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is said to be contraction-critically 5-connected. Let V(G) and V5(G) denote the vertex
set of a graph G and the set of degree 5 vertices of G, respectively. We prove that each
contraction-critically 5-connected graph G has at least |V (G)|/2 vertices of degree 5. We
also show that there is a sequence of contraction-critically 5-connected graphs {G;} such
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1. Introduction

In this paper, we deal with finite undirected graphs with neither loops nor multiple edges. For a graph G, let V(G) and
E(G) denote the set of vertices of G and the set of edges of G, respectively. Let V,(G) denote the set of vertices of degree
k and let V>4(G) denote the set of vertices of degree greater than or equal to k. For an edge e € E(G), we denote the
set of end vertices of e by V(e). Let Ec(x) = {e € E(G) | x € V(e)}. For a vertex x € V(G), we denote by N¢(x) the
neighborhood of x in G. Moreover, for a subset S C V(G), let Ng(S) = Uyes N(x) — S. We denote the degree of x € V(G)
by deg;(x). Then deg;(x) = |Eq(x)| = |Ng(x)|. When there is no ambiguity, we write Vi, Vs, E(x), N(x), N(S) and deg(x)
for Vk(G), V>1(G), Ec(x), N¢(x), N(S) and deg.(x), respectively. For S C V(G), let G[S] denote the subgraph induced by S in
G. Let G be a connected graph. A subset S C V(G) is said to be a cutset of G, if G — S is not connected. A cutset S is said to
be a k-cutset if |S| = k. For a noncomplete connected graph G, the order of a minimum cutset of G is said to be the vertex
connectivity of G. We denote the vertex connectivity of G by k (G).

Let k be an integer such that k > 2 and let G be a k-connected graph. An edge e of G is said to be k-contractible if the
contraction of the edge results in a k-connected graph. Note that, in the contraction, we replace each resulting pair of double
edges by a simple edge. If an edge is not k-contractible, then it is called a noncontractible edge. Note that an edge e of G is
not k-contractible if and only if there is a k-cutset S of G such that V(e) C S. If a k-connected graph G has no k-contractible
edge, then G is said to be contraction-critically k-connected.

It is known that every 3-connected graph of order 5 or more contains a 3-contractible edge [9]. There are infinitely many
contraction-critically 4-connected graphs. It is known that a 4-connected graph G is contraction-critical if and only if G
is 4-regular, and for each edge e of it, there is a triangle which contains e. [3,6]. If k > 4, then there are infinitely many
contraction-critically k-connected graphs [8].

Egawa determined the following sharp minimum degree condition for a k-connected graph to have a k-contractible edge.
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Theorem A (Egawa [2]). Let k > 2 be an integer, and let G be a k-connected graph with §(G) > L%"J Then G has a k-contractible
edge, unless 2 < k < 3 and G is isomorphic to K 1.

Kriesell extended Egawa’s Theorem and determined the following sharp degree sum condition for a k-connected graph
to have a k-contractible edge.

Theorem B (Kriesell [4]). Let k > 2 be an integer, and let G be a noncomplete k-connected graph. If deg.(x) + deg.(y) >
2 |_57"J — 1 for any pair of distinct vertices x, y of G, then G has a k-contractible edge.

There is a contraction-critically 5-connected graph which is not 5-regular. However, we see from Theorem A that the
minimum degree of a contraction-critically 5-connected graph is 5. Ando et al. [1] posed Problem D and proved Theorem C,
which says that each contraction-critically 5-connected graph has many vertices of degree 5.

Theorem C. Let G be a contraction-critically 5-connected graph of order n. Then each vertex of G has a neighbor of degree 5 and
G has at least n/5 vertices of degree 5.

Problem D. Determine the maximum value of the constant ¢ such that the inequality |V5(G)| > ¢|V(G)| holds for each
contraction-critically 5-connected graph G.

The following important result was showed by Su [7].

Theorem E. Every vertex of a contraction-critically 5-connected graph has two neighbors of degree five.

As an immediate consequence of Theorem E, we have the following.

Theorem F. For every contraction-critically 5-connected graph G, |Vs| > %|V(G)| holds.

By more detailed investigation of contraction-critically 5-connected graphs, Yuan and others [10] proved the following
Theorems H and G.

Theorem G. Let G be a contraction-critically 5-connected graph and let x be a vertex of G with deg.(x) > 8. If x has adjacent
two neighbors of degree five, then x has three neighbors of degree five.

Theorem H. For every contraction-critically 5-connected graph G, |V5(G)| > g|V(G)| holds.

On the other hands, there is a contraction-critically 5-connected graph G such that |V5(G)| = % V()] [1].
Ando posed the following conjecture.

Conjecture I. The constant c for Problem D is %

In this paper we prove the following stronger version of Theorem G (Proposition 1). And using Proposition 1, by detailed
investigation on vertices not in Vs (G) each of which has just two neighbors of degree 5, we show the constant ¢ in Problem D
is not less than % (Main Theorem). Moreover, we construct a sequence of contraction-critically 5-connected graphs {G;} such
that lim;, o [V5(G)[/IV(G)| = 1/2.

This sequence disproves Conjecture I and, together with Main Theorem, it gives the answer for Problem D, thatis c = %

Proposition 1. Let G be a contraction-critically 5-connected graph and let x be a vertex of G such that x ¢ Vs5(G). Suppose
ING(x) N V5(G)| = 2, say Ng(x) N V5(G) = {y1, y2}. Then y1y, & E(G).

Next we concentrate on vertices not in V5(G) each of which has just two neighbors of degree 5 and we find two specific
configurations.

Configuration of the first kind. A subgraph H on eight vertices (in degenerated case, on seven vertices) of a contraction-
critically 5-connected graph G is called a configuration of the first kind around (x, y) if the following (1)-(4) hold (see Fig. 1).

(1) V(H) = {x,y, 21, 22, 23, 24, U1, Uz},

(2) E(H) D {yx,yz1, Y22, Y23, Y24, XZ4, 2122, 2123, Z1U1, Z1Up, ZoU1, Z3Up },

(3) (¥, 21,22, 23} C Vs and {x, zs} N Vs = 0,

(4) There is a 5-cutset S such that {x, y, z;} C S and S separates {uy, z,} and {uy, z3, z4}.

In a configuration of the first kind, if z; = u,, then it is said to be a degenerated configuration of the first kind.
Configuration of the second kind. A subgraph H on nine vertices of a contraction-critically 5-connected graph G is called a
configuration of the second kind around (y, x) if the following (1)-(4) hold (see Fig. 2).

(1) VH) = {x,¥, 21, 22, 23, 24, U1, w1, W2},

(2) E(H) D {yx,yz1, Y22, Y23, Y24, XZ3, XZ4, Z122, 2123, Z124, Z1U1, Z2UU1, 2324, Z3W1, Z3W3, Z4W1, Z4W2 },
(3) {y! 21,22, W1, wZ} C Vva ¢ V5~

(4) {x,y, z1, wy, wy} is a 5-cutset of G which separates {z;, u} and {z3, z4}, and hence {z3, z4} C V5(G).
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Fig. 1. A configuration of the first kind.

Fig. 2. Configuration of the second kind.

Proposition 2. Let G be a contraction-critically 5-connected graph. Let x be a vertex of Gsuch that x ¢ Vs and |[N(x)NVs5(G)| = 2.
Let y € N(x) N V5(G). Then, around (y, x), there is either a configuration of the first kind or a configuration of the second kind.

By virtue of Proposition 2, we get the following result.

Main Theorem. For every contraction-critically 5-connected graph G, |V5(G)| > %|V(G)| holds.

Recently, Li and Su [5] proved the same bound of the constant ¢ in Problem D.

The organization of the paper is as follows. Section 2 contains preliminary results. In Section 3 we give a proof of
Proposition 1. In Section 4 we give a proof of Proposition 2 and in Section 5 we give a proof of Main Theorem.

To conclude this section we give three contraction-critically 5-connected graphs. The first one has a configuration of the
first kind. The second has a configuration of the second kind. The third shows that there is a sequence of contraction-critically
5-connected graphs {G;} such that lim;_, », |V5(G)|/|V(G)| = 1/2.

Example 1. The graph G illustrated in Fig. 3 is contraction-critically 5-connected, and we observe that it has a configuration
of the first kind.

Example 2. The graph G, illustrated in Fig. 4 is contraction-critically 5-connected. We observe that G, has a configuration
of the second kind.

Example 3. The graph G illustrated in Fig. 5 is contraction-critically 5-connected. Adding pairs of vertices (x4, ¥4), (X5, ¥s),
..., (x;, y;) to this graph by the similar way, we can construct a sequence of contraction-critically 5-connected graphs {G;}.
We see that |V (G;)| = 2i+ 15 and |V5(G;)| = i+ 10 since {y1, y2, ..., ¥i} C V5(G;) and {x1, X2, ..., X;} C Vs(G;). Hence we
have lim;_, o |V5(G)|/IV (G| = 1/2.
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2. Preliminaries

In this section we give some more definitions and preliminary results.

For a graph G, we denote |G| for |V (G)|. For a subgraphs A and B of a graph G, when there is no ambiguity, we write simply
A for V(A) and B for V(B). So N(A) and A N Bmean N(V(A)) and V(A) N V(B), respectively. Also for a subgraph A of G and a
subset S of V(G) we write AN Sand AU S for V(A) NS and V(A) U S, respectively. For S C V(G), we let G — S denote the
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graph obtained from G by deleting the vertices in S together with the edges incident with them; thus G — S = G[V (G) — S].
When there is no ambiguity, we write E(S) for E(G[S]). For subsets S and T of V(G), we denote the set of edges between S
and T by E¢(S, T). We write Eg(x, S) for Ec({x}, S). Then Eg(x) = Ec(x, V(G) — {x}).

