 follows directly from those results.

Proposition 7.12. Let ρ1 be the constant considered in Proposition 6.4 and let us consider ρ3 and ρ4 such that
ρ4 > ρ3 > ρ1 and ε0 > 0 small enough (which might depend on ρi , i = 1,3,4). Then, for ε ∈ (0, ε0) there
exists a function Uu ∈ Aσ defined in Iu

ρ3,ρ4
× Tσ that satisfies Eq. (194). Moreover, for (v, τ ) ∈ Iu

ρ3,ρ4
× Tσ ,

v +Uu(v, τ ) ∈ Du∞,ρ1
and there exists a constant b3 > 0 such that

∥∥Uu
∥∥
σ
� b3|μ|εη+1.

Corollary 7.13. Let us consider the constants ρ3 and ρ4 given by Proposition 7.12 and ε0 > 0 small enough.
Then, for ε ∈ (0, ε0) there exist parameterizations of the invariant manifolds

(
Q u(v, τ ), P u(v, τ )

)= (q0(v) + Q u
1 (v, τ ), p0(v) + P u

1 (v, τ )
)

which are solution of Eq. (50). Moreover, (Q u
1 , P u

1 ) ∈ Aσ ×Aσ are defined in Iu
ρ3,ρ4

× Tσ and there exists a
constant b4 > 0 such that

∥∥Q u
1

∥∥
σ
� b4|μ|εη+1∥∥P u

1

∥∥
σ
� b4|μ|εη+1.
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The proof of this corollary is a straightforward consequence of Proposition 7.12.
We prove Proposition 7.12 by using a fixed point argument. Nevertheless, the operator M in (195)

has linear terms in h which are not small when η = 0. Therefore, we have first to consider a change
of variables to obtain a contractive operator. For this purpose, let us consider N1 = Gε(N1), where Gε

is the operator in (175) and N1 the function in (196). Taking into account that 〈N1〉 = 0 and applying
Lemmas 7.11 and 7.10, we have that

‖N1‖σ = ∥∥Gε(N1)
∥∥
σ
� K |μ|εη+1. (202)

Then, we consider the change

h = (1 + N1)h (203)

which, by (202), is invertible for (v, τ ) ∈ Iu
ρ3,ρ4

×Tσ . By (194) and (203), h is solution of

Lεh = M∗(h),

where

M∗(h)(v, τ ) = M̂(v, τ ) + N̂(v, τ )h(v, τ ) + R̂
(
h(v, τ ), v, τ

)
(204)

with

M̂(v, τ ) = (1 + N1(v, τ )
)−1

M(v, τ ) (205)

N̂(v, τ ) = (1 + N1(v, τ )
)−1

N1(v, τ )N1(v, τ ) + N2(v, τ ) (206)

R̂(h, v, τ ) = (1 + N1(v, τ )
)−1

R
((

1 + N1(v, τ )
)
h, v, τ

)
. (207)

To find a solution of this equation, we look for a fixed point h ∈Aσ of the operator

M = Gε ◦M∗, (208)

where Gε and M∗ are the operators (175) and (204). Then, Proposition 7.12 is a consequence of the
following lemma.

Lemma 7.14. Let us consider ε0 > 0 small enough. Then, for ε ∈ (0, ε0), there exists a function h ∈Aσ defined
in Iu

ρ3,ρ4
×Tσ , such that it is a fixed point of the operator (208). Moreover, it satisfies

‖h‖σ � K |μ|εη+1

and then u = v + (1 + N1(v, τ ))h(v, τ ) ∈ Du∞,ρ1
for (v, τ ) ∈ Iu

ρ3,ρ4
×Tσ .

Proof. It is straightforward to see that the operator M sends Aσ to itself. We are going to prove that
there exists a constant b3 > 0 such that M is contractive in B(b3|μ|εη+1) ⊂Aσ .

Let us consider first M(0) = Gε ◦ M∗(0). From the definitions of M∗ and M̂ in (204) and (205)
respectively, we have that

M(0) = Gε

(
M∗)= Gε

(
(1 + N1)

−1M
)= Gε(M) − Gε

(
(1 + N1)

−1N1M
)
.
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The first term has already been bounded in Lemma 7.11, and satisfies ‖Gε(M)‖σ � K |μ|εη+1. For the
second one has to take into account Lemma 7.10, and then (202) and Lemma 7.11, to obtain

∥∥Gε

(
(1 + N1)

−1N1M
)∥∥

σ
� K‖N1‖σ ‖M‖σ � K |μ|2ε2η+1.

Therefore, there exists a constant b3 > 0 such that

∥∥M(0)
∥∥
σ
� b3

2
|μ|εη+1.

Let us consider now h1,h2 ∈ B(b3|μ|εη+1) ⊂Aσ . Then using the properties of Gε given in Lemma 7.10
and the definition of M∗ in (204),

∥∥M(h2) −M(h1)
∥∥
σ
� K
∥∥M∗(h2) −M∗(h1)

∥∥
σ

� K
∥∥N̂(v, τ )(h2 − h1) + R̂(h2, v, τ ) − R̂(h1, v, τ )

∥∥
σ
.

Taking into account the definitions of N̂ and R̂ in (206) and (207) and applying Lemma 7.11 and
bound (202), one obtains

∥∥M(h2) −M(h1)
∥∥
σ
� K |μ|εη+1‖h2 − h1‖σ .

Therefore, reducing ε if necessary, LipM � 1/2 and therefore M is contractive from the ball
B(b3|μ|εη+1) ⊂Aσ into itself and it has a unique fixed point h. �
Proof of Proposition 7.12. To prove Proposition 7.12 from Lemma 6.6, it is enough to undo the change
of variables (203) to obtain Uu = (1 + N1)h. Then, using bound (202) and increasing slightly b3 if
necessary, we obtain the bound for Uu . �
7.2.3. Proof of Theorem 4.6

We prove Theorem 4.6 looking for a solution of (50) through a fixed point argument, taking the
parameterizations of the invariant manifolds as perturbations of the parameterizations of the unper-
turbed separatrix. Since we only deal with the unstable manifold, we omit the superscript u. We
consider (

Q (v, τ )

P (v, τ )

)
=
(

q0(v) + Q 1(v, τ )

p0(v) + P1(v, τ )

)
and thus we look for (Q 1, P1) as solutions of

(
Lε − A(u)

)( Q 1
P1

)
= K
(

Q 1
P1

)
, (209)

where Lε is the operator defined in (51), A is the matrix defined in (189),

K(ξ)(u, τ ) =
(

μεη∂p Ĥ1(q0(u) + ξ1, p0(u) + ξ2, τ )

G(ξ1)(u, τ ) − μεη∂q Ĥ1(q0(u) + ξ1, p0(u) + ξ2, τ )

)

and
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G(ξ1)(u, τ ) = −(V ′(xp(τ ) + q0(u) + ξ1
)− V ′(xp(τ )

)− V ′(q0(u)
)− V ′′(q0(u)

)
ξ1
)
, (210)

where for shortness we have put ξ1 and ξ2 for ξ1(u, τ ) and ξ2(u, τ ).
We decompose K considering constant, linear and higher order terms in ξ as

K(ξ)(u, τ ) = L(u, τ ) + (M1(u, τ ) + M2(u, τ )
)
ξ(u, τ ) + N(ξ)(u, τ ) (211)

with

L(u, τ ) = μεη

(
∂p Ĥ1(q0(u), p0(u), τ )

−∂q Ĥ1(q0(u), p0(u), τ )

)
+
(

0

G(0)(u, τ )

)
(212)

M1(u, τ ) = μεη

(
∂qp Ĥ1

1(q0(u), p0(u), τ ) ∂pp Ĥ1
1(q0(u), p0(u), τ )

−∂qq Ĥ1
1(q0(u), p0(u), τ ) −∂qp Ĥ1

1(q0(u), p0(u), τ )

)
(213)

M2(u, τ ) = μεη+1

(
∂qp Ĥ2

1(q0(u), p0(u), τ ) ∂pp Ĥ2
1(q0(u), p0(u), τ )

−∂qq Ĥ2
1(q0(u), p0(u), τ ) −∂qp Ĥ2

1(q0(u), p0(u), τ )

)
(214)

N(ξ)(u, τ ) = L(u, τ ) + (M1(u, τ ) + M2(u, τ )
)
ξ(u, τ ) −K(ξ)(u, τ ). (215)

The first step is to define the following function space

Yσ = {h : D̃out,u
ρ,d,κ ×T→ C; real-analytic, ‖h‖σ < ∞},

where D̃out,u
ρ,d,κ is the domain defined in (60) and

‖h‖σ =
∑
k∈Z

∥∥h[k]∥∥∞e|k|σ , (216)

where ‖ · ‖∞ is the classical supremum norm. It is a well known fact that this function space is a
Banach algebra (see for instance [58]). We also define the product space

Yσ ×Yσ = {h = (h1,h2) : D̃out,u
ρ,d,κ ×Tσ →C

2; real-analytic,

‖h‖σ = ‖h1‖σ + ‖h2‖σ < ∞}. (217)

Since we deal with the Banach space Yσ ×Yσ , it is also useful to consider the norm for 2×2 matrices
induced by ‖ · ‖σ . Let B = (bij) be a 2 × 2 matrix such that bij ∈ Yσ . Then, the induced norm with
respect to the norm of Yσ ×Yσ , which we also denote ‖ · ‖σ abusing notation, is given by

‖B‖σ = max
j=1,2

{∥∥b1 j
∥∥
σ

+ ∥∥b2 j
∥∥
σ

}
. (218)

The next lemma gives some properties of this induced norm.

Lemma 7.15. The following statements are satisfied

1. If h ∈Yσ ×Yσ and B = (bij) is a 2 × 2 matrix with bij ∈Yσ , then Bh ∈ Yσ ×Yσ and

‖Bh‖σ � ‖B‖σ ‖h‖σ .



3392 I. Baldomá et al. / J. Differential Equations 253 (2012) 3304–3439
2. If B1 = (bij
1 ) and B2 = (bij

2 ) are 2 × 2 matrices which satisfy bij
1 ∈ Yσ and bij

2 ∈ Yσ respectively, then

B3 = (bij
3 ) = B1 B2 satisfies bij

3 ∈ Eσ and

‖B3‖σ � ‖B1‖σ ‖B2‖σ .

The second step is to look for a right inverse of Lε − A(u), where A is defined in (189). To obtain
it we use the operator Gε defined in (175), which is well defined for functions belonging to Yσ , if we
take u1, u1 the vertices of the domain D̃out,u

ρ,d,κ defined in (60) (see Fig. 7). Recalling that Φ defined in
(191) satisfies LεΦ = AΦ , we can define a right inverse of Lε − A(v) as

Ĝε(h) = ΦGε

(
Φ−1h

)
, for h =

(
h1
h2

)
. (219)

Lemma 7.16. The operator Ĝε in (219) satisfies the following properties.

1. If h ∈ Yσ ×Yσ , then Ĝε(h) ∈Yσ ×Yσ and

∥∥Ĝε(h)
∥∥
σ
� K‖h‖σ .

2. Furthermore, if 〈h〉 = 0, then

∥∥Ĝε(h)
∥∥
σ
� Kε‖h‖σ .

We rewrite Theorem 4.6 in terms of Eq. (209) and the Banach spaces defined in (217).

Proposition 7.17. Let ρ4 and κ1 be the constant considered in Propositions 7.12 and 7.4 and let also d0 > 0 and
ε0 > 0 small enough. Then, for ε ∈ (0, ε0) there exist functions (Q 1, P1) ∈ Yσ × Yσ which satisfy Eq. (209)
and are the analytic continuation of the functions (Q 1, P1) obtained in Corollary 7.13. Moreover, there exists
a constant b5 > 0 such that

∥∥(Q 1, P1)
∥∥
σ
� b5|μ|εη+1.

Before proving the proposition, we state and prove the following technical lemma.

Lemma 7.18. The functions L, M1 , M2 and N defined in (212), (213), (214) and (215) respectively, have the
following properties,

1. L ∈ Yσ ×Yσ and satisfies

‖L‖σ � K |μ|εη,
∥∥Ĝε(L)

∥∥
σ
� K |μ|εη+1.

2. M1 = (mij
1 ) and M2 = (mij

2 ) satisfy mij
1 ,mij

2 ∈Yσ ×Yσ , 〈M1〉 = 0, and

‖M1‖σ � K |μ|εη, ‖M2‖σ � K |μ|2ε2η+1.

3. If ξ, ξ ′ ∈ B(ν) ⊂Yσ ×Yσ , then

∥∥N
(
ξ ′)− N(ξ)

∥∥
σ
� Kν

∥∥ξ ′ − ξ
∥∥
σ
.
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Proof. For the first statement let us split L as L = L1 + L2 + L3 with

Li(u, τ ) =
(

μεη+i−1∂p Ĥ i
1(q0(u), p0(u), τ )

−μεη+i−1∂q Ĥ i
1(q0(u), p0(u), τ )

)
, i = 1,2

and

L3(u, τ ) =
(

0
G(0)(u, τ )

)
,

where Ĥ1
1, Ĥ2

1 and G are the functions defined in (41), (43) and (210) respectively. One can easily
see that L1, L2 ∈ Yσ × Yσ , 〈L1〉 = 0 and ‖L1‖σ � K |μ|εη and, using Corollary 5.6, also that ‖L2‖σ �
K |μ|2ε2η+1. Thus, applying Lemma 7.16 one obtains ‖Ĝε(Li)‖σ � K |μ|εη+1 for i = 1,2.

To obtain analogous properties for L3, it is enough to apply Mean Value Theorem to obtain

L3(u, τ ) =
(

0

− ∫ 1
0 V ′′′(s1xp(τ ) + s2q0(u))ds1 ds2 q0(u)xp(τ )

)
.

Then, ‖L3‖σ � K |μ|εη+1. Therefore, applying Lemma 7.16 we have that ‖Ĝε(L3)‖σ � K |μ|εη+1. This
finishes the proof of the first statement.

The proof of the other statements is straightforward. �
To prove Proposition 7.17, first one has to perform a change of variables to Eq. (209) to obtain a

contractive operator. In fact, this change is only necessary in the case η = 0. Let us consider

M1 = (mij
1

)
with mij

1 = Gε

(
mij

1

)
, (220)

where Gε is the operator defined in (175) and M1 = (mij
1 ) is the matrix defined in (213). By Lem-

mas 7.18 and 7.3, one can see that

‖M1‖σ � K |μ|εη+1. (221)

We consider the change of variables

ξ = (Id + M1)ξ (222)

which is invertible. Using (209) and (222), ξ is solution of equation

(
Lε − A(u)

)
ξ = K̂(ξ), (223)

where

K̂(ξ) = L̂ + M̂ξ + N̂(ξ) (224)

with
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L̂ = (Id + M1)
−1L (225)

M̂ = (Id + M1)
−1(M1M1 + AM1 − M1 A + M2(Id + M1)

)
(226)

N̂(ξ) = (Id + M1)
−1N
(
(Id + M1)ξ

)
. (227)

Since we want to obtain the analytic continuation of the parameterizations of the manifolds ob-
tained in Corollary 7.13, we need to impose initial conditions. Nevertheless, since we invert Lε − A(u)

by using the operator Ĝε in (219) which is defined acting on the Fourier coefficients, we need to
consider a different initial condition depending on the Fourier coefficient, that is in u1 or in u1 (see
Fig. 7). Thus, we define the following function

L0(v, τ ) =
∑
k<0

Φ(v)Φ−1(v1)ξ
[k](v1)e−ikε−1(v−v1)eikτ

+
∑
k�0

Φ(v)Φ−1(v1)ξ
[k](v1)e−ikε−1(v−v1)eikτ

+ Φ(v)Φ−1(−ρ4)ξ
[0](−ρ4). (228)

Recall that ξ(v, τ ) is already known for v = v1, v1,−ρ4 using (222), (220) and Corollary 7.13.

