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1. Introduction

Markov-switching models are now widespread in applied macroeconomics and finance. By extending linear specifica-
tions with a discrete latent process that controls parameter switches, MS models have gained the ability to fit time series
subject to non-linearities. Inmacroeconomics, MSmodels have been introduced by Hamilton (1989) with the aim of captur-
ing the asymmetry of the business cycle. Kim and Nelson (1999a) and Mc Connell and Perez-Quiros (2000) have extended
the Hamilton model to account for the reduction in business cycle fluctuations known as the Great Moderation. Phillips
(1991) has applied the Hamilton model to a multi-country case. Ang and Bekaert (2002a) have underlined the usefulness
of a multivariate dimension when analyzing switches in the dynamics of the US, UK, and German short-term interest rates.
Favero and Monacelli (2005) and Sims and Zha (2006) have resorted to the MS VAR framework to detect shifts in the US
monetary and fiscal policy. Given the empirical evidence about the existence of policy regimes, the last generation of dy-
namic stochastic general equilibrium models includes Markov-switching policy reaction functions (see Davig and Leeper,
2007; Davig et al., 2004). In this context MS VAR models arise as fundamental solution of the forward-looking structural
equations (Farmer et al., 2009, 2011). MS models have also been intensively used in empirical finance to reproduce the fat
tails, leverage effects, volatility clustering, and time-varying correlations that characterizemany financial return series. Also
in this context switching regimes have been inserted into equilibrium models: Cecchetti et al. (1990, 1993), for instance,
have added regimes to the conventional asset pricing model through switching processes for dividends and consumption.
General discussions and additional references can be found in Krolzig (1997), Kim and Nelson (1999b), Fruhwirth-Schnatter
(2006), Ang and Timmermann (2011), and Guidolin (2012).
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The statistical properties ofMSVARmodels have been analyzed, among others, by Yang (2000), Francq andZakoian (2001,
2002), and Cavicchioli (2013, 2014). These studies focus on stationarity issues, on the first two unconditional moments, and
on the determination of the number of regimes. Timmermann (2000) derives the first four moments for univariate MS
models. In spite of their relevance, the higher-order moments are still unknown in the general multivariate case. We give
closed-form formulae for multivariate MS VAR processes as well as for the general class of MS state space models (see Kim,
1993, 1994). In an independent research paper, Cavicchioli (2015) also derives closed-form expressions for the moments of
MS VARMA models up to any order and proposes alternative measures of skewness and kurtosis.

The general MS VAR andMS state spacemodels are presented in Section 2.We focus onmodels where the discrete latent
variable takes a finite number of states with time-invariant transition probabilities. In Section 3, we derive formulae for the
higher-order moments for both MS VAR and MS SS models. The use of the higher-order moments is illustrated in Section 4
with two examples. Section 5 concludes. All proofs are given as supplementary material (see Appendix A).

2. Model and assumptions

Let (Ω, F , P ) be a probability space onwhich a vector process {εt} and aK -stateMarkov chain {St} are defined at discrete
time t . The first-order MS VAR process for the nx-dimensional vector {xt} is generated by the stochastic difference equation:

xt = αSt + ΦSt xt−1 + ΛSt εt . (2.1)
Specifications involving more lags can easily be cast into the formulation above through the VAR(1) companion form. The
following assumptions are supposed to hold:
(i) The nx-dimensional shocks {εt} verify εt ∼ iidN(0, Inx), where Inx denotes the nx × nx identity matrix.
(ii) The Markov chain {St} is homogeneous, irreducible, aperiodic, and non-null persistent. These conditions ensure

stationarity of {St} (see e.g. Grimmett and Stirzaker, 1992).
(iii) The processes {εt} and {St} are independent.
(iv) The nx×1 vector αSt , and the nx×nx matricesΦSt andΛSt take asmany values as the realization of St , i.e. αSt ∈ {α1, . . . ,

αK }, ΦSt ∈ {Φ1, . . . , ΦK }, and ΛSt ∈ {Λ1, . . . , ΛK }.