An induced subgraph A of a k-connected graph G is called a fragment if [IN(A)| = kand V(G) — (AU N(A)) # @. In other
words, a fragment A is a nonempty union of components of G — S where S is a k-cutset of G such that V(G) — (AU S) # .
By the definition, if A is a fragment of G, then G — (A U N(A)) is also a fragment of G. Let A stand for G — (A U N(A)).

Let A be a fragment of a k-connected graph G and let e be an edge of G. Then A is said to be a fragment with respect to e if
V(e) C N(A).Forasetofedges F C E(G), we say that A is a fragment with respect to F if A is a fragment with respect to some
e € F. Sometimes we write “an F-fragment” for “a fragment with respect to F”. If F = {e}, then we write e-fragment instead
of {e}-fragment. For S C V(G), a fragment A is said to be S-free and S-opposite if ANS = #and S C A, respectively. Hence, if A
is S-opposite, the Ais S-free. If S = {y}, then we write y-free and y-opposite instead of {y}-free and {y}-opposite, respectively.
An F-fragment A is said to be minimum (resp. minimal) if there is no F-fragment B other than A such that |B| < |A| (resp.
B C A).

Hereafter, we consider 5-connected graphs. Let A be a fragment of a 5-connected graph G and let S = N(A). Letx € S and
lety € N(x) N A. A vertex z is said to be an admissible vertex of (x, y; A), if the following two conditions hold.

(1) ze N@® NN NSNVs.
(2) IN(z) NAl = 2.

Moreover, if [N(z) N A| = 1, then z is said to be strongly admissible.

A vertex z is said to be an admissible vertex of (x; A) or a strongly admissible vertex of (x; A), if z is an admissible vertex
of (x, y; A) or a strongly admissible vertex of (x, y; A) for some y € N(x) N A. Let Ad(x, y; A) denote the set of admissible
vertices of (x, y; A) and let Ad(x; A) denote the set of admissible vertices of (x; A). Let A be a fragment of a 5-connected graph
Gand letx € N(A). A fragment B of G is said to be (x; A)-fit if {x} UA C N(B). Avertex x € N(A) is said to be tractable with A
if there is an (x; A)-fit fragment B such that |S N B| = |S N B| = 2.If there is no ambiguity, we sometimes write “A-tractable”
for “tractable with A”.

We begin with the following two lemmas, which are both simple observations.

Lemma 1. Let A be a fragment of a 5-connected graph G and let S C N(A). If IN(S) N A| < |S|, then A C N(S).

Proof. Assume thatA # N(S) NA.LetA’ = A — (N(S) NA).Since A’ # Pand N(A') N (AUS) =@, (N(A) —S) U (N(S) NA)
separates A’ and AUS. Since |[N(S) NA| < |S|, we see that |(N(A) —S) U(N(S)NA)| = [N(A)| —|S|+IN(S)NA| < [N(A)| =5,
which contradicts the assumption that G is 5-connected. O

Lemma 2. Let G be a 5-connected graph, and let A and B be fragments of G Let S = N(A) and T = N(B).

B|ANB[SNB|ANB
ANT | SNT | ANT
ANB | SNB | ANB
A S A

oo~

Then the following hold.

(M IFISNBUGENT)UMANT)| > 6,then [ANT)U(SNT)U(SNB)| <4andANB = @.In particular, if neither AN B
nor AN B is empty, then both A N B and A N B are fragments of G. _

2)ISNBUGSNT)UANT)| =5+ |SNB|—|ANT|.In particular, if ANB # ), then |SNB| > [ANT].

(3) If |A| = 2, theneither [SNBYUSNT)UMANT)| <50r [SNB)USNT)UMANT)| <5.

Proof. (1) Since S and T are both 5-cutsets, |S| + [T| = [(SNB)USNT)U (S NB)|+|ANT)UEN TYU@ANT)| = 10.
Hence, if [(SNB)U(SNT)U (ANT)| > 6, then [(ANT)U(SNT)U(SNB)| < 4, which 1 implies that AN B = ¢, since G
is 5-connected. If neither AN Bnor AN Bis empty, then [SNB)USNT)UANT)|, [ANT)USNT)U(SNB)| > 5,
which implies [SNB)UGSNT)UANT)| = |[(ANT)U (S NT)U (S NB)| =5.Hence, we see thatbothANBandANB
are fragments of G. _ ~

(2) Since |T| = [(ANT)U(SNT)U(ANT)| = 5, we see that [(SNB)U(SNT)U(ANT)| = |T|+|SNB|—|ANT| = 54|SNB|—|ANT|.
Nextassume ANB # @. Then (SNB)U(SNT)U(ANT) is a cutset of G since AUB # (. Hence |(SNB)U(SNT)U(ANT)| > 5.
Thus, we have [SNB| > |ANT].

(3) Assume [(SNB)U(SNT)UANT)| > 6and [(SNB)U(SNT)U(ANT)| > 6.Then, by (1), we have ANB=ANB = ¢,
which implies |JA N T| = |A| > 2. Hence we see that [(SNT)UANT)| = |T| — |ANT| < 3.0n the other hand, since
|S| = 5, we observe that either |[S N B| < 2 or |S N B| < 2. This together with the fact [(SNT) U (AN T)| < 3 implies
either (SNBUGSNTYUMANT)| <50r|SNB)UGSNT)U(ANT)| <5, which contradicts the assumption. O

Lemma 3. Let x be a vertex of a contraction-critically 5-connected graph G. Let A be a fragment with respect to E(x) such that
|A] > 2 and |A| > 3. Foreachy € N(x) N A, if Ad(x,y; A) = @, then there is a fragment A’ with respect to xy such that A’ C A.
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Proof. Assume that there is neither an admissible vertex of (x, y; A) nor an xy-fragment A’ such that A" C A. Let B be an xy-
fragment. Let S = N(A) and let T = N(B). Since |A| > 2, by Lemma 2(3), we see that either [SNB)U (SNT)UANT)| <5
or (SNB)UGSNT)U ANT)| <5.Without loss of generality we may assume [(SNB)U (S NT)U (ANT)| <5.Then,
since there is no xy-fragment A’ such that A’ C A, we see that AN B = (.

Claim 3.1.ANB # ¢.

Proof. Assume A N B = (. Then, since AN B = , we have A = ANTand |A] = |ANT| > 3, which implies that
[ANT| = |T| = ISNT| —]JANT| < 1. Hence, since |[A] > 2, by symmetry, we may assume that A N B # . Then,
by Lemma 2(2), we observe that |S N B| > |ANT| > 3, which implies that SN B| = |S|—|SNT| —|SNB] < 1L.If
S N B = @, then we have B = ¢, which contradicts the choice of B. Hence |S N B| = 1, say S N B = {z}. Then we observe
thatz € NX) N N(y) NSNVsand [N(z) NAl = |JANT| = 3. Now we see that z € Ad(x, y; A), which contradicts the
assumption. O

By Claim 3.1, we see that ANB # @.1f [(SNB)U (SNT) U(ANT)| = 5, then AN Bis an xy-fragment such that AN B C A,
which contradicts the assumption. Hence we have [(SNB) U(SNT) U (ANT)| > 6. Thus, by Lemma 2(1), we observe that
AN B = ¢, which implies B = S N B since AN B = ). We show that |B] = |S N B| = 1. Assume that |S N B] > 2. Since
[(SNBYUSNT)U(ANT)| > 6,applying Lemma 2(2) with the roles SNBand ANT replaced by ANT and S N B, respectively,
we see that |ANT| > [SN B| + 1 > 3, which implies that ANT| = |T| — |[SNT| - |[ANT| < 1sincex € S N T. Hence,
since [ANT| < |S N B|, applying Lemma 2(2), we see that A N B = §J, which implies |A] = |A N T| < 1. This contradicts
the assumption and it is shown that |[S N B| = 1,say B = S N B = {z}. Then we observe thatz € N(x) " N(y) NS N V5 and
IN(z) NA| =|ANT| > |SNB|+ 1 = 2.Hence z is an admissible vertex of (x, y; A), which contradicts the assumption. This
contradiction proves Lemma 3. O

The following corollary is an immediate consequence of Lemma 3.

Corollary 4. Let x be a vertex of a contraction-critically 5-connected graph G. Let A be a fragment with respect to E(x) such that
|A] > 2, |A| > 3. Suppose [N(x) NA| = 1, say N(x) N A = {y}. Then there is an admissible vertex of (x,y; A).

Proof. Assume that there is no admissible vertex of (x, y; A). Then, Lemma 3 assure us that there is an xy-fragment A’ such
that A’ C A. Since N(x) N A = {y}, we observe that N(x) N A" = {, which contradicts the fact that A’ is an xy-fragment. This
contradiction proves Corollary 4. O

Let A be a fragment of a 5-connected graph and let x € N(A). Recall that a fragment B is (x; A)-fitif AU {x} C N(B) and a
vertex x € N(A) is tractable with A if there is an (x; A)-fit fragment B such that [SNB| = |SNB| = 2.

Lemma 5. Let G be a contraction-critically 5-connected graph. Let A be a fragment such that |A| > 2, |A| = 2 and AN Vse # 0.
Then the following (1), (2) and (3) hold.

(1) {x € N(A) | Ad(x; A) # 0}| = 4.
(2) If Ad(x; A) = 0 for x € N(A), then N(x) N N(A) = 0.
(3) INAWNVs| =4

Proof. Let S = N(A) and let A = {y;, y,}. We may assume that deg.(y;) < deg;(y,), then we observe that deg;(y,) = 6
and S C N(y,) since AN Vs¢ # 0.

