
Chemistry & Biology

Article

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Identification of Distinct Thiopeptide-Antibiotic
Precursor Lead Compounds Using Translation
Machinery Assays
Agata L. Starosta,1,2,5 Haiou Qin,3,5 Aleksandra Mikolajka,1,2,5 Gulice Y.C. Leung,4 Kathrin Schwinghammer,1,2

Kyriacos C. Nicolaou,4 David Y.-K. Chen,4 Barry S. Cooperman,3,* and Daniel N. Wilson1,2,*
1Gene Center and Department of Chemistry and Biochemistry
2Center for Integrated Protein Science Munich
Ludwig-Maximilians University of Munich, Feodor Lynen Strasse 25, 81377, Munich, Germany
3Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
4Chemical Synthesis Laboratory @ Biopolis, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research,

11 Biopolis Way, The Helios Block, #03-08, Singapore 138667, Singapore
5These authors contributed equally to this work

*Correspondence: wilson@lmb.uni-muenchen.de (D.N.W.), cooprman@pobox.upenn.edu (B.S.C.)

DOI 10.1016/j.chembiol.2009.09.016
SUMMARY

Most thiopeptide antibiotics target the translational
machinery: thiostrepton (ThS) and nosiheptide (NoS)
target the ribosome and inhibit translation factor
function, whereas GE2270A/T binds to the elongation
factor EF-Tu and prevents ternary complex forma-
tion. We have used several in vitro translational
machinery assays to screen a library of thiopeptide
antibiotic precursor compounds and identified four
families of precursor compounds that are either
themselves inhibitory or are able to relieve the
inhibitory effects of ThS, NoS, or GE2270T. Some of
these precursors represent distinct compounds
with respect to their ability to bind to ribosomes.
The results not only provide insight into the mecha-
nism of action of thiopeptide compounds but also
demonstrate the potential of such assays for identi-
fying lead compounds that might be missed using
conventional inhibitory screening protocols.

INTRODUCTION

The translational machinery represents one of the major targets

within the cell for antibiotics (reviewed by Spahn and Prescott,

1996; Wilson, 2004). Many clinical important classes of antibi-

otics, such as the tetracyclines, phenylpropanoids (chloramphen-

icol), macrolides (erythromycin), and aminoglycosides (genta-

micin), inhibit translation by binding to the ribosome. Despite

the potency of many of these drug classes, antibiotic resistance

among clinically relevant pathogens is an increasing problem

and thus the need for new antibiotics is more urgent than ever

before. One class of antibiotics that has received renewed interest

in recent years is the thiopeptide family (reviewed by Bagley

et al., 2005; Nicolaou et al., 2009) because of their effectiveness

against Gram-positive bacteria, in particular, methicillin-resistant

Staphlococcus aureus, as well as against the malarial parasite

Plasmodium falciparum (McConkey et al., 1997). Thiopeptide
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antibiotics are composed of oxazoles and thiazoles, as well as

non-natural amino acids that are linked together to form complex

macrocyclic frameworks (Figures 1A–1D).

Two distinct families of thiopeptide compounds target the

translational apparatus, one that targets the ribosome, referred

to here as Class I thiopeptides, and the other, referred to as

Class II thiopeptides, which targets the elongation factor

EF-Tu. The best characterized of the Class I compounds include

thiostrepton (ThS) and nosiheptide (NoS) (Figures 1A and 1B),

both of which have been crystallized bound to the large ribo-

somal subunit (Harms et al., 2008) (see later Figures 6A, 6B,

and 6G). These structures reveal that the Class I thiopeptides

bind within a region of the ribosome that is part of the GTPase-

associated center, so-named because it is involved in translation

G protein factor binding and stimulation of GTPase activity

(Wilson and Nierhaus, 2005). Biochemically, Class I thiopeptides

have been shown to inhibit 70S initiation complex (70SIC) forma-

tion by interfering with the initiation G protein IF2 (Brandi et al.,

2004, and references therein; Grigoriadou et al., 2007) as well

as elongation by interfering with both the G proteins EF-Tu

(Gale et al., 1981; Gonzalez et al., 2007; Modolell et al., 1971),

which is necessary for rapid cognate aminoacyl-tRNA binding

to the ribosome, and EF-G, which catalyzes translocation of

the tRNA2-mRNA complex from the A and P sites to the P and

E sites (Pan et al., 2007; Pestka, 1970; Rodnina et al., 1999;

Seo et al., 2006; Weisblum and Demohn, 1970). In contrast,

the structurally similar Class II thiopeptides (Figure 1D) do not

bind to the ribosome, but instead interact directly with EF-Tu

(reviewed by Parmeggiani and Nissen, 2006). The crystal struc-

ture of the Class II thiopeptide GE2270A bound to EF-Tu reveals

that the drug binds within a cleft between domains I and II of

EF-Tu and directly overlaps with the binding site of the terminal

end of the aminoacyl-tRNA (Parmeggiani et al., 2006; Parmeg-

giani and Nissen, 2006) (see later Figures 7A–7C). GE2270A is

thought to prevent the closing of domain I and II, which is neces-

sary for the induced-fit binding of EF-Tu to the tRNA, thereby

preventing ternary complex formation (Parmeggiani and Nissen,

2006).