Lemma 7.19. The function L0(u, τ ) in (228) satisfies de following properties:

• (Lε − A(v))L0 = 0, where Lε is the operator in (51).
• L0 ∈ Yσ ×Yσ and

‖L0‖σ � K |μ|εη+1.

The function ξ satisfies Eq. (223) and the initial conditions on the Fourier coefficients L0 in (228)
if and only if it is solution of the integral equation

(
Q 1
P1

)
= L0 + Ĝε ◦K

(
Q 1
P1

)
,

where Ĝε and K are the operators defined in (219) and (211) respectively. Thus, we look for a fixed
point ξ = (Q 1, P1) ∈ Yσ ×Yσ of the operator

K = L0 + Ĝε ◦ K̂. (229)

Therefore, Proposition 7.17 is a straightforward consequence of the following lemma.

Lemma 7.20. Let ε0 > 0 be small enough. Then, for ε ∈ (0, ε0), there exists a function ξ ∈ Yσ × Yσ defined
in D̃out,u

ρ4,d0,κ1
×Tσ such that is a fixed point of the operator (229) and satisfies

‖ξ‖σ � b5|μ|εη+1.

for a certain constant b5 > 0 independent of ε and μ. Moreover, ξ = (Id + M1)ξ , where M1 is the function
defined in (220), is the analytic continuation of the function ξ = (Q 1, P1) obtained in Corollary 7.13.
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Proof. To prove the lemma, first we see that there exists a constant b5 > 0 such that the operator
K in (229) is contractive from B(b5|μ|εη+1) ⊂ Yσ × Yσ to itself and thus that it has a fixed point.
Then, we will see that ξ = (Id + M1)ξ , where M1 is the function defined in (220), is the analytic
continuation of the parameterizations of the manifolds which have been obtained in Corollary 7.13.

Let us first consider K(0). Using the definitions of K, K̂ and L̂ in (229), (211) and (225), we have
that

K(0) = L0 + Ĝε(̂L)

= L0 + Ĝε(L) − Ĝε

(
M1(Id + M1)

−1L
)
.

From Lemmas 7.19, 7.16 and 7.18, and applying also the bound of M1 in (221), it is straightfor-
ward to see that ‖K(0)‖σ � K |μ|εη+1, and thus there exists a constant b5 > 0 such that ‖K(0)‖σ �
b5|μ|εη+1/2.

Let us consider now ξ1, ξ2 ∈ B(b5|μ|εη+1) ⊂ Yσ × Yσ . Then using the definitions of K and K̂ in
(229) and (224), and applying Lemma 7.16,

∥∥K(ξ1)−K
(
ξ2)∥∥

σ
� K
∥∥K̂(ξ1)− K̂

(
ξ2)∥∥

σ

� K
∥∥M̂
(
ξ2 − ξ1)+ N̂

(
ξ1)− N̂

(
ξ2)∥∥

σ
.

Then, using the definitions of M̂ and N̂ in (226) and (227) and applying Lemma 7.18 and bound (221),
one can see that

∥∥K(ξ1)−K
(
ξ2)∥∥

σ
� K |μ|εη+1

∥∥ξ1 − ξ2
∥∥
σ
.

Therefore, reducing ε if necessary, LipK < 1/2 and then K is contractive from B(b5|μ|εη+1) ⊂
Yσ ×Yσ to itself and it has a unique fixed point ξ .

To prove that ξ = (Id + M1)ξ is the analytic continuation of the function ξ = (Q 1, P1) obtained in
Corollary 7.13, one can proceed as in the proof of Lemma 7.8. �
Proof of Proposition 7.17. It is enough to undo the change (222). For the bound of ξ = (Q 1, P1) it is
enough to consider the bound of M1 in (221) and the bound of ξ in Lemma 7.20 and increase slightly
b5 if necessary. �
7.2.4. Proof of Theorem 4.7

This section is devoted to obtain a parameterization of the invariant manifolds of the form (48) in
the domains (32). To this end, we look for changes of variables v = u + Vu,s(u, τ ) which satisfy (62).

Since the proof of Theorem 4.7 is analogous for both invariant manifolds, we only deal with the
unstable case and we omit the superscript u to simplify notation.

Writing Q (v, τ ) = q0(v) + Q 1(v, τ ), Eq. (62) reads

q0
(
u + V(u, τ )

)− q0(u) = −Q 1
(
u + V(u, τ ), τ

)
.

Taking into account that q̇0(u) = p0(u), to obtain a solution of this equation is equivalent to obtain a
fixed point of the operator

N (h)(u, τ ) = − 1 (
Q 1
(
u + h(u, τ ), τ

)+ q0
(
u + h(u, τ )

)− q0(u) − p0(u)h(u, τ )
)
. (230)
p0(u)
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Let the function space

Qκ,d,σ = {h : Iout,u
κ,d ×Tσ →C; real-analytic, ‖h‖κ,d,σ < ∞}, (231)

where ‖ · ‖κ,d,σ is the Fourier norm defined in (216) but applied to functions defined in Iout,u
κ,d ×Tσ .

We split Theorem 4.7 in the following proposition and corollary, which are written in terms of the
Banach space defined in (231).

Proposition 7.21. Let us consider the constant κ1 given in Proposition 7.17, d0 > d1 > 0, κ2 > κ1 and ε0 > 0
small enough, which might depend on the previous constants. Then, there exists a constant b6 > 0 such that
for ε ∈ (0, ε0) and κ1 and κ2 big enough, the operator N is contractive from B(b6|μ|εη+1) ⊂Qσ to itself.

Then, N has a unique fixed point V ∈ B(b6|μ|εη+1) ⊂ Qσ , which satisfies that u + V(u, τ ) ∈ Iout,u
κ1,d0

for

(u, τ ) ∈ Iout,u
κ2,d1

×Tσ .

Corollary 7.22. There exists a function T : Iout,u
κ2,d1

×Tσ →C such that

∂u T (u, τ ) = p0(u)P
(
u + V(u, τ ), τ

)
,

where P and V are the functions obtained in Theorem 4.6 and Proposition 7.21 respectively, and satisfies
Eq. (47). Moreover, it belongs to Qσ and satisfies

‖∂u T − ∂u T0‖κ2,d1,σ � b7|μ|εη+1.

for certain constant b7 > 0.

We devote the rest of this section to prove Proposition 7.21 and Corollary 7.22.

Proof of Proposition 7.21. The operator N sends Qκ2,d1,σ to itself. To see that exists a constant b6 > 0
such that N is contractive in B(b6|μ|εη+1) ⊂ Qκ2,d1,σ , we first consider N (0). By Proposition 7.17,
there exists a constant b6 > 0 such that

∥∥N (0)
∥∥
κ2,d1,σ

= ∥∥p−1
0 (v)Q 1(v, τ )

∥∥
κ2,d1,σ

� b6

2
|μ|εη+1.

To see that N is contractive, let h1,h2 ∈ B(b6|μ|εη+1) ⊂ Qκ2,d1,σ . By Proposition 7.17, we know that
Q 1(u, τ ) is defined in Iout,u

κ1,d0
and satisfies ‖Q 1‖κ1,d0,σ � K |μ|εη+1 in this domain. Applying Cauchy

estimates in the nested domains Iout,u
2κ1,d0/2 ⊂ Iout,u

κ1,d0
, one has that

‖∂v Q 1‖2κ1,d0/2,σ � K

κ1
μεη.

Then, defining hs(v, τ ) = sh2(v, τ ) + (1 − s)h1(v, τ ) for s ∈ (0,1), using the mean value theorem,
increasing κ1 if necessary and taking κ2 > 2κ1,

∥∥N (h2) −N (h1)
∥∥
κ2,d1,σ

�
∥∥∥∥∥p−1

0 (v)

1∫
0

(
∂u Q 1

(
v + hs, τ

)+ p0
(

v + hs)− p0(v)
)

ds

∥∥∥∥∥
κ2,d1,σ

× ‖h2 − h1‖κ2,d1,σ
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� K |μ|εη

κ1
‖h2 − h1‖κ2,d1,σ

� 1

2
‖h2 − h1‖σ .

Then, N : B(b6|μ|εη+1) → B(b6|μ|εη+1) ⊂Qκ2,d1,σ and is contractive. Therefore, it has a unique fixed
point which satisfies the properties stated in Proposition 7.21. �
Proof of Corollary 7.22. Proposition 7.21, gives a parameterization of the form

(q, p) = (Q (u + V(u, τ ), τ
)
, P
(
u + V(u, τ ), τ

))= (q0(u), P
(
u + V(u, τ ), τ

))
.

We want to have a parameterization of the form (48), where T is a function which satisfies (47). To
recover this function it is enough to point out that, since we want it to be solution of (47), we know
its gradient

(
∂u T (u, τ ), ∂τ T (u, τ )

)= (p0(u)P
(
u + V(u, τ ), τ

)
,−εH

(
u, p0(u)P

(
u + V(u, τ ), τ

)
, τ
))

.

Then, it is enough to check the compatibility condition

∂τ

[
p0(u)P

(
u + V(u, τ ), τ

)]= −∂u
[
εH
(
u, p0(u)P

(
u + V(u, τ ), τ

)
, τ
)]

. (232)

Differentiating Eq. (62), one has that V satisfies

∂v Q
(
u + V(u, τ ), τ

)(
1 + ∂uV(u, τ )

)= p0(u)

∂v Q
(
u + V(u, τ ), τ

)
∂τV(u, τ ) + ∂τ Q

(
u + V(u, τ ), τ

)= 0.

Then, using this equalities and Eq. (50), one can prove (232).
Finally, recalling that ∂u T0(u) = p2

0(u) and P (v, τ ) = p0(v) + P1(v, τ ) and applying Proposition
7.17 and the mean value theorem,

‖∂u T − ∂u T0‖κ2,d1,σ �
∥∥p0(u)

(
P1
(
u + V(u, τ ), τ

)+ p0
(
u + V(u, τ )

)− p0(u)
)∥∥

σ

� b7|μ|εη+1. �
7.2.5. Proof of Theorem 4.8

The proof of Theorem 4.8 follows the same steps as the proof of Theorem 4.4. For this reason, in
this section we only explain which are the main differences.

First, let us point out that the operator Gε defined in (175) can be also applied to functions defined
in Du

κ3,d2
× Tσ if one takes as u1, u1 the vertices of Du

κ3,d2
(see Fig. 2) and as ρ the left endpoint of

the interval Du
κ3,d2

∩R. Now the paths of integration cannot be straight lines. Nevertheless, it is easy
to see that Gε satisfies the same properties as the ones stated in Lemma 7.3 but applied to functions
defined in the new domain.

Then, if one considers Banach spaces analogous to Eν,σ , with ν > 0, given in (174), for functions
defined in Du

κ3,d2
× Tσ , one can prove Proposition 7.4, but looking for the function T1 as the ana-

lytic continuation of the function obtained in Corollary 7.22 instead of the function T1 obtained in
Proposition 6.4 and Proposition 6.10.

The rest of the proof follows the same lines as the proof of Proposition 7.4.
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7.3. The first asymptotic term of the invariant manifolds near the singularities for the case 	 = 2r

In the case η = 0 and 	 − 2r = 0, we need a better knowledge of the first asymptotic terms of the
invariant manifolds close the singularities of the unperturbed separatrix u = ±ia. In the next result,
we obtain them for the unstable invariant manifold close to u = ia. The other cases can be done
analogously.

For real, 2π -periodic in τ , analytic functions h : Du
κ3,d2

×Tσ →C, we define the Fourier norm

‖h‖ν,σ =
∑
k∈Z

sup
(u,τ )∈Du

κ3,d2
×Tσ

∣∣(u2 + a2)νh[k](u)
∣∣e|k|σ

being, as usual, h[k] the k-Fourier coefficient of h.
The next proposition will be used later in Section 9.

Proposition 7.23. Let us assume 	 − 2r = 0, and let Q j and F j be the functions defined in (79) and (80)
respectively (see also Remark 4.14) and the constant C+ given in (13) and (14).

Then, there exists a real-analytic function ξ : Du
κ3,d2

×Tσ →C, satisfying that:

‖ξ‖2r+1−1/q,σ � K |μ|εη+1,

where r = α/β has been defined in Hypothesis HP2 and, for (u, τ ) ∈ Du
κ3,c2

× Tσ , the functions T u obtained
respectively in Proposition 7.4 (case α0(u) 
= 0) and Proposition 7.17 (general case), are such that

∥∥∥∥∂u T1(u, τ ) − 2rμεη+1C2+
(u − ia)2r+1

(
F0(τ ) + μ〈Q 0 F1〉

)+ ξ(u, τ )

∥∥∥∥
2r+2,σ

� K |μ|εη+2. (233)

Proof. We prove Proposition 7.23 in the polynomial case. Taking into account Remark 4.14, the proof
of the trigonometric case is completely analogous.

We only deal with the case p0(u) 
= 0 being the other case analogous. For this reason we will only
take into account the previous results in this case. In fact we will see that Proposition 7.23 is also
valid for (u, τ ) ∈ Dout,u

ρ ′
1,κ ′

0
where ρ ′

1 and κ ′
0 are the constants for which Proposition 7.4 holds.

We first obtain the asymptotic expansion for the function ∂v T̂1(v, τ ) obtained in Proposition 7.4,
which is defined for (v, τ ) ∈ Dout,u

ρ ′
1,κ ′

0
×Tσ and then we use the change variables v = u +h(u, τ ) defined

in Lemma 7.6.
To obtain the asymptotic expansion, we decompose ∂v T̂1 into several parts taking into account

that ∂v T̂1 is a fixed point of the operator J in (187) and that we know explicitly J (0). We use
the functions Ai defined in (159), (160), (161) respectively, the change of variables g obtained in
Lemma 7.6 and the operator J in (187). We take

∂v T̂1 =
7∑

i=1

Di(v, τ )

with

D1(v, τ ) = A0(v, τ ) (234)

D2(v, τ ) = Gε

(
∂v A1
(

v + g(v, τ ), τ
))

(235)

D3(v, τ ) = Gε

(
∂v A2(v, τ )

)
(236)
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D4(v, τ ) = Gε

(
∂v
[
∂v A2(v, τ )g(v, τ )

])
(237)

D5(v, τ ) = Gε

(
∂v
[

A2
(

v + g(v, τ ), τ
)− ∂v A2(v, τ )g(v, τ ) − A2(v, τ )

])
(238)

D6(v, τ ) = Gε

(
∂v
[

A3
(

v + g(v, τ ), τ
)])

(239)

D7(v, τ ) = J (∂v T̂1)(v, τ ) −J (0)(v, τ ). (240)

Let us point out that the sum of the first six terms is J (0). We bound each term. For the second
to the fifth terms, we follow the proof of Lemma 7.5, where the functions A1, A2 and A3 have been
bounded.

To bound (234), it is enough to recall that, by (186), D1 ∈ E0,ρ2,κ1,σ ⊂ E2r+1−1/β,ρ2,κ1,σ , to obtain

‖D1‖2r+1− 1
β

,σ � ‖D1‖0,σ � K |μ|εη+1.

To bound (235), we apply the bound of A1 obtained in (179) and use r � 1 to see that D2 ∈ Er+1,σ ⊂
E2r+1−1/β,σ and

‖D2‖2r+1− 1
β

,σ � ‖D2‖r+1,σ � K |μ|εη+1.