Claim 5.1. For each x € S, there is an (x; A)-fit fragment.

Proof. At first we consider the case that xy; € E(G). Let B be an xy,-fragment. Then, since S C N(y,), we observe that
y2 € N(B), which implies that Bis an (x; A)-fit fragment. Next assume thatxy; € E(G).Then we observe thatS—{x} C N(y1).
Let B be an xy,-fragment. Then, since S — {x} C N(y;), we see that y; € N(B), which implies that B is an (x; A)-fit fragment.
Now Claim 5.1is proved. O

Claim 5.2. If x € S is not tractable with A, then Ad(x; A) # 0.

Proof. Assume x is not tractable with A. By Claim 5.1, let B an (x; A)-fit fragment and let T = N(B). Since x is not tractable
with A, we know that either |[S N B| = 1 or |S N B| = 1. Without loss of generality, we may assume that [S N B| = 1, say
S N B = {z}. Then, since |S N B| < |A N T|, by Lemma 2(2), we see that AN B = @, which implies that B = SN B = {z}.
Hence, we observe thatz € N(x) N N(y) NS N V5 and |[N(z) N A| = |A| = 2, which implies that z € Ad(x; A) and Claim 5.2
isproved. O

Let S = {x1, X2, X3, X4, Xs}.
Claim 5.3. If both x; and x, are tractable with A, then neither Ad(x,; A) nor Ad(x,; A) is empty.
Proof. Since both x; and x;, are tractable with A, there are an (x;; A)-fit fragment By and an (x,; A)-fit fragment B, such that
[ISNB1| = |[SNBq| = |[SNBy| = |[SNBy| = 2.LetT; = N(By) and T, = N(B,). Then, we observe thatA C T{NT,, SNT; = {x1}

and S N T, = {x,}. Without loss of generality, we may assume that S N B; = {x,, x3} and S N B; = {x4, x5}. Furthermore,
without loss of generality, we may assume that x; € S N B,.
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At first we consider the case that x3 € S N B,. In this case S N B, = {x1, X3} and S N B, = {x4, xs5}. Then we observe that
X3 € By N By and {x4, x5} C B; N B,, which implies that neither By N B, nor By N B, is empty. Then, Lemma 2(1) assures us
that both B; N B, and B; N B, are fragments of G. Moreover, we observe that {y{, y,} C T1NT,,x; € T{NByandx, € BiNTy,
which implies that N({y1, y»}) N (B; N B;) = {x3}. Hence, applying Lemma 1 with the roles S and A replaced by {y{, ¥} and
B1 N By, respectively, we see that B; N B, = {x3}. Now we have x3 € V5,A = {y1,¥2} C N(x3), and x1, X, € N(x3), which
implies x3 € Ad(x;; A) and x3 € Ad(x,; A). Hence we have the desired conclusion that neither Ad(x;; A) nor Ad(x,; A) is
empty.

Next we consider the case that x3 ¢ S N B,. In this case, without loss of generality, we may assume that S N B, = {x1, X4}
andS NB, = {x3, xs}. Then we observe that x3 € B, NB,, x4 € B NB, and x5 € B;NB,, which implies that neither B; "B, nor
B1 N B, is empty. Then, Lemma 2(1) again assures us that both B; N B, and B; N B, are fragments of G. Moreover, we observe
that {y1,y2} C T1NTy, %1 € TiNB and x; € B1NT,. Since N({y1, ¥2}) N (B1NB;) = {x3}, applying Lemma 1 with the roles S
and A replaced by {y1, y»} and B; N B,, respectively, we see that B; N B, = {x3}, which implies x3 € V5,A = {y1, y>} C N(x3)
and x3 € N(x;). Hence we see that x3 € Ad(x,; A). We can similarly prove x, € Ad(x;; A). Now we obtain that neither
Ad(x1; A) nor Ad(x,; A) is empty.

In both cases, we have the desired conclusion that neither Ad(x;; A) nor Ad(x,; A) is empty and Claim 5.3 is proved. O

By virtue of Claim 5.3, we show (1). Assume Ad(x1; A) = @. Then, by Claim 5.2, we see that x; is tractable with A. If there
is a A-tractable vertex other than xy, then Claim 5.3 assures us that Ad(x;; A) # @, which contradicts the assumption that
Ad(xq; A) = ¥. Hence we see that none of x,, x3, x4 and x5 is A-tractable. Hence, again Claim 5.2 assures us that Ad(x;; A) # ¢
fori =2, 3,4, 5.Now (1) is proved.

Next we prove (2). Assume Ad(x;; A) = ¥ and N(x;) NS # @. Then, by (1), we know that Ad(x;; A) # @A fori = 2, 3,4, 5.
Then, since Ad(x1; A) = §, Claim 5.2 assures us that x;_is A-tractable. Hence there is an (x;; A)-fit fragment By such
that |S N By| = |S N By| = 2. Since SN By| = |SN B;| = 2, we observe that S N T; = {x;}, which implies that
IANT;| = |Ty| — |SNTy| — |ANTy| = 2. By symmetry, we may assume that S N B; = {x,,x3} and § N By = {x4, xs}.
Note that, in this situation, Ec({x2, X3}, {x4, Xs}) = @. Since N(x;) NS # @, without loss of generality, we may assume
X2 € N(x;) N S. Then, since Ad(x;; A) = @, we observe that either x, € Vg or |[N(x;) N A| = 1, which implies that x;
cannot be an admissible vertex of (x3; A). Since N(x3) NS C {xq, X2}, X2 & Ad(x3; A), and Ad(x3; A) # ), we see that x; is
an admissible vertex of (x3; A), which implies {y1, 2, X2, X3} C N(x1). Let N(x1) =_{y1, ¥2, X2, X3, v}. Then, since neither
N(x;) N A nor N(x;) N By is empty, we see that v € A N By, which implies that Al > JANT +|AN B1| > 3. Since
|A] > 3, |Al = 2 and |N(x;) NA| = 1, applying Corollary 4 with the roles of x, y and A replaced by x, v and A, respectively,
we see that Ad(x1, v; A) # . Since N({x,, x3}) N By = @, we observe that v & N({x,, x3}), which implies that neither x, nor
X3 is an admissible vertex of (x1, v; A). Since N(x1) NS = {x,, X3}, we have Ad(xy, v; A) = @, which contradicts the previous
assertion. This contradiction proves (2).

At last we show (3). By (1), we know that |[{x € N(A) | Ad(x; A) # @}| > 4. To begin with the case that |[{x € N(A) |
Ad(x; A) # 0} = 4, let Ad(x1; A) = @ and Ad(x;; A) # ¥ fori = 2, 3,4, 5. By Claim 5.2, let By be an (xq; A)-fit fragment
such that |[S N By| = |S N By| = 2. By symmetry, we may assume that S N B; = {x, X3} and S N By = {4, x5}. By (2), we see
that N(x;) NS = . Then, since neither Ad(x,; A) nor Ad(xs; A) is empty, we see that x, is an admissible vertex of (x3; A)
and x3 is an admissible vertex of (x,; A). Similarly we see that x, is an admissible vertex of (x5; A) and x5 is an admissible
vertex of (x4; A). Now we have |SN V5| > 4.

Hereafter, we assume that Ad(x;; A) # @ fori =1, 2, 3,4, 5. Assume |S N V5| < 3,5ay x4, X5 € V>g. Since Ad(x;; A) #
fori = 1, 2, 3, we observe that N(x;) NS NV5 # @ fori = 1, 2, 3. Hence we can find a path of length 2 in G[{x;, x5, x3}]
whose center vertex has degree 5. Without loss of generality, we may assume that x1x,, Xx,Xx3 € E(G) and v, € V5. We
show x, & Ad(x4; A). Assume x; € Ad(x4; A). Then, since x, € Vs, {x1, X3} C N(x2) and N(x;) N A # (J, we observe that
IN(x2) N (AU {x4, Xs5})| < 2. Hence, we observe that either N(x,) N {x4, X5} = @ or [N(xp) NA| = 1.IfN(xp) N {x4, x5} =@
then we observe that neither x, € Ad(x4; A) nor x, € Ad(xs; A). Otherwise, if [N(x,) N A|] = 1, then we also observe
that neither x, € Ad(x4; A) nor x, € Ad(xs; A). This contradicts the assumption and it is shown that x, ¢ Ad(xy; A).
Since Ad(x4;A) # ¥ and x5, x5 ¢ Ad(x4; A), by symmetry, we may assume that x; € Ad(x4; A), which implies that
X1 € Vs, {¥1,¥2, X2, X4} C N(xq) and [N(x1) NA] = 1,say N(x;) N A = {v1}. Since N(x;) NS = {x3, x4} and x4 € V>,
we see that x, € Ad(x;; A), which implies that x, € Vs, {y1, V2, X1, X4} C N(x2) and [N(x,) NA| = 1,say N(x2) N A = {v,}.
Since Ad(xs; A) # @ and N (x5) N{x1, X2} = @, we see thatx; € Ad(xs; A), whichimplies thatxs € Vs, {y1, ¥2, X2, X5} C N(x3)
and [N (x3)NA| = 1,say N (x3) NA = {v3}.If vy = vy, then, applying Lemma 1 with the roles of S and A replaced by {x;, x,} and
A, respectively, we see that |A| = 1, which contradicts the assumption that |A| > 2. Hence vy # v,. By similar arguments,
we know that vq, vy, v3 are distinct, which implies that |[A| > 3. Since |A| > 3, ]A| = 2 and [N(x;) N A| = 1, applying
Corollary 4 with the roles of x and A replaced by x; and A, respectively, we see that Ad(x;; A) # ¢. However, we already
know that N(x;) NS = {x, x4}, IN(x2) N A| = 1and x4 € V>g, which implies that there is no admissible vertex of (x;; A).
This contradicts the previous assertion and this contradiction proves (3) and Lemma 5 is proved. O

The following is an immediate corollary from Lemmas 3 and 5.