Although ThS is already in veterinary usage, its low water

solubility and poor bioavailability has so far precluded its use in
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Figure 1. Chemical Structures of Thiopeptide Antibiotics and Precursor Families PA–PD

Chemical structures of the thiopeptide antibiotics ThS (A), NoS (B), micrococcin (MiC) (C), and GE2270A/T/C1 (D) and precursor families PA1-5 (E), PB1-3 (F),

PC1-3 (G), and PD1-2 (H).
human medicine. Recent success has been reported in the

total synthesis of a number of Class I and II thiopeptides

(reviewed by Hughes and Moody, 2007; Nicolaou et al., 2009),

including among others ThS (Nicolaou et al., 2005a, 2005c)

and GE2270A (Nicolaou et al., 2006, 2008b). Such synthetic

studies pave the way to generating improved thiopeptide

derivatives by identifying synthetic fragments (or derivatives

thereof) that display biological activity or can act as new lead

compounds.

We have used a series of translation machinery assays to

screen a library of thiopeptide antibiotic precursor compounds.

Unlike the parent antibiotics ThS, NoS, and GE2270T, only

a few of the precursor compounds display any significant inhib-

itory properties, even at high concentrations. Instead, however,

four structurally distinct families of precursor compounds

(Figures 1E–1H) were discovered that relieve the inhibitory effect

imparted by the parent compounds. The different precursor

families exhibit differential effects with respect to the inhibitory

antibiotic that is counteracted as well as to the target, whether

it is the ribosome or EF-Tu. Two of the families represent

completely new compounds with respect to their ability to bind

to ribosomes and thus open the path to the development of novel

antimicrobials. The application of such screening strategies will

enable the identification of new lead compounds that are not

detected using conventional inhibitory screening protocols.
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RESULTS

Several assays were used to examine thiopeptide precursor

compounds for their abilities to bind to the ThS binding site,

either by mimicking ThS inhibition of specific ribosomal functions

or by protecting the ribosome against the inhibitory effects of

ThS via a competition effect. These assays, which are discussed

in turn below, measure (1) IF2 conformational change during

the conversion of 30S initiation complex (30SIC) to 70SIC, (2)

ribosome-dependent stimulation of the GTPase activity of

EF-G, and (3) the cell-free synthesis of green fluorescent protein

(GFP) using an Escherichia coli in vitro-coupled transcription-

translation (TT) assay.

The Thiopeptide Precursor PA1 Inhibits 70SIC
Formation
The initiation factor IF2 is essential for 70SIC formation from

30SIC and 50S subunits (Antoun et al., 2003; Grigoriadou

et al., 2007). Elsewhere we have shown that the fluorescence

of a Cy3 derivative of IF2 (IF2Cy3) increases on 70SIC formation

resulting from the binding of a 50S subunit to a 30SIC-containing

IF2Cy3 (Qin et al., 2009). This increase is inhibited by both ThS

and NoS (Figure 2A), largely as a result of the effect of these anti-

biotics in inhibiting both the rate and extent of 70SIC formation

(Grigoriadou et al., 2007; data not shown). Measuring the extent
Elsevier Ltd All rights reserved
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Figure 2. The IF2 Fluorescence Change Assay

(A) Emission spectra of IF2Cy3-containing 30SIC mixed with 50S subunits in the presence of ThS or NoS. 50S was preincubated with antibiotics for 5 min at 37�C

and then rapidly mixed with 30SIC at 20�C, followed by 5 min incubation before measurements. Black solid trace, no antibiotics; gray dashed trace, ThS; gray

solid trace, NoS; black dashed trace, 30SIC alone. The final concentrations are IF1, IF3, and fMet-tRNAfMet, 0.45 mM; IF2Cy3, 0.15 mM; mRNA, 0.90 mM; 30S, 0.30

mM; 50S, 0.30 mM; GTP, 100 mM; ThS or NoS, 1.5 mM.