The variable xt may be unobserved. In this case it is typically related to a vector of ny observations yt through the
measurement equation:

yt = aSt + HSt xt + γSt ut . (2.2)
Eqs. (2.1)–(2.2) make up a MS state space model. The following additional assumptions are made:
(v) The nu-dimensional process {ut} is such that ut ∼ iiN(0, Inu).
(vi) The process {ut} is independent of {εt} and {St}.
(vii) The ny × 1 vector aSt , the ny × nx matrix HSt , and the ny × nu matrix γSt take K different values depending on the

realization of the discrete latent variable St .

Throughout the paper, we denote pjk the conditional probability pjk = P (St = k|St−1 = j) for j, k = 1, . . . , K , πk the
marginal probability of state k, i.e. πk = P (St = k), and π the K × K matrix with (π1, . . . , πK ) on the main diagonal and
zeros elsewhere. We call Jn,k the n × nK matrix Jn,k = [0n×n(k−1), In, 0n×n(K−k)], k = 1, . . . , K ; all together the K matrices
Jn,k sum to Jn =

K
k=1 Jn,k. For any two n × 1 vectors A and B we denote Rn the n2

× n2 commutation matrix such that
A ⊗ B = Rn(B ⊗ A). This commutation matrix can be built as Rn =

n
i=1

n
j=1(eie

′

j) ⊗ (eje′

i), ej being the n × 1 canonical
vector ej = [0′

j−1, 1, 0
′

n−j]
′ (see Magnus and Neudecker, 1999). For any integer m, we also define Pm(Φ) the Knm

x × Knm
x

matrix such that:

Pm(Φ) =


m times  

Φ1 ⊗ · · · ⊗ Φ1 p11 Φ1 ⊗ · · · ⊗ Φ1p21 · · · Φ1 ⊗ · · · ⊗ Φ1pK1
Φ2 ⊗ · · · ⊗ Φ2p12 Φ2 ⊗ · · · ⊗ Φ2p22 · · · Φ2 ⊗ · · · ⊗ Φ2pK2

...
...

...
...

ΦK ⊗ · · · ⊗ ΦKp1K ΦK ⊗ · · · ⊗ ΦKp2K · · · ΦK ⊗ · · · ⊗ ΦKpKK

 . (2.3)

Finally we denote ρ(M) the spectral radius of matrixM .

3. Multivariate measures of skewness and kurtosis

In macroeconomics and finance, non-linearities are typically analyzed through pairwise measures of skewness and
kurtosis such as:

Cov(wk
it , w

ℓ
jt)

V (wit)k/2V (wjt)ℓ/2
(3.1)

where wit and wjt are two scalar elements of a n-dimensional random vector wt with finite moments, V and Cov stand for
variance and covariance respectively, and k, ℓ are strictly positive integers whose sum k+ℓ = 3, 4 gives themoment order.
The case i = j yields the univariate higher order moments and i ≠ j the mixed-moments. All moments given by (3.1) can be
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collected into the n3
× 1 and n4

× 1 vectors:

Sk(wt; Σw) = E[Σ−1/2
w (wt − E(wt)) ⊗ Σ−1/2

w (wt − E(wt)) ⊗ Σ−1/2
w (wt − E(wt))]

Ku(wt; Σw) = E[Σ−1/2
w (wt − E(wt)) ⊗ Σ−1/2

w (wt − E(wt)) ⊗ Σ−1/2
w (wt − E(wt)) ⊗ Σ−1/2

w (wt − E(wt))] (3.2)

where E is the expectation and Σw is variance–covariance matrix of wt with zeros outside the main diagonal, i.e. Σw =

diag[V (wt)].
Mardia (1970) proposed alternative definitions of multivariate skewness and kurtosis known as β1,n and β2,n which

aggregate univariate and mix-moments. As shown in Kollo and Srivastava (2005) and Kollo (2008), Mardia’s statistics can
be easily retrieved from (3.2) since:

β1,n = tr{E[w⋆
t ⊗ w⋆′

t ⊗ w⋆
t ]

′E[w⋆
t ⊗ w⋆′

t ⊗ w⋆
t ]} = Sk(wt; Λw)′Sk(wt; Λw)

β2,n = tr{E[w⋆
t w⋆′

t ⊗ w⋆
t w⋆′

t ]} = Vec(In2)
′Ku(wt; Λw)

where tr represents trace, w⋆
t is such that w⋆

t = Λ
−1/2
w (wt − E(wt)), and Λw is any symmetric square root of V (wt). Other

measures of skewness and kurtosis can be found in the literature, for instance in Mori et al. (1993); they can be similarly
calculated using formula (3.2). Without loss of generality we focus on the measures of skewness and kurtosis given in (3.2).

3.1. Markov-switching vector autoregressive models

Given the MS VAR process {xt} in (2.1) with assumptions (i)–(iv), let us define zt the standardized variable zt =

Σ
−1/2
x (xt −E(xt))whereΣx = diag[V (xt)]. By construction Sk(xt; Σx) = E(zt ⊗zt ⊗zt) and Ku(xt; Σx) = E(zt ⊗zt ⊗zt ⊗zt).

It is easily checked that {zt} follows the MS VAR process:

zt = cSt + ΨSt zt−1 + ΩSt εt

cSt = Σ−1/2
x (αSt − E(xt) + ΦSt E(xt))

ΨSt = Σ−1/2
x ΦSt Σ

1/2
x

ΩSt = Σ−1/2
x ΛSt . (3.3)

Theorem 1 uses the auxiliary process {zt} for deriving the skewness and kurtosis for the general MS VAR process (2.1).

Theorem 1. Suppose {xt} follows the process (2.1) and that ρ(Pm(Φ)) < 1 for m ≤ 4. Then:
(I) the skewness of the vector xt is given by

Sk(xt; Σx) = Jn3x [IKn3x − P3(Ψ )]−1D (3.4)

where D is the Kn3
x × 1 vector D = (π1d1, π2d2, . . . , πKdK )′ whose n3

x × 1 elements dk are equal to:

dk = ck ⊗ ck ⊗ ck + A3


(Ωk ⊗ Ωk ⊗ ck)Vec(Inx)

+ [ck ⊗ ck + (Ωk ⊗ Ωk)Vec(Inx)] ⊗


Ψk

K
j=1

pjk
πj

πk
Σ−1/2

x [E(xt |St = j) − E(xt)]


+ (Ψk ⊗ Ψk ⊗ ck)
K

j=1

pjk
πj

πk
(Σ−1/2

x ⊗ Σ−1/2
x )

× [E(xt ⊗ xt |St = j) − E(xt |St = j) ⊗ E(xt) − E(xt) ⊗ E(xt |St = j) + E(xt) ⊗ E(xt)]

,

ck, Ψk and Ωk are defined in (3.3), the Kn3
x × Kn3

x matrix P3(Ψ ) is like in (2.3), Σx = diag[V (xt)], and the n3
x × n3

x matrix A3
is given below:

A3 = In3x + (Inx ⊗ Rnx) + (Rnx ⊗ Inx)(Inx ⊗ Rnx), (3.5)