Lemma 6. Let x be a vertex of a contraction-critically 5-connected graph. Let A be a fragment with respect to E(x) such that
|A] = 2.If N(x) N AN Vs = @, then there is an admissible vertex of (x; A).
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Proof. We prove Lemma 6 by induction on |A|. Note that |A| > 2, since N(x) N AN Vs = @.If |A| = 2, then, since |A| > 2
and N(x) N N(A) # @, Lemma 5(2) assures us that there is an admissible vertex of (x; A). Now the initial step is completed.

Next assume |A| > 3 and lety € N(x) N A. If there is an admissible vertex of (x, y; A), then we are done. Hence, assume
that Ad(x, y; A) = @. Then, by Lemma 3, we see that there is an xy-fragment A’ such that A* C A. Then we see that A’ is
an E(x)-fragment, |A'| > |A] > 2,N(xX) NA'NVs = @ and |A’'| < |A|. Hence, by the induction hypothesis, we see that
Ad(x; A") # . Since A € Aand N(x) N AN Vs = @, we see that an admissible vertex of (x; A’) is an admissible vertex of
(x; A). The induction step is now completed and Lemma 6 is proved. O

Lemma 7. Let x be a vertex of a contraction-critically 5-connected graph G. Let A be a fragment with respect to E(x) such that
|A| > 2 and |A| > 3.Suppose [N(x) NA| = 1,say N(x) NA = {y}.If y & Vs, then there is a strongly admissible vertex of (x, y; A).

Proof. Assume that there is no strongly admissible vertex of (x, y; A). By Corollary 4, we know that Ad(x, y; A) # ¥, say
z € Ad(x,y; A). Let B = {z} and T = N(z). By the assumption, z is not strongly admissible, which implies [N(z) N A| > 2.
Since [N(z) NA| > 2 and [N(z) NA| > 2, we observe that [N(z) NA| = [IN(z) NA| =2and SNT = {x}.Let N(z) NA = {y, u}
and S N B = {vq, vy, v3}.

Claim 7.1. |A| = 3.

Proof. Assume |A| > 4.LetA’ = A—{y}and S’ = (S — {x}) U {y}. Then we observe that A’ is a zy-fragment, |A'| >
Al > 2,|A| = |A|— 1> 3and N(z) NA’" = {u}. Hence, by Corollary 4, we see that there is an admissible vertex of (z, u; A").
But we know that N(z) NS’ = {y} and y € V-, which implies that there is no admissible vertex of (z, u; A’). This contradicts
the previous assertion and it is shown that |[A| = 3. O

LetA = {y,u, w}, then ANT = {y,u} and A N B = {w}. In this situation, since N(x) N (A N B) = @, we observe that
w € Vsand N(w) = {y, u, vy, vp, v3}. Let A’ = {u, w} and let S’ = N(A') = {z, y, v1, v, v3}.

Claim 7.2. z is tractable with A'.

Proof. Assume z is not tractable with A'. Let C be a zu-fragment. Since S’ — {z} = {y, v1, v2, v3} C N(w), we observe that
C is a (z; A)-fit fragment. Since z is not tractable with A’, we see that either |S"N C| < 1or |S' N C| < 1. Without loss of
generality, we may assume that |[S" N C| < 1. Since C is (z; A")-fit, we know that S’ N C # @, which implies |[S' N C| = 1,
say S’ N C = {y'}. Then, since |S'NC| < |JA NN(C)| = |A’| = 2, Lemma 2(2) assures us that A’ N C = @, which implies
C =S NC = {y'}. Then, we observe thaty’ € N(z) NS’ N Vs, which contradicts the fact that N(z) NS’ = {y}andy & Vs.
This contradiction proves Claim 7.2. O

Let C be a zu-fragment. By Claim 7.2, we know that A" C N(C), |[S'NC| = |S'N C| =2and S’ NN(C) = {z}. Without loss
of generality, we may assume that S’ N C = {y, v;} and S’ N C = {v,, vs3}. Then, we observe that N(y) N {v, v3} = @, which
implies that N(y) C (SUA) — {y, v,, v3} = {x, z, u, w, v1}. Now we have deg.(y) = |[N(y)| < 5, which contradicts the fact
thaty € Vs¢. This contradiction proves Lemma 7. O

3. Proof of Proposition 1

Let G be a contraction-critically 5-connected graph and let x € V(G) such that x ¢ Vs and [N(x) N V5| = 2, say
N(x) N V5 = {y1, ¥-}. By way of contradiction, assume y1y, € E(G). Let E'(x) = E(x) — {xy1, Xy }. Let A be a E’(x)-fragment
of G. Then, since y1y, € E(G), we observe that either A N {yq,y2} = @ or AN {y1,y2} = 0. Hence there is a {y;, y.}-free
E'(x)-fragment of G.

Claim 1. Let xz € E’(x) and let A be a minimal {y1, y,}-free xz-fragment.
Then, (1) AN {y1,¥2} # @ and (2) if |A| > 2, then |A|] > 3.

Proof. (1) Assume that AN {y1, y,} = @. Then {y1,y2} C N(A). Then, since N(x) N AN V5 = ¢, we observe that |A] > 2.
Since N(x) N AN Vs = {J, we also see that |A| > 2. We show that |[N(y;) N A| > 2. Assume [N(y;) N A] = 1, say
N(@y1) NA = {u}. Let A = A — {u}. Then we see that A’ is a {y1, y,}-free xz-fragment of G and A’ C A, which contradicts
the minimality of A. This contradiction proves that [N(y;) N A] > 2. By symmetry, we have [N(y,) N A| > 2. Hence
IN(y1) N (N@A) UA)| > [{x,y2}| + IN(1) NA| > 4, which implies [N(y1) N A| = 1. Similarly we have [N(y,) NA| = 1.
Hence, we see that {yq, y,} N Ad(x; A) = @. Since N(x) N V5 = {y1, ¥}, this implies that Ad(x; A) = #. On the other hand,
since |A| > 2 and N(x) NAN Vs = (J, Lemma 6 assures us that there is an admissible vertex of (x; A), which contradicts the
previous assertion. This contradiction proves (1).

(2) Assume that |[A| > 2 and |A| < 2.Since N(x) NV5 = {y1, y»} and Ais {y1, y»}-free, we observe that N(x) NAN V5 = 0,
which implies AN V> # ¥ and |A| > 2. Hence we see that |A| = 2. Since |A| > 2, |A| = 2and A N Vs # 0, applying
Lemma 5(3), we see that [N(A) N V5| > 4. However, since {x, z} C N(A) N Vg, we observe that [N(A) N V5| < 3, which
contradicts the previous assertion. This contradiction shows (2) and Claim 1 is proved. O

Claim 2. There is a y;-opposite E' (x)-fragment of G for eachi € {1, 2}.
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Proof. Let A be a minimal {y1, y,}-free E’ (x)-fragment of G and let S = N(A). Then Claim 1 assures us that AN {yy, y,} # @.
Hence, by symmetry, we may assume that A is a minimal y;-opposite E’(x)-fragment of G. Say xz € E(S) N E’(x). Since
N(x) NANVs = @, we see that |A| > 2. Assume that there is no y,-opposite E’(x)-fragment. Let u € N(x) N A and let B be
a minimal {y1, y,}-free xu-fragment of G. Then, since N(x) N BN V5 = §J, we observe that |B| > 2. Applying Claim 1 with
the roles of xz and A replaced by xu and B, respectively, we see that {y1, y,} N B # (J, which implies y; € A N B since B is
not a y,-opposite E’(x)-fragment. Since both A and B are {y;, y,}-free and neither A nor B is y,-opposite, we observe that
y2€SNT.

Subclaim 2.1. (1) ANB=@Wand (2)|SNB| = 1.

Proof. (1) Assume AN B # . Then, since neither AN B nor AN Bis empty, Lemma 2(1) assures us that A N B is y;-opposite
E’ (x)-fragment, which contradicts the minimality of A since u ¢ A N B. This contradiction proves (1).

(2) Assume |S N B| > 2. Then, since AN B # @, Lemma 2(2) assures us [ANT| > |S N B| > 2, which implies [ANT| =1
since {x, y,} € S N T.Hence, we observe that |]ANT| < |S N B| and again Lemma 2(2) assures us that AN B = @, which
implies that |A| = |AN T| = 1. This contradicts the fact that |[A| > 2 and itis shownthat [SNB| =1. O

By Subclaim 2.1, we know that AN B = @ and |S N B| = 1, which implies AN B # ¥ since |B| > 2. Hence, by Lemma 2(2),
we see that JANT| < |S N B| = 1, which implies A N B +# ¥ since |A| > 2. Now we observe that neither A N Bnor A N B
is empty. Hence, by Lemma 2(1), we see that A N B is a y;-opposite E’(x)-fragment, which contradicts the minimality of A
since u € A N B. This contradiction shows the existence of a y,-opposite E’(x)-fragment and Claim 2 is proved. O

Let A be a minimum y-opposite E’(x)-fragment and let B be a minimum y,-opposite E’(x)-fragment. Let S = N(A) and
let T = N(B).
Claim 3. |A| > 2 and |B| > 2.