(B) Dose-response curves for the inhibition of fluorescence change on mixing IF2Cy3-containing 30SIC with 50S subunits in the presence of thiopeptide

compounds. The y axis indicates the percent DF in the presence of added compound relative to the DF in the absence of added compound relative to the fluo-

rescence of 70SIC by itself. Final concentrations are IF2Cy3, 0.15 mM; IF1, IF3, and fMet-tRNAfMet, 0.45 mM; 022AUGmRNA, 0.9 mM; 30S, 0.30 mM; 50S, 0.30 mM;

GTP, 100 mM.
of fluorescence change is thus a convenient way of monitoring

thiopeptide precursor effects on 70SIC formation. A library of thi-

opeptide precursor compounds, as well three forms of the EF-Tu

inhibitor GE2270 (A, T, and C1), were screened for this activity,

along with ThS and NoS as positive controls. Only one precursor,

denoted PA1 (Figure 2B), showed any measurable activity in

inhibiting the fluorescence change, with an apparent Ki of

25 mM, some 60- to 400-fold higher than for ThS or NoS, respec-

tively. Although PA1 does not bind with very high affinity, it

apparently does so with considerable structural specificity, since

the inhibitory effect was not seen for compounds PA2 and PA3,

which have either stereochemical or minor constitutional differ-

ences from PA1 (Figure 1E). The thiopeptide precursors were

also screened for their abilities to reverse ThS inhibition of the

IF2Cy3 fluorescence increase on 70SIC formation. In no case

was such reversal observed.

Differential Effects of Precursor Compounds on Factor-
Dependent GTPase Assays
Vacant 70S ribosomes are known to stimulate the GTPase

activity of EF-G via formation of a 70S�EF-G�GTP complex.

Such stimulation is strongly inhibited by ThS (Pestka, 1970;

Weisblum and Demohn, 1970). We used two multiple turnover

GTPase assays to screen thiopeptide precursors for inhibitory

activity.

The first assay measured EF-G GTPase activity via formation

of a Malachite Green complex (see Experimental Procedures)

for hundreds of turnovers. Under conditions for which ThS

(1 mM) almost completely abolished such activity, we identified

three distinct classes of precursor compounds (PA–PC; Figures

1E–1G) that exhibited modest inhibitory effects when added at

50 mM (Figure 3A). However, we note that none of these

compounds added at 10 mM showed appreciable inhibition

(data not shown). As expected, the negative control, GE2270T,
Chemistry & Biology 16, 1087–
had no effect at a concentration of 50 mM (Figure 3A). In order

to determine whether the modest inhibitory effects seen in

Figure 3A were specific for EF-G, we next checked whether

these compounds could also inhibit the ribosome-dependent

stimulation of the Tet(M) GTPase. Tet(M) is a GTPase that binds

to the ribosome analogously to EF-G and confers resistance to

the antibiotic tetracycline by weakening its binding to the ribo-

some (reviewed by Connell et al., 2003). Similar to the results

for EF-G, representatives of the PA and PC families exhibited

modest inhibitory effects on Tet(M) GTPase at high concentra-

tion (100 mM) (Figure 3B). However, in contrast to EF-G, little or

no inhibition was observed for the PB family, suggesting that it

is specific for EF-G.

The second assay measured EF-G GTPase activity from the

fluorescence increase of released Pi binding to the fluorescent

phosphate binding protein MDCC-PBP (Brune et al., 1994;

Seo et al., 2006). This assay, which can in principle be used

for single turnover measurement, was here used to measure

several turnovers, as determined by the stoichiometric ratio

(5:1) of MDCC-PBP to ribosome. As performed, this assay

could only detect very potent inhibitors of EF-G GTPase, since

fluorescence was not measured until 1 min after initiation of

reaction, whereas in the absence of inhibition the full fluores-

cence change is complete within 5–10 s (data not shown). It is

thus no surprise, given the results presented in Figure 3A,

that although ThS inhibited this assay with an apparent Ki of

1.1 mM none of the precursors tested, nor even NoS or MiC,

showed measurable inhibition up to a concentration of 100 mM

(Figure 3C). In contrast, both NoS and MiC added at very low

concentration protected against inhibition by 1.2 mM ThS, with

half-maximal effects seen at 0.04 mM and 0.11 mM, respectively

(Figure 3D). However, none of the precursor compounds

afforded similar protective effects up to 50–100 mM of added

precursor.
1096, October 30, 2009 ª2009 Elsevier Ltd All rights reserved 1089
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Figure 3. Effect of Thiopeptides and Precursor Compounds on GTPase Activity of EF-G and Tet(M)

(A) Inhibition of uncoupled ribosome-dependent Tet(M) GTPase by ThS (1 mM) and precursors PA2, PB2, and PC2 (50 mM). Closed circles indicate GTPase activity

of Tet(M) in the absence of antibiotic.

