Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/disc

The number of vertices of degree 5 in a contraction-critically 5-connected graph

Kiyoshi Ando^{a,*}, Takashi Iwase^b

^a Department of Informatics, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu City, Tokyo, 182-8585, Japan
^b Department of Measurement System Development, Anritsu Engineering Co., Ltd., 5-1-1 On-na, Atsugi-City, Kanagawa 243-0032, Japan

ARTICLE INFO

Article history: Received 30 September 2008 Received in revised form 27 April 2011 Accepted 29 April 2011 Available online 12 June 2011

Keywords: 5-connected graph Contraction-critically 5-connected Degree 5 vertex

1. Introduction

ABSTRACT

An edge of a 5-connected graph is said to be 5-contractible if the contraction of the edge results in a 5-connected graph. A 5-connected graph with no 5-contractible edge is said to be contraction-critically 5-connected. Let V(G) and $V_5(G)$ denote the vertex set of a graph *G* and the set of degree 5 vertices of *G*, respectively. We prove that each contraction-critically 5-connected graph *G* has at least |V(G)|/2 vertices of degree 5. We also show that there is a sequence of contraction-critically 5-connected graphs $\{G_i\}$ such that $\lim_{i\to\infty} |V_5(G_i)|/|V(G_i)| = 1/2$.

© 2011 Elsevier B.V. All rights reserved.

In this paper, we deal with finite undirected graphs with neither loops nor multiple edges. For a graph *G*, let *V*(*G*) and *E*(*G*) denote the set of vertices of *G* and the set of edges of *G*, respectively. Let $V_k(G)$ denote the set of vertices of degree *k* and let $V_{\geq k}(G)$ denote the set of vertices of degree greater than or equal to *k*. For an edge $e \in E(G)$, we denote the set of end vertices of *e* by *V*(*e*). Let $E_G(x) = \{e \in E(G) \mid x \in V(e)\}$. For a vertex $x \in V(G)$, we denote by $N_G(x)$ the neighborhood of *x* in *G*. Moreover, for a subset $S \subset V(G)$, let $N_G(S) = \bigcup_{x \in S} N(x) - S$. We denote the degree of $x \in V(G)$ by $\deg_G(x)$. Then $\deg_G(x) = |E_G(x)| = |N_G(x)|$. When there is no ambiguity, we write $V_k, V_{\geq k}, E(x), N(x), N(S)$ and $\deg(x)$ for $V_k(G), V_{\geq k}(G), E_G(x), N_G(S)$ and $\deg_G(x)$, respectively. For $S \subset V(G)$, let *G*[*S*] denote the subgraph induced by *S* in *G*. Let *G* be a connected graph. A subset $S \subset V(G)$ is said to be a *cutset* of *G*, if G - S is not connected. A cutset *S* is said to be a *k*-cutset if |S| = k. For a noncomplete connected graph *G*, the order of a minimum cutset of *G* is said to be the vertex connectivity of *G*. We denote the vertex connectivity of *G* by $\kappa(G)$.

Let *k* be an integer such that $k \ge 2$ and let *G* be a *k*-connected graph. An edge *e* of *G* is said to be *k*-contractible if the contraction of the edge results in a *k*-connected graph. Note that, in the contraction, we replace each resulting pair of double edges by a simple edge. If an edge is not *k*-contractible, then it is called a *noncontractible* edge. Note that an edge *e* of *G* is not *k*-contractible if and only if there is a *k*-cutset *S* of *G* such that $V(e) \subset S$. If a *k*-connected graph *G* has no *k*-contractible edge, then *G* is said to be *contraction-critically k*-connected.

It is known that every 3-connected graph of order 5 or more contains a 3-contractible edge [9]. There are infinitely many contraction-critically 4-connected graphs. It is known that a 4-connected graph *G* is contraction-critical if and only if *G* is 4-regular, and for each edge *e* of it, there is a triangle which contains *e*. [3,6]. If $k \ge 4$, then there are infinitely many contraction-critically *k*-connected graphs [8].

Egawa determined the following sharp minimum degree condition for a k-connected graph to have a k-contractible edge.

* Corresponding author. E-mail address: ando@ice.uec.ac.jp (K. Ando).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter S 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2011.04.032

Theorem A (*Egawa*[2]). Let $k \ge 2$ be an integer, and let *G* be a *k*-connected graph with $\delta(G) \ge \lfloor \frac{5k}{4} \rfloor$. Then *G* has a *k*-contractible edge, unless $2 \le k \le 3$ and *G* is isomorphic to K_{k+1} .

Kriesell extended Egawa's Theorem and determined the following sharp degree sum condition for a *k*-connected graph to have a *k*-contractible edge.

Theorem B (Kriesell [4]). Let $k \ge 2$ be an integer, and let *G* be a noncomplete *k*-connected graph. If $\deg_G(x) + \deg_G(y) \ge 2\left\lfloor \frac{5k}{4} \right\rfloor - 1$ for any pair of distinct vertices *x*, *y* of *G*, then *G* has a *k*-contractible edge.

There is a contraction-critically 5-connected graph which is not 5-regular. However, we see from Theorem A that the minimum degree of a contraction-critically 5-connected graph is 5. Ando et al. [1] posed Problem D and proved Theorem C, which says that each contraction-critically 5-connected graph has many vertices of degree 5.

Theorem C. Let *G* be a contraction-critically 5-connected graph of order *n*. Then each vertex of *G* has a neighbor of degree 5 and *G* has at least n/5 vertices of degree 5.

Problem D. Determine the maximum value of the constant *c* such that the inequality $|V_5(G)| \ge c|V(G)|$ holds for each contraction-critically 5-connected graph *G*.

The following important result was showed by Su [7].

Theorem E. Every vertex of a contraction-critically 5-connected graph has two neighbors of degree five.

As an immediate consequence of Theorem E, we have the following.

Theorem F. For every contraction-critically 5-connected graph G, $|V_5| \ge \frac{2}{5} |V(G)|$ holds.

By more detailed investigation of contraction-critically 5-connected graphs, Yuan and others [10] proved the following Theorems H and G.

Theorem G. Let *G* be a contraction-critically 5-connected graph and let *x* be a vertex of *G* with $\deg_G(x) \ge 8$. If *x* has adjacent two neighbors of degree five, then *x* has three neighbors of degree five.

Theorem H. For every contraction-critically 5-connected graph G, $|V_5(G)| \ge \frac{4}{9}|V(G)|$ holds.

On the other hands, there is a contraction-critically 5-connected graph *G* such that $|V_5(G)| = \frac{8}{13}|V(G)|$ [1]. Ando posed the following conjecture.

Conjecture I. The constant c for Problem D is $\frac{8}{13}$.

In this paper we prove the following stronger version of Theorem G (Proposition 1). And using Proposition 1, by detailed investigation on vertices not in $V_5(G)$ each of which has just two neighbors of degree 5, we show the constant *c* in Problem D is not less than $\frac{1}{2}$ (Main Theorem). Moreover, we construct a sequence of contraction-critically 5-connected graphs $\{G_i\}$ such that $\lim_{i\to\infty} |V_5(G_i)|/|V(G_i)| = 1/2$.

This sequence disproves Conjecture I and, together with Main Theorem, it gives the answer for Problem D, that is $c = \frac{1}{2}$.