Since 〈A2〉 = 0, we can define a function A2 such that ∂τ A2 = A2 and 〈A2〉 = 0. Moreover, one can
write

D3 = Gε(∂v A2) = Gε

(
∂2
τ v A2
)= εGε

(
Lε(∂v A2)

)− εGε

(
∂2

v A2
)
.

Then, using the definition of Gε in (175) and applying Lemma 7.3, one can see that there exists a
function ξ̃3 ∈ E0,σ ⊂ E2r+1−1/β,σ , which satisfies,

‖̃ξ3‖2r+1− 1
β

,σ � K ‖̃ξ3‖0,σ � K |μ|εη+1,

such that

‖D3 − ε∂v A2 − ξ̃3‖2r+2,σ � K |μ|εη+2.

Moreover, recalling the definition of A2 in (160) and defining functions akl such that

∂τ akl = 0 and 〈akl〉 = 0 (241)

we have that

∂v A2(v, τ ) = −μ
∑

2�k+l�N

akl(τ )∂v
(
q0(v)k p0(v)l).

Then, recalling the definition of the functions Q j and F j in (79) and (80) and the constant C+ in (13),
∂v A2 satisfies

ε∂v A2(v, τ ) = 2rμεη+1C2+ F0(τ )

(v − ia)2r+1
+O
(

μεη+1

2r+1− 1
β

)
.

(v − ia)
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Therefore, there exists ξ3 ∈ E2r+1−1/β,ρ2,κ1,σ satisfying

‖ξ3‖2r+1− 1
β

,σ � K |μ|εη+1,

such that

∥∥∥∥D3(v, τ ) − 2rμεη+1C2+ F0(τ )

(v − ia)2r+1
− ξ3(v, τ )

∥∥∥∥
2r+2,σ

� K |μ|εη+2.

To bound (237), we first subtract its averaged term. Then, using Lemma 7.6 to bound g and ∂v g ,
Lemma 7.18 to bound the first and second derivatives of A2 and Lemma 7.3, we obtain

∥∥D4 − Gε

(
∂v〈∂v A2 · g〉)∥∥2r+2,σ

� K |μ|2εη+2.

On the other hand, using the definition of Gε in (175)

Gε

(
∂v〈∂v A2 · g〉)(v) = 〈∂v A2 · g〉(v) − 〈∂v A2 · g〉(−ρ ′

1

)
.

To obtain its leading term, first we look for the first order of the function g given in (180). Using the
definition of B1 in (151), the functions (241), the bounds of ∂v B1 in (158) and Lemma 7.3, we have
that ∥∥∥∥g(v, τ ) − μεη+1

∑
2�k+l�N

l�1

lakl(τ )q0(v)k p0(v)l−2
∥∥∥∥

1,σ

� K |μ|εη+2. (242)

Then, using the functions Q j and F j defined in (79) and (80) respectively, and taking into account
the definition of A2 in (160), there exists a function ξ4 ∈ E2r+1−1/β,ρ2,κ1,σ satisfying

‖ξ4‖2r+1− 1
β

,σ � K |μ|εη+1,

such that

Gε

(
∂v〈∂v A2 · g〉)= 2rμ2ε2η+1C2+〈Q 0 F1〉

(v − ia)2r+1
+ ξ4(u, τ ).

Therefore, one can see that

∥∥∥∥D4(v, τ ) − 2rμ2ε2η+1C2+〈Q 0 F1〉
(v − ia)2r+1

− ξ4(u, τ )

∥∥∥∥
2r+2,σ

� K |μ|2ε2η+2.

For (238), it is enough to apply Lemmas 7.3 and 7.6, the definition of A2 and the mean value theorem,
to obtain

‖D5‖2r+2,σ � K |μ|3ε3η+2.
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To bound (239), let us recall the definitions of A3 and Ĥ2
1 in (161) and (43). Then, it is enough to

apply Lemma 7.3, to obtain

‖D6‖2r+1− 1
β

,σ � ‖D6‖2r,σ � K |μ|εη+1.

Finally, for (240), it is enough to take into account the definitions of J and F̂ in (187) and (165) and
apply Lemmas 7.3, 7.5 and 7.8, which give,

∥∥J (∂v T̂1) −J (0)
∥∥

2r+2,σ
�
∥∥F̂(∂v T̂1) − F̂(0)

∥∥
2r+2,σ

�
∥∥B̂ · ∂v T̂1 + Ĉ(∂v T̂1, v, τ ) − Ĉ(0, v, τ )

∥∥
2r+2,σ

� K |μ|εη+1‖∂v T̂1‖2r+1,σ � K |μ|2ε2η+2.

Considering all the bounds of Di , we define

ξ(u, τ ) = D1(u, τ ) + D2(u, τ ) + ξ3(u, τ ) + ξ4(u, τ ) + D6(u, τ ).

Then, ξ ∈ E2r+1−1/β,σ satisfying

‖ξ‖2r+1− 1
β

,σ � K |μ|εη+1,

and then we have∥∥∥∥∂v T̂1(v, τ ) − 2rμεη+1C2+
(v − ia)2r+1

(
F0(τ ) + μ〈Q 0 F1〉

)− ξ(u, τ )

∥∥∥∥
2r+2,σ

� K |μ|εη+2. (243)

To finish the proof of Proposition 7.23, one has to consider the change of variables v = u + h(u, τ )

defined in Lemma 7.6 to obtain

∂u T1(u, τ ) = (1 + ∂uh(u, τ )
)−1

∂v T̂1
(
u + h(u, τ ), τ

)
.

Then, the bounds of h and ∂uh in Lemma 7.6 and (243), finish the proof of the proposition. �
8. Approximation of the invariant manifolds in the inner domains

8.1. Case 	 < 2r: proof of Proposition 4.10

We prove the results stated in Proposition 4.10 concerning the unstable manifold. The proof of
the results concerning the stable one follows the same lines. To obtain the bound of ∂u T u

1 (u, τ ) −
∂uT u

0 (u, τ ), we first bound ∂v T̂ u
1 (v, τ ) − ∂vT u

0 (v, τ ) where T̂ u
1 is the function obtained in Theo-

rems 4.4 and 4.8, which is defined for (v, τ ) ∈ Du
κ3,d2

× Tσ , and T u
0 is the function defined in (63).

Then, we will use the change of variables v = u + h(u, τ ) defined in Lemma 7.6 to obtain the bound
stated in Proposition 4.10.

Let us define first v3 and v4 the leftmost and rightmost vertices of the inner domain D in,+,u
κ3,c1 (see

Fig. 5). Then, we can define the operator

G̃ε(h)(v, τ ) =
∑

G̃ε(h)[k](v)eikτ , (244)

k∈Z
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where its Fourier coefficients are given by

G̃ε(h)[k](v) =
v∫

v3

eikε−1(t−v)h[k](t)dt for k > 0

G̃ε(h)[0](v) =
v∫

v4

h[0](t)dt

G̃ε(h)[k](v) =
v∫

v4

eikε−1(t−v)h[k](t)dt for k < 0.

It can be easily seen that this operator satisfies analogous properties to the ones satisfied by the op-
erator Gε defined in (175), which are given in Lemma 7.3. Let us consider also the Fourier expansions

h1(v, τ ) = H1
(
q0(v), p0(v), τ

)=∑
k∈Z

H [k]
1 (v)eikτ and

Â(v, τ ) = A
(

v + g(v, τ ), τ
)=∑

k∈Z
Â[k](v)eikτ ,

where H1 is the function defined in (9) and (10), A is the function defined in (150) and g has been
given in Lemma 7.6.

First, we observe that, since ∂v T̂1 =J (∂v T̂1), where the operator J is defined in (187),

∂v T̂1(v, τ ) = G̃ε(∂v A)(v, τ ) +
4∑

i=1

Ni(v, τ )

with:

N1(v, τ ) = A0(v, τ ) (245)

N2(v, τ ) = J (∂v T̂1)(v, τ ) −J (0)(v, τ ) (246)

N3(v, τ ) = −G̃ε(∂v Â)(v, τ ) + Gε(∂v Â)(v, τ ) (247)

N4(v, τ ) = G̃ε(∂v Â)(v, τ ) − G̃ε(∂v A)(v, τ ). (248)

Second we split ∂vT u
0 as:

∂vT u
0 = −μεηG̃ε(∂vh1)(v, τ ) − N5,

where

N5(v, τ ) = μεη
∑
k>0

v3∫
−∞

eikε−1(t−v)∂v H [k]
1 (t)dt

+ μεη
∑
k�0

v4∫
eikε−1(t−v)∂v H [k]

1 (t)dt. (249)
−∞
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Finally, we use the definition of A in (150) and Ĥ1 in (40), and the fact that, as the periodic orbit
does not depend on v ,

∂v
(

V
(
xp(τ )

)+ H1
(
xp(τ ), yp(τ ), τ

))= 0

to obtain

G̃ε(∂v A)(v, τ ) + μεηG̃ε(∂vh1)(v, τ ) = −yp(τ )p0(u) + xp(τ )ṗ0(u) (250)

+ N6 + N7 + N8 (251)

with

N6 = −μεηG̃ε∂v
(

H1
(
q0(v) + xp(τ ), p0(v) + yp(τ ), τ

)− H1
(
q0(v), p0(v), τ

))
(252)

N7 = −G̃ε∂v
(

V
(
q0(u) + xp(τ )

)− V
(
q0(u)

)− V ′(q0(u)
)
xp(τ )

)
(253)

N8 = G̃ε∂v
(−V ′(q0(u)

)
xp(τ ) + V ′(xp(τ )

)
q0(u)

+ μεη
(
q0(u)∂x H1

(
xp(τ ), yp(τ ), τ

)+ p0(u)∂y H1
(
xp(τ ), yp(τ ), τ

)))
+ yp(τ )p0(u) − xp(τ )ṗ0(u). (254)

Finally we obtain:

∂v T̂1(v, τ ) − ∂vT u
0 = −yp(τ )p0(u) + xp(τ )ṗ0(u) +

8∑
i=1

Ni(v, τ ).

Now, we proceed to bound N1, . . . , N8.
To bound N1 in (245), it is enough to recall that, by (186), N1 ∈ E0,ρ ′

1,κ ′
0,σ and

‖N1‖0,σ � K |μ|εη+1.

For N2 in (246), it is enough to consider the bound of ∂v T̂1 given in Proposition 7.4 and the
Lipschitz constant of the operator J in (187) restricted to the ball B(|μ|εη+1) ⊂ E	+1,ρ ′

1,κ ′
0,σ , which

has been obtained in the proof of Lemma 7.8. Then,

‖N2‖0,σ � K
ε−(	+1)

(κ ′
0)

	+1
‖N2‖	+1,σ

� K |μ|ε−(	+1)+η+1−max{0,	−2r+1}‖∂v T̂1‖	+1,σ

� K |μ|2ε2η−	+1−max{0,	−2r+1}.

To bound N3 in (247) we observe that 〈N3〉 = 0 and

N[k]
3 (v) = eikε−1(v3−v)

v3∫
u1

eikε−1(t−v3)
(
∂v Â[k])(t)dt for k > 0

N[0]
3 (v) = Â[0](v) − Â[0](v4)
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N[k]
3 (v) = eikε−1(v4−v)

v4∫
u1

eikε−1(t−v4)
(
∂v Â[k])(t)dt for k < 0.

Taking into account that the operator G̃ε satisfies also the properties of the operator Gε given in
Lemma 7.3, and using the bounds of g and ∂v A given in Lemmas 7.6 and 7.5 respectively, we obtain
the following bounds. For k 
= 0,

∥∥N[k]
3

∥∥
0,σ

�
∥∥G̃ε

(
∂v Â[k](v)eikτ )∥∥

0,σ

� Kε
∥∥∂v Â[k](v)eikτ

∥∥
0,σ

� Kε1−(	+1)γ
∥∥∂v Â[k](v)eikτ

∥∥
	+1,σ

� K |μ|εη+1−(	+1)γ .

For k = 0, we have that

∥∥N[0]
3

∥∥
0,σ

� K
∥∥ Â[0]∥∥

0,σ
� Kε−	γ

∥∥ Â[0]∥∥
	,σ

� K |μ|εη−	γ .

Finally, note that in the case 	 = 0, we have that the change g obtained in Lemma 7.6 satisfies g = 0.
Then Â = A, which implies 〈 Â〉 = 0. Therefore when 	 = 0 we have that N[0]

3 = 0. Taking this fact into
account, we can bound N3 by

‖N3‖0,σ � K |μ|εη−	+ν∗
2 ,

where

ν∗
2 =
{

	(1 − γ ) if 	 > 0
1 − γ if 	 = 0.

For N4 in (248), one has to consider the bound of ∂v A given in Lemma 7.5 and the bound of g
restricted to the inner domain given in Corollary 7.7. Then, using again the bounds analogous to the
ones given in Lemma 7.3, but to the operator G̃ε ,

‖N4‖0,σ � K‖ Â − A‖0,σ � K‖∂v A‖0,σ ‖g‖0,σ � K |μ|2ε2η−	+ν∗
1

with ν∗
1 is defined in Corollary 7.7.

For N5 in (249), it is enough to take into account that 〈h1〉 = 0, that h1 has a ramified point of
order 	 at u = ia and that both v3 and v4 satisfy |vi − ia| = O(εγ ), i = 3,4. Then, bounding the
integrals as in Lemma 6.2 and 6.8, one has that

‖N5‖0,σ � K |μ|εη+1‖∂vh1‖0,σ � K |μ|εη+1−γ (	+1).

To bound N6 in (252) we first use the mean value theorem to obtain

∥∥H1
(
q0(v) + xp(τ ), p0(v) + yp(τ ), τ

)− H1
(
q0(v), p0(v), τ

)∥∥ � |μ|εη−	+r .
0,σ
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Then, using that G̃ε has similar properties to the ones given in Lemma 7.3 for the operator Gε we
obtain

‖N6‖0,σ � K |μ|2ε2η−	+r .

The bound for N7 in (253) comes from applying the mean bound theorem to the function

V
(
q0(u) + xp(τ )

)− V
(
q0(u)

)− V ′(q0(u)
)
xp(τ )

and using that V ′′(q0(u)) has a pole of second order, the bound of the periodic orbit and the proper-
ties of G̃ε . Then, we obtain

‖N7‖0,σ � K
∥∥V
(
q0(u) + xp(τ )

)− V
(
q0(u)

)− V ′(q0(u)
)
xp(τ )

∥∥
0,σ

� K |μ|2ε2η = K |μ|2ε(η−	)+(η+	).

To bound N8 in (254), we write it as

N8 = G̃ε

(
∂v N0

8

)+ yp(τ )p0(u) − xp(τ )ṗ0(u)

with

N0
8(v, τ ) = −V ′(q0(u)

)
xp(τ ) + V ′(xp(τ )

)
q0(u)

+ μεη
(
q0(u)∂x H1

(
xp(τ ), yp(τ ), τ

)+ p0(u)∂y H1
(
xp(τ ), yp(τ ), τ

))
.

Using that −V ′(q0(u)) = ṗ0(u), q̇0(u) = p0(u) and that the periodic orbit satisfies Eqs. (37), one has

N0
8(v, τ ) = ṗ0(u)xp(τ ) − ε−1∂τ yp(τ )q0(u) − p0(u)yp(τ ) + ε−1∂τ xp(τ )p0(u)

= −Lε

(
yp(τ )q0(u)

)+Lε

(
xp(τ )p0(u)

)
.

Therefore N8 can be written as

N8 = G̃ε∂vLε

(−yp(τ )q0(u) + xp(τ )p0(u)
)+ yp(τ )p0(u) − xp(τ )ṗ0(u)

= G̃εLε

(−yp(τ )p0(u) + xp(τ )ṗ0(u)
)− (−yp(τ )p0(u) + xp(τ )ṗ0(u)

)
.