(B) Inhibition of uncoupled ribosome-dependent TetM GTPase by ThS (1 mM) and precursors PA2, PB1, and PC2 (100 mM). Closed circles indicate GTPase activity

of TetM in the absence of antibiotic.

(C) The dose-response curves of Pi release in the presence of ThS, NoS, MiC, or precursor compounds. The y axis indicates the percent DF due to Pi release in the

presence of added compound relative to the DF in the absence of added compound relative to the fluorescence from EF-G interaction with the ribosome in the

absence of any compound. The final concentrations are 70S, 0.3 mM; EF-G, 0.75 mM; MDCC-PBP, 1.5 mM; GTP, 100 mM;7-methylguanine, 200 mM; nucleotide

phosphorylase, 0.3 U/ml.

(D) Dose-response curves for reversal of ThS inhibition of Pi release by NoS, MiC, or precursor compounds. The final concentrations for each component are 70S,

0.3 mM; EF-G, 0.75 mM; ThS, 1.2 mM; MDCC-PBP, 1.5 mM; GTP, 100 mM; 7-methylguanine, 200 mM; nucleotide phosphorylase, 0.3 U/ml.
Protective Effects of Precursor Compounds on
Thiopeptide-Mediated Translation Inhibition
Although, as expected, ThS, NoS, and GE2270T were potent

inhibitors of GFP synthesis using an in vitro TT assay (Figure 4,

lanes 2–4), none of the precursor compounds tested displayed

any significant inhibitory activity in this assay (Figure 4, white

bars), even at high concentrations (50–100 mM). In contrast,

addition of 50 mM of representative precursor compounds from

four structural distinct classes PA–PD (Figures 1E–1G) could

reverse the inhibitory effect of 5 mM ThS (Figure 4, gray bars).

The most effective protection was seen with PA2, which restored

translation back to levels observed in the absence of antibiotic

(Figure 4, lane 6). In comparison, PB1, PC1, and PD1 restored

translation to 40%–60% of the original levels (Figure 4, lanes

13–28). Additionally, we find that the 5S, 6R stereoisomer of

PA2 (PA4) exhibited some protective properties (�35%

compared to 100% for PA2). The structural specificity of these

effects is clear from the failure of precursors that are chemically

related to PA2 to exhibit similar protective effects against ThS

inhibition. These include PA3 (Figure 4, lanes 6 and 8), which

differs from PA2 by lacking only a double bond within the central
1090 Chemistry & Biology 16, 1087–1096, October 30, 2009 ª2009
dehydropiperidine ring (Figure 1E), and PD2 (Figure 4, lanes 26

and 28), which, with respect to PD1, has an altered side chain

on one of the thiazole rings (Figure 1H).

Interestingly, PA2, PB1, PC1, and PD1 displayed marked

differences in their abilities to reverse the inhibitory effects of

NoS (5 mM) and GE2270T (25 mM), as compared to the inhibitory

effects of ThS. Thus, as shown in Figure 5, PA2 was an omnipo-

tent protector of translation, restoring translation levels in the

presence of all three thiopeptide inhibitors, with the following

order of efficiency: ThS (100%) > GE2270T (80%) > NoS (60%).

PD1 rescued translation in the presence of ThS and GE2270T,

but not NoS, and PB1 and PC1 efficiently rescued translation

only against ThS. As was true for ThS, neither PA3, PB2, PC2,

nor PD2 were able to reverse inhibition by NoS or GE2270T

(data not shown).

Interaction of Thiopeptide Precursors
with the Ribosome
The specific protective effect of the precursor compounds

against ThS suggests that these compounds specifically com-

pete with ThS for binding to the ribosome. Structural (Harms
Elsevier Ltd All rights reserved
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Figure 4. Precursor Compounds Protect Translation from ThS Inhibition

In vitro TT of GFP in the absence or presence of 25 mM GE2270T, 5 mM NoS, and 5 mM ThS (black bars) or in the presence (50 mM) of precursor families PA2-5,