Proposition 1. Let *G* be a contraction-critically 5-connected graph and let *x* be a vertex of *G* such that $x \notin V_5(G)$. Suppose $|N_G(x) \cap V_5(G)| = 2$, say $N_G(x) \cap V_5(G) = \{y_1, y_2\}$. Then $y_1y_2 \notin E(G)$.

Next we concentrate on vertices not in $V_5(G)$ each of which has just two neighbors of degree 5 and we find two specific configurations.

Configuration of the first kind. A subgraph H on eight vertices (in degenerated case, on seven vertices) of a contractioncritically 5-connected graph G is called a configuration of the first kind around (x, y) if the following (1)–(4) hold (see Fig. 1).

(1) $V(H) = \{x, y, z_1, z_2, z_3, z_4, u_1, u_2\},\$

(2) $E(H) \supset \{yx, yz_1, yz_2, yz_3, yz_4, xz_4, z_1z_2, z_1z_3, z_1u_1, z_1u_2, z_2u_1, z_3u_2\},\$

(3) $\{y, z_1, z_2, z_3\} \subset V_5$ and $\{x, z_4\} \cap V_5 = \emptyset$,

(4) There is a 5-cutset *S* such that $\{x, y, z_1\} \subset S$ and *S* separates $\{u_1, z_2\}$ and $\{u_2, z_3, z_4\}$.

In a configuration of the first kind, if $z_4 = u_2$, then it is said to be a degenerated configuration of the first kind.

Configuration of the second kind. A subgraph H on nine vertices of a contraction-critically 5-connected graph G is called a configuration of the second kind around (y, x) if the following (1)–(4) hold (see Fig. 2).

(1) $V(H) = \{x, y, z_1, z_2, z_3, z_4, u_1, w_1, w_2\},\$

 $(2) E(H) \supset \{yx, yz_1, yz_2, yz_3, yz_4, xz_3, xz_4, z_1z_2, z_1z_3, z_1z_4, z_1u_1, z_2u_1, z_3z_4, z_3w_1, z_3w_2, z_4w_1, z_4w_2\},$

(3) $\{y, z_1, z_2, w_1, w_2\} \subset V_5, x \notin V_5.$

(4) { x, y, z_1, w_1, w_2 } is a 5-cutset of *G* which separates { z_2, u } and { z_3, z_4 }, and hence { z_3, z_4 } $\subset V_6(G)$.

Fig. 1. A configuration of the first kind.

Fig. 2. Configuration of the second kind.

Proposition 2. Let *G* be a contraction-critically 5-connected graph. Let *x* be a vertex of *G* such that $x \notin V_5$ and $|N(x) \cap V_5(G)| = 2$. Let $y \in N(x) \cap V_5(G)$. Then, around (y, x), there is either a configuration of the first kind or a configuration of the second kind.

By virtue of Proposition 2, we get the following result.

Main Theorem. For every contraction-critically 5-connected graph G, $|V_5(G)| \ge \frac{1}{2}|V(G)|$ holds.

Recently, Li and Su [5] proved the same bound of the constant *c* in Problem D.

The organization of the paper is as follows. Section 2 contains preliminary results. In Section 3 we give a proof of Proposition 1. In Section 4 we give a proof of Proposition 2 and in Section 5 we give a proof of Main Theorem.

To conclude this section we give three contraction-critically 5-connected graphs. The first one has a configuration of the first kind. The second has a configuration of the second kind. The third shows that there is a sequence of contraction-critically 5-connected graphs $\{G_i\}$ such that $\lim_{i\to\infty} |V_5(G_i)|/|V(G_i)| = 1/2$.

Example 1. The graph G_1 illustrated in Fig. 3 is contraction-critically 5-connected, and we observe that it has a configuration of the first kind.

Example 2. The graph G_2 illustrated in Fig. 4 is contraction-critically 5-connected. We observe that G_2 has a configuration of the second kind.

Example 3. The graph G_3 illustrated in Fig. 5 is contraction-critically 5-connected. Adding pairs of vertices $(x_4, y_4), (x_5, y_5), \dots, (x_i, y_i)$ to this graph by the similar way, we can construct a sequence of contraction-critically 5-connected graphs $\{G_i\}$. We see that $|V(G_i)| = 2i + 15$ and $|V_5(G_i)| = i + 10$ since $\{y_1, y_2, \dots, y_i\} \subset V_5(G_i)$ and $\{x_1, x_2, \dots, x_i\} \subset V_6(G_i)$. Hence we have $\lim_{i\to\infty} |V_5(G_i)|/|V(G_i)| = 1/2$.

Fig. 5. G₃.

2. Preliminaries

In this section we give some more definitions and preliminary results.

For a graph *G*, we denote |G| for |V(G)|. For a subgraphs *A* and *B* of a graph *G*, when there is no ambiguity, we write simply *A* for *V*(*A*) and *B* for *V*(*B*). So *N*(*A*) and *A* \cap *B* mean *N*(*V*(*A*)) and *V*(*A*) \cap *V*(*B*), respectively. Also for a subgraph *A* of *G* and a subset *S* of *V*(*G*) we write *A* \cap *S* and *A* \cup *S* for *V*(*A*) \cap *S* and *V*(*A*) \cup *S*, respectively. For *S* \subset *V*(*G*), we let *G* - *S* denote the

graph obtained from *G* by deleting the vertices in *S* together with the edges incident with them; thus G - S = G[V(G) - S]. When there is no ambiguity, we write E(S) for E(G[S]). For subsets *S* and *T* of V(G), we denote the set of edges between *S* and *T* by $E_G(S, T)$. We write $E_G(x, S)$ for $E_G(\{x\}, S)$. Then $E_G(x) = E_G(x, V(G) - \{x\})$.

An induced subgraph A of a k-connected graph G is called a *fragment* if |N(A)| = k and $V(G) - (A \cup N(A)) \neq \emptyset$. In other words, a fragment A is a nonempty union of components of G - S where S is a k-cutset of G such that $V(G) - (A \cup S) \neq \emptyset$. By the definition, if A is a fragment of G, then $G - (A \cup N(A))$ is also a fragment of G. Let \overline{A} stand for $G - (A \cup N(A))$.

Let *A* be a fragment of a *k*-connected graph *G* and let *e* be an edge of *G*. Then *A* is said to be a *fragment with respect to e* if $V(e) \subset N(A)$. For a set of edges $F \subset E(G)$, we say that *A* is a *fragment with respect to F* if *A* is a fragment with respect to some $e \in F$. Sometimes we write "an *F*-fragment" for "a fragment with respect to *F*". If $F = \{e\}$, then we write *e*-fragment instead of $\{e\}$ -fragment. For $S \subset V(G)$, a fragment *A* is said to be *S*-free and *S*-opposite if $A \cap S = \emptyset$ and $S \subset \overline{A}$, respectively. Hence, if *A* is *S*-opposite, the *A* is *S*-free. If $S = \{y\}$, then we write *y*-free and *y*-opposite instead of $\{y\}$ -free and $\{y\}$ -opposite, respectively. An *F*-fragment *A* is said to be *minimum* (resp. *minimal*) if there is no *F*-fragment *B* other than *A* such that |B| < |A| (resp. $B \subseteq A$).