Proof. We show |A| > 2. Assume |[A| = 1. ThenA = {y;}and S = N(y1). LetS = N(y1) = {x,y2, 21,2, 23}. Let
B =G—N(@,)U{y,}and letT" = N(B'). Then B’ = {y,}. Let T" = N(¥;) = {x, ¥1, U1, Uz, us}. By Theorem E, we know that
IN(y1) N V5| > 2 and |N(y;) N V5| > 2. Hence, since x ¢ Vs, we observe that neither {z;, z5, z3} N V5 nor {uy, uy, us} N Vs is
empty. Without loss of generality, we may assume z3, u3 € Vs.

Subclaim 3.1. N(x) C SUT' U {y1, y2}.

Proof. Assume N(x) N (ANB') # @.Let E"(x) = Ec(x, AN B). Then E”(x) # . Let C be a minimum {y,, y,}-free E” (x)-
fragment. Say xv € E(N(C)) N Eg(x,A N B'). Note that v € Vsg since N(x) N V5 = {y1,y2}. Sincev € ANB,A = {y1}
and B = {y,}, we observe that N(v) N {y1,y.} = . Then, applying Claim 1 with the role of A replaced by C, we see
that {y1,y2} N C # @.Since v € N(C) and N(v) N {y1,y2} = @, we see that |C| > 2.Ify; € C, then we observe that
ANN(C) =ANC=5SNC =4, which implies that C is a y;-opposite E’(x)-fragment such that C C A — {v}. This contradicts
the minimality of A. Hence y; ¢ C, whichimplies thaty, € SNCandy; € N(C).Since |C| > 2, applying Claim 1(2) with the
roles of A and E’(x) replaced by C and E” (), respectively, we see that |C| > 3.Since |[C| > 2, |C| > 3and N(x)NCNVs = @,
applying Lemma 6 with the role of A replaced by C, we see that Ad(x; C) # . Since N(x) N N(C) N Vs = {y;}, we observe
that y; is an admissible vertex of (x; C), which implies that [N(y;) NC| = |SN C| > 2.

Subsubclaim 3.1.1. [SN C| > 2.

Proof. Assume |S N C| = 1. Then, since |C| > 2, we observe that A N C # . Then, since |S N C| = |A N N(C)|, applying
Lemma 2(2), we see that [(SNC)U(SNN(C))U (ANN(C))| = 5.Hence we observe that ANC is a y;-opposite E’ (x)-fragment,
which contradicts the minimality of A since v & A N C. This contradiction proves Subsubclaim 3.1.1. O

Since [N(y;) N C| = |SN C| > 2, Subsubclaim 3.1.1 assures us that [SN C| = [SNC| = 2and S N N(C) = {x}.
Subsubclaim 3.1.2.N(x) N (ANC) =

Proof. Assume v € N(x) N (A N C). Then, there is no admissible vertex of (x, v'; C) since N(x) N N(C) N V5 = {y;} and
y1v' & E(G). Then, since |C| > 2, |C| > 3 and Ad(x, v'; C) = ¥, applying Lemma 3 with the roles of y and A replaced by v’
and C, respectively, we see that there is an xv’-fragment C’ such that C’ C C, which contradicts the minimality of C. This
contradiction shows that Nx) N (ANC) =¢. O

Subsubclaim 3.1.2 assures us that N(x) NC C SN C.
Subsubclaim 3.1.3.N(x) NC =S NC.

Proof. Assume N(x)NC C SNC.Then, since [SNC| = 2, we observe that [N(x)NC| = 1.Since IC| > 2,|C| =3, IN®NC| =1
and N(x) N C C Vg, applying Lemma 7 with the role of A replaced by C, we see that y; is a strongly admissible vertex of
(x; C). Hence |[N(y;) N C| = 1, which contradicts Subsubclaim 3.1.1. This contradiction proves N(x) NC=SNC. O

We are in a position to complete the proof of Subclaim 3.1. By Subsubclaim 3.1.3, we know N (x) N C = N(y1) N C, which
implies that N(y;) N C N Vs = @ since N(x) N C NVs = @. Since |C| > 2,|C| > 3and N(y;) N C N Vs = @, applying
Lemma 6 with the roles of x and A replaced by y; and C, respectively, we see that Ad(y;; C) # . On the other hand, since
N(y1) N N(C) = {x} and x € Vs¢, we see that there is no admissible vertex of (y;; C), which contradicts the previous
assertion. This contradiction proves Subclaim 3.1. O
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By Subclaim 3.1 we know that N(x) C (S U T’) U {y1, ¥2}. Since N(x) N Vs = {y1,¥>} and z3, u3 € Vs, we see that
73, U3 & N(x). Hence, we observe that yq, y», z1, 22, U1, U are distinct and N(x) = {y1, ¥2, 21, 22, U1, Uz} because |[N(x)| > 6.
Hence, we observe that {z1, z, uy, U3} N Vs = @ since N(x) N Vs = {y1, y=}.

Subclaim 3.2. Let C be a y1x-fragment such that |S N C| > |S N C| and |S N N(C)| > 2. Then, either (1) C = {y,} or (2)
{Z], Zz} ccC andz3 = Us.

Proof. Since A = {y;}and y; € N(C), we observe that neither SN C nor S N C is empty. Hence, since |S N C| > |S N C| and
ISAN(C)| = 2,weseethat|SNC| =1, saySﬂC = {v}.

At first we consider the case that AN C = ¢. In this case C = S N C = {v}. Hence v € N(x) N S N Vs, which implies that
v = y,. Now it is shown that if AN C = @, then( ) holds.

Next we assume A N C # . In this case, since |A N N(C)| = |S N C|, we see that AN C is a fragment of G. If |A N C| =1,
then N(x) N (AN B) N V5 # @, which contradicts the fact that A i is {y1, y»}-free. Hence |A N C| > 2, which implies |C| > 3.
SinceSN C # Wand |JANN(C)| = |S N C|, we observe that A N c C A If {z1, 25} N (N(C) U C) # ¥, then we observe that
ANC is a y;-opposite E’ (x)-fragment, which contradicts the mlmmallty of A. Hence we have {z1, z,} C C.Since {z1, 22} C C,
we observe that |C| > 2 and either w = y, or w = z5. Now we know that |C| > 2, |C| > 3and N(y;) N C = {w}. Hence,
applying Corollary 4 with the roles of x and A replaced by y; and C, respectively, we see that Ad(y;, w; C) # B Ifw = z3,
then y, is an admissible vertex of (y1, z3; C), which implies that y,z3 € E(G). If w = y», then z; is an admissible vertex of
(¥1, ¥2; C), which again implies that y,z3 € E(G). Thus we have z3 = u3. Now it is shown that if AN C # @, then (2) holds
and Subclaim 3.2 is proved. O

Subclaim 3.3. z3 = us.

Proof. Let C be a y;z3-fragment. Then, if x € C, then, since N(y;) C N(x) U {x, z3}, we observe that N(y;) N C = @, which
contradicts the choice of C. Hence x ¢ C. By symmetry, we see that x ¢ C and hence x € N(C), which implies that C is a
y1x-fragment and |S N N(C)| > 2. Without loss of generality, we may assume that |[S N C| > |S N C|. Now we can apply
Subclaim 2.2. If Subclaim (2) holds, then z3 = u3 and we are done. Hence, we may assume that Subclaim 2.2(1) holds, that
is C = {y,}. Thus y,z3 € E(G), which implies again z3 = u3. Subclaim 3.3 is proved. O

We proceed with the proof of Claim 3. By Subclaim 3.3, we know that z3 = u3, say w = z3 = us. Since w € Vs, and
{y1,¥2} C N(w), we see that |{z1, z, u1, u} N N(w)| < 3. Without loss of generality, we may assume that z; ¢ N(w). Let
C be a fragment with respect to y;z;. We show that x € N(C). Assume x € C. Then we observe that N(y;) N C = {w} since
N(y1) C N(x) U {x, w}. Since xy,, y,w € E(G), we observe that y, € N(C). Furthermore, since {z1, z, u;, U} C N(x), we
see that N({y1,y2}) N C = {w}. Hence, applying Lemma 1 with the roles of S and A replaced by {y1, y»} and C, respectively,
we see that C = {w} and N(C) = N(w). This contradicts the fact that z; ¢ N(w), and this contradiction proves x ¢ C. By
symmetry, we see that x ¢ C. Now it is shown that x € N(C).

Without loss of generality, we may assume that |S N C| > |S N C|. Applying Subclaim 3.2, we see that C = {y,} since
the fact that z; € N(C) assures us that Subclaim 3.2(2) does not occur. Hence, we observe that y,z; € E(G). However
N(2) = {x,y1, u1, uz, w} and y1, ¥, Z1, 2, U1, Uy are distinct, which implies y,z; ¢ E(G). This contradicts the previous
assertion and we have shown that |A| > 2.

_ Using the same arguments with the roles of A and B’ replaced by B and G — N (y;) U {y1}, respectively, we can show that
|B| > 2. Now Claim 3 is proved. O

Recall that A and B are a minimum y;-opposite E’(x)-fragment and a minimum y,-opposite E’(x)-fragment, respectively,
andS = N(A) and T = N(B). By Claim 3, we know that |A|, |B| > 2. Then, applying Claim 1(2), we see that |A|, |B| > 3.

Claim 4. (1)N(x) NA C N(y,) NAand (2)N(x) "B C N(y;) N B.

Proof. We show (1). Assume that there is a vertex v € N(x) NAsuch that v & N(y,). Since N(x) NS NV5 = {y,}, there is no
admissible vertex of (x, v; A). Then, since |A| > 2 and |A| > 3, applying Lemma 3 with the role y replaced by v, we see that
there is an xv-fragment A’ such that A” C A. Then A’ is a y,-opposite E’(x)-fragment such that A" C A, which contradicts that
minimality of A. This contradiction shows (1).