PB1-3, PC1-3, and PD1-2 (�ThS; white bars) alone or with additional presence of 5 mM ThS (+ThS; gray bars). GFP fluorescence from microtiter plate wells shown

above each lane were quantified and represented as bars, with the fluorescence detected in the absence of antibiotic assigned as 100%.
et al., 2008; Jonker et al., 2007) and biochemical data (Spahn

and Prescott, 1996; Xing and Draper, 1996) for ThS suggests

that the high affinity of this drug for the ribosome results

from cooperative interaction between nucleotides in H43/44 of

the 23S rRNA and the L11-NTD (Figures 6A and 6B). Given

the structural similarity between PA2 and ThS, it is possible to

model the position of this compound bound to the ribosome

(Figure 6C; Harms et al., 2008). The substitution of the double

bond in the piperidine ring of PA2 to generate PA3 abolishes

the protective effect of the compound (Figure 4). This is likely

to result from differences in the planarity of the piperidine ring

between PA3 and PA2, which in turn leads to differences in

the relative position (by 0.5 Å) of the attached thiazole moiety,

which, based on the model, would shift it toward Pro27 of L11-

NTD and thus encroach on the thiopeptide binding site (data

not shown). Such modest displacements within drug binding

sites have been shown to have dramatic effects on the affinity

of compounds and often lead to antibiotic resistance (Blaha

et al., 2008; Tu et al., 2005).

Although it is more difficult to model the PB and PC series of

compounds based on the available structures, it is clear that

the aromatic rings within these families suggest a potential

mode of binding that establishes simultaneous stacking interac-

tions with both H43/44 and L11-NTD (Figures 6D and 6E). Alter-

ations that disrupt these rings, as seen for PC2 (Figure 6F), could

explain a reduced binding and corresponding loss in protection

(Figure 4). The PD class of precursors is structurally most similar

to the pyridine core of NoS (Figure 1). NoS is oriented differently

on the ribosome compared to ThS, establishing stacking interac-
Chemistry & Biology 16, 1087–
tions with Pro22 but not Pro26 (Figure 6G; Harms et al., 2008).

Based on our modeling, PD1 can make analogous interactions

with Pro22 as NoS (Figure 6H), whereas the inactive PD2 cannot

(Figure 6I).

Figure 5. Differential Protective Effects of Precursors Against Thio-

peptide Inhibition

Protection profiles of representative precursors from all described groups

against chloramphenicol (Cam; 10 mM), NoS (5 mM), GE2270T (25 mM), and

ThS (5 mM). GFP fluorescence in the absence of antibiotic is assigned as

100%, whereas the precursor results are presented as the percentage of

protection, given as the difference between the inhibition of translation by

the active compound (Cam, NoS, GE2270T, or ThS) in the presence and

absence of the precursor compound (50 mM).
1096, October 30, 2009 ª2009 Elsevier Ltd All rights reserved 1091



Chemistry & Biology

Translation Protection Assay
Figure 6. Binding Site of Precursor Compounds on the Ribosome

(A) Overview of thiopeptide binding site on the large ribosomal subunit. Interface view with helix 43 and 44 (H43/44; orange), L11 (yellow), and ThS (green) high-

lighted with surface representation (from PDB ID 3CF5) (Harms et al., 2008).

(B) The thiazole rings of ThS (green) interact with the RNA bases at the tips of H43/44 as well as the prolines in the N-terminal domain of L11 (yellow).

(C) Model for precursor PA2 bound to the ribosome, based on the position of ThS. PA1, but not PA3 (see text), bind similarly.

(D–F) Possible modes of binding for precursors PB1 and PC1 based on ring stacking interactions with RNA and protein components of the ribosome, whereas

PC2 lacks one phenyl ring compared to PC1.

(G) NoS (pink) interacts with the RNA bases at the tips of H43/44 as well as the N-terminal domain of L11 (yellow), but in a distinct manner compared to ThS (using

PDB ID 2ZJP) (Harms et al., 2008).

(H and I) Model for precursor PD1 and PD2 bound to the ribosome, based on the position of NoS. PD2 lacks one ring moiety, suggesting binding would be desta-

bilized.
Interaction of Thiopeptide Precursors with EF-Tu
The thiopeptide GE2270A has been crystallized in complex with

EF-Tu, revealing that the drug binds within a covered groove in

domain II and spans across the active site cleft of EF-Tu, the

G domain, to interact with the domain I (Figure 7A; Parmeggiani

et al., 2006). GE2270A overlaps the binding site of the terminal

A76 and aminoacyl moiety of the tRNA (Figure 7B) and is

believed to prevent the closing of domains I and II necessary

for the induced fit binding of aa-tRNA (Figure 7C), thereby

preventing ternary complex (EF-Tu�GTP�tRNA) formation

(reviewed by Parmeggiani and Nissen, 2006). The structural simi-

larities between PA and PD and GE2270A (Figure 1) suggest that

these compounds would also bind within the groove of domain II

of EF-Tu (Figure 7D) and overlap with the A76 of the tRNA

(Figure 7E). However, the truncated nature of these compounds

prevents them from establishing additional interactions with
1092 Chemistry & Biology 16, 1087–1096, October 30, 2009 ª2009
domain I, even in the closed tRNA-bound ternary complex state

of EF-Tu (Figure 7F).