Then, using that G̃ε satisfies an analogous property to the one given for Gε in the last item of
Lemma 7.3:

‖N8‖0,σ � K |μ|εη+1−(r+1)γ .

Now, choosing γ such that

1 − (r + 1)γ > −	,

that is,

γ <
	 + 1
r + 1
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and considering all the bounds of Ni and taking

ν∗ = min
{
ν∗

2 , ν∗
1 ,1 − max{0, 	 − 2r + 1}, r, 	, 	 + 1 − (r + 1)γ

}
,

we obtain

∥∥∂v T̂1(v, τ ) − ∂vT0(v, τ )
∥∥

0,σ
� K |μ|εη−	+ν∗

.

To finish the proof of Proposition 4.10, it is enough to consider the change of variables v = u +h(u, τ )

defined in Lemma 7.6 and its bounds restricted to the inner domains given in Corollary 7.7.

8.2. Case 	 � 2r: proof of Theorem 4.16

This section is devoted to obtain good approximations of the invariant manifolds in the inner
domains defined in (36) for the case 	 � 2r.

First in Section 8.2.1 we define the Banach spaces that will be used in the forthcoming sections
and we state some technical lemmas. In Section 8.2.2 we prove Theorem 4.16.

8.2.1. Banach spaces and technical lemmas
We start by defining some norms. Given ν ∈ R and an analytic function h : Din,+,u

κ,c → C, where

Din,+,u
κ,c is the domain defined in (36), we consider

‖h‖ν,κ,c = sup
z∈Din,+,u

κ,c

∣∣zνh(z)
∣∣.

Then, for analytic functions h : Din,+,u
κ,c × Tσ → C which are 2π -periodic in τ , we define the corre-

sponding Fourier norm

‖h‖ν,κ,c,σ =
∑
k∈Z

∥∥h[k]∥∥
ν,κ,ce|k|σ

and the function space

Zν,κ,c,σ = {h : Din,+,u
κ,c ×Tσ →C; analytic, ‖h‖ν,κ,c,σ < ∞} (255)

which can be checked that is a Banach space for any ν ∈R.
If there is no danger of confusion about the definition domain Din,+,u

κ,c we will denote

‖ · ‖ν,σ = ‖ · ‖ν,κ,c,σ and Zν,σ = Zν,κ,c,σ .

The next lemma gives some properties of these Banach spaces.

Lemma 8.1. Let c, κ > 0.

1. If ν1 � ν2 , Zν2,σ ⊂Zν1,σ . Moreover,

‖h‖ν2,σ � K

κν2−ν1
‖h‖ν1,σ .
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Fig. 11. The inner domain Din,+,u
κ,c defined in (70) and the transition domain I+,u

c,c defined in (260).

2. If h ∈Zν1,σ and g ∈Zν2,σ , then hg ∈Zν1+ν2,σ and

‖hg‖ν1+ν2,σ � ‖h‖ν1,σ ‖g‖ν2,σ .

3. Let h ∈Zν,κ,c,σ and ĉ < c, then, ∂xh ∈Xν,2κ,ĉ,σ and

‖∂xh‖ν,2κ,ĉ,σ � K

κ
‖h‖ν,κ,c,σ .

Throughout this section we are going to solve equations of the form Lh = g and Lh = ∂z g , where

L = ∂z + ∂τ . (256)

To solve these equations we consider operators G and G , which are defined “acting on the Fourier
coefficients”.

Let us consider z1 and z2 the vertices of the inner domain Din,+,u
κ,c (see Fig. 11). As we have done in

Section 7.2.2 to invert the operator Lε = ε−1∂τ + ∂v , we invert L integrating from z1 or z2 depending
on the harmonic.

We define the operators

G(h)(z, τ ) =
∑
k∈Z

G(h)[k](z)eikτ , (257)

where the Fourier coefficients are given by

G(h)[k](z) =
z∫

z1

e−ik(z−s)h[k](s)ds for k < 0

G(h)[k](z) =
z∫

z

e−ik(z−s)h[k](s)ds for k � 0
2
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and

G(h)(z, τ ) =
∑
k∈Z

G(h)[k](z)eikτ , (258)

where its Fourier coefficients are given by

G(h)[k](z) = h[k](z) − e−ik(z−z1)h[k](z1) − ik

z∫
z1

e−ik(z−s)h[k](s)ds for k < 0

G(h)[0](z) = h[0](z) − h[0](z2)

G(h)[k](z) = h[k](z) − e−ik(z−z2)h[k](z2) − ik

z∫
z2

e−ik(z−s)h[k](s)ds for k > 0.

The next lemma gives some properties of these operators. Its proof is analogous to the one of
Lemma 5.5 in [37].

Lemma 8.2. Let κ, c, ν > 0 and γ ∈ (0,1). Then,

1. The operator G :Zν+1,σ →Zν,σ is well defined. Moreover, if h ∈Zν+1,σ ,

∥∥G(h)
∥∥
ν,σ

� K‖h‖ν+1,σ .

2. The operator G :Zν,σ →Zν,σ is well defined. Moreover, if h ∈Zν,σ ,

∥∥G(h)
∥∥
ν,σ

� Kεγ −1‖h‖ν,σ .

3. The operator G :Zν,σ →Zν,σ is well defined. Moreover, if h ∈Zν,σ ,

∥∥G(h)
∥∥
ν,σ

� K‖h‖ν,σ .

8.2.2. Proof of Theorem 4.16
We rewrite Theorem 4.16 in terms of the Banach space (255).

Proposition 8.3. Let γ ∈ (0, γ2), where

γ2 = β(	 − 2r + 1)

β(	 − 2r + 1) + 1
, (259)

c1 > 0, ε0 > 0 small enough and κ6 > max{κ3, κ5} big enough, where κ5 are the constants defined in Theo-
rems 4.8 and 4.12 respectively. Let,

ϕ = ψu − ψu
0 ,

where ψu is the function in (67)and ψ0 is the function obtained in Theorem 4.12. Then, for ε ∈ (0, ε0), we
have ϕ ∈Z2r− 1 ,κ6,c1,σ and there exists a constant b10 > 0 such that
β
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‖∂zϕ‖2r− 1
β

,κ6,c1,σ � b10ε
1
β ,

where r = α/β has been defined in (13).

Remark 8.4. We emphasize that Proposition 8.3 implies straightforwardly Theorem 4.16. Indeed, we
observe that the only restriction is about the range of values of γ ∈ (0, γ2). Let us denote by D in

γ the

inner domain defined by γ . It is clear that, if γ � γ2 > γ1, then D in
γ ⊂ D in

γ1
and henceforth the result

holds also for values of γ � γ2.
We need to impose this condition about γ just for technical reasons.

In the proof of this proposition we will refer several times to the bounds given in Theorem 4.12. In
fact, we need these bounds expressed in terms of the Fourier norm, which are given in Proposition 4.8
of [3], instead of the ones given in this theorem, which use the classical supremum norm.

Let us point out that using the bounds of Proposition 4.8 of [3] and Corollary 7.22 leads to a bound
of ∂zϕ of order 1 with respect to ε. Nevertheless, this bound is too rough to prove later the asymptotic
formula for the splitting of separatrices and therefore we will need the improved estimates given in
Proposition 8.3.

The proof of Proposition 8.3 goes as follows. First in Section 8.2.2.1 we obtain a (non-
homogeneous) linear partial differential equation satisfied by ϕ = ψ − ψ0. Then, in Section 8.2.2.2,
we obtain quantitative estimates of ∂zϕ in the transition domain I+,u

c,c defined as

I±,u
c,c = {z ∈C; ia + εz ∈ Dout,u

ρ2,cεγ ∩ D in,±,u
κ,c

}
, (260)

where ∗ = u, s (see Fig. 11), which allow us to obtain an integral equation satisfied by ∂zϕ . Finally,
in Sections 8.2.2.3 and 8.2.2.4 we obtain the improved bound for ∂zϕ for the cases 	 − 2r > 0 and
	 − 2r = 0 respectively, proving Proposition 8.3.

8.2.2.1. The Hamilton–Jacobi equation First we look for the equation satisfied by

ϕ = ψ − ψ0. (261)

Subtracting the Hamilton–Jacobi equations (68) and (71), one obtains

∂τϕ +H(∂zψ0 + ∂zϕ, z, τ ) −H0(∂zψ0, z, τ ) = 0.

Taking into account that we already know the existence of ϕ , we know that it is also solution of

Lϕ = W(∂zϕ, z, τ ), (262)

where L is the operator defined in (256) and

W(w, z, τ ) = −L(z, τ ) −
(

Q 1(τ )
μ̂

z	−2r
+ M(z, τ )

)
w, (263)

where Q 1 is the function defined in (79) and

L(z, τ ) = H(∂zψ0, z, τ ) −H0(∂zψ0, z, τ ) (264)

M(z, τ ) =
1∫
∂wH
(
∂zψ0(z, τ ) + s∂zϕ(z, τ ), z, τ

)
ds − 1 − Q 1(τ )

μ̂

z	−2r
, (265)
0
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where H and H0 are the Hamiltonians defined in (69) and (74) respectively. Even if M depends on ϕ ,
since its existence is already known, M can be seen as a function depending on the variables z and τ ,
and then Eq. (262) can be seen as a linear equation. This fact simplifies considerably the obtention of
the estimates for ϕ .

Let us point out that the term μ̂Q 1(τ )z−(	−2r) in (263) behaves in a completely different way in
the cases 	 − 2r > 0 and 	 − 2r = 0, since in the first case is small for z ∈ Din,+,u

κ,c and in the second
is not. For this reason, we split the proof of Proposition 8.3 into these two cases.

Finally in this section, we state the following lemma, which gives some properties of the functions
involved in Eq. (262).

Lemma 8.5. Let κ � κ5 and c > 0. The functions L and M defined in (264) and (265) respectively, satisfy the
following properties.

1. L ∈Z2r− 1
β

,κ,c,σ and satisfies

‖L‖2r− 1
β

,κ,c,σ � Kε
1
β .

2. M ∈Z0,κ,c,σ and satisfies

‖M‖0,κ,c,σ � K

κ	−2r+1
.

Proof. We prove the lemma in the polynomial case. The trigonometric case can be done analogously
taking into account Remark 4.14.

First we bound L. Using the definitions of H, H , Ĥ and H0 in (69), (46), (39) and (74) respectively,
we split it as L = L1 + L2 + L3 + L4 with

L1(z, τ ) = 1

2

(
C2+

ε2r p2
0(ia + εz)

− z2r
)

(∂zψ0)
2

L2(z, τ ) = ε2r

C2+

(
V
(
q0(ia + εz) + xp(τ )

)− V
(
xp(τ )

)− V ′(xp(τ )
)
q0(ia + εz)

)− 1

2z2r

L3(z, τ ) = μ̂ε	

C2+
Ĥ1

1

(
q0(ia + εz), C2+ε−2r∂zψ0(z, τ ), τ

)
− μ̂

z	

∑
(r−1)k+rl=	

akl(τ )
Ck+l−2+
(1 − r)k

(
z2r∂zψ0(z, τ )

)l
L4(z, τ ) = μ̂ε	+1

C2+
Ĥ2

1

(
q0(ia + εz), C2+ε−2r∂zψ0(z, τ )

)
.

Taking into account the properties of p0(u) in (13) and Theorem 4.12, one can see that

‖L1‖2r− 1
β

,κ,c,σ � Kε
1
β .

For L2 one has to take into account that V (q0(u)) = −p2
0(u)/2, use (16) and the bound of xp(τ ) in

Proposition 5.5. Then, one obtains

‖L‖2r− 1 ,κ,c,σ � Kε
1
β .
β
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To bound the third term, using the definition of Ĥ1
1 in (41) and also (13), one can rewrite it as

L3(z, τ ) = μ̂ε	−(r−1)k−rl
∑

2�k+l�N

akl(τ )
Ck+l−2+
(1 − r)k

(
1

zr−1
+O
(

ε
1
β

zr−1− 1
β

))k(
zr∂zψ

)l
− μ̂

z	

∑
(r−1)k+rl=	

akl(τ )
Ck+l−2+
(1 − r)k

(
z2r∂zψ0(z, τ )

)l
.

Then, it is easy to see that L3 ∈Z
	− 1

β
,κ,c,σ ⊂Z2r− 1

β
,κ,c,σ and

‖L3‖2r− 1
β

,κ,c,σ � K‖L3‖	− 1
β

,κ,c,σ � Kε
1
β .

The bound of L4 is straightforward.
For the bound of M , we split it as M = M1 + M2 + M3 with

M1(z, τ ) = ∂wH0(∂zψ0, z, τ ) − Q 1(τ )
μ̂

z	−2r
− 1

M2(z, τ ) =
1∫

0

(
∂wH0(∂zψ0 + s∂zϕ, z, τ ) − ∂wH0(∂zψ0, z, τ )

)
ds

M3(z, τ ) =
1∫

0

(
∂wH(∂zψ0 + s∂zϕ, z, τ ) − ∂wH0(∂zψ0 + s∂zϕ, z, τ )

)
ds

and we bound each term.
Taking into account the definitions of H0 and Q j in (74) and (79) respectively, and the properties

of ψ0 given by Theorem 4.12, one can see that M1 ∈ Z	−2r+1,κ,c,σ and ‖M1‖	−2r+1,κ,c,σ � K , which
implies

‖M1‖0,κ,c,σ � K

κ	−2r+1
.

For the second term, let us recall that, using the definition of T0 in (57), by Theorems 4.4 (see also
Section 7.2.5) and 4.12, we have an a priori estimate for ∂zϕ ,

‖∂zϕ‖	+1,κ,c,σ � K .

Then, it is enough to apply again the mean value theorem and the bounds of ψ0 in Theorem 4.12 to
obtain

‖M2‖0,κ,c,σ � K

κ	−2r+1
.

For M3, it is enough to proceed as in the bound for L to obtain

‖M3‖0,κ,c,σ � Kε
γ
β . �
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8.2.2.2. The initial condition in the transition domains To obtain better estimates of ∂zϕ we use an
integral equation. To obtain it from (262) we need initial conditions. Therefore, we take constants
c1 < c′

0 < c0 and we look for them in the transition domains I+,u
c0,c′

0
× Tσ , defined in (260) (see also

Fig. 11). In this domain, the next lemma gives sharp estimates for the function ∂zϕ . We abuse notation
and we use the norms defined in Section 7.2.4, even if here the suprema are taken in I+,u

c0,c′
0
.

Lemma 8.6. Let γ ∈ (0, γ2), where γ2 is defined in (259), and ε0 > 0 small enough. Then, for ε ∈ (0, ε0), the
function ∂zϕ restricted to I+,u

c0,c′
0

satisfies

‖∂zϕ‖0,σ � Kε
2r(1−γ )+ γ

β .

Proof. Considering the functions T = T0 + T1, obtained in Proposition 7.4 (see also Section 7.2.5), and

ψ0(z, τ ) = − 1

(2r − 1)z2r−1
+ μ̂ψ0(z, τ ) + K ,

obtained in Theorem 4.12, and recalling that ∂u T0(u) = p2
0(u), we split ∂zϕ as

∂zϕ(z, τ ) = ∂zψ(z, τ ) − ∂zψ0(z, τ )

= ε2r C2+
(
∂u T (εz + ia, τ ) − ∂u T0(εz + ia)

)
+
(
ε2r C2+p2

0(εz + ia) − 1

z2r

)
− μ̂∂zψ0(z, τ ).