Hereafter, we consider 5-connected graphs. Let *A* be a fragment of a 5-connected graph *G* and let S = N(A). Let $x \in S$ and let $y \in N(x) \cap A$. A vertex *z* is said to be an *admissible vertex of* (x, y; A), if the following two conditions hold.

(1) $z \in N(x) \cap N(y) \cap S \cap V_5$.

 $(2) \ |N(z) \cap A| \geq 2.$

Moreover, if $|N(z) \cap \overline{A}| = 1$, then z is said to be strongly admissible.

A vertex *z* is said to be an *admissible vertex of* (*x*; *A*) or a *strongly admissible vertex of* (*x*; *A*), if *z* is an admissible vertex of (*x*, *y*; *A*) or a strongly admissible vertex of (*x*, *y*; *A*) for some $y \in N(x) \cap A$. Let Ad(x, y; A) denote the set of admissible vertices of (*x*, *y*; *A*) and let Ad(x; A) denote the set of admissible vertices of (*x*; *A*). Let *A* be a fragment of a 5-connected graph *G* and let $x \in N(A)$. A fragment *B* of *G* is said to be (*x*; *A*)-fit if $\{x\} \cup A \subset N(B)$. A vertex $x \in N(A)$ is said to be *tractable with A* if there is an (*x*; *A*)-fit fragment *B* such that $|S \cap B| = |S \cap \overline{B}| = 2$. If there is no ambiguity, we sometimes write "*A*-tractable" for "tractable with *A*".

We begin with the following two lemmas, which are both simple observations.

Lemma 1. Let A be a fragment of a 5-connected graph G and let $S \subset N(A)$. If $|N(S) \cap A| < |S|$, then $A \subset N(S)$.

Proof. Assume that $A \neq N(S) \cap A$. Let $A' = A - (N(S) \cap A)$. Since $A' \neq \emptyset$ and $N(A') \cap (\overline{A} \cup S) = \emptyset$, $(N(A) - S) \cup (N(S) \cap A)$ separates A' and $\overline{A} \cup S$. Since $|N(S) \cap A| < |S|$, we see that $|(N(A) - S) \cup (N(S) \cap A)| = |N(A)| - |S| + |N(S) \cap A| < |N(A)| = 5$, which contradicts the assumption that *G* is 5-connected. \Box

Lemma 2. Let *G* be a 5-connected graph, and let *A* and *B* be fragments of *G* Let S = N(A) and T = N(B).

В	$\bar{A} \cap B$	$S \cap B$	$A \cap B$
Т	$\bar{A} \cap T$	$S \cap T$	$A \cap T$
Ē	$\bar{A} \cap \bar{B}$	$S \cap \overline{B}$	$A \cap \overline{B}$
	Ā	S	A

Then the following hold.

- (1) If $|(S \cap B) \cup (S \cap T) \cup (A \cap T)| \ge 6$, then $|(\overline{A} \cap T) \cup (S \cap T) \cup (S \cap \overline{B})| \le 4$ and $\overline{A} \cap \overline{B} = \emptyset$. In particular, if neither $A \cap B$ nor $\overline{A} \cap \overline{B}$ is empty, then both $A \cap B$ and $\overline{A} \cap \overline{B}$ are fragments of G.
- (2) $|(S \cap B) \cup (S \cap T) \cup (A \cap T)| = 5 + |S \cap B| |\overline{A} \cap T|$. In particular, if $A \cap B \neq \emptyset$, then $|S \cap B| \ge |\overline{A} \cap T|$.
- (3) If $|\overline{A}| \ge 2$, then either $|(S \cap B) \cup (S \cap T) \cup (A \cap T)| \le 5$ or $|(S \cap \overline{B}) \cup (S \cap T) \cup (A \cap T)| \le 5$.
- **Proof.** (1) Since *S* and *T* are both 5-cutsets, $|S| + |T| = |(S \cap B) \cup (S \cap T) \cup (S \cap \overline{B})| + |(\overline{A} \cap T) \cup (S \cap T) \cup (A \cap T)| = 10$. Hence, if $|(S \cap B) \cup (S \cap T) \cup (A \cap T)| \ge 6$, then $|(\overline{A} \cap T) \cup (S \cap T) \cup (S \cap \overline{B})| \le 4$, which implies that $\overline{A} \cap \overline{B} = \emptyset$, since *G* is 5-connected. If neither $A \cap B$ nor $\overline{A} \cap \overline{B}$ is empty, then $|(S \cap B) \cup (S \cap T) \cup (A \cap T)|$, $|(\overline{A} \cap T) \cup (S \cap T) \cup (S \cap \overline{B})| \ge 5$, which implies $|(S \cap B) \cup (S \cap T) \cup (A \cap T)| = |(\overline{A} \cap T) \cup (S \cap T) \cup (S \cap \overline{B})| = 5$. Hence, we see that both $A \cap B$ and $\overline{A} \cap \overline{B}$ are fragments of *G*.
- (2) Since $|T| = |(\overline{A} \cap T) \cup (S \cap T) \cup (A \cap T)| = 5$, we see that $|(S \cap B) \cup (S \cap T) \cup (A \cap T)| = |T| + |S \cap B| |\overline{A} \cap T| = 5 + |S \cap B| |\overline{A} \cap T|$. Next assume $A \cap B \neq \emptyset$. Then $(S \cap B) \cup (S \cap T) \cup (A \cap T)$ is a cutset of G since $\overline{A} \cup \overline{B} \neq \emptyset$. Hence $|(S \cap B) \cup (S \cap T) \cup (A \cap T)| \ge 5$. Thus, we have $|S \cap B| \ge |\overline{A} \cap T|$.
- (3) Assume $|(S \cap B) \cup (S \cap T) \cup (A \cap T)| \ge 6$ and $|(S \cap \overline{B}) \cup (S \cap T) \cup (A \cap T)| \ge 6$. Then, by (1), we have $\overline{A} \cap B = \overline{A} \cap \overline{B} = \emptyset$, which implies $|\overline{A} \cap T| = |\overline{A}| \ge 2$. Hence we see that $|(S \cap T) \cup (A \cap T)| = |T| |\overline{A} \cap T| \le 3$. On the other hand, since |S| = 5, we observe that either $|S \cap B| \le 2$ or $|S \cap \overline{B}| \le 2$. This together with the fact $|(S \cap T) \cup (A \cap T)| \le 3$ implies either $|(S \cap B) \cup (S \cap T) \cup (A \cap T)| \le 5$ or $|(S \cap \overline{B}) \cup (S \cap T) \cup (A \cap T)| \le 5$, which contradicts the assumption. \Box

Lemma 3. Let *x* be a vertex of a contraction-critically 5-connected graph *G*. Let *A* be a fragment with respect to *E*(*x*) such that $|\bar{A}| \ge 2$ and $|A| \ge 3$. For each $y \in N(x) \cap A$, if $Ad(x, y; A) = \emptyset$, then there is a fragment *A'* with respect to *xy* such that $A' \subsetneq A$.