(II) the kurtosis of the vector xt is given by

Ku(xt; Σx) = Jn4x [IKn4x − P4(Ψ )]−1M (3.6)

where P4(Ψ ) is like in (2.3), M is the Kn4
x ×1 vector M = (π1m1, π2m2, . . . , πKmK )′ whose n4

x ×1 elements mk are equal to:

mk = ck ⊗ ck ⊗ ck ⊗ ck + A4(ck ⊗ ck ⊗ Ωk ⊗ Ωk)Vec(Inx) + (Ωk ⊗ Ωk ⊗ Ωk ⊗ Ωk)B

+ Ã4


[ck ⊗ ck ⊗ ck + A3(Ωk ⊗ Ωk ⊗ ck)Vec(Inx)] ⊗


Ψk

K
j=1

pjk
πj

πk
Σ−1/2

x [E(xt |St = j) − E(xt)]
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+ A4[Ψk ⊗ Ψk ⊗ ck ⊗ ck + (Ψk ⊗ Ψk ⊗ Ωk ⊗ Ωk)Vec(Inx)]
K

j=1

pjk
πj

πk
(Σ−1/2

x ⊗ Σ−1/2
x )

× [E(xt ⊗ xt |St = j) − E(xt |St = j) ⊗ E(xt) − E(xt) ⊗ E(xt |St = j) + E(xt) ⊗ E(xt)]

+ Ã4(Ψk ⊗ Ψk ⊗ Ψk ⊗ ck)
K

j=1

pjk
πk

Jn3x ,j[IKn3x − P3(Ψ )]−1D,

where the matrix D is detailed in (I) above, the n4
x × n4

x matrix A4 and the n4
x-dimensional vector B verify:

A4 = In4x + (Inx ⊗ Rnx ⊗ Inx) + (Rnx ⊗ In2x )(Inx ⊗ Rnx ⊗ Inx)
+ (In2x ⊗ Rnx)(Inx ⊗ Rnx ⊗ Inx) + (In2x ⊗ Rnx)(Rnx ⊗ In2x )(Inx ⊗ Rnx ⊗ Inx)
+ (Inx ⊗ Rnx ⊗ Inx)(In2x ⊗ Rnx)(Rnx ⊗ In2x )(Inx ⊗ Rnx ⊗ Inx) (3.7)

B = Vec(In2x + Rnx) + Vec(Inx) ⊗ Vec(Inx) (3.8)

and the n4
x × n4

x matrix Ã4 is such as

Ã4 = In4x + (In2x ⊗ Rnx) + (Inx ⊗ Rnx ⊗ Inx)(In2x ⊗ Rnx) + (Rnx ⊗ In2x )(Inx ⊗ Rnx ⊗ Inx)(In2x ⊗ Rnx). (3.9)

Proof. See Appendix A.

The conditional moments E(xt |St = j) and E(xt ⊗ xt |St = j), j = 1, 2, . . . , K , are given in Lemma 1 in Appendix A. It is
easily checked that the relationship ΨSt = Σ

−1/2
x ΦSt Σ

1/2
x and the assumptions ρ(P3(Φ)) < 1 and ρ(P4(Φ)) < 1 imply

invertibility of the matrices IKn3x − P3(Ψ ) and IKn4x − P4(Ψ ) in Eqs. (3.4) and (3.6).
In the absence of the autoregressive lag, i.e. when ΦSt = 0, model (2.1) is Gaussian conditionally to the concurrent state

St so the distribution of xt is a finitemixture of normal densities (see for example Fiorentini et al., 2014). In empirical finance
the efficient market hypothesis provides a compelling argument for excluding autoregressive terms, so the finite mixture
model has often been applied to the analysis of returns, for instance by Ang and Bekaert (2002b) and Taamouti (2012).
Theorem 1 simplifies as follows:

Sk(xt; Σx) =

K
k=1

πk{ck ⊗ ck ⊗ ck + A3(Ωk ⊗ Ωk ⊗ ck)Vec(Inx)}

Ku(xt; Σx) =

K
k=1

πk{ck ⊗ ck ⊗ ck ⊗ ck + A4(ck ⊗ ck ⊗ Ωk ⊗ Ωk)Vec(Inx) + (Ωk ⊗ Ωk ⊗ Ωk ⊗ Ωk)B}. (3.10)

We turn to the moments of MS SS process.