By the similar arguments, we can show (2) and Claim 4 is proved. O

Since A is y-opposite and B is y,-opposite, Claim 4 assures us that N(xX) N (ANB) = @
Claim 5. Neither A N B nor A N B is empty.

Proof. Assume that either AN B = ¢ or AN B = ¢. Without loss of generality, we may assume that A N B = (). We show
ANB = . Assume AN B # §. Then, since N(x) N (AN B) = ¢, we observe that [(SNB)U (SNT)U (SNT)| > 6. Then
Lemma 2(1) assures us that AN B = ¢, which impliesA = AN T. Since [ANT| = |A| > 2, by Lemma 2(2), we observe that
SN B| > |ANT|+ 1 = 3, which implies [S N B| = [S| — [SNT| — |S N B| < 1. Then we observe that [SNB| < |ANT]|
and Lemma 2(2) again assures us that A N B = @, which implies that |B| = |S N B| < 1. This contradicts Claim 3 and it
is shown that ANB = . Since ANB = ¥,ANB = @ and |B| > 3, we observe that |S N B| = |B| > 3. Next we show
that ANT| > 3. Assume |ANT| < 2.Then, [ANT| < |S N B| and Lemma 2(2) assures us that A N B = J, which implies
|A| = [ANT| < 2. This contradicts the assertion before Claim 4, and it is shown that [ANT| > 3.Since [ANT| > 3, we
observe that |AN T|=|T|—|SNT|—|ANT| < 1. Hence, since JANT| < |S N B|, we see that AN B = @, which implies that
A=ANT.Thus |A| = |ANT| < 1, which contradicts Claim 3. This contradiction proves Claim 5. O
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By Claim 5 we know that neither A N B nor A N B is empty. Then, Lemma 2(1) assures us that both A N B and A N B are
fragments of G. We show that SNB = ANB = ANT = @. Since Ais an E’ (x)-fragment, E(S) NE'(x) # @, sayxz € E(S)NE'(x).
Ifz € SN (T UB), then AN Bis ay;-opposite E’ (x)-fragment. Then, the minimality of A assures us A = A N B, which implies
that SNB =ANB = ANT = (. Hence, z € S N B, which implies that A N B is a y,-opposite E’(x)-fragment. In this
case, the minimality of B assures us B = A N B, which implies again that SN B =ANB = ANT = (. Now we know that
A=ANB,B=ANBandSNB=ANB=ANT ={.SinceA=ANB,B=ANBand |A], |B] > 3, we see that |A|, |[B] > 3.

Claim 6. N(y,) NA = {y1}, N(y1) N B = {y,},

Proof. We show that N(y;) N A = {y;}. Since y; € N(y;) N A, it suffices to show that [N(y;) N A| = 1.1f [N(y2) NA| = 3,
then [N(y2) NA| = IN(y2)| — IN(y2) N'S| — [N(y2) NA] = 1 and we are done. Hence we may assume that [N(y,) N A| = 2.
Then, by Claim 4, we observe that [N (x) NA| < [N(y2) NA| = 2.1f [N(x) NA| = 1, then we see that y, is a strongly admissible
vertex of (x; A), which implies that [N(y,) N A| = 1. Hence we may assume that |[N(x) N A| = 2. In this situation, by Claim
4, we see that N(x) N A = N(y,) N A, which implies that N(y,) NAN Vs = @ since N(x) NAN Vs = @. Since |A| > 2 and
N(y,) NAN Vs = @, applying Lemma 6 with the role of x replaced by y,, we see that Ad(y,; A) # @, which implies that y,
has a neighbor other than x in S. Thus we observe that [N(y,) N'S| > 2, which implies that |[N(y,) N A| = 1. Hence, it is
shown N(y;) NA = {y1}. ~
By the similar arguments, we can show that N(y;) N B = {y,}, and Claim 6 is proved. O

Since |A], |A] > 3 and N(y;) N A = {y1}, applying Corollary 4 with the roles of x, y and A replaced by y,, y; and A,
respectively, we see that Ad(y», y1; A) # (). Since |B|, |B| > 3 and N(y;) N B = {y-}, applying Corollary 4 with the roles
of x, y and A replaced by y1, y, and B, respectively, we also see that Ad(y;, y»; B) # 0. Say w € Ad(y, y1; A). Then, since
w € N(y1) N N(y2), we observe that N(y;) = (N(y2) NA) U {x, w, y1} and N(y1) = (N(y1) N B) U {x, w, y,}, which implies
w € N(y1) NN(y2) and Ad(yz, y1; A) = Ad(y1, y2; A) = {w}.

Claim 7. [N(w) NA| > 2 and [N(w) NB| > 2.

Proof. We show |[N(w) N A| > 2. Assume |[N(w) NA| = 1,say N(w) N A = {u,}.
Subclaim 7.1. [N(x) N A| = 1.

Proof. Assume |N(x) N A| = 2. Then, since [N (y,) N A| = 2, Claim 4 assures us that N(y,) N A = N(x) N A, which implies
N(@y2) NANVs = @ since Nx) NAN Vs = . Since |[A] > 3, applying Lemma 6 with the role of x replaced by y,, we
see that Ad(y,; A) # @. Since N(y;) NS N Vs = {w}, we observe that w is an admissible vertex of (y,; A), which implies
IN(w) NA| > 2. This contradicts the assumption and Subclaim 7.1 is proved. O

By Subclaim 7.1, we know that [N (x) NA| = 1, say N(x) N A = {u,}. We show that u; # u,. Assume u; = u,. Then, since
N({x, w}) NA = {u,}, applying Lemma 1 with the role S replaced by {x, w}, we see that A = {u;}, which contradicts the fact
that |A| > 3. Now it is shown that u; # u,.

Subclaim 7.2. |A| > 4.

Proof. Assume |A| = 3. Recall that zx € E(S) N E’(x). Since w € Vs, we observe that z # w. Let Ay = A — {u;}. Then, since
N(w) N'A = {uq}, we observe that N(A;) = (S — {w}) U {uq}. This implies that A; is a fragment of G. Since |A| = 3 and
u; € Ap N Vsg, we observe that |A;| = 2 and A; N Vs¢ # @. Then, since |A;| > 3, ]A1| = 2 and A; N Vs¢ # 0, applying
Lemma 5(3) with the role of A replaced by A, we see that [N(A;) NV5| > 4. However, since {x, z} C N(A;) NVsg, we observe
that [N(A;) N Vsg| > 2, which implies that [N(A;) N V5| < 3. This contradicts the previous assertion. and Subclaim 7.2 is
proved. O

Recall that N(x) N A = {u,} and y-, is an admissible vertex of (x, uy; A). Hence, we observe that u; € N(x) N N(y,) N A.
Let Ay = A— {u,}. Then A; is a fragment of G since N(x) NA = {u,}. Subclaim 7.2 assures us that |A| > 4, which implies that
|Az] > 3.Since [N(y2) NA| = 2and u; € N(y;) N A, we observe that [N(y;) N A;| = 1. Then, since |A;| > 2, |A;| > 3 and
IN(y2) NAz| = 1, applying Corollary 4 with the roles x and A replaced by y, and A,, respectively, we see that Ad(y,; A;) # @.
Then, since N(y,) NS N Vs = {w}, w is an admissible vertex of (y,; A;), which implies [N(w) NA,| > 2. This contradicts the
assumption that [N(w) N A| = 1. This contradiction proves [N(w) NA| > 2.

By the similar arguments, we can show |[N(w) N B| > 2 and Claim 7 is proved. O

We are in a position to complete the proof of Proposition 1. Claim 7 assures us that [N(w) NA| > 2 and [N(w) N B| > 2.
Since AN B = ¥, we observe that |[N(w) N (AU B)| = [N(w) N A|] 4+ |[N(w) N B| > 4. Since {y1, y.} C N(w) and both A and
B are {y1, y,}-free, we see that [N(w)| > |[N(w) N (AUBU {y1,y2})| = IN(w) N (AU B)| + |[N(w) N {y1, ¥2}| = 6, which
contradicts the fact that w € Vs. This is the final contradiction and the proof of Proposition 1 is completed. O

4. Proof of Proposition 2

In this section we prove Proposition 2.
Let G be a contraction-critically 5-connected graph. Let x be a vertex of G such that x ¢ V5 and [N(x) N V5| = 2. Let
N(x) N Vs = {y1, y2}. Then, Proposition 1 assures us that y;y, & E(G).



1936 K. Ando, T. Iwase / Discrete Mathematics 311 (2011) 1925-1939

Claim 1. |G| > 10.

Proof. Assume |G| < 9. Let A be a {y,}-free xy;-fragment and let S = N(A). Then, since N(x) NAN V5 = @, we observe that
|A| > 2.1fAN{y,} = @, then, by the same reason, we see that |A| > 2. Otherwise, ify, € A, then we also see that |A| > 2 since
y1y2 € E(G).Hence, since |G| < 9, we observe that |A| = |A| = 2.LetA = {u;, u;}andA = {vq, v,}. Then, since |A| = Al =2
and ANV # @, applying Lemma 5, we see that [SNV5| > 4, which implies thatS—{x} C Vs.Sincex ¢ Vs and |AUA| = 4, we
observe that |[N(x)NS| > 2, which implies N(x) NS = {yq, y2} and N(x) = {y1, ¥2, U1, Uz, v1, v2}. LetS = {X, ¥1, Y2, wq, wa}.
Since N(x) N Vs = {y1, y2}, we observe that {uy, u,, vy, v2} C Vs, which implies thatS C N(uq) N N(uz) N N(vy) NN (vo).
Hence, we see that N(y,) = N(y2) = {x, uy, Uz, vy, v}, which implies N({w, w,}) = {uy, uz, vy, va}. This contradicts the
assumption that G is 5-connected. This contradiction proves Claim 1. O

We start with the following observation, which has a somewhat technical appearance but is useful.