Proof. Assume that there is neither an admissible vertex of (x, y; A) nor an *xy*-fragment A' such that $A' \subsetneq A$. Let B be an *xy*-fragment. Let S = N(A) and let T = N(B). Since $|\overline{A}| \ge 2$, by Lemma 2(3), we see that either $|(S \cap B) \cup (S \cap T) \cup (A \cap T)| \le 5$ or $|(S \cap \overline{B}) \cup (S \cap T) \cup (A \cap T)| \le 5$. Without loss of generality we may assume $|(S \cap B) \cup (S \cap T) \cup (A \cap T)| \le 5$. Then, since there is no *xy*-fragment A' such that $A' \subsetneq A$, we see that $A \cap B = \emptyset$.

Claim 3.1. $A \cap \overline{B} \neq \emptyset$.

Proof. Assume $A \cap \overline{B} = \emptyset$. Then, since $A \cap B = \emptyset$, we have $A = A \cap T$ and $|A| = |A \cap T| \ge 3$, which implies that $|\overline{A} \cap T| = |T| - |S \cap T| - |A \cap T| \le 1$. Hence, since $|\overline{A}| \ge 2$, by symmetry, we may assume that $\overline{A} \cap \overline{B} \neq \emptyset$. Then, by Lemma 2(2), we observe that $|S \cap \overline{B}| \ge |A \cap T| \ge 3$, which implies that $|S \cap B| = |S| - |S \cap T| - |S \cap \overline{B}| \le 1$. If $S \cap B = \emptyset$, then we have $B = \emptyset$, which contradicts the choice of *B*. Hence $|S \cap B| = 1$, say $S \cap B = \{z\}$. Then we observe that $z \in N(x) \cap N(y) \cap S \cap V_5$ and $|N(z) \cap A| = |A \cap T| = 3$. Now we see that $z \in Ad(x, y; A)$, which contradicts the assumption. \Box

By Claim 3.1, we see that $A \cap \overline{B} \neq \emptyset$. If $|(S \cap \overline{B}) \cup (S \cap T) \cup (A \cap T)| = 5$, then $A \cap \overline{B}$ is an *xy*-fragment such that $A \cap \overline{B} \subsetneq A$, which contradicts the assumption. Hence we have $|(S \cap \overline{B}) \cup (S \cap T) \cup (A \cap T)| \ge 6$. Thus, by Lemma 2(1), we observe that $\overline{A} \cap B = \emptyset$, which implies $B = S \cap B$ since $A \cap B = \emptyset$. We show that $|B| = |S \cap B| = 1$. Assume that $|S \cap B| \ge 2$. Since $|(S \cap \overline{B}) \cup (S \cap T) \cup (A \cap T)| \ge 6$, applying Lemma 2(2) with the roles $S \cap B$ and $\overline{A} \cap T$ replaced by $A \cap T$ and $S \cap B$, respectively, we see that $|A \cap T| \ge |S \cap B| + 1 \ge 3$, which implies that $|\overline{A} \cap T| = |T| - |S \cap T| - |A \cap T| \le 1$ since $x \in S \cap T$. Hence, since $|\overline{A} \cap T| < |S \cap B|$, applying Lemma 2(2), we see that $\overline{A} \cap \overline{B} = \emptyset$, which implies $|\overline{A}| = |\overline{A} \cap T| \le 1$. This contradicts the assumption and it is shown that $|S \cap B| = 1$, say $B = S \cap B = \{z\}$. Then we observe that $z \in N(x) \cap N(y) \cap S \cap V_5$ and $|N(z) \cap A| = |A \cap T| \ge |S \cap B| + 1 = 2$. Hence *z* is an admissible vertex of (x, y; A), which contradicts the assumption. This contradiction proves Lemma 3. \Box

The following corollary is an immediate consequence of Lemma 3.

Corollary 4. Let *x* be a vertex of a contraction-critically 5-connected graph *G*. Let *A* be a fragment with respect to E(x) such that $|\bar{A}| \ge 2$, $|A| \ge 3$. Suppose $|N(x) \cap A| = 1$, say $N(x) \cap A = \{y\}$. Then there is an admissible vertex of (x, y; A).

Proof. Assume that there is no admissible vertex of (x, y; A). Then, Lemma 3 assure us that there is an *xy*-fragment A' such that $A' \subsetneq A$. Since $N(x) \cap A = \{y\}$, we observe that $N(x) \cap A' = \emptyset$, which contradicts the fact that A' is an *xy*-fragment. This contradiction proves Corollary 4. \Box

Let *A* be a fragment of a 5-connected graph and let $x \in N(A)$. Recall that a fragment *B* is (x; A)-fit if $A \cup \{x\} \subset N(B)$ and a vertex $x \in N(A)$ is tractable with *A* if there is an (x; A)-fit fragment *B* such that $|S \cap B| = |S \cap \overline{B}| = 2$.

Lemma 5. Let *G* be a contraction-critically 5-connected graph. Let *A* be a fragment such that $|\bar{A}| \ge 2$, |A| = 2 and $A \cap V_{\ge 6} \neq \emptyset$. Then the following (1), (2) and (3) hold.

(1) $|\{x \in N(A) \mid Ad(x; A) \neq \emptyset\}| \ge 4.$ (2) If $Ad(x; A) = \emptyset$ for $x \in N(A)$, then $N(x) \cap N(A) = \emptyset$.

(3)
$$|N(A) \cap V_5| \ge 4.$$

Proof. Let S = N(A) and let $A = \{y_1, y_2\}$. We may assume that $\deg_G(y_1) \le \deg_G(y_2)$, then we observe that $\deg_G(y_2) = 6$ and $S \subset N(y_2)$ since $A \cap V_{\ge 6} \ne \emptyset$.

Claim 5.1. For each $x \in S$, there is an (x; A)-fit fragment.

Proof. At first we consider the case that $xy_1 \in E(G)$. Let *B* be an xy_1 -fragment. Then, since $S \subset N(y_2)$, we observe that $y_2 \in N(B)$, which implies that *B* is an (x; A)-fit fragment. Next assume that $xy_1 \notin E(G)$. Then we observe that $S - \{x\} \subset N(y_1)$. Let *B* be an xy_2 -fragment. Then, since $S - \{x\} \subset N(y_1)$, we see that $y_1 \in N(B)$, which implies that *B* is an (x; A)-fit fragment. Now Claim 5.1 is proved. \Box

Claim 5.2. If $x \in S$ is not tractable with A, then $Ad(x; A) \neq \emptyset$.

Proof. Assume *x* is not tractable with *A*. By Claim 5.1, let *B* an (x; A)-fit fragment and let T = N(B). Since *x* is not tractable with *A*, we know that either $|S \cap B| = 1$ or $|S \cap \overline{B}| = 1$. Without loss of generality, we may assume that $|S \cap B| = 1$, say $S \cap B = \{z\}$. Then, since $|S \cap B| < |A \cap T|$, by Lemma 2(2), we see that $\overline{A} \cap B = \emptyset$, which implies that $B = S \cap B = \{z\}$. Hence, we observe that $z \in N(x) \cap N(y) \cap S \cap V_5$ and $|N(z) \cap A| = |A| = 2$, which implies that $z \in Ad(x; A)$ and Claim 5.2 is proved. \Box

Let $S = \{x_1, x_2, x_3, x_4, x_5\}.$

Claim 5.3. If both x_1 and x_2 are tractable with A, then neither Ad $(x_1; A)$ nor Ad $(x_2; A)$ is empty.