DISCUSSION

Development of improved antimicrobial agents will be necessary

to combat the prevalence of multi-drug-resistant bacteria. A

number of biochemical approaches have been taken to identify

functionally important hotspots on the ribosome that do not

overlap with previously known antibiotic binding sites (Laios

et al., 2004; Llano-Sotelo et al., 2009b; Yassin et al., 2005; Yassin

and Mankin, 2007). In addition, a recent study has developed an

assay using fluorescently labeled ribosomal proteins to monitor

binding of small molecules, such as antibiotics, to the ribosome,

which is amenable to high-throughput screening (Llano-Sotelo

et al., 2009a). Here we present several translation-related assays
Elsevier Ltd All rights reserved
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Figure 7. Binding Site of Precursor Compounds on EF-Tu

(A) Structure of the thiopeptide GE2270A (green) bound to EF-Tu (yellow), with domains I, II, and III indicated (PDB ID 2C77) (Parmeggiani et al., 2006).

(B) GE2270A overlaps the binding position on EF-Tu of the terminal A76 and aminoacyl moiety of tRNA. Inset shows overview of EF-Tu�tRNA ternary complex

(PDB ID 1TTT) (Nissen et al., 1995) with superimposition of GE2270A.

(C) Superimposition of EF-Tu�GE2270A (yellow) and EF-Tu�tRNA (blue) aligned on basis of domain II. Note that GE2270A (green) clashes with domain I of EF-Tu

from the ternary complex (blue).

(D) Model for precursor PD1 bound to EF-Tu based on EF-Tu�GE2270A complex (PDB ID 2C77) (Parmeggiani et al., 2006).

(E) PD1 (pink) overlaps the binding position on EF-Tu of the terminal A76 and aminoacyl moiety of tRNA (blue).

(F) As (C) but with PD1 instead of GE2270A. Note that PD1 does not clash with domain I of EF-Tu from the ternary complex (blue).
using high-throughput 96 or 384 microtiter plate formats that

have been used to screen a library of thiopeptide precursor

compounds for their abilities to inhibit one or more aspects of

translation and/or reverse the inhibition of known thiopeptide

antibiotics. These screens identified four distinct families of pre-

cursor compounds, termed PA–PD, which could act as potential

lead compounds for development of novel antimicrobials.

Two of the families identified, PA and PD, contain a six-

membered nitrogen heterocycle core (PA, dehydropiperidine;

PD, pyridine) analogous to the thiopeptide antibiotics ThS and

GE2270A (Figure 1). The crystal structures of thiopeptides bound

to the ribosome (Harms et al., 2008) and of GE2270A bound to

EF-Tu (Parmeggiani et al., 2006) reveal the importance of the

heterocycle core of these compounds for interaction with their

respective targets and allows modeling of how PA and PD

members are likely to interact with the ribosome and/or EF-Tu

(Figures 5 and 6). The resulting models are consistent with the

rescue of translation in the presence of ThS and GE2270T by

family members, such as PA2 and PD2, probably by direct

competition for binding between the precursor compound and

the thiopeptide antibiotic. In addition, PA1 and PA2 displayed

inhibitory activity against translational GTPases IF2 (Figure 2B)

and EF-G and Tet(M) (Figures 3A and 3B), respectively.

However, compared to the parent thiopeptide compounds,

much higher concentrations of the precursor compounds were

necessary to exhibit similar effects, most likely indicating the
Chemistry & Biology 16, 1087–
much lower binding affinity of the precursors. The ineffective-

ness of precursor compound PA2 as a direct inhibitor was

surprising, since this compound has been previously reported

to exhibit antimicrobial activity against methicillin-resistant

Staphlococcus aureus and vancomycin-resistant Enterococcus

faecalis with a minimal inhibitory concentration (MIC) of 5 mM

(Nicolaou et al., 2005b). Our results suggest therefore that

the inhibitory effect of PA2 in vivo may in fact not be related to

translation, but verification of this point will require further

investigation.