Claim 2. Let y € {y1, y2}. Let A be an xy-fragment such that |A| > 2 and |A| > 3. Suppose [N(y) N A| = 2, N(y) N N(A) = {x}
and N(x) NN(y) NA # @. Then, for each u € N(x) NN (y) NA, there is an xy-fragment A’ such that A’ C Aand N(y) NA" = {u}.

Proof. LetS = N(A).LetN(y) NA = {u, v’} andu € N(x) "N (y) NA.Since N(y) NS = {x} and x ¢ V5, there is no admissible
vertex of (y, u’; A). Hence, since |A| > 2, |A| > 3 and Ad(y, u’; A) = @, applying Lemma 3 with the roles of x and y replaced
by y and «/, respectively, we see that there is a yu'-fragment A’ such that A’ C A.Since N(y) NA" # @, N(y) NA = {u, v’} and
A" C A we observe that N(y) N A" = {u}.Sincex ¢ A,A’ C A, u € A’ and xu € E(G), we see that x € N(A’), which implies
that A’ is an xy-fragment. Hence A’ is a desired fragment and Claim 2 is proved. O

Claim 3. There is a y,-opposite xy:-fragment.

Proof. Assume that there is no y,-opposite xy;-fragment. Let A be a fragment with respect to xy; and let S = N(A). Then,
since neither A nor A is y,-opposite, we observe that {x, y;, y,} C S, which implies N(x) N V5 C S. Hence we see that
Nx)NANVs = N(x) NAN Vs = @, which implies |A[, |]A] > 2. We choose a fragment A with respect to xy; so that
IN(y1) NA| is as small as possible. Furthermore, subject to the above condition, we choose A so that |A| is as large as possible.

Subclaim 3.1. [N(y2) NA| = [N(y2) NA| = 2.

Proof. Assume |N(y;) N A| = 1,say N(y;) NA = {u}. Then, since |A] > 2,5 = (S — {y,}) U {u} is a 5-cutset of G and
— {u} is a y,-opposite xy;-fragment, which contradicts the assumption. Hence |[N(y,) N A| > 2. By symmetry, we see that
IN(y2) NA| > 2.Sincex € N(y,) NS and |[N(y;)| = 5, we have the desired conclusion. O

Subclaim 3.2. (1) [N(y1) N A| < 2. Furthermore, if [N(y1) NA| = 2, then [N(y;) NA| = 2 and |A| > |A|, (2) |A| > 3.

Proof. (1) By the choice of A, we know that [N(y;) NA| < [N(y;) NA].Sincex € N(y1) NS and [N(y;)| = 5, we observe that
IN(y1) NA| + [N(y1) NA| < 4. Hence, since [N(y1) NA| < [N(y1) NA|, we see that [N(y1) N A| < 2. Now the former part of
(1) is shown. Next assume that [N (y;) N A| = 2. Then, since [IN(y;) N A] < [N(y1) N Al and x € N(y1) NS, we observe that
IN(y1) NA| = |N(y;) NA| = 2. Hence, by the choice of A, we see that |A| > |A| and the latter part of (1) is proved.

(2) Assume |A| = 2,say A = {u, u'}. If yu &€ E(G), thenu € Vs and xu € E(G), which contradicts the assumption that
N(x) N Vs = {y1,y2}. Hence y;u € E(G). Similarly we observe that y;u’ € E(G). Thus we have |[N(y;) N A| = 2. Hence, (1)
assures us that |A| > |A|. On the other hand, by Claim 1, we know that |G| > 10, which implies that |A| + |A| = |G| —|S| > 5.
This together with the fact |A| > |A| implies |A| > 3, which contradicts the assumption that |A| = 2. This contradiction
proves (2). O

Subclaim 3.3.y; € Ad(x; A).

Proof. Assume y; is an admissible vertex of (x; A). Then N(x) " N(y1) N A # @ and |N(y1) NA| > 2. Since [N(y1) NA| > 2,
Subclaim 3.2(1) assures us that [N(y;) NA| = [N(y1) NA] = 2, N(y1) N N(A) = {x} and |A| > |A]. Also Subclaim 3.2(2)
assures us that |A| > 3. Now we know that |A| > 2, |A| > 3, IN(y1) NA] =2, N(y1) "N(A) = {x}and N(x) "\N(y1) NA # .
Applying Claim 2 with the role of y replaced by y;, we see that there is an xyl—fragment A’ such that [N(y;) NA’| = 1, which
contradicts the choice of A. This contradiction proves Subclaim 3.3. O

We proceed with the proof of Claim 3. Subclaim 3.2(2) assures us |[A| > 3, hence now we know |A| > 2, |A| > 3 and
N(x) NANVs = (. Applying Lemma 6, we see that there is an admissible vertex of (x; A). Since N(x) N Vs = {y1, y»}, either
Y1 or y, is an admissible vertex of (x; A). By Subclaim 3.3, we know that y; ¢ Ad(x; A). Hence y, is an admissible vertex of
(x; A), which implies N(x) " N(y2) NA # #. Let u € N(x) N N(y2) N A. By Subclaim 3.1 we know that [N (y;) NA| = 2. Thus
we have [A| > 2, |A] > 3,IN(y2) NA| = 2,N(¥2) NN(A) = {x} and u € N(x) " N(y) NA. Applying Claim 2 with the role of y
replaced by y,, we see that there is an xy,-fragment A’ such that A’ C Aand N(y,) N A’ = {u}. Since N(x) NA' N Vs = @, we
observe that |A'| > 2. We show |A’| > 3. Assume |A'| = 2,say A’ = {u, w}.Since N(y,) NA" = {u} and x € N(A’), we see that
w € Vs and xw € E(G), which contradicts the assumption that N(x) N Vs = {y1, y»}. Hence, it is shown that |A’| > 3. Since
|A'] > 2,|A| > 3and N(x) N A’ N Vs = @, applying Lemma 6 with the role of A replaced by A’, we see that Ad(x; A") # @.
By Subclaim 3.3, we observe that y; ¢ Ad(x; A), which implies y; is not an admissible vertex of (x; A’) since A C A. Since
IN(y2) NA'| = 1, y, is not an admissible vertex of (x; A’). Hence, since neither y; nor y, is an admissible vertex of (x; A")
and N(x) N Vs = {y1, y-}, we see that Ad(x; A’) = @, which contradicts the previous assertion. This contradiction proves
Claim3. 0O
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By Claim 3, there is a y,-opposite xy;-fragment. Let A be a minimal y,-opposite xy;-fragment and let S = N(A). Since A
is {y1, y»}-free, we observe that N(x) NAN Vs = # and |A| > 2.Since y, € Aand y1y, € E(G), we also see that |[A| > 2.

Claim 4. |A] > 3.

Proof. Assume |A| = 2, say A = {y,, z}. Then, Claim 1 assures us that |A| = |G| — |S| — |A| > 3. Let B be an xy,-fragment
and let T = N(B). Since N(x) N AN Vs = {y,}, we observe S — {x} C N(2), which implies that Bis an (x, A)-fit fragment.

We show x is tractable with A. Assume x is not tractable with A. Then, we observe that either |S N B| = 1or |[SNB| = 1.
Without loss of generality, we may assume |S N B| = 1, say S N B = {w}. Since |S N B| < |A N T|, Lemma 2(2) assures us
that AN B = @, which impliesB =S NB = {w}and T = N(w). Hence w € V5 and xw € E(G), which implies w = y; since
N(x) N Vs = {y1,y-.}. Then, since T = N(w) and y, € T, we see that y1y, € E(G), which contradicts Proposition 1. This
contradiction proves |S N B| > 2. By symmetry, we have |[S N B| > 2and [SNB| = |SNB| = 2.1t is shown that x is tractable
with A.

Since x is tractable with A, we observe that S N T = {x}. Then, without loss of generality, we may assume that
y1 € SNB.Since ANT| = 2and SN T = {x}, we observe that |[A N T| = 2. Now we know that [ANT| = 2 and
[(SNBUGSNTYUMANT)| =[SNBUGENT)UANT)| = 5.Hence, sincey; € SNB,ifANB # @, thenANBis
a y,-opposite xy;-fragment, which contradicts the minimality of A. Thus A N B = ¢, which implies that A N B # @ since
|A| > 3and JANT| = 2.Let v € N(x) N (AN B). Then, since y; € S N Band v € AN B, we see that vy, ¢ E(G). Hence, since
N(x) NS NVs = {y;} and vy; & E(G), we observe that Ad(x, v; A) = @. Since |A| = 2, |A| > 3 and Ad(x, v; A) = {J, applying
Lemma 3 with the role y replaced by v, we see that there is a xv-fragment A’ such thatA/ C A.Then,since |A'| > 2, A'NVs # @,
applying Lemma 6 with the role of A replaced by A’, we see that Ad(x; A") # @, which implies that y; is an admissible vertex
of (x; A’) since N(x) N N(A’) N Vs C {y;}. Hence, we observe that A" is a y,-opposite xy;-fragment, which contradicts the
minimality of A since A* C A. This contradiction proves Claim 4. O

Claim 5.N(x) "N(y1) NA # @ and IN(y;) NA| > 2.

Proof. Since |A| > 2, |A| > 2 and N(x) NAN Vs = @, applying Lemma 6, we see that there is an admissible vertex of (x; A).
Then, since N(x) NS N Vs = {y;}, we see that y; is an admissible vertex of (x; A) and |[N(y;) N A| > 2, which implies the
desired conclusion. O

Claim 6. [N(y;) NA| = 1.