Proof. Since both x_1 and x_2 are tractable with A, there are an $(x_1; A)$ -fit fragment B_1 and an $(x_2; A)$ -fit fragment B_2 such that $|S \cap B_1| = |S \cap \overline{B}_1| = |S \cap \overline{B}_2| = |S \cap \overline{B}_2| = 2$. Let $T_1 = N(B_1)$ and $T_2 = N(B_2)$. Then, we observe that $A \subset T_1 \cap T_2$, $S \cap T_1 = \{x_1\}$ and $S \cap T_2 = \{x_2\}$. Without loss of generality, we may assume that $S \cap B_1 = \{x_2, x_3\}$ and $S \cap \overline{B}_1 = \{x_4, x_5\}$. Furthermore, without loss of generality, we may assume that $x_1 \in S \cap B_2$.

At first we consider the case that $x_3 \in S \cap B_2$. In this case $S \cap B_2 = \{x_1, x_3\}$ and $S \cap \overline{B}_2 = \{x_4, x_5\}$. Then we observe that $x_3 \in B_1 \cap B_2$ and $\{x_4, x_5\} \subset \overline{B}_1 \cap \overline{B}_2$, which implies that neither $B_1 \cap B_2$ nor $\overline{B}_1 \cap \overline{B}_2$ is empty. Then, Lemma 2(1) assures us that both $B_1 \cap B_2$ and $\overline{B}_1 \cap \overline{B}_2$ are fragments of *G*. Moreover, we observe that $\{y_1, y_2\} \subset T_1 \cap T_2, x_1 \in T_1 \cap B_2$ and $x_2 \in B_1 \cap T_2$, which implies that $N(\{y_1, y_2\}) \cap (B_1 \cap B_2) = \{x_3\}$. Hence, applying Lemma 1 with the roles *S* and *A* replaced by $\{y_1, y_2\}$ and $B_1 \cap B_2$, respectively, we see that $B_1 \cap B_2 = \{x_3\}$. Now we have $x_3 \in V_5$, $A = \{y_1, y_2\} \subset N(x_3)$, and $x_1, x_2 \in N(x_3)$, which implies $x_3 \in Ad(x_1; A)$ and $x_3 \in Ad(x_2; A)$. Hence we have the desired conclusion that neither $Ad(x_1; A)$ nor $Ad(x_2; A)$ is empty.

Next we consider the case that $x_3 \notin S \cap B_2$. In this case, without loss of generality, we may assume that $S \cap B_2 = \{x_1, x_4\}$ and $S \cap \overline{B}_2 = \{x_3, x_5\}$. Then we observe that $x_3 \in B_1 \cap \overline{B}_2$, $x_4 \in \overline{B}_1 \cap B_2$ and $x_5 \in \overline{B}_1 \cap \overline{B}_2$, which implies that neither $B_1 \cap \overline{B}_2$ nor $\overline{B}_1 \cap B_2$ is empty. Then, Lemma 2(1) again assures us that both $B_1 \cap \overline{B}_2$ and $\overline{B}_1 \cap B_2$ are fragments of *G*. Moreover, we observe that $\{y_1, y_2\} \subset T_1 \cap T_2$, $x_1 \in T_1 \cap B_2$ and $x_2 \in B_1 \cap T_2$. Since $N(\{y_1, y_2\}) \cap (B_1 \cap \overline{B}_2) = \{x_3\}$, applying Lemma 1 with the roles *S* and *A* replaced by $\{y_1, y_2\}$ and $B_1 \cap \overline{B}_2$, respectively, we see that $B_1 \cap \overline{B}_2 = \{x_3\}$, which implies $x_3 \in V_5$, $A = \{y_1, y_2\} \subset N(x_3)$ and $x_3 \in N(x_2)$. Hence we see that $x_3 \in Ad(x_2; A)$. We can similarly prove $x_4 \in Ad(x_1; A)$. Now we obtain that neither $Ad(x_1; A)$ nor $Ad(x_2; A)$ is empty.

In both cases, we have the desired conclusion that neither $Ad(x_1; A)$ nor $Ad(x_2; A)$ is empty and Claim 5.3 is proved. \Box

By virtue of Claim 5.3, we show (1). Assume $Ad(x_1; A) = \emptyset$. Then, by Claim 5.2, we see that x_1 is tractable with A. If there is a A-tractable vertex other than x_1 , then Claim 5.3 assures us that $Ad(x_1; A) \neq \emptyset$, which contradicts the assumption that $Ad(x_1; A) = \emptyset$. Hence we see that none of x_2, x_3, x_4 and x_5 is A-tractable. Hence, again Claim 5.2 assures us that $Ad(x_i; A) \neq \emptyset$ for i = 2, 3, 4, 5. Now (1) is proved.

Next we prove (2). Assume $\operatorname{Ad}(x_1; A) = \emptyset$ and $N(x_1) \cap S \neq \emptyset$. Then, by (1), we know that $\operatorname{Ad}(x_i; A) \neq \emptyset$ for i = 2, 3, 4, 5. Then, since $\operatorname{Ad}(x_1; A) = \emptyset$, Claim 5.2 assures us that x_1 is A-tractable. Hence there is an $(x_1; A)$ -fit fragment B_1 such that $|S \cap B_1| = |S \cap \overline{B}_1| = 2$. Since $|S \cap B_1| = |S \cap \overline{B}_1| = 2$, we observe that $S \cap T_1 = \{x_1\}$, which implies that $|\overline{A} \cap T_1| = |T_1| - |S \cap T_1| - |A \cap T_1| = 2$. By symmetry, we may assume that $S \cap B_1 = \{x_2, x_3\}$ and $S \cap \overline{B}_1 = \{x_4, x_5\}$. Note that, in this situation, $E_G(\{x_2, x_3\}, \{x_4, x_5\}) = \emptyset$. Since $N(x_1) \cap S \neq \emptyset$, without loss of generality, we may assume $x_2 \in N(x_1) \cap S$. Then, since $\operatorname{Ad}(x_1; A) = \emptyset$, we observe that either $x_2 \in V_{\geq 6}$ or $|N(x_2) \cap A| = 1$, which implies that x_2 cannot be an admissible vertex of $(x_3; A)$. Since $N(x_3) \cap S \subset \{x_1, x_2\}, x_2 \notin \operatorname{Ad}(x_3; A)$, and $\operatorname{Ad}(x_3; A) \neq \emptyset$, we see that x_1 is an admissible vertex of $(x_3; A)$, which implies $\{y_1, y_2, x_2, x_3\} \subset N(x_1)$. Let $N(x_1) = \{y_1, y_2, x_2, x_3, v\}$. Then, since neither $N(x_1) \cap \overline{A}$ nor $N(x_1) \cap \overline{A}$ is empty, we see that $v \in \overline{A} \cap \overline{B}_1$, which implies that $|\overline{A}| \ge |\overline{A} \cap T_1| + |\overline{A} \cap \overline{B}_1| \ge 3$. Since $N(\{x_2, x_3\}) \cap \overline{B}_1 = \emptyset$, we observe that $v \notin N(\{x_2, x_3\})$, which implies that neither x_2 nor x_3 is an admissible vertex of $(x_1, v; \overline{A}) = \emptyset$. Since $N(x_1) \cap S = \{x_2, x_3\}$, we have $\operatorname{Ad}(x_1, v; \overline{A}) = \emptyset$, which contradicts the previous assertion. This contradiction proves (2).