We bound each term. For the first term it is enough to apply the result obtained in Proposition 7.4 to
obtain

∥∥ε2r C2+
(
∂u T (εz + ia, τ ) − ∂u T0(εz + ia)

)∥∥
0,σ

� Kε(1−γ )(	+1).

Then, since γ ∈ (0, γ2), (	 + 1)(1 − γ ) � 2r(1 − γ ) + γ
β

, we obtain the desired bound. For the second
term we use (13). Finally, the bound of the third term is a direct consequence of Proposition 4.8
of [3]. This proposition states the same results of Theorem 4.12 but bounds ψ0(z, τ ) using Fourier
norms instead of using classical supremum norm. �
8.2.2.3. The fixed point equation for 	 − 2r > 0 In this section we prove Proposition 8.3 under the
hypothesis 	 − 2r > 0. Let us define φ = ∂zϕ , which, using (262), is solution of

(Lφ)(z, τ ) = ∂z
[
W
(
φ(z, τ ), z, τ

)]
, (266)

where L = ∂τ + ∂z and W is the operator defined in (263). We use this equation to obtain bounds
for φ.

To invert the operator L= ∂τ + ∂z , we consider the operator G defined in (258). Since the operator
G is defined acting on the Fourier harmonics, we impose a different initial condition for each one.
Recall that for the negative harmonics we integrate from z1 ∈ Du,+

κ ′
5,c0

and for the positive and zero

harmonics from z2 ∈Du,+
κ ′

5,c0
(see Fig. 11) for a fixed κ ′

5 > κ5. Then, we define the function

W0(z, τ ) =
∑
k<0

∂zϕ
[k](z1)e−ik(z−z1)eikτ +

∑
k�0

∂zϕ
[k](z2)e−ik(z−z2)eikτ , (267)
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where ∂zϕ is the function bounded in Lemma 8.6. The next lemma, whose proof is straightforward,
gives some properties of this function.

Lemma 8.7. The function W0 defined in (267) satisfies:

1. LW0 = 0, where L= ∂τ + ∂z .
2. W0 ∈Z2r− 1

β
,σ and

‖W0‖2r− 1
β

,σ � Kε
1
β .

Then, the function φ is a solution of the integral equation

φ = W0 + G ◦W(φ).

We use a fixed point argument to obtain good estimates of φ. We study φ ∈Z2r− 1
β

,σ as a fixed point

of the operator

W = W0 + G ◦W. (268)

Lemma 8.8. Let γ ∈ (0, γ2), ε0 small enough and κ ′
5 > κ5 big enough. Then, for ε ∈ (0, ε0), the operator W

is contractive from Z2r− 1
β

,σ to itself.

Then, there exists a constant b10 > 0 such that φ , the unique fixed point of W , satisfies

‖φ‖2r− 1
β

,σ � b10ε
1
β .

Proof. W sends Z2r− 1
β

,σ to itself. To see that W is contractive from Z2r− 1
β

,σ to itself, let us consider

φ1, φ2 ∈Z2r− 1
β

,σ . Then, applying Lemmas 8.2 and 8.5 and the definition of W in (263), and increasing

κ ′
5 > 0 if necessary,

∥∥W(φ2) −W(φ1)
∥∥

2r− 1
β

,σ
� K
∥∥W(φ2) −W(φ1)

∥∥
2r− 1

β
,σ

� K

∥∥∥∥(Q 1(τ )
μ̂

z	−2r
+ M(z, τ )

)
· (φ2 − φ1)

∥∥∥∥
2r− 1

β
,σ

� K

(κ ′
5)

	−2r
‖φ2 − φ1‖2r− 1

β
,σ

� 1

2
‖φ2 − φ1‖2r− 1

β
,σ .

Then W is contractive from Z2r− 1
β

,σ to itself, and then it has a unique fixed point φ.

To obtain a bound for φ, it is enough to take into account that ‖φ‖2r− 1
β

,σ � 2‖W(0)‖2r− 1
β

,σ . By the

definition of W in (268), we have that W(0) = W0 + G(L). Then, applying Lemmas 8.2, 8.5 and 8.6,
there exists a constant b10 > 0 such that

∥∥W(0)
∥∥

2r− 1 ,σ
� ‖W0‖2r− 1 ,σ + ∥∥G(L)

∥∥
2r− 1 ,σ

� b10
ε

1
β .
β β β 2



3414 I. Baldomá et al. / J. Differential Equations 253 (2012) 3304–3439
Let us point out that since the fixed point of W is unique in Z2r− 1
β

,σ , the obtained function φ must

coincide with φ = ψu − ψu
0 , where ψu is the function defined in (67) and ψu

0 is the one given in
Theorem 4.12. �
8.2.2.4. The fixed point equation for 	 − 2r = 0 We devote this section to prove Proposition 8.3 under
the hypothesis 	 − 2r = 0. Now, the term μ̂Q 1(τ )z−(	−2r) = μ̂Q 1(τ ) in W (see (263)) is not small.
Then, following [3], the first step is to perform the change of variables

z = x + μ̂F1(τ ), (269)

where F1 is the function defined in (80). Then, we define

ϕ̂(x, τ ) = ϕ
(
x + μ̂F1(τ ), τ

)
,

which satisfies equation

Lϕ̂ = Ŵ(∂xϕ̂, x, τ ), (270)

with

Ŵ(w, x, τ ) = L
(
x + μ̂F1(τ ), τ

)+ M
(
x + μ̂F1(τ ), τ

)
w. (271)

We study this equation through a fixed point argument, as we have done in Section 8.2.2.3. Then, we
define φ̂ = ∂xϕ̂ , which is a solution of

Lφ̂ = ∂x
[
Ŵ(∂xφ̂, x, τ )

]
.

Let us take c′′
0 ∈ (c′

0, c0) and κ ′′
5 > κ5. Then, we look for φ̂ defined for (x, τ ) ∈Din,+,u

κ ′′
5 ,c′′

0
×Tσ .

To invert the operator L = ∂τ + ∂x , we consider the operator G defined in (258) and initial condi-
tions as we have done in Section 8.2.2.3. Thus, we define

Ŵ0(x, τ ) =
∑
k<0

∂zϕ
[k](x1 + μ̂F1(τ )

)
e−ik(x−x1)eikτ

+
∑
k�0

∂zϕ
[k](x2 + μ̂F1(τ )

)
e−ik(x−x2)eikτ , (272)

where x1 and x2 are the vertices of Din,+,u
κ ′′

5 ,c′′
0

. Since c′′
0 ∈ (c′

0, c0), x1, x2 ∈ I+,u
c0,c′

0
and then ∂zϕ is already

defined in xi + μF1(τ ), i = 1,2 and moreover, we can use the bounds in Lemma 8.6. Then, it is
straightforward to see that Ŵ0 satisfies the same properties as the function W0 given in Lemma 8.7.

The function φ̂ is a solution of the integral equation

φ̂ = Ŵ0 + G ◦ Ŵ(φ̂).

We study φ̂ ∈ Z2r− 1
β

,σ as a fixed point of the operator

W̃ = Ŵ0 + G ◦ Ŵ. (273)
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Lemma 8.9. Let γ ∈ (0, γ2), ε0 > 0 small enough and κ ′′
5 > κ5 big enough. Then, for ε ∈ (0, ε0), the operator

W̃ is contractive from Z2r− 1
β

,κ ′′
5 ,c′′

0,σ to itself.

Then, there exists a constant b10 > 0 such that φ̂, the unique fixed point of W̃ , satisfies

‖φ̂‖2r− 1
β

,κ ′′
5 ,c′′

0,σ � b10ε
1
β .

Proof. The proof of this lemma is completely analogous to the proof of Lemma 8.8. The only fact that
one has to take into account is that the functions L(x + μ̂F1(τ ), τ ) and M(x + μ̂F1(τ ), τ ) satisfy the
same properties as L(z, τ ) and M(z, τ ), which are given in Lemma 8.5. �

To prove Proposition 8.3 for 	 − 2r = 0, it is enough to undo the change of variables (269). Then,
taking φ(z, τ ) = φ̂(x − μ̂F1(τ ), τ ), we recover ∂zϕ which is defined for (z, τ ) ∈ D in,+,u

κ6,c1 × Tσ , where
c1 < c′′

0 and κ6 > κ ′′
5 .

9. An injective solution of the partial differential equation ˜Lεξ = 0

In this section we prove the existence and provide useful properties of a solution ξ0 of the equation
L̃εξ = 0 (see (83)) of the form

ξ0(u, τ ) = ε−1u − τ + C(u, τ ).

The function C must satisfy

LεC(u, τ ) = F(C)(u, τ ), (274)

where Lε is the operator in (51),

F(C)(u, τ ) = −ε−1G(u, τ ) − G(u, τ )∂uC(u, τ ) (275)

and G is the function defined in (85) (case 	− 2r < 0) and (103) (case 	− 2r � 0). We devote the rest
of the section to obtain a solution of this equation in both cases.

9.1. Banach spaces and technical lemmas

This section is devoted to define the Banach spaces and to state some technical lemmas which will
be used in Sections 9.2 and 9.3.

We start by defining some norms. Given ν � 0 and an analytic function h : Rκ,d → C, where Rκ,d
is the domain defined in (33), we consider

‖h‖ν,κ,d = sup
u∈Rκ,d

∣∣(u2 + a2)νh(u)
∣∣

‖h‖ln,κ,d = sup
u∈Rκ,d

∣∣ln−1
∣∣u2 + a2

∣∣ · h(u)
∣∣.

Moreover, for 2π -periodic in τ , analytic functions h : Rκ,d × Tσ → C, we consider the corresponding
Fourier norms
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‖h‖ν,κ,d,σ =
∑
k∈Z

∥∥h[k]∥∥
ν,κ,de|k|σ

‖h‖ln,κ,d,σ =
∑
k∈Z

∥∥h[k]∥∥
ln,κ,de|k|σ .

We consider, thus, the following function spaces

Xν,κ,d,σ = {h : Rκ,d ×Tσ →C; real-analytic, ‖h‖ν,κ,d,σ < ∞}
Xln,κ,d,σ = {h : Rκ,d ×Tσ →C; real-analytic, ‖h‖ln,κ,d,σ < ∞}, (276)

which can be checked that are a Banach spaces.
If there is no danger of confusion about the definition domain Rκ,d we will denote

‖ · ‖ν,σ = ‖ · ‖ν,κ,d,σ and Xν,σ = Xν,κ,d,σ .

In the next lemma, we state some properties of these Banach spaces.

Lemma 9.1. The following statements hold:

1. If ν1 � ν2 � 0, Xν1,σ ⊂Xν2,σ and moreover if h ∈Xν1,σ ,

‖h‖ν2,σ � K (κε)ν2−ν1‖h‖ν1,σ .

2. If 0 � ν1 � ν2 , Xν1,σ ⊂Xν2,σ and moreover if h ∈Xν1,σ ,

‖h‖ν2,σ � K‖h‖ν1,σ .

3. If h ∈Xν1,σ and g ∈Xν2,σ , then hg ∈Xν1+ν2,σ and

‖hg‖ν1+ν2,σ � ‖h‖ν1,σ ‖g‖ν2,σ .

4. Let d > d′ > 0 be such that d − d′ has a positive lower bound independent of ε, and h ∈ Xν,κ,d,σ . Then,
∂uh ∈Xν,2κ,d′,σ and satisfies

‖∂uh‖ν,2κ,d′,σ � K

κε
‖h‖ν,κ,d,σ .

Throughout this section we are going to solve equations of the form Lεh = g , where Lε is the
operator defined in (51). To find a right inverse of this operator in Rκ,d let us consider u1 = i(a − κε)

and u0 the left endpoint of Rκ,d ∩R. Then, we define the operator Gε as

Gε(h)(u, τ ) =
∑
k∈Z

Gε(h)[k](u)eikτ , (277)

where its Fourier coefficients are given by



I. Baldomá et al. / J. Differential Equations 253 (2012) 3304–3439 3417
Gε(h)[k](u) =
u∫

−u1

eikε−1(v−u)h[k](v)dv if k < 0

Gε(h)[0](u) =
u∫

u0

h[0](v)dv

Gε(h)[k](u) = −
u1∫

u

eikε−1(v−u)h[k](v)dv if k > 0,

where we make the integrals along any path contained in Rκ,d .
Let us point that we will apply this operator to functions defined in Rκ,d × Tσ with different

values of κ and d and then the definition of Gε depends on the domain.

Lemma 9.2. The operator Gε in (277) satisfies the following properties.

1. If h ∈Xν,σ for some ν � 0, then Gε(h) ∈Xν,σ and∥∥Gε(h)
∥∥
ν,σ

� K‖h‖ν,σ .

Furthermore, if 〈h〉 = 0, ∥∥Gε(h)
∥∥
ν,σ

� Kε‖h‖ν,σ .

2. If h ∈Xν,σ for some ν > 1, then Gε(h) ∈Xν−1,σ and∥∥Gε(h)
∥∥
ν−1,σ

� K‖h‖ν,σ .

3. If h ∈Xν,σ for some ν ∈ (0,1), then Gε(h) ∈X0,σ and∥∥Gε(h)
∥∥

0,σ
� K‖h‖ν,σ .

4. If h ∈X1,σ , then Gε(h) ∈Xln,σ and ∥∥Gε(h)
∥∥

ln,σ
� K‖h‖1,σ .

5. If h ∈Xν,σ for some ν � 0, then Gε(∂uh) ∈Xν,σ and∥∥Gε(∂uh)
∥∥
ν,σ

� K‖h‖ν,σ .

6. If h ∈Xν,σ for some ν � 0, then ∂uGε(h) ∈Xν,σ and∥∥∂uGε(h)
∥∥
ν,σ

� K‖h‖ν,σ .

7. If h ∈Xν,σ for some ν � 0, Lε ◦ Gε(h) = h and

Gε ◦Lε(h)(v, τ ) = h(v, τ ) −
∑
k<0

eikε−1(−u1−u)h[k](−u1) − h[0](u0) −
∑
k>0

eikε−1(u1−u)h[k](u1).
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Proof. The first four statements are straightforward. For the fifth one, one has to integrate by parts
and for the sixth one has to apply Leibnitz rule. �
9.2. Case 	 < 2r: proof of Theorem 4.17 and Proposition 4.18

9.2.1. Proof of Theorem 4.17
Theorem 4.17 is a straightforward consequence of the following proposition.

Proposition 9.3. Let d2 > 0 and κ3 > 0 be defined in Theorem 4.8, d3 < d2 , ε0 > 0 small enough and κ7 > κ3
big enough, which might depend on the previous constants. Then, for ε ∈ (0, ε0) and any κ � κ7 such that
εκ < a, there exists a function C : Rκ,d3 ×Tσ → C that satisfies equation (274).

Moreover,

(
ξ0(u, τ ), τ

)= (ε−1u − τ + C(u, τ ), τ
)

is injective and there exists a constant b11 > 0 independent of ε, μ and κ such that

‖C‖0,σ � b11|μ|εη

‖∂uC‖0,σ � b11κ
−1|μ|εη−1.

To prove this proposition, first we split G into several terms. Recall that, since 	 − 2r < 0, the
perturbation Ĥ1 in (40) is a polynomial of degree one in p. Then, G can be split as G = G1 + G2 + G3
with

G1(u, τ ) = μεη p0(u)−1∂p Ĥ1
1

(
q0(u), p0(u), τ

)
(278)

G2(u, τ ) = μεη+1 p0(u)−1∂p Ĥ2
1

(
q0(u), p0(u), τ

)
(279)

G3(u, τ ) = ∂u T s
1(u, τ ) + ∂u T u

1 (u, τ )

2p2
0(u)

. (280)

The next lemma gives several properties of these functions.