The other two families identified in our screen, PB and PC,

have not, to our knowledge, been previously reported to target

the translational machinery. PB1 is chemically similar to the thia-

zolidine precursor compound used to generate the pyridine core

of amythiamicins (Nicolaou et al., 2008a), which target EF-Tu

analogously to GE2270A (Parmeggiani et al., 2006; Parmeggiani

and Nissen, 2006). The PC series of compounds contain a pro-

tected b-hydroxy-a-aminoacid, which is a precursor in the

synthesis of GE2270A/T/C1. Curiously, the PB and PC families

display much higher specificity for the ribosome than for

EF-Tu, as shown by the ability of PB1 and PC1 to restore trans-

lation more efficiently in the presence of ThS, as compared with

GE2270A (Figure 5). Although PB1 and PC1 are structurally

distinct (Figure 1), we believe the common aromatic/cyclic

nature of both these compounds is important for ribosome

binding. Accommodation of EF-G on the ribosome involves the
1096, October 30, 2009 ª2009 Elsevier Ltd All rights reserved 1093
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insertion of domain V of EF-G into the crevice between H43/44

and L11-NTD. Inhibition by Class I thiopeptides has been

proposed to stem in part from their physically linking L11-NTD

to H43/44, thereby locking the cleft shut (Harms et al., 2008).

We suggest that PB1 and PC1 can also span the L11-rRNA

crevice (Figures 6D and 6E) and perform this locking function,

analogous to ThS/PA2 (Figures 6B and 6C) and NoS/PD1

(Figures 6G and 6H). Similarly to PA/D, the high concentrations

of PB/C required to inhibit the ribosome-dependent GTPase

activity of EF-G are indicative of their low binding affinities for

the ribosome. Such low affinity may allow facile displacement

of precursors from the ribosome, as a result of translation factors

(IF2 or EF-G) binding, or from EF-Tu, during ternary complex

formation, thus explaining the absence of any direct inhibitory

effect of any of the precursors on GFP synthesis. The differential

effects of the precursors on the GTPase assays compared to

the TT assay is probably related to the ribosome concentrations

in the GTPase assays being �103–1003 less (30–300 nM)

compared to the TT assay (�2 mM) and to the putative higher

affinity of EF-G for translating rather than empty ribosomes

(Sergiev et al., 2005).

The majority of clinically used antibiotics targeting the ribo-

some bind either to the decoding region on the small subunit

or within either the peptidyltransferase center or the adjacent

peptide exit tunnel of the large subunit, where they interact

almost exclusively with ribosomal RNA (Spahn and Prescott,

1996; Wilson, 2004). The Class I thiopeptide compounds,

however, are distinct in that they target a different region of the

ribosome, namely the GTPase-associated region or translation

factor binding site, where they interact with both rRNA and ribo-

somal protein L11. As a consequence, no cross-resistance has

been found between thiopeptide antibiotics and other clinically

important drugs. The compounds such as PA–PD identified in

our study provide lead structures for the development of novel

antimicrobial agents that target this region of the ribosome.

Furthermore, the ability of some precursor compounds, such

as PA1 and PD1, to bind both EF-Tu and the ribosome suggests

the feasibility of developing antimicrobials that are dual inhibitors

of ribosomes and ternary complex formation.

SIGNIFICANCE

The translational machinery represents one of the major

targets within the cell for antibiotics, with many clinical

important classes of antibiotics inhibiting translation by

binding to the ribosome. Despite the potency of many of

these drug classes, antibiotic resistance among clinically

relevant pathogens is an increasing problem and there is

an urgent need for improved antibiotics. We present herein

a series of translation machinery assays that can be used

to screen for lead compounds that not only inhibit specific

steps of translation but also relieve the inhibitory effects of

other inhibitory compounds. Using these assays to screen

a library of thiopeptide precursor compounds, we have iden-

tified four distinct families of compounds that inhibit either

IF2, EF-G, and/or Tet(M), as well as confer protective effects

against thiopeptide translation inhibitors of both the ribo-

some and EF-Tu. Our findings not only elucidate the mecha-

nism of action of thiopeptide compounds but also illustrate
1094 Chemistry & Biology 16, 1087–1096, October 30, 2009 ª2009
the potential of such high-throughput assays to identify

distinct lead compounds that might be missed using

conventional inhibitory screening protocols. Whereas the

IF2 and EF-G GTPase assays are specifically useful for

screening antibiotics interfering with translation G factor

proteins, the TT assay is generally applicable for screening

all classes of translation inhibitors, including those targeting

the peptidyltransferase, and decoding centers of the ribo-

some and other ribosomal sites, in addition to those inter-

fering with translation G factor proteins.

EXPERIMENTAL PROCEDURES

Component Preparation

GE2270A, T, and C1 and the library of thiopeptide precursor compounds were

synthesized as described previously (Nicolaou et al., 2005b, 2006, 2008a,

2008b). ThS was purchased from Sigma, whereas NoS was a gift from

H.G. Floss and micrococcin P1 was supplied by T. Stachlhaus. The tetM

gene (Tn916) cloned into the pET24b vector was a gift from V. Burdett.