At last we show (3). By (1), we know that $|\{x \in N(A) | Ad(x; A) \neq \emptyset\}| \ge 4$. To begin with the case that $|\{x \in N(A) | Ad(x; A) \neq \emptyset\}| = 4$, let $Ad(x_1; A) = \emptyset$ and $Ad(x_i; A) \neq \emptyset$ for i = 2, 3, 4, 5. By Claim 5.2, let B_1 be an $(x_1; A)$ -fit fragment such that $|S \cap B_1| = |S \cap B_1| = 2$. By symmetry, we may assume that $S \cap B_1 = \{x_2, x_3\}$ and $S \cap B_1 = \{x_4, x_5\}$. By (2), we see that $N(x_1) \cap S = \emptyset$. Then, since neither $Ad(x_2; A)$ nor $Ad(x_3; A)$ is empty, we see that x_2 is an admissible vertex of $(x_3; A)$ and x_3 is an admissible vertex of $(x_2; A)$. Similarly we see that x_4 is an admissible vertex of $(x_5; A)$ and x_5 is an admissible vertex of $(x_4; A)$. Now we have $|S \cap V_5| > 4$.

Hereafter, we assume that $Ad(x_i; A) \neq \emptyset$ for i = 1, 2, 3, 4, 5. Assume $|S \cap V_5| \leq 3$, say $x_4, x_5 \in V_{\geq 6}$. Since $Ad(x_i; A) \neq \emptyset$ for i = 1, 2, 3, we observe that $N(x_i) \cap S \cap V_5 \neq \emptyset$ for i = 1, 2, 3. Hence we can find a path of length 2 in $G[\{x_1, x_2, x_3\}]$ whose center vertex has degree 5. Without loss of generality, we may assume that $x_1x_2, x_2x_3 \in E(G)$ and $v_2 \in V_5$. We show $x_2 \notin Ad(x_4; A)$. Assume $x_2 \in Ad(x_4; A)$. Then, since $x_2 \in V_5$, $\{x_1, x_3\} \subset N(x_2)$ and $N(x_2) \cap A \neq \emptyset$, we observe that $|N(x_2) \cap (A \cup \{x_4, x_5\})| \le 2$. Hence, we observe that either $N(x_2) \cap \{x_4, x_5\} = \emptyset$ or $|N(x_2) \cap A| = 1$. If $N(x_2) \cap \{x_4, x_5\} = \emptyset$, then we observe that neither $x_2 \in Ad(x_4; A)$ nor $x_2 \in Ad(x_5; A)$. Otherwise, if $|N(x_2) \cap A| = 1$, then we also observe that neither $x_2 \in Ad(x_4; A)$ nor $x_2 \in Ad(x_5; A)$. This contradicts the assumption and it is shown that $x_2 \notin Ad(x_4; A)$. Since Ad(x_4 ; A) $\neq \emptyset$ and $x_2, x_5 \notin$ Ad(x_4 ; A), by symmetry, we may assume that $x_1 \in$ Ad(x_4 ; A), which implies that $x_1 \in V_5, \{y_1, y_2, x_2, x_4\} \subset N(x_1) \text{ and } |N(x_1) \cap \overline{A}| = 1, \text{ say } N(x_1) \cap \overline{A} = \{v_1\}.$ Since $N(x_1) \cap S = \{x_2, x_4\}$ and $x_4 \in V_{>6}$, we see that $x_2 \in Ad(x_1; A)$, which implies that $x_2 \in V_5$, $\{y_1, y_2, x_1, x_4\} \subset N(x_2)$ and $|N(x_2) \cap \bar{A}| = 1$, say $N(x_2) \cap \bar{A} = \{v_2\}$. Since $Ad(x_5; A) \neq \emptyset$ and $N(x_5) \cap \{x_1, x_2\} = \emptyset$, we see that $x_3 \in Ad(x_5; A)$, which implies that $x_3 \in V_5$, $\{y_1, y_2, x_2, x_5\} \subset N(x_3)$ and $|N(x_3) \cap A| = 1$, say $N(x_3) \cap A = \{v_3\}$. If $v_1 = v_2$, then, applying Lemma 1 with the roles of S and A replaced by $\{x_1, x_2\}$ and A, respectively, we see that |A| = 1, which contradicts the assumption that $|A| \ge 2$. Hence $v_1 \ne v_2$. By similar arguments, we know that v_1, v_2, v_3 are distinct, which implies that $|\bar{A}| \ge 3$. Since $|\bar{A}| \ge 3$, |A| = 2 and $|N(x_1) \cap \bar{A}| = 1$, applying Corollary 4 with the roles of x and A replaced by x_1 and A, respectively, we see that Ad $(x_1; A) \neq \emptyset$. However, we already know that $N(x_1) \cap S = \{x_2, x_4\}, |N(x_2) \cap \overline{A}| = 1$ and $x_4 \in V_{>6}$, which implies that there is no admissible vertex of $(x_1; \overline{A})$. This contradicts the previous assertion and this contradiction proves (3) and Lemma 5 is proved. \Box

The following is an immediate corollary from Lemmas 3 and 5.

Lemma 6. Let *x* be a vertex of a contraction-critically 5-connected graph. Let *A* be a fragment with respect to E(x) such that $|\bar{A}| \ge 2$. If $N(x) \cap A \cap V_5 = \emptyset$, then there is an admissible vertex of (x; A).

Proof. We prove Lemma 6 by induction on |A|. Note that $|A| \ge 2$, since $N(x) \cap A \cap V_5 = \emptyset$. If |A| = 2, then, since $|A| \ge 2$ and $N(x) \cap N(A) \ne \emptyset$, Lemma 5(2) assures us that there is an admissible vertex of (x; A). Now the initial step is completed.

Next assume $|A| \ge 3$ and let $y \in N(x) \cap A$. If there is an admissible vertex of (x, y; A), then we are done. Hence, assume that $Ad(x, y; A) = \emptyset$. Then, by Lemma 3, we see that there is an *xy*-fragment A' such that $A' \subsetneq A$. Then we see that A' is an E(x)-fragment, $|\overline{A'}| > |\overline{A}| \ge 2$, $N(x) \cap A' \cap V_5 = \emptyset$ and |A'| < |A|. Hence, by the induction hypothesis, we see that $Ad(x; A') \neq \emptyset$. Since $A' \subsetneq A$ and $N(x) \cap A \cap V_5 = \emptyset$, we see that an admissible vertex of (x; A') is an admissible vertex of (x; A). The induction step is now completed and Lemma 6 is proved. \Box

Lemma 7. Let *x* be a vertex of a contraction-critically 5-connected graph *G*. Let *A* be a fragment with respect to E(x) such that $|\bar{A}| \ge 2$ and $|A| \ge 3$. Suppose $|N(x) \cap A| = 1$, say $N(x) \cap A = \{y\}$. If $y \notin V_5$, then there is a strongly admissible vertex of (x, y; A).