Lemma 9.4. Let us consider any κ > κ3 and d < d2 , where κ3 and d2 are the constants given in Theorem 4.8.
Then, the functions G1 , G2 and G3 defined in (278), (279) and (280) respectively, have the following properties.

1. G1 ∈X0,σ and it satisfies 〈G1〉 = 0 and

‖G1‖0,σ � K |μ|εη

‖∂v G1‖max{	−2r+1,0},σ � K |μ|εη.

2. G2 ∈X0,σ and it satisfies

‖G2‖0,σ � K |μ|εη+1.

3. G3 ∈Xmax{	−2r+1,0},σ and it satisfies

‖G3‖max{	−2r+1,0},σ � K |μ|εη+1.
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Proof. The proof of the statements about G1 and G2 are straightforward, using the bounds obtained
in Corollary 5.6 for G2. For G3, one has to take into account the bounds for T u

1 obtained in Proposi-
tion 7.4 and the analogous bounds that T s

1 satisfies. �
To prove Proposition 9.3, we first perform a change of variables which reduces the linear terms of

Eq. (274).

Lemma 9.5. Let κ7 > κ ′
3 > κ3 and d3 < d′

2 < d2 . Then, for ε > 0 small enough, there exists a function g which
is solution of the equation

Lε g(v, τ ) = G1(v, τ ),

where G1 is the function defined in (278). Moreover, it satisfies that

‖g‖0,κ ′
3,d′

2,σ � K |μ|εη+1, ‖∂v g‖max{	−2r+1,0},κ ′
3,d′

2,σ � K |μ|εη+1

and that u = v + g(v, τ ) ∈ Rκ3,d2 for (v, τ ) ∈ Rκ ′
3,d′

2
×Tσ .

Moreover, the change (u, τ ) = (v + g(v, τ ), τ ) is invertible and its inverse is of the form (v, τ ) =
(u + h(u, τ ), τ ). The function h is defined in the domain Rκ7,d3 ×Tσ and it satisfies

‖h‖0,κ7,d3,σ � K |μ|εη+1

and that u + h(u, τ ) ∈ Rκ ′
3,d′

2
for (u, τ ) ∈ Rκ7,d3 ×Tσ .

Furthermore, we need precise bounds of both functions g and h restricted to the inner domain
D in,+,u

κ7,c defined in (36). These bounds are given in next corollary, whose proof is straightforward. We
abuse notation and we use the norms defined in Section 9.1 for functions restricted to the inner
domain.

Corollary 9.6. Let c1 > 0 be the constant defined in Corollary 7.7 and let also c2 > c1 . Then, the functions g ad
h obtained in Lemma 9.5 restricted to the inner domains D in,+,u

κ ′
3,c1

and D in,+,u
κ7,c2 respectively satisfy the following

bounds

‖g‖0,κ ′
3,d′

2,σ � K |μ|εη+1+(2r−	)γ and ‖h‖0,κ7,d3,σ � K |μ|εη+1+(2r−	)γ .

Proof of Lemma 9.5. From Lemma 9.4, 〈G1〉 = 0 and then we can define a function G1 such that

∂τ G1 = G1 and 〈G1〉 = 0, (281)

which satisfies

‖G1‖0,κ ′
3,d′

2,σ � K |μ|εη

‖∂v G1‖max{	−2r+1,0},κ ′
3,d′

2,σ � K |μ|εη. (282)

Then, we can define g as

g(v, τ ) = εG1(v, τ ) − εGε(∂v G1)(v, τ ), (283)

where Gε is the operator defined in (277) adapted to the domain Rκ ′ ,d′ ×Tσ .

3 2
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Finally, applying Lemmas 9.4 and 9.2, one obtains the bounds for g and ∂v g . The other statements
are straightforward. �

We perform the change of variables u = v + g(v, τ ) given in Lemma 9.5 to Eq. (275) and we obtain

LεĈ = F̂(Ĉ), (284)

where Ĉ is the unknown

Ĉ(v, τ ) = C
(

v + g(v, τ ), τ
)

(285)

and

F̂(h) = M(v, τ ) + N(v, τ )∂vh (286)

with

M(v, τ ) = −ε−1G
(

v + g(v, τ ), τ
)

(287)

N(v, τ ) = − G(v + g(v, τ ), τ ) − G1(v, τ )

1 + ∂v g(v, τ )
. (288)

Next lemma gives some properties of these functions

Lemma 9.7. The functions M and N defined in (287) and (288) satisfy the following properties.

• Gε(M) ∈X0,κ ′
3,d′

2,σ and it satisfies

∥∥Gε(M)
∥∥

0,κ ′
3,d′

2,σ
� K |μ|εη.

• 〈M〉 ∈Xmax{	−2r+1,0},κ ′
3,d′

2,σ and it satisfies

∥∥〈M〉∥∥max{	−2r+1,0},κ ′
3,d′

2,σ
� K |μ|εη.

• ∂v M ∈Xmax{	−2r+1,0},κ ′
3,d′

2,σ and it satisfies

‖∂v M‖max{	−2r+1,0},κ ′
3,d′

2,σ � K |μ|εη−1.

• The function M restricted to (D in,+,u
κ,c1 ∩ D in,+,s

κ,c1 ) ×Tσ satisfies

‖M‖0,κ ′
3,d′

2,σ � K |μ|εη+ν−1∥∥〈M〉∥∥max{	−2r+1,0},κ ′
3,d′

2,σ
� K |μ|εη,

where

ν = min
{

1 − max{	 − 2r + 1,0}, (2r − 	)γ
}
. (289)
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• N ∈Xmax{	−2r+1,0},κ ′
3,d′

2,σ and it satisfies

‖N‖max{	−2r+1,0},κ ′
3,d′

2,σ � K |μ|εη+1

‖∂v N‖max{	−2r+1,0},κ ′
3,d′

2,σ � K
|μ|εη

κ ′
3

.

Proof. We split M as M = M1 + M2 with

M1(v, τ ) = −ε−1G1(v, τ )

M2(v, τ ) = −ε−1(G1
(

v + g(v, τ ), τ
)− G1(v, τ ) + G2

(
v + g(v, τ ), τ

)+ G3
(

v + g(v, τ ), τ
))

.

Then, for the first statement it is enough to use the properties of the functions G1, G2 and G3 given
by Lemma 9.4 and apply also Lemmas 9.2, 9.1 and 9.5. For the second and the third one has to
apply again Lemmas 9.4, 9.1 and 9.5, taking also into account for the second that 〈M1〉 = 0. Besides,
these lemmas, for the fourth statement, one has to consider also the bound of the change g in the
inner domain, which is given in Corollary 9.6. For the last statement, it is enough to apply again
Lemmas 9.4, 9.1 and 9.5. �

With the bounds obtained in Lemma 9.7, we can look for a solution of Eq. (284) through a fixed
point argument. For that purpose, we define the operator

F̃ = Gε ◦ F̂, (290)

where Gε and F̂ are the operators defined in (277) and (286) respectively. For convenience, we
rewrite F̂ as

F̂(h)(u, τ ) = M(u, τ ) + ∂v
(
N(v, τ )h(v, τ )

)− ∂v N(v, τ )h(v, τ ). (291)

Lemma 9.8. Let ε0 > 0 be small enough and κ ′
3 > κ3 big enough. Then, the operator F̃ defined in (290) is

contractive from X0,κ ′
3,d′

2,σ to itself.
Thus, it has a unique fixed point, which moreover satisfies

‖Ĉ ‖0,κ ′
3,d′

2,σ � K |μ|εη

‖∂v Ĉ ‖0,κ ′
3,d′

2,σ � K
|μ|εη−1

κ ′
3

.

Proof. To see that F̃ is contractive, let h1,h2 ∈ X0,κ ′
3,d′

2,σ . Then, recalling the definition of F̃ and F̂
in (290) and (291) respectively and applying Lemmas 9.2, 9.1 and 9.7,

∥∥F̃(h2) − F̃(h1)
∥∥

0,κ ′
3,d′

2,σ
�
∥∥Gε∂v

(
N · (h2 − h1)

)∥∥
0,κ ′

3,d′
2,σ

+ ∥∥Gε

(
∂v N · (h2 − h1)

)∥∥
0,κ ′

3,d′
2,σ

� K‖N‖0,κ ′
3,d′

2,σ ‖h2 − h1‖0,κ ′
3,d′

2,σ

+ K‖∂v N‖max{	−2r+1,0},κ ′
3,d′

2,σ ‖h2 − h1‖0,κ ′
6,d′

2,σ

� K |μ|εη

κ ′ ‖h2 − h1‖0,κ ′
3,d′

2,σ .

3
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Then, increasing κ ′
3 if necessary, F̃ is contractive from X0,κ ′

3,d′
2,σ to itself and then it has a unique

fixed point.
To obtain a bound for the fixed point Ĉ , it is enough to recall that

‖Ĉ ‖0,κ ′
3,d′

2,σ � 2
∥∥F̃(0)

∥∥
0,κ ′

3,d′
2,σ

.

By the definition of F̃ in (290), F̃(0) = Gε(M). Then, applying Lemma 9.7, we obtain the bound for
Ĉ . For the bound of ∂v Ĉ it is enough to reduce slightly the domain and apply the fourth statement of
Lemma 9.1. �
Proof of Proposition 9.3. To recover C from Ĉ it is enough to consider the change of variables v =
u +h(u, τ ) obtained in Lemma 9.5, which is defined for (u, τ ) ∈ Rκ7,d3 ×Tσ with κ7 > κ ′

3 and d3 < d′
2.

Applying this change, one obtains C which satisfies the bounds of C and ∂uC stated in Proposition
9.3. To check that (ξ0(u, τ ), τ ) is injective, it is enough to see that for (u1, τ ), (u2, τ ) ∈ Rκ7,d3 ×Tσ ,

ε−1u2 − τ + C(u2, τ ) = ε−1u1 − τ + C(u1, τ )

implies u2 = u1. To prove this fact, it is enough to take into account the just obtained bound of ∂uC ,
which gives

|u2 − u1| = ε
∣∣C(u2, τ ) − C(u1, τ )

∣∣
� K |μ|εη

κ7
|u2 − u1|.

Then, increasing κ7 if necessary, one can see that u2 = u1. �
9.2.2. Proof of Proposition 4.18

To prove Proposition 4.18 it is enough to study the first asymptotic terms of the function Ĉ ob-
tained in Lemma 9.5. For that purpose, we define

M̃(v, τ ) = M(v, τ ) − 〈M〉(v) (292)

and we split Ĉ as Ĉ = E1 + E2 + E3 with

E1(v) = Gε

(〈M〉)(v) (293)

E2(v, τ ) = Gε(M̃)(v, τ ) (294)

E3(v, τ ) = F̃(Ĉ) − F̃(0). (295)

Let us point out that the sum of the first two terms corresponds to F̃(0). We study each term sepa-
rately. We abuse notation and we use the same norms as in the previous section but now for functions
defined in (D in,+,u

κ,c1 ∩ D in,+,s
κ,c1 ) ×Tσ .

For E1, using the definition of Gε in (277), one has that

E1(v, τ ) =
v∫

v

〈M〉(w)dw
0
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and then, if we consider v1 = i(a − κ ′
3ε) the upper vertex of the domain Rκ ′

3,d3
(see Fig. 3), we can

define

C(μ,ε) =
v1∫

v0

〈M〉(w)dw, (296)

which by Lemmas 9.2 and 9.7 satisfies

∥∥C(μ,ε)
∥∥

0,σ
� K |μ|εη.

Then

∥∥E1 − C(μ,ε)
∥∥

0,σ
� K |μ|εη+(2r−	)γ .

To bound E2 defined in (294), we first recall that 〈M̃〉 = 0. Then we can define a function M such that

∂τ M = M̃ and 〈M〉 = 0,

which satisfies that for (v, τ ) ∈ (D in,+,u
κ,c1 ∩ D in,+,s

κ,c1 ) ×Tσ ,

‖M‖0,σ � K |μ|εη+ν−1,

where ν is the constant defined in (289). Then, we can write E2 as

E2 = εGε ◦Lε(M) − εGε(∂v M)

and therefore, by Lemma 9.2,

‖E2‖0,σ � K |μ|εη+ν .

For E3 in (295), it is enough to consider the bound of the Lipschitz constant of the operator F̃ given
in the proof of Lemma 9.8, which gives

‖E3‖0,σ � K
|μ|ε2η

κ ′
3

.

Thus, we have that

∥∥Ĉ − C(μ,ε)
∥∥

0,σ
� K

|μ|εη

κ ′
3

.

To finish the proof of Proposition 4.18, it is enough to consider the change of variables v = u +
h(u, τ ) obtained in Lemma 9.5. Since h restricted to the inner domains satisfies the bounds given in
Corollary 9.6, this change of variables does not change the asymptotic first order of C .



3424 I. Baldomá et al. / J. Differential Equations 253 (2012) 3304–3439
9.2.3. An asymptotic formula for C(μ,ε)

When η = 0, the constant C(μ,ε) considered in Theorem 2.4 satisfies that limε→0 C(μ,ε) = C0(μ)

for a certain function C0(μ) analytic in μ. We devote this section to prove this fact. This proof follows
the same lines as the one of Proposition 4.18 in Section 9.2.2 and, therefore, we only sketch it. Recall
that throughout this section we assume η = 0.

We split the constant C(μ,ε) as C(μ,ε) = C1(μ,ε) + C2(μ,ε) + C3(μ,ε) and we obtain the cor-
responding first orders in ε, which we call C i

0(μ) for i = 1,2,3. Then, the function C0(μ) will be
given by C0(μ) = C1

0(μ) + C2
0(μ) + C3

0(μ).
Recall that C(μ,ε) has been defined as (296) where v0 is the left endpoint of Rκ ′

3,d3
∩ R, v1 =

i(a −κ ′
3ε) is the upper vertex of the domain Rκ ′

3,d3
(see Fig. 3) and M is the function defined in (287).

To obtain the constants C i we split M as M = M1 + M2 + M3 with

Mi(v, τ ) = −ε−1Gi
(

v + g(v, τ ), τ
)

for i = 1,2,3, (297)

where Gi , i = 1,2,3, are the functions defined in (278), (279) and (280) and g is the function obtained
in Lemma 9.5. Then,

C i(μ,ε) =
v1∫

v0

〈
Mi 〉(v)dv.

To define C1
0 , we expand M1 with respect to ε. Using the formulas (283) for g and (278) for G1,

one can easily see that for (v, τ ) ∈ Rκ ′
3,d3

×Tσ ,

M1(v, τ ) = −ε−1G1(v, τ ) − ∂v G1(v, τ )G1(v, τ ) +O
(

με

(v − ia)max{0,2−ν1}

)
for certain ν1 > 0. Recall that by Lemma 9.4, we have that 〈G1〉 = 0 and therefore this first term
does not contribute to C1(μ,ε). The second term, that is −∂v G1(v, τ )G1(v, τ ), is independent of ε.
Moreover, using the properties of G1 stated in Lemma 9.4, one can see that it can be analytically
extended to reach v = ia and that it satisfies

−∂v G1(v, τ )G1(v, τ ) = O
(

μ

(v − ia)max{0,1−ν ′
1}

)
for certain ν ′

1 > 0. Therefore, one can define

C1
0(μ) = −

ia∫
v0

〈
∂v G1(v, τ )G1(v, τ )

〉
dv, (298)

which is a constant independent of ε. Finally it can be easily seen that∣∣C1(μ,ε) − C1
0(μ)
∣∣� K |μ|εν ′′

1 (299)

for a suitable ν ′′
1 > 0.