3.2. Markov-switching state space models

The first two unconditional moments of vector yt in (2.1)–(2.2) are easily derived from the state conditional moments
E(xt |St) and E(xt ⊗ xt |St) since:

E(yt) =

K
k=1

πk[ak + HkE(xt |St = k)]

Vec[V (yt)] =

K
k=1

πk[ak ⊗ ak + Hk ⊗ Hk E(xt ⊗ xt |St = k) + (γk ⊗ γk)Vec(Inu)

+ (ak ⊗ Hk + Hk ⊗ ak)E(xt |St = k)] − E(yt) ⊗ E(yt) . (3.11)

Like for the MS VAR case, we define y∗
t the standardized variable y∗

t = Σ
−1/2
y (yt − E(yt)) where Σy = diag[V (yt)]. Again,

this standardization simplifies algebra since Sk(yt; Σy) = E(y∗
t ⊗ y∗

t ⊗ y∗
t ) and Ku(yt; Σy) = E(y∗

t ⊗ y∗
t ⊗ y∗

t ⊗ y∗
t ). It is easily

checked that {y∗
t } follows the process:

y∗

t = a∗

St + H∗

St zt + γ ∗

St ut

a∗

St = Σ−1/2
y (aSt − E(yt) + HSt E(xt))

H∗

St = Σ−1/2
y HSt Σ

1/2
x

γ ∗

St = Σ−1/2
y γSt (3.12)

where zt and Σx are defined in Section 3.1. Theorem 2 provides the skewness and kurtosis of MS SS processes.
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Theorem 2. Suppose {yt} evolves as in (2.1)–(2.2) and that ρ(Pm(Φ)) < 1 for m ≤ 4. Then:
(I) the skewness of the vector yt is given by

Sk(yt; Σy) =

K
k=1

πk

a∗

k ⊗ a∗

k ⊗ a∗

k + A∗

3


(γ ∗

k ⊗ γ ∗

k ⊗ a∗

k)Vec(Inu)

+

a∗

k ⊗ a∗

k + γ ∗

k ⊗ γ ∗

k Vec(Inu)

⊗


H∗

k Σ−1/2
x [E(xt |St = k) − E(xt)]


+H∗

k ⊗ H∗

k ⊗ a∗

k (Σ−1/2
x ⊗ Σ−1/2

x ) ×

E(xt ⊗ xt |St = k) − E(xt |St = k) ⊗ E(xt)

− E(xt) ⊗ E(xt |St = k) + E(xt) ⊗ E(xt)


+ (H∗

k ⊗ H∗

k ⊗ H∗

k )Jn3x ,k[IKn3x − P3(Ψ )]−1D (3.13)

where a∗

k ,H
∗

k , and γ ∗

k are shown in (3.12), the n3
y × n3

y matrix A∗

3 is like in (3.5) with dimension ny instead of nx, Σx =

diag[V (xt)], and D is detailed in Theorem 1.
(II) the kurtosis of the vector yt is given by

Ku(yt; Σy) =

K
k=1

πk

a∗

k ⊗ a∗

k ⊗ a∗

k ⊗ a∗

k + A∗

4(a
∗

k ⊗ a∗

k ⊗ γ ∗

k ⊗ γ ∗

k )Vec(Inu) + (γ ∗

k ⊗ γ ∗

k ⊗ γ ∗

k ⊗ γ ∗

k )B∗

+ Ã∗

4(a
∗

k ⊗ a∗

k ⊗ a∗

k ⊗ H∗

k ) Σ−1/2
x [E(xt |St = k) − E(xt)]

+ A∗

4(a
∗

k ⊗ H∗

k ⊗ γ ∗

k ⊗ γ ∗

k + H∗

k ⊗ a∗

k ⊗ γ ∗

k ⊗ γ ∗

k )

Σ−1/2

x [E(xt |St = k) − E(xt)] ⊗ Vec(Inu)