Proof. Assume that there is no strongly admissible vertex of (x, y; A). By Corollary 4, we know that $Ad(x, y; A) \neq \emptyset$, say $z \in Ad(x, y; A)$. Let $B = \{z\}$ and T = N(z). By the assumption, z is not strongly admissible, which implies $|N(z) \cap \overline{A}| \ge 2$. Since $|N(z) \cap A| \ge 2$ and $|N(z) \cap \overline{A}| \ge 2$, we observe that $|N(z) \cap A| = |N(z) \cap \overline{A}| = 2$ and $S \cap T = \{x\}$. Let $N(z) \cap A = \{y, u\}$ and $S \cap \overline{B} = \{v_1, v_2, v_3\}$.

Claim 7.1. |A| = 3.

Proof. Assume $|A| \ge 4$. Let $A' = A - \{y\}$ and $S' = (S - \{x\}) \cup \{y\}$. Then we observe that A' is a *zy*-fragment, $|\bar{A}'| > |\bar{A}| \ge 2$, $|A'| = |A| - 1 \ge 3$ and $N(z) \cap A' = \{u\}$. Hence, by Corollary 4, we see that there is an admissible vertex of (z, u; A'). But we know that $N(z) \cap S' = \{y\}$ and $y \in V_{\ge 6}$, which implies that there is no admissible vertex of (z, u; A'). This contradicts the previous assertion and it is shown that |A| = 3. \Box

Let $A = \{y, u, w\}$, then $A \cap T = \{y, u\}$ and $A \cap \overline{B} = \{w\}$. In this situation, since $N(x) \cap (A \cap \overline{B}) = \emptyset$, we observe that $w \in V_5$ and $N(w) = \{y, u, v_1, v_2, v_3\}$. Let $A' = \{u, w\}$ and let $S' = N(A') = \{z, y, v_1, v_2, v_3\}$. Claim 7.2. *z* is tractable with A'.

Proof. Assume *z* is not tractable with *A'*. Let *C* be a *zu*-fragment. Since $S' - \{z\} = \{y, v_1, v_2, v_3\} \subset N(w)$, we observe that *C* is a (z; A')-fit fragment. Since *z* is not tractable with *A'*, we see that either $|S' \cap C| \le 1$ or $|S' \cap C| \le 1$. Without loss of generality, we may assume that $|S' \cap C| \le 1$. Since *C* is (z; A')-fit, we know that $S' \cap C \ne \emptyset$, which implies $|S' \cap C| = 1$, say $S' \cap C = \{y'\}$. Then, since $|S' \cap C| < |A' \cap N(C)| = |A'| = 2$, Lemma 2(2) assures us that $\overline{A'} \cap C = \emptyset$, which implies $C = S' \cap C = \{y'\}$. Then, we observe that $y' \in N(z) \cap S' \cap V_5$, which contradicts the fact that $N(z) \cap S' = \{y\}$ and $y \notin V_5$. This contradiction proves Claim 7.2. \Box

Let *C* be a *zu*-fragment. By Claim 7.2, we know that $A' \subset N(C)$, $|S' \cap C| = |S' \cap \overline{C}| = 2$ and $S' \cap N(C) = \{z\}$. Without loss of generality, we may assume that $S' \cap C = \{y, v_1\}$ and $S' \cap \overline{C} = \{v_2, v_3\}$. Then, we observe that $N(y) \cap \{v_2, v_3\} = \emptyset$, which implies that $N(y) \subset (S \cup A) - \{y, v_2, v_3\} = \{x, z, u, w, v_1\}$. Now we have $\deg_G(y) = |N(y)| \le 5$, which contradicts the fact that $y \in V_{>6}$. This contradiction proves Lemma 7. \Box

3. Proof of Proposition 1

Let *G* be a contraction-critically 5-connected graph and let $x \in V(G)$ such that $x \notin V_5$ and $|N(x) \cap V_5| = 2$, say $N(x) \cap V_5 = \{y_1, y_2\}$. By way of contradiction, assume $y_1y_2 \in E(G)$. Let $E'(x) = E(x) - \{xy_1, xy_2\}$. Let *A* be a E'(x)-fragment of *G*. Then, since $y_1y_2 \in E(G)$, we observe that either $A \cap \{y_1, y_2\} = \emptyset$ or $\overline{A} \cap \{y_1, y_2\} = \emptyset$. Hence there is a $\{y_1, y_2\}$ -free E'(x)-fragment of *G*.

Claim 1. Let $xz \in E'(x)$ and let A be a minimal $\{y_1, y_2\}$ -free xz-fragment. Then, $(1)\overline{A} \cap \{y_1, y_2\} \neq \emptyset$ and (2) if $|\overline{A}| \ge 2$, then $|A| \ge 3$.

Proof. (1) Assume that $\overline{A} \cap \{y_1, y_2\} = \emptyset$. Then $\{y_1, y_2\} \subset N(A)$. Then, since $N(x) \cap A \cap V_5 = \emptyset$, we observe that $|A| \ge 2$. Since $N(x) \cap \overline{A} \cap V_5 = \emptyset$, we also see that $|\overline{A}| \ge 2$. We show that $|N(y_1) \cap A| \ge 2$. Assume $|N(y_1) \cap A| = 1$, say $N(y_1) \cap A = \{u\}$. Let $A' = A - \{u\}$. Then we see that A' is a $\{y_1, y_2\}$ -free *xz*-fragment of *G* and $A' \subseteq A$, which contradicts the minimality of *A*. This contradiction proves that $|N(y_1) \cap A| \ge 2$. By symmetry, we have $|N(y_2) \cap A| \ge 2$. Hence $|N(y_1) \cap (N(A) \cup A)| \ge |\{x, y_2\}| + |N(y_1) \cap A| \ge 4$, which implies $|N(y_1) \cap \overline{A}| = 1$. Similarly we have $|N(y_2) \cap \overline{A}| = 1$. Hence, we see that $\{y_1, y_2\} \cap Ad(x; \overline{A}) = \emptyset$. Since $N(x) \cap V_5 = \{y_1, y_2\}$, this implies that $Ad(x; \overline{A}) = \emptyset$. On the other hand, since $|A| \ge 2$ and $N(x) \cap \overline{A} \cap V_5 = \emptyset$, Lemma 6 assures us that there is an admissible vertex of $(x; \overline{A})$, which contradicts the previous assertion. This contradiction proves (1).

(2) Assume that $|\bar{A}| \ge 2$ and $|A| \le 2$. Since $N(x) \cap V_5 = \{y_1, y_2\}$ and A is $\{y_1, y_2\}$ -free, we observe that $N(x) \cap A \cap V_5 = \emptyset$, which implies $A \cap V_{\ge 6} \ne \emptyset$ and $|A| \ge 2$. Hence we see that |A| = 2. Since $|\bar{A}| \ge 2$, |A| = 2 and $A \cap V_{\ge 6} \ne \emptyset$, applying Lemma 5(3), we see that $|N(A) \cap V_5| \ge 4$. However, since $\{x, z\} \subset N(A) \cap V_{\ge 6}$, we observe that $|N(A) \cap V_5| \le 3$, which contradicts the previous assertion. This contradiction shows (2) and Claim 1 is proved. \Box

Claim 2. There is a y_i -opposite E'(x)-fragment of G for each $i \in \{1, 2\}$.