To obtain C2
0(μ), let us first point out that, following the proof of Theorem 4.1, one can see that

the parameterization of the periodic orbit satisfies(
xp(τ ), yp(τ )

)= (εx0
p(τ ), εy0

p(τ )
)+O

(
με2), (300)
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where (x0
p(τ ), y0

p(τ )) is independent of ε. Using this fact, one can easily deduce that the functions ckl

involved in the definition of Ĥ2
1 in (43) satisfy

ckl(τ ) = c0
kl(τ ) +O(με),

for adequate functions c0
kl(τ ) independent of ε. Therefore, Ĥ2

1 satisfies

Ĥ2
1(q, p, τ ) = εĤ20

1 (q, p, τ ) + ε2 Ĥ22
1 (q, p, τ ), (301)

where Ĥ20
1 (q, p, τ ) is independent of ε. Taking into account the definition of M2 in (297) and recalling

that for (v, τ ) ∈ Rκ ′
3,d3

×Tσ ,

p0(v)−1 Ĥ20
1

(
q0(v), p0(v), τ

)= O
(
(v − ia)2r−	

)
,

we can define

C2
0(μ) = −μ

ia∫
v0

〈
p0(v)−1 Ĥ20

1

(
q0(v), p0(v), τ

)〉
dv. (302)

Then, the constant C2
0(μ) is independent of ε. Moreover, using Lemmas 9.2 and 9.4 and 9.5, one can

see that ∣∣C2(μ,ε) − C2
0(μ)
∣∣� K |μ|εν2 , (303)

for certain constant ν2 > 0.
To obtain C0

3(μ) we need a careful study of the function G3 in (280). To this end, we have to
expand asymptotically the functions ∂v T̂ u,s

1 (v, τ ) obtained in Theorems 4.4 and 4.8. To obtain this
expansion we consider Eq. (164) for (v, τ ) ∈ Rκ ′

3,d3
×Tσ .

As a first step we expand the function A(u, τ ) defined in (150). It can be seen that it satisfies

A(u, τ ) = A0(u, τ ) + εA1(u, τ ) +O
(

με2

(v − ia)	

)
,

where

A0(u, τ ) = −μĤ1
1

(
q0(u), p0(u), τ

)
(304)

A1(u, τ ) = −μĤ20
1

(
q0(u), p0(u), τ

)− V ′(q0(u)
)
x0

p(τ ) + λ2x0
p(τ ), (305)

where Ĥ1
1, Ĥ20

1 and x0
p are the functions defined in (41), (301) and (300) respectively, and λ is the

constant defined in Hypothesis HP1.1. Recall that in the parabolic case, we have that x0
p(τ ) = 0. It is

clear that both A0 and A1 are independent of ε.
From this expansion, one can deduce the expansion of the function Â defined in (166). Let us first

recall that the change of variables g obtained in Lemma 7.6 can be written as

g(v, τ ) = −εB1(v, τ ) +O
(

με2

(v − ia)max{1+	−2r,0}

)
,

where B1 is the function defined on the proof of Lemma 7.6, which is independent of ε.



3426 I. Baldomá et al. / J. Differential Equations 253 (2012) 3304–3439
Therefore,

Â(v, τ ) = Â0(v, τ ) + ε Â1(v, τ ) +O
(

με2

(v − ia)	+2+2(	−2r)

)
,

with

Â0(v, τ ) = A0(v, τ )

Â1(v, τ ) = A1(v, τ ) − ∂v A0(v, τ )B1(v, τ ).

Using this fact and the properties of the functions B̂ and Ĉ in (167) and (168), one can see that the
functions T̂ u,s

1 (v, τ ) obtained in Theorems 4.4 and 4.8 satisfy that

∂v T̂ u,s
1 (v, τ ) = ε∂v T̂ 0

1 (v, τ ) +O
(

με2

(v − ia)max{0,2+	−ν3}

)

for certain ν3 > 0. The first order ∂v T̂ 0
1 (v, τ ) is defined by ∂v T̂ 0

1 (v, τ ) = ∂v A0(v, τ ) + 〈 Â1〉(v), where
A0 is a function satisfying that ∂τ A0 = A0 and 〈A0〉 = 0. Then, ∂v T̂ 0

1 (v, τ ) is independent of ε and can
be analytically extended to reach v = ia.

Taking into account the properties of the change g stated in Lemma 7.6, one can see that the
function ∂u T1(u, τ ) has the same expansion as the function ∂v T̂1(v, τ ).

We can define

C3
0(μ) = −

ia∫
v0

〈
p0(v)−2∂v T 0

1 (v, τ )
〉
dv, (306)

which is a constant independent of ε. Doing little effort, it can be seen also that

∣∣C3(μ,ε) − C3
0(μ)
∣∣� K |μ|εν ′

3 (307)

for certain ν ′
3 > 0.

Finally, it is enough to define C0(μ) = C1
0(μ) + C2

0(μ) + C3
0(μ) where C i

0(μ) are the constants de-
fined in (298), (302) and (306). It is straightforward to see that C0(μ) is an entire function. Moreover,
by (299), (303) and (307), it is clear that

lim
ε→0

C(μ,ε) = C0(μ).

9.3. Case 	 � 2r: Proof of Theorem 4.21 and Proposition 4.22

9.3.1. Proof of Theorem 4.21
Theorem 4.21 is a straightforward consequence of the following proposition.

Proposition 9.9. Let d2 > 0 and κ6 > 0 be defined in Theorem 4.8 and Proposition 8.3, d3 < d2 , ε0 > 0 small
enough and κ8 > κ6 big enough, which might depend on the previous constants. Then, for ε ∈ (0, ε0) and any
κ � κ8 such that εκ < a, there exists a function C : Rκ,d3 ×Tσ → C that satisfies Eq. (274).
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Moreover,

(
ξ0(u, τ ), τ

)= (ε−1u − τ + C(u, τ ), τ
)

is injective and there exists a constant b15 > 0 such that

• If 	 − 2r > 0,

‖C‖	−2r,σ � b15|μ̂|ε	−2r

‖∂uC‖	−2r,σ � b15κ
−1|μ̂|ε	−2r−1.

• If 	 − 2r = 0,

‖C‖ln,σ � b15|μ̂|
‖∂uC‖1,σ � b15|μ̂|.

We split the proof into the two cases: 	 − 2r > 0 and 	 − 2r = 0.
Nevertheless we need to state some useful properties of the function G defined in (103).

Properties of the function G . We decompose the function G in (103) as G = G1 + G2 + G3 + G4 with

G1(u, τ ) = μ̂ε	−2r p0(u)−1∂p Ĥ1
1

(
q0(u), p0(u), τ

)
(308)

G2(u, τ ) = μ̂ε	−2r+1 p0(u)−1∂p Ĥ2
1

(
q0(u), p0(u), τ

)
(309)

G3(u, τ ) = 1

2

(
1 + μ̂ε	−2r∂2

p Ĥ1
1

(
q0(u), p0(u), τ

))∂u T s
1(u, τ ) + ∂u T u

1 (u, τ )

p2
0(u)

(310)

G4(u, τ ) = G(u, τ ) − G1(u, τ ) − G2(u, τ ) − G3(u, τ ), (311)

where Ĥ1
1 and Ĥ2

1 are the functions defined in (41) and (43). The next lemma gives some properties
of these functions.

Lemma 9.10. Let κ > κ6 and d < d2 , where κ6 an d0 are the constants defined in Theorems 8.3 and 4.7.
Then, the functions Gi , i = 1,2,3,4, defined in (308), (309), (310) and (311) respectively, have the following
properties.

1. G1 ∈X	−2r,σ and satisfies 〈G1〉 = 0 and

‖G1‖	−2r,σ � K |μ̂|ε	−2r .

Moreover,
• If 	 − 2r > 0, ∂u G1 ∈X	−2r+1,σ and satisfies

‖∂u G1‖	−2r+1,σ � K |μ̂|ε	−2r .

• If 	 − 2r = 0, ∂u G1 ∈X1− 1
β

,σ and satisfies

‖∂u G1‖1− 1
β

,σ � K |μ̂|.
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2. G2 ∈X	−2r,σ and satisfies

‖G2‖	−2r,σ � K |μ̂|2ε2(	−2r)+1.

Moreover,
• If 	 − 2r > 0, ∂u G2 ∈X	−2r+1,σ and satisfies

‖∂u G2‖	−2r+1,σ � K |μ̂|2ε2(	−2r)+1.

• If 	 − 2r = 0, ∂u G2 ∈X1− 1
β

,σ and satisfies

‖∂u G2‖1− 1
β

,σ � K |μ̂|2ε.

3. G3 ∈X	−2r+1,σ and satisfies

‖G3‖	−2r+1,σ � K |μ̂|ε	−2r+1.

Moreover,
• If 	 − 2r > 0, ∂u G3 ∈X	−2r+1,σ and satisfies

‖∂u G3‖	−2r+1,σ � Kκ−1|μ̂|ε	−2r .

• If 	 − 2r = 0, ∂u G3 ∈X2,σ and satisfies

‖∂u G3‖2,σ � K |μ̂|ε.

4. G4, ∂u G4 ∈X3(	−2r)+2,σ and satisfy

‖G4‖3(	−2r)+2,σ � K |μ̂|3ε3(	−2r)+2

‖∂u G4‖3(	−2r)+2,σ � Kκ−1|μ̂|3ε3(	−2r)+1.

Proof. The proof of the statements about G1 and G2 are straightforward, taking into account, for G2,
the bounds obtained in Corollary 5.6. For G3, one has to take into account the bounds for T u

1 obtained
in Proposition 7.4 and Corollary 7.22 and the analogous bounds that T s

1 satisfies. To obtain the bound
for its derivative, one can apply the fourth statement of Lemma 9.1. Analogously, one can obtain the
bounds for G4 and ∂u G4. �
Case �−2r > 0. To prove Proposition 9.9 for 	−2r > 0, we look for C as a fixed point of the operator

F = Gε ◦F, (312)

where Gε and F are the operators defined in (277) and (275) respectively. For convenience, we
rewrite F as

F(C)(u, τ ) = −ε−1G(u, τ ) − ∂u
(
G(u, τ )C(u, τ )

)+ ∂u G(u, τ )C(u, τ ). (313)

Then Proposition 9.9 is a consequence of the following lemma.
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Lemma 9.11. Let ε0 > 0 be small enough and κ8 > κ6 big enough. Then, for ε ∈ (0, ε0) and any κ � κ8 such
that εκ < a, the operator F defined in (312) is contractive from X	−2r,σ to itself.

Then, it has a unique fixed point C ∈X	−2r,σ , which moreover satisfies

‖C‖	−2r,σ � K |μ̂|ε	−2r

‖∂uC‖	−2r,σ � Kκ−1|μ̂|ε	−2r−1.

Before proving Lemma 9.11, we state the following technical lemma about the properties of the
function G defined in (103).

Lemma 9.12. Let us assume 	 − 2r > 0. Then, the function G defined in (103) has the following properties:

1. G ∈X	−2r,σ and satisfies

‖G‖	−2r,σ � K |μ̂|ε	−2r .

2. ∂u G ∈X	−2r+1,σ and satisfies

‖∂u G‖	−2r+1,σ � K |μ̂|ε	−2r .

3. Gε(G) ∈X	−2r,σ and satisfies

‖Gε(G)‖	−2r,σ � K |μ̂|ε	−2r+1.

Proof. The bounds for G and ∂u G are a direct consequence of Lemma 9.10. To obtain the bound for
Gε(G), it is enough to apply Lemma 9.2 and to take into account that 〈G1〉 = 0. �

Using the bounds given in this lemma, we can prove Lemma 9.11.

Proof of Lemma 9.11. Let C1,C2 ∈X	−2r,σ . By definition of F in (313) and Lemmas 9.1, 9.2 and 9.12

∥∥F(C2) −F(C1)
∥∥

	−2r,σ �
∥∥Gε

(
∂u
(
G · (C2 − C1)

))∥∥
	−2r,σ + ∥∥Gε

(
∂u G · (C2 − C1)

)∥∥
	−2r,σ

� K‖G‖0,σ ‖C2 − C1‖	−2r,σ + K‖∂u G‖1,σ ‖C2 − C1‖	−2r,σ

� K |μ̂|
κ	−2r

8

‖C2 − C1‖	−2r,σ .

Then, increasing κ8 if necessary, F is contractive from X	−2r,σ to itself, and then it has a unique fixed
point C ∈X	−2r,σ .

To obtain a bound for the fixed point C it is enough to recall that

‖C‖	−2r,σ � 2
∥∥F(0)

∥∥
	−2r,σ .

By the definition of F in (312), F(0) = −ε−1Gε(G). Then, applying Lemma 9.12, we obtain the bound
for C . Finally, to obtain the bound for ∂uC it is enough to reduce slightly the domain and apply the
fourth statement of Lemma 9.1. �
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Proof of Proposition 9.9 for � − 2r > 0. To prove Proposition 9.9 from Lemma 9.11, it only remains to
check that (ξ0(u, τ ), τ ) is injective in Rκ,d3 ×Tσ . We prove this fact as in the proof of Proposition 9.3,
that is, we check that if

ε−1u2 − τ + C(u2, τ ) = ε−1u1 − τ + C(u1, τ )

for (u1, τ ), (u2, τ ) ∈ Rκ,d3 × Tσ , then we have that u2 = u1. Indeed, by the bound of ∂uC given in
Lemma 9.11,

|u2 − u1| = ε
∣∣C(u2, τ ) − C(u1, τ )

∣∣
� K |μ̂|

κ	−2r+1
8

|u2 − u1|.

Then, increasing κ8 if necessary, one can see that u2 = u1. �
Case �− 2r = 0. We will prove Proposition 9.9 under the hypothesis 	− 2r = 0. Now, as happened in
Section 9.2, the linear term G1 in (308) of F in (275) is not small. Then, we perform again a change
of variables.

Lemma 9.13. Let κ8 > κ ′
6 > κ6 and d3 < d′

2 < d2 . Then, for ε > 0 small enough, there exists a function g
which is solution of the equation

Lε g(v, τ ) = G1(v, τ ),

where G1 is the function defined in (308). Moreover, it satisfies that

‖g‖0,κ ′
6,d′

2,σ � K |μ̂|ε, ‖∂v g‖1− 1
β

,κ ′
6,d′

2,σ � K |μ̂|ε

and that u = v + g(v, τ ) ∈ Rκ6,d2 for (v, τ ) ∈ Rκ ′
6,d′

2
×Tσ .

Furthermore, the change (u, τ ) = (v + g(v, τ ), τ ) is invertible and its inverse is of the form (v, τ ) =
(u + h(u, τ ), τ ). The function h is defined in the domain Rκ8,d3 ×Tσ , satisfies

‖h‖0,κ8,d3,σ � K |μ̂|ε

and that u + h(u, τ ) ∈ Rκ ′
6,d′

2
for (u, τ ) ∈ Rκ8,d3 ×Tσ .

Proof. From Lemma 9.10, 〈G1〉 = 0 and then we can define a function G1 such that

∂τ G1 = G1 and 〈G1〉 = 0, (314)

which satisfies

‖G1‖0,κ ′
6,d′

2,σ � K |μ̂|
‖∂v G1‖1− 1

β
,κ ′

6,d′
2,σ � K |μ̂|. (315)
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Then, we can define g as

g(v, τ ) = εG1(v, τ ) − εGε(∂v G1)(v, τ ), (316)

where Gε is the operator defined in (277) adapted to the domain Rκ ′
6,d′

2
×Tσ .