+ A∗

4(a
∗

k ⊗ a∗

k ⊗ H∗

k ⊗ H∗

k )

× (Σ−1/2
x ⊗ Σ−1/2

x )

E(xt ⊗ xt |St = k) − E(xt |St = k) ⊗ E(xt) − E(xt) ⊗ E(xt |St = k)

+ E(xt) ⊗ E(xt)

+ A∗

4(H
∗

k ⊗ H∗

k ⊗ γ ∗

k ⊗ γ ∗

k )

×

Vec(Inu) ⊗ (Σ−1/2

x ⊗ Σ−1/2
x )[E(xt ⊗ xt |St = k) − E(xt |St = k) ⊗ E(xt)

− E(xt) ⊗ E(xt |St = k) + E(xt) ⊗ E(xt)]


+ Ã∗

4(H
∗

k ⊗ H∗

k ⊗ H∗

k ⊗ a∗

k)Jn3x ,k[IKn3x − P3(Ψ )]−1D

+ (H∗

k ⊗ H∗

k ⊗ H∗

k ⊗ H∗

k )Jn4x ,k[IKn4x − P4(Ψ )]−1M (3.14)

where M is detailed in Theorem 1, the n4
y × n4

y matrices A∗

4 and Ã∗

4 are like in (3.7) and (3.9)with dimension ny instead of nx,
and the n4

u × 1 vector B∗ is like in (3.8) with dimension nu instead of nx.

The proof is omitted as it follows closely that of Theorem 1 when ΦSt = 0, the measurement Eq. (2.2) not involving au-
toregressive lags. It makes use of the higher-order moments of the state variable xt which are known. Two examples below
illustrate the use of the higher-order moments in multivariate MS models.

4. Examples

UK asset returns
Guidolin and Timmermann (2005, GT) fit a MS VAR model to the UK stock and bond monthly excess returns for the

period 1976-2 to 2000-12. They consider three regimes that impact the intercept, the autoregressive matrix, and the shocks
variance–covariancematrix. The regimes are interpreted as bear, normal, and bull market periods. Table 1 shows themodel-
based skewness and kurtosis of the UK stock and bond excess returns as implied by the parameter values given in GT’s Table
4. The co-skewness statistics reported in Table 1 relates the level of the first variable to the square of the second one,whereas
the co-kurtosis relates the level of the first variable to the cube of the second variable. In order to gauge the model fit, the
empirical counterparts are also displayed together with the 95% confidence intervals computed using the block bootstrap
proposed by Politis and Romano (1994). The empirical excess kurtosis are significantly greater than zero, justifying the use
of a non-linear model for describing UK stock and bond returns. The two univariate model-based kurtosis confirms that the
model correctly weights extreme returns on the two assets. The sample skewness of stocks is significantly negativewhile no
asymmetry is detected in the distribution of bond returns. The model adequately captures these features. The empirical co-
skewness of stock and bond returns are almost null, suggesting that the level of each variable is not impacted by the volatility
of the other one. The model catches this feature also remarkably well. With a value equal to 2.05, the empirical co-kurtosis
of stock returns suggests that extreme values of bond returns have some impact on average stock returns. Conversely, the
empirical co-kurtosis of bond returns is almost null: extreme values of stock returns have no impact on bond returns on
average. With a value equal to 3.15, the model-based co-kurtosis of bonds falls outside the empirical confidence interval, so
the model leads to the unsupported conclusion that bonds cannot diversify the risk inherent to a portfolio of stocks.
US business cycle

Chauvet (1998) and Kim and Nelson (1998) consider a MS dynamic factor model to extract a composite index of the US
business cycle out of the growth rates of four US macroeconomic series, namely industrial production, non-farm payroll
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Table 1
Higher-order moments of UK stock and bond excess returns.