Proof. Assume |[N(y;) N A| > 2. Then, by Claim 5, we see that [N(y;) N A| = |[N(y;) NA] = 2,N(y;) NS = {x} and
N(x) NNy NA # Q.

Subclaim 6.1. |A] = 2.

Proof. Assume |A| > 3. Then, we know that |A| > 2, |A| > 3, IN(y;) NA| =2,N(y;) NS = {x} and N(x) " N(y;) N A # @.
Then, applying Claim 2 with the role of y replaced by y;, we see that there is a fragment A’ with respect to xy; such that
A’ C A, which contradicts the minimality of A. This contradiction proves that [A| = 2. O

Since N(x) NAN Vs = ¢, we know that A N V> # @. Furthermore, since N(y1) NS = {x} and x € V-, we observe that
Ad(yq; A) = 0. Since |A] > 2, |A| = 2, AN Vs # ¥ and Ad(y;; A) = @, applying Lemma 5(2) with the role of x replaced by
¥1, we see that N(y;) N'S = @, which contradicts the fact that N(y;) NS = {x}. This contradiction proves Claim 6. O

By Claim 6, we know that [N(y;) N A| = 1, say N(y1) NA = {z,}. Since |A| > 2, |A| > 3and |[N(y;) N A| = 1, applying
Lemma 3 with the roles of x and A replaced by y; and A, respectively, we see that Ad(y;, A) # (. Since IN(y1) NA| > 2 and
IN(y1)NA| = 1,we have |[N(y;) NS| < 2.This together with the fact that x € V¢ assures us that there is the only admissible
vertex of (y, A). Let z; be the admissible vertex of (y;, A). Thenz; € Vs NS N N(y1), 212, € E(G) and [N(z1) NA| > 2.1If
IN(z;) NAl = 1,say N(z;) N A = {v}, then A — {v} is a y,-opposite xy;-fragment, which contradicts the minimality of A.
Hence we see that [N(z;) N A| > 2.Since [N(z;)| = 5, we know that [N(z;) NA| = [N(z;) NA] =2and N(z) NS = {y1}.
LetN(Z]) NA= {Zz, ul}.

Claim 7.z, € V5 and z,uq € E(G).

Proof. Since N(y])ﬂ/_\ {z2}, we observe that y;u; & E(G).Hence, since N(z;)NS = {y1}, we observe that Ad(z;, uy; A) = @.
Since |A| > 2, |A| > 3 and Ad(z;, u;; A) = ¥, applying Lemma 3 with the roles of x, y and A replaced by z;, u; and A,
respectively, we see that there is a zyu;-fragment A’ such that A’ C A. Then, since N(z;) N A= {u;,z}and A C Awe
observe that N(z;) N A’ = {z,}. Since y; & A, N(y;) NA = {z,} and A C A, weseethaty; € N(A) and N(y;) N A" = {z,}.
Hence we observe that N({z{, y1}) N A" = {z,}. Since N({z1, y1}) N A = {z,}, applying Lemma 1 with the roles of S and
A replaced by {z;, y1} and A’, respectively, we see that A’ = {z,}, which implies z, € V5 and zu; € E(G) and Claim 7 is
proved. O

By Claim 7, we know that {z;,z;} C N(y;) N V5. Now we know that N(y1) NS = {x,z;} and [N(y;) N A] = 2. Let
N(y1) NA = {z3, z4}. Since N(x) N N(y1) N A # @, without loss of generality, we may assume that z4 € N(x) N N(y;) N A.
To complete the proof of Proposition 2, we first consider the case that |A| = 2 and later we consider the case that |A| > 3.
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At first suppose |A| = 2. Let S = {x,y1, 21, w1, w}. In this case, since |A| > 2,|A| = 2and A N V-6 # 0, applying
Lemma 5(3), we see that S — {x} = {y1, z1, w1, wa} C Vs5.1fxz3 € E(G), then we see that {z3, z4} C V> and a configuration
of the second kind arises. Otherwise, ifxz3 ¢ E(G), then we see that {z;, z3, z3} C N(y1)NVsand {x, z4} C N(y1)N(V(G)—V5s).
Hence a degenerated configuration of the first kind arises.

The remaining case is |A| > 3. Assume |A| > 3. We show a configuration of the first kind arises in this case. Recall that
N(yl) NA= {23, Z4} andz4 € N(X) N N(y]) N A.

Claim 8. zyz3 € E(G).

Proof. Assume z1z3 ¢ E(G). Then we observe that Ad(y,, z3; A) = @ since N(y;NSNVs) = {z;}. Then, since Al > 2, |A] >3
and Ad(yq, z3; A) = @, applying Lemma 3 with the roles of x and yreplaced by y; and z3, respectively, we see that there is
a y1z3-fragment A’ such that A’ C A. Since N(y;) N A = {z3,2z4} and z3 € N(A"), we observe that z; € A, which implies
x € N(A") since xz4 € E(G). Hence we see that A’ is a y,-opposite xy-fragment, which contradicts the minimality of A. This
contradiction proves Claim8. O

By Claim 8, we have z3 € N(z;) NA.Let N(z1) N A = {z3, uy}.
Claim 9. u; # z4.

Proof. Assume that u, = z4. Then N({y1, z1}) N A = {z3, z4}. Since |A| > 3, we observe that A" = A — {z3, z4} # @. Since
INGA)| = |(S — {¥1,z1}) U {23, z4}| = 5, A’ is an xz4-fragment. Then, since |[A'| > 2 and N(x) N A’ N Vs = @, applying
Lemma 6 with the role of A replaced by A’, we see that Ad(x; A") # @. On the other hand, since A’ N {y1, y»} = @, we see that
Ad(x; A’) = @, which contradicts the previous assertion. This contradiction proves Claim9. O

Claim 10. Z3 € N(Uz) N Vs.

Proof. Since u, # z4, we observe that u,y; ¢ E(G), which implies that Ad(z;, up; A) = @ since N(z1) NS = {y1}. Then,
since |A| > 2, |A| > 3 and Ad(z;, uy; A) = @, applying Lemma 3 with the roles of x and y replaced by z; and u,, respectively,
we see that there is a zju;-fragment A’ such that A C A. Since N(z;) N A = {z3,u;} and u; € N(A’), we observe that
N(z1) N A" = {z3}, which implies y; € N(A') since y1z3 € E(G).Ifx € N(A') then A’ is a y,-opposite xy;-fragment, which
contradicts the minimality of A. Hence x & N(A’), which implies z, ¢ A’ since xz4 € E(G). Since N(y;) NA = {z3, 24}, we see
that N(y;) N A" = {z3}. Now we observe that N({z1, y1}) N A" = {z3}. Since N({z1, y1}) N A" = {z3}, applying Lemma 1 with
the roles of S and A replaced by {z, y;} and A’, respectively, we see that A’ = {z3}. This implies z3 € Vs and z3u, € E(G).
Now Claim 10 is proved. O

By Claims 8-10, we find a configuration of the first kind around (x, y1), and the proof of Proposition 2 is completed. O

5. Proof of Main Theorem

In this section we give a proof of Main Theorem.

We use a discharging method to prove Main Theorem.

Let G be a contraction-critically 5-connected graph and let x € V (G). We put chy(x) unit of charge on x before discharging
process according to the following rule.

_ O, ifx € Vs
cho(x) = {1 otherwise.
In discharging process we move ¢(x, y) unit of charge from x to y by the following rule.
1
—————, ifxy € Eg(V(G) — Vs, Vs5)
@(x,y) = { IN(x) N V5]
0, otherwise.

We denote ch(x) the amount of charge on x € V(G) after discharging process.

Then, since we put a unit of charge on each vertex of V(G) — Vs, we observe that |G| — |V5| = erV(c) chg(x). Since
the discharging process do not change the total amount of charge on V(G), we see that erv(c) cho(x) = ervm) ch(x).
According to the discharging rule, we know ch(x) = 0 for each x € V(G) — Vs. Hence, if ch(y) < 1foreachy € Vs, then
> yevie) €h) < |Vs|. Then [V(G) — V5| = 3,y cho(®) = D _ v ch(®) < |Vs|, which implies that |Vs| > %|G|.Thus, it
is enough to show that ch(y) < 1foreachy € Vs.

let X = {x € V(G) | deg(x) > 6and [N(x) N V5| = 2 }. We divide V5 into two sets W and W’ as follows.
W={yeVs | N9)NX =@}and W = Vs — W.Lety € Vs. Let N(y) = N(y) N (V(G) — Vs). Then, by Theorem E,
we know that [N(y) N V5| > 2, which implies that |ﬂl(y)| < 3. At first assume y € W. Then, from each vertex ofﬂ](y), y
receives at most % unit of charge through the discharging process. Hence ch(y) < % x IN(y)| < 1 since |N W < 3.
Next assume y € W’ and let x € N(y) N X. Then, Proposition 2 assures us that there is either a configuration of the first
kind or a configuration of the second kind around (x, y). If there is a configuration of the first kind, then we observe that
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|N(y)| = 2.Hence ch(y) < % X |N(y)| < 1. So assume there is a configuration of the second kind around (x, y). In this case
|N(y)| = 3. Let N(y) = {x, z3, z4} as in Proposition 2. Then we see that |[N(z3) N V5| = |[N(z4) N V5| = 4, which implies that
¢(23,y) = ¢(z4,y) = ;. Hence, ch(y) = ¢(x,y) + ¢(z3,¥) + ¢(24,y) = 3 + 3 + ; = 1. Now it is shown that ch(y) < 1
for each y € V5 and the proof of Main Theorem is completed. O
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