Finally, applying Lemma 9.10 and 9.2, one obtains the bounds for g and ∂v g . The other statements
are straightforward. �

We perform the change of variables u = v + g(v, τ ) given in Lemma 9.13 to Eq. (275) and we
obtain

LεĈ = M(v, τ ) + N(v, τ )∂v Ĉ, (317)

where Ĉ is the unknown

Ĉ(v, τ ) = C
(

v + g(v, τ ), τ
)

(318)

and

M(v, τ ) = −ε−1G
(

v + g(v, τ ), τ
)

(319)

N(v, τ ) = − G(v + g(v, τ ), τ ) − G1(v, τ )

1 + ∂v g(v, τ )
. (320)

Moreover, we want to have the first order terms in Ĉ , coming from G1, G2 and G3, in an explicit
form. For this purpose, we define

Ĉ0(v, τ ) = −G1(v, τ ) − ε−1Gε

(〈∂v G1 g〉)(v)

− ε−1Gε

(〈G2 + G3〉
)
(v), (321)

where G1 is the function defined in (314), g is the function given by Lemma 9.13 and G2 and G3 are
the functions defined in (309) and (310) respectively. The next lemma, whose proof is straightforward
applying Lemmas 9.2, 9.10 and 9.13, gives some properties of Ĉ0.

Lemma 9.14. The function Ĉ0 defined in (321) satisfies that

‖Ĉ0‖ln,κ ′
6,d′

2,σ � K |μ̂|, ‖∂v Ĉ0‖1,κ ′
6,d′

2,σ � K |μ̂|.

Then, we define

Ĉ1 = Ĉ − Ĉ0.

Taking into account Eq. (317), Ĉ1 is a solution of

Lε Ĉ1 = F̂(Ĉ1), (322)

where

F̂(h) = M̂(v, τ ) + N(v, τ )∂vh (323)
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and

M̂(v, τ ) = M(v, τ ) −Lε Ĉ0 + N(v, τ )∂v Ĉ0. (324)

We obtain Ĉ1 through a fixed point argument. For this purpose we define the operator

F̃ = Gε ◦ F̂, (325)

where F̂ and Gε are the operators defined (323) and (277). For convenience, we rewrite it as

F̂(h)(v, τ ) = M̂(v, τ ) + ∂v
(
N(v, τ )h(v, τ )

)− ∂v N(v, τ )h(v, τ ). (326)

Lemma 9.15. Let us consider ε0 > 0 small enough and κ ′
6 > κ6 big enough. Then, the operator F̃ is contractive

from X1,κ ′
6,d′

2,σ to itself.
Thus, it has a unique fixed point, which moreover satisfies that

‖Ĉ1‖1,κ ′
6,d′

2,σ � K |μ̂|ε

‖∂v Ĉ1‖1,κ ′
6,d′

2,σ � K
|μ̂|
κ ′

6
.

Before proving this lemma, we state the following lemma, whose proof is postponed to the end of
this section.

Lemma 9.16. The functions M̂ and N defined in (324) and (320) respectively, satisfy the following properties.

• Gε(M̂) ∈X1,κ ′
6,d′

2,σ and satisfies

∥∥Gε(M̂)
∥∥

1,κ ′
6,d′

2,σ
� K |μ̂|ε.

• N, ∂v N ∈X1,κ ′
6,d′

2,σ and satisfy

‖N‖1,κ ′
6,d′

2,σ � K |μ̂|ε

‖∂v N‖1,κ ′
6,d′

2,σ � K
|μ̂|
κ ′

6
.

Proof of Lemma 9.15. The operator F̃ sends X1,κ ′
6,d′

2,σ to itself. Let h1,h2 ∈X1,κ ′
6,d′

2,σ . Then, recalling

the definitions of F̃ and F̂ in (325) and (326) and applying Lemmas 9.2 and 9.16, one can see that

∥∥F̃(h2) − F̃(h1)
∥∥

1,κ ′
6,d′

2,σ
�
∥∥Gε∂v

(
N · (h2 − h1)

)∥∥
1,κ ′

6,d′
2,σ

+ ∥∥Gε

(
∂v N · (h2 − h1)

)∥∥
1,κ ′

6,d′
2,σ

� K‖N‖0,κ ′
6,d′

2,σ ‖h2 − h1‖1,κ ′
6,d′

2,σ + K‖∂v N‖1,κ ′
6,d′

2,σ ‖h2 − h1‖1,κ ′
6,d′

2,σ

� K |μ̂|
κ ′ ‖h2 − h1‖1,κ ′

6,d′
2,σ .
6
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and therefore, increasing κ ′
6 if necessary, F̃ is contractive in X1,κ ′

6,d′
2,σ and has a unique fixed

point Ĉ1. To obtain bounds for Ĉ1 it is enough to recall that

‖Ĉ1‖1,κ ′
6,d′

2,σ � 2
∥∥F̃(0)

∥∥
1,κ ′

6,d′
2,σ

.

By the definition of F̃ in (325), F̃(0) = Gε(M̂). Then, it is enough to apply Lemma 9.16 to obtain

‖Ĉ1‖1,κ ′
6,d′

2,σ � K |μ̂|ε.

For the bound of ∂v Ĉ1 it is enough to apply the fourth statement of Lemma 9.1 and rename κ ′
6. �

Proof of Proposition 9.9 for �−2r = 0. By Lemmas 9.14 and 9.15, we have that there exists a constant
b15 > 0 such that

‖Ĉ ‖ln,σ � b15|μ̂|
‖∂v Ĉ ‖1,σ � b15|μ̂|.

To recover C it is enough to consider the change of variables v = u + h(u, τ ) obtained in Lemma 9.13,
which is defined for (u, τ ) ∈ Rκ8,d3 ×Tσ with κ8 > κ ′

6 and d3 < d′
2. Applying this change, one obtains

C which satisfies the bounds stated in Proposition 9.9. To check that (ξ0(u, τ ), τ ) is injective, one can
proceed as in the proof of Proposition 9.9 for 	 − 2r > 0. Finally let us point out that it is easy to see
that this proposition is also satisfied taking any κ � κ8 such that εκ < a. �

It only remains to prove Lemma 9.16.

Proof of Lemma 9.16. We start by proving the second statement. Let us split the function N defined
in (320) as N = N1 + N2 with

N1(v, τ ) = −(1 + ∂v g(v, τ )
)−1(

G1
(

v + g(v, τ ), τ
)− G1(v, τ )

)
(327)

N2(v, τ ) = −(1 + ∂v g(v, τ )
)−1(

G2
(

v + g(v, τ ), τ
)+ G3

(
v + g(v, τ ), τ

)
+ G4
(

v + g(v, τ ), τ
))

. (328)

To bound N1, we apply Lemmas 9.13 and 9.10 and the mean value theorem, obtaining

‖N1‖1− 1
β

,κ ′
6,d′

2,σ � K |μ̂|2ε.

Applying the same lemmas, one can see that

‖N2‖1,κ ′
6,d′

2,σ � K |μ̂|ε

which gives the bound for N . To obtain the bound for ∂v N it is enough to apply the fourth statement
of Lemma 9.1 and to rename κ ′

6.
For the first statement, taking into account the definitions of M̂ and M in (319) and (324) respec-

tively, and using the functions Gi , i = 1,2,3,4, and G1 defined in (308), (309), (310), (311) and (314),
let us decompose M̂ as
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M̂(v, τ ) =
6∑

i=1

M̂i(v, τ )

with

M̂1(v, τ ) = ∂v G1(v, τ ) − ε−1(∂v G1(v, τ )g(v, τ ) − 〈∂v G1 g〉(v)
)

(329)

M̂2(v, τ ) = −ε−1(G1
(

v + g(v, τ ), τ
)− G1(v, τ ) − ∂v G1(v, τ )g(v, τ )

)
(330)

M̂3(v, τ ) = −ε−1(G2(v, τ ) + G3(v, τ ) − 〈G2 + G3〉(v)
)

(331)

M̂4(v, τ ) = −ε−1(G2
(

v + g(v, τ ), τ
)+ G3

(
v + g(v, τ ), τ

)− G2(v, τ ) − G3(v, τ )
)

(332)

M̂5(v, τ ) = −ε−1G4
(

v + g(v, τ ), τ
)

(333)

M̂6(v, τ ) = N(v, τ )∂v Ĉ0(v, τ ). (334)

We bound each term. For the first one, by Lemmas 9.13 and 9.10, we have that M̂1 ∈ X1− 1
β

,κ ′
6,d′

2,σ ⊂
X1,κ ′

6,d′
2,σ . Moreover, taking also into account (315),

‖M̂1‖1,κ ′
6,d′

2,σ � K |μ̂|

and therefore, since 〈M̂1〉 = 0, by Lemma 9.2,

∥∥Gε(M̂1)
∥∥

1,κ ′
6,d′

2,σ
� K |μ̂|ε.

For the term (330), it is enough to apply Lemmas 9.13 and Taylor’s formula to obtain M̂2 ∈
X2− 1

β
,κ ′

6,d′
2,σ ⊂X2,κ ′

6,d′
2,σ and

‖M̂2‖2,κ ′
6,d′

2,σ � K |μ̂|3ε.

Then, applying again Lemma 9.2, we have that,

∥∥Gε(M̂2)
∥∥

1,κ ′
6,d′

2,σ
� K |μ̂|3ε.

To bound (331), it is enough to apply Lemma 9.10 to see that M3 ∈X1,κ ′
6,d′

0,σ and

‖M̂3‖1,κ ′
6,d′

2,σ � K |μ̂|

which, using that 〈M̂3〉 = 0, implies

∥∥Gε(M̂3)
∥∥

1,κ ′
6,d′

2,σ
� K |μ̂|ε.

Applying the mean value theorem, using the definition of G3 in (310) and Proposition 7.23, and the
definition of G2 in (309), Lemmas 9.13 and 9.10, one can see that M̂4 in (332) satisfies

‖M̂4‖2,κ ′ ,d′ ,σ � K |μ̂|2ε

6 2
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and then

∥∥Gε(M̂4)
∥∥

1,κ ′
6,d′

2,σ
� K |μ̂|2ε.

For M̂5 in (333), it is enough to notice that, by Lemmas 9.10 and 9.2,

‖M̂5‖2,κ ′
6,d′

2,σ � K |μ̂|3ε

and

∥∥Gε(M̂5)
∥∥

1,κ ′
0,d′

2,σ
� K |μ̂|3ε.

Finally, for the last term (334), one has to apply the bound of N already obtained and Lemma 9.14, to
see that

‖M̂6‖2,κ ′
6,d′

2,σ � ‖N‖1,κ ′
6,d′

0,σ ‖∂v Ĉ0‖1,κ ′
6,d′

2,σ � K |μ̂|2ε.

Then, by Lemma 9.2, we have that,

∥∥Gε(M̂6)
∥∥

1,κ ′
6,d′

2,σ
� K |μ̂|2ε.

Joining all these bounds, we prove the first statement of Lemma 9.16 �
9.3.2. Proof of Proposition 4.22

To prove Proposition 4.22, it is enough to obtain the first asymptotic terms of the function Ĉ0
obtained in Lemma 9.14. From them, we can deduce the first order terms of Ĉ = Ĉ0 + Ĉ1, where Ĉ1 is
the function bounded in Lemma 9.15, and from them, using (318), the ones of C .

Recall that Ĉ0 has been defined in (321) as Ĉ0 = E1 + E2 + E3 + E4 with

E1(v, τ ) = −G1(v, τ ) (335)

E2(v) = −ε−1Gε

(〈∂v G1 g〉)(v) (336)

E3(v) = −ε−1Gε

(〈G2〉
)
(v) (337)

E4(v) = −ε−1Gε

(〈G3〉
)
(v), (338)

where G1, G2, G3 and G1 are the functions defined in (308), (309), (310) and (314) respectively and
g is the function given by Lemma 9.13.

We analyze each of the four terms Ei that give Ĉ0 for (v, τ ) ∈ (D in,+,u
κ ′

6,c1
∩ D in,+,s

κ ′
6,c1

)×Tσ . For the first

one (335), it is enough to recall that, by definition, the function F1 defined in (80) satisfies that

μ̂F1(τ ) = G1(ia, τ )

and therefore,

E1(v, τ ) = −G1(v, τ ) = −μ̂F1(τ ) +O(v − ia)
1
β .
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Then, using (104) and that |v − ia| � Kεγ ,

‖E1 + μF1‖1,σ � K |μ̂|ε.

For the second term, let us recall that by (316) and applying Lemma 9.2, we have that the function g ,
obtained in Lemma 9.13, satisfies

∥∥g − εG1(v, τ )
∥∥

1− 1
β

,σ
� K |μ̂|ε2.

Then, by Lemma 9.10, one can see that

∥∥∂v
(

g − εG1(v, τ )
)∥∥

2− 2
β

,σ
� K |μ̂|ε2

and therefore, using Lemma 9.2,

∥∥ε−1Gε

(
∂v
(

g − εG1(v, τ )
))∥∥

1,σ
� K |μ̂|ε.

Now it remains to bound, the first order of E3, which is given by

−μ̂

v∫
v0

〈∂v G1G1〉(w)dw,

where we recall that v0 ∈ Rκ ′
6,d3

.

Since 〈∂v G1G1〉 =O(v − ia)
1− 1

β , we can define the constant

C2(μ) = −μ̂

ia∫
v0

〈∂v G1G1〉(w)dw

and then, using (104), one has that

∥∥E2 − C2(μ̂)
∥∥

1,σ
� K |μ̂|2ε.

For the third term, by the definitions of G2 in (309) and Gε in (277), we have that

E3(v) = −μ̂

v∫
v0

〈
Ĥ2

1

〉
(w)dw

= −μ̂

ia∫
v0

〈
Ĥ2

1

〉
(w)dw +O(v − ia)

1
β .

Then, proceeding as for E2, we define
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C3(μ,ε) = −μ̂

ia∫
v0

〈
Ĥ2

1

〉
(w)dw

and using (104), we have that

∥∥E3 − C3(μ,ε)
∥∥

1,σ
� K |μ̂|ε.

To bound E4, using Proposition 7.23, we decompose G3 into two terms as G3 = G1
3 + G2

3, with

G1
3(v, τ ) = (1 + μ̂∂2

p Ĥ1
1

(
q0(u), p0(u), τ

))
p0(u)−2

(
2rμ̂εC2+

(v − ia)2r+1

(
F0(τ ) + μ̂〈Q 0 F1〉

)+ ξ(u, τ )

)
and G2

3 = G3 − G1
3. By Proposition 7.23, ‖G2

3‖2,σ � K μ̂ε2 and therefore

∥∥ε−1Gε

(〈
G2

3

〉)∥∥
2,σ

� K |μ̂|ε.

For the other term, using the definitions of Ĥ1
1, b, Q j and F j in (41), (81), (79) and (80), and recalling

that by Proposition 7.23, ξ ∈X1− 1
β

,σ , there exist a function ξ̂ ∈X1− 1
β

,σ , such that

〈
G1

3

〉
(v) = bμ̂2ε

v − ia
+ ξ̂ (v, τ ).

Then, one can see that there exists a constant C4(μ̂, ε) satisfying |C4(μ̂, ε)| � K |μ̂|, such that,

∥∥E4(v) + bμ̂2 ln(v − ia) − C4(μ̂, ε)
∥∥

1,σ
� K |μ̂|ε.

Taking C = C2 + C3 + C4 one obtains that

∥∥Ĉ(v, τ ) + μ̂F1(τ ) − C(μ̂, ε) + bμ̂2 ln(v − ia)
∥∥

1,σ
� K |μ̂|ε.

To finish the proof of Proposition 4.22, it is enough to consider the change of variables v = u +h(u, τ )

obtained in Lemma 9.13, which does not change the asymptotic first order of C . Let us note that to
see that C(μ,ε) has a well defined limit when ε → 0 one can easily proceed as we have done in the
case 	 − 2r < 0 in Section 9.2.3.
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