Skewness Kurtosis Co-skewness Co-kurtosis

Stocks
Empirical −1.17 8.68 0.11 2.05

(−2.12, −0.06) (3.21, 13.37) (−0.20, 0.40) (0.90, 3.10)
Model-based −0.53 6.92 −0.02 2.65

Bonds
Empirical 0.55 6.08 0.15 −0.02

(−0.30, 1.34) (3.09, 8.88) (−0.28, 0.55) (−2.71, 2.30)
Model-based −0.18 5.08 −0.05 3.15

Notes: the model-based moments have been calculated using the parameter estimates given in Table 4 of GT (2005); the co-skewness relates the level
of the variable of interest to the square of the other one; the co-kurtosis relates the level of the variable of interest to the cube of the other variable; 95%
confidence intervals are reported between parenthesis.

Table 2
Higher-order moments of US industrial production and employment.

IP EM EM - IP
Skewness Kurtosis Skewness Kurtosis Co-skewness Co-kurtosis

Empirical
−0.93 6.99 −0.43 5.05 −0.69 3.57
(−1.48, −0.06) (4.13, 9.17) (−1.01, 0.23) (3.65, 7.14) (−1.10, −0.14) (2.34, 5.21)

Model-based
M0 −0.31 3.24 −0.10 3.05 −0.22 1.62
M1 −0.08 4.15 −0.06 3.79 −0.07 2.53

Notes: IP refers to the US Industrial Production Index and EM to the US non-farm employment; co-skewness refers to the third-moment that involves
employment and the square of Industrial Production; the co-kurtosis statistics relates the square of the two variables;M0: model with switching growth;
M1: model with switches in growth and in volatility; 95% confidence intervals are reported between parenthesis.

employment, personal income less transfer payments, and real manufacturing and trade sales. The dynamic factor model is
specified as:

M0 : yit = λift + vit

vit = φi1vit−1 + φi2vit−2 + σiϵit

ft = µS1t + at

where at and ϵit , i = 1, . . . , 4, are standard Gaussian white noises. The mean of the common factor ft switches between
two values µ1, µ2, according to the phase of the business cycle which is indexed by the discrete latent variable S1t ∈ {1, 2}.
Camacho et al. (CPP, 2012), estimate modelM0 on US monthly observations from January 1967 to November 2010.

Table 2 shows both empirical and model-based moments of the growth rate of Industrial Production and Employment.
For the two variables the empirical skewness is negative aswell as the co-skewness. Themodel adequately reproduces these
features. The two series exhibit an excess kurtosis which is sizeable and significant. ModelM0 however implies almost zero
excess kurtosis. Table 2 also shows the co-kurtosis statistics which relates the square of the two variables. Its empirical
value is equal to 3.57 with confidence interval (2.34, 5.21). Since the theoretical value under normality equals 1.37, this
reveals the presence of excess co-movements in volatility between Employment and Industrial Production in the US. Model
M0 however does not foresee this feature as it implies a co-kurtosis of 1.62, outside of the confidence interval. To catch this
non-linearity, we allow for heteroskedasticity in the common shock at as in:

M1 : ft = µS1t + σS2t at .

The variance of σS2t at now switches between two regimes according to the two-state Markov-variable S2t which is
independent of S1t . We estimate modelM1 by approximated maximum likelihood (Kim, 1994). The higher-order moments
under M1 are displayed in the last row of Table 2. Model M1 yields third and fourth moments that lie inside the empirical
95% confidence intervals. Hencemodeling co-movements in volatility improves the characterization of US Employment and
Industrial Production compared to the original CPP’s specification.

5. Conclusion

We extend the early work by Timmermann (2000) on univariate MS models by deriving closed-form formulae for the
multivariate skewness and kurtosis in both MS VAR and MS state space models. Besides enriching the model interpretation
by summarizing non-linear features, these formulae provide a useful tool for diagnostic checking via moment-matching. A
Matlab code that implements the results in the paper is available from the authors.
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