Tet(M) protein was expressed in BL21 (DE3) pRIL cells in 20�C with 0.2 mM

IPTG. E. coli EF-G cloned into pQE70 vector was expressed in XL1 blue cells.

Both proteins were purified using Ni-NTA metal affinity chromatography

(QIAGEN), followed by gel filtration chromatography on a HiLoad 26/60 Super-

dex 75 prep grade column (GE Healthcare). For the experiments described in

Figures 2 and 3C and 3D, ribosomes, IF2Cy3, IF1, IF3, 30S subunits, MDCC-

labeled phosphate-binding protein (MDCC-PBP), 022AUG mRNA, and fMet-

tRNAfMet were prepared as described previously (Qin et al., 2009) as was

EF-G (Pan et al., 2007).

IF2Cy3 Fluorescence Change Assay

Reactions were carried out in a 384 well assay plate. 50S subunits were pre-

incubated (15 min at 37�C) with a series of concentrations of the test

compounds in DMSO that are transferred from a premade compound plate

to the assay plate by a PerkinElmer Evolution P3 liquid handler. Reaction

was initiated by addition of 30SIC to each well of the plate. Fluorescence

(579 nm) was read with a 2103 EnVision Multilabel Plate Reader on excitation

at 550 nm. For the reversal experiment, 30SIC was preincubated with ThS

(10 min at 37�C), followed by a second preincubation with test compounds

(10 min at 37�C), and reaction was initiated by 50S addition.

GTPase Activity Assays

For both assays described below, reactions performed in the absence of ribo-

somes were used as a background signal to account for the intrinsic GTPase

activity of EF-G or Tet(M).

By Malachite Green

GTPase activity was measured using the Malachite Green Phosphate Kit

(BioAssay) that quantifies the green complex formed between Malachite

Green, molybdate, and free orthophosphate. All reactions contained 30 nM

E. coli 70S ribosomes, 20 mM GTP, and 60 nM protein in the presence or

absence of antibiotics as necessary. Reactions were transferred into 96 well

microtiter plates and color formation was measured on Tecan Infinite M1000

microplate reader at 650 nm.

By MDCC-Labeled PBP

GTPase activity was measured using the MDCC-labeled PBP complex, which

measures free phosphate release as an increase in fluorescence and uses

a Pi-MOP system to minimize the background due to phosphate present in

the original medium (Brune et al., 1994; Seo et al., 2006). Reactions were

carried out in a 384 well assay plate. Ribosomes were preincubated (15 min

at 37�C) with a series of concentrations of the test compounds in DMSO

that are transferred from a premade compound plate to the assay plate by

a PerkinElmer Evolution P3 liquid handler. Reaction was initiated by addition

of an ice-cold solution containing EF-G, MDCC-PBP, and GTP to each

well of the plate, a process that was completed in under 30 s. Fluorescence

(450 nm) was read within 1 min using a 2103 EnVision Multilabel Plate Reader,

on excitation at 405 nm. For the reversal experiment, ribosomes were preincu-

bated with ThS (10 min at 37�C), followed by a second preincubation with test
Elsevier Ltd All rights reserved
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compounds (10 min at 37�C), and reaction was initiated by EF-G, MDCC-PBP,

and GTP as above.

In Vitro Transcription-Translation Assay

All coupled TT experiments were performed using an E. coli lysate-based

system in the presence and absence of antibiotics as described previously

(Dinos et al., 2004; Szaflarski et al., 2008). Reactions were transferred into

96 well microtiter plates and the GFP fluorescence was measured with

a Typhoon Scanner 9400 (GE Healthcare) using a Typhoon blue laser module

(GE Healthcare). Images were then quantified using ImageQuantTL (GE Health-

care) and represented graphically using SigmaPlot (Systat Software, Inc.).

Modeling and Figure Preparation

Chemical structures for the precursor compounds were drawn and converted

to 3D coordinates using ChemDraw (Advanced Chemistry Development, Inc.).

PA2 models used the ThS binding position on the Deinococcus radiodurans

50S (D50S) subunit (PDB ID 3CF5) (Harms et al., 2008), whereas PD1 and

PD2 were based on the D50S-NoS complex (PDB ID 2ZJP) (Harms et al.,

2008). PyMol (http://www.pymol.org) was used to model the PB1 and PC

compounds, align EF-Tu�GE2270A (yellow; PDB ID 2C77) (Parmeggiani

et al., 2006) and EF-Tu�tRNA (blue; PDB ID 1TTT) (Nissen et al., 1995) on

the basis of domain II, as well as to prepare all X-ray structure figures.
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