Proof. Let *A* be a minimal $\{y_1, y_2\}$ -free E'(x)-fragment of *G* and let S = N(A). Then Claim 1 assures us that $\overline{A} \cap \{y_1, y_2\} \neq \emptyset$. Hence, by symmetry, we may assume that *A* is a minimal y_1 -opposite E'(x)-fragment of *G*. Say $xz \in E(S) \cap E'(x)$. Since $N(x) \cap A \cap V_5 = \emptyset$, we see that $|A| \ge 2$. Assume that there is no y_2 -opposite E'(x)-fragment. Let $u \in N(x) \cap A$ and let *B* be a minimal $\{y_1, y_2\}$ -free xu-fragment of *G*. Then, since $N(x) \cap B \cap V_5 = \emptyset$, we observe that $|B| \ge 2$. Applying Claim 1 with the roles of xz and *A* replaced by xu and *B*, respectively, we see that $\{y_1, y_2\} \cap \overline{B} \neq \emptyset$, which implies $y_1 \in \overline{A} \cap \overline{B}$ since *B* is not a y_2 -opposite E'(x)-fragment. Since both *A* and *B* are $\{y_1, y_2\}$ -free and neither *A* nor *B* is y_2 -opposite, we observe that $y_2 \in S \cap T$.

Subclaim 2.1. (1) $A \cap B = \emptyset$ and (2) $|S \cap B| = 1$.

Proof. (1) Assume $A \cap B \neq \emptyset$. Then, since neither $A \cap B$ nor $\overline{A} \cap \overline{B}$ is empty, Lemma 2(1) assures us that $A \cap B$ is y_1 -opposite E'(x)-fragment, which contradicts the minimality of A since $u \notin A \cap B$. This contradiction proves (1).

(2) Assume $|S \cap B| \ge 2$. Then, since $\overline{A} \cap \overline{B} \ne \emptyset$, Lemma 2(2) assures us $|\overline{A} \cap T| \ge |S \cap B| \ge 2$, which implies $|A \cap T| = 1$ since $\{x, y_2\} \subset S \cap T$. Hence, we observe that $|A \cap T| < |S \cap B|$ and again Lemma 2(2) assures us that $A \cap \overline{B} = \emptyset$, which implies that $|A| = |A \cap T| = 1$. This contradicts the fact that $|A| \ge 2$ and it is shown that $|S \cap B| = 1$. \Box

By Subclaim 2.1, we know that $A \cap B = \emptyset$ and $|S \cap B| = 1$, which implies $\overline{A} \cap B \neq \emptyset$ since $|B| \ge 2$. Hence, by Lemma 2(2), we see that $|A \cap T| \le |S \cap B| = 1$, which implies $A \cap \overline{B} \neq \emptyset$ since $|A| \ge 2$. Now we observe that neither $\overline{A} \cap B$ nor $A \cap \overline{B}$ is empty. Hence, by Lemma 2(1), we see that $A \cap \overline{B}$ is a y_1 -opposite E'(x)-fragment, which contradicts the minimality of A since $u \notin A \cap \overline{B}$. This contradiction shows the existence of a y_2 -opposite E'(x)-fragment and Claim 2 is proved. \Box

Let *A* be a minimum y_1 -opposite E'(x)-fragment and let *B* be a minimum y_2 -opposite E'(x)-fragment. Let S = N(A) and let T = N(B).

Claim 3. $|\overline{A}| \ge 2$ and $|\overline{B}| \ge 2$.

Proof. We show $|\bar{A}| \ge 2$. Assume $|\bar{A}| = 1$. Then $\bar{A} = \{y_1\}$ and $S = N(y_1)$. Let $S = N(y_1) = \{x, y_2, z_1, z_2, z_3\}$. Let $B' = G - N(y_2) \cup \{y_2\}$ and let T' = N(B'). Then $\bar{B}' = \{y_2\}$. Let $T' = N(y_2) = \{x, y_1, u_1, u_2, u_3\}$. By Theorem E, we know that $|N(y_1) \cap V_5| \ge 2$ and $|N(y_2) \cap V_5| \ge 2$. Hence, since $x \notin V_5$, we observe that neither $\{z_1, z_2, z_3\} \cap V_5$ nor $\{u_1, u_2, u_3\} \cap V_5$ is empty. Without loss of generality, we may assume $z_3, u_3 \in V_5$.

Subclaim 3.1. $N(x) \subset S \cup T' \cup \{y_1, y_2\}.$

Proof. Assume $N(x) \cap (A \cap B') \neq \emptyset$. Let $E''(x) = E_G(x, A \cap B')$. Then $E''(x) \neq \emptyset$. Let *C* be a minimum $\{y_1, y_2\}$ -free E''(x)-fragment. Say $xv \in E(N(C)) \cap E_G(x, A \cap B')$. Note that $v \in V_{\geq 6}$ since $N(x) \cap V_5 = \{y_1, y_2\}$. Since $v \in A \cap B', \overline{A} = \{y_1\}$ and $\overline{B'} = \{y_2\}$, we observe that $N(v) \cap \{y_1, y_2\} = \emptyset$. Then, applying Claim 1 with the role of *A* replaced by *C*, we see that $\{y_1, y_2\} \cap \overline{C} \neq \emptyset$. Since $v \in N(C)$ and $N(v) \cap \{y_1, y_2\} = \emptyset$, we see that $|\overline{C}| \geq 2$. If $y_1 \in \overline{C}$, then we observe that $\overline{A} \cap N(C) = \overline{A} \cap C = S \cap C = \emptyset$, which implies that *C* is a y_1 -opposite E'(x)-fragment such that $C \subset A - \{v\}$. This contradicts the minimality of *A*. Hence $y_1 \notin \overline{C}$, which implies that $y_2 \in S \cap \overline{C}$ and $y_1 \in N(C)$. Since $|\overline{C}| \geq 2$, applying Claim 1(2) with the roles of *A* and E'(x) replaced by *C* and E''(x), respectively, we see that $A(x; C) \neq \emptyset$. Since $N(x) \cap N(C) \cap V_5 = \{y_1\}$, we observe that y_1 is an admissible vertex of (x; C), which implies that $|N(y_1) \cap C| = |S \cap C| \geq 2$. Subsubclaim 3.1.1. $|S \cap \overline{C}| > 2$.

Proof. Assume $|S \cap \overline{C}| = 1$. Then, since $|\overline{C}| \ge 2$, we observe that $A \cap \overline{C} \ne \emptyset$. Then, since $|S \cap \overline{C}| = |\overline{A} \cap N(C)|$, applying Lemma 2(2), we see that $|(S \cap \overline{C}) \cup (S \cap N(C)) \cup (A \cap N(C))| = 5$. Hence we observe that $A \cap \overline{C}$ is a y_1 -opposite E'(x)-fragment, which contradicts the minimality of A since $v \notin A \cap \overline{C}$. This contradiction proves Subsubclaim 3.1.1. \Box

Since $|N(y_1) \cap C| = |S \cap C| \ge 2$, Subsubclaim 3.1.1 assures us that $|S \cap C| = |S \cap \overline{C}| = 2$ and $S \cap N(C) = \{x\}$. Subsubclaim 3.1.2. $N(x) \cap (A \cap C) = \emptyset$.

Proof. Assume $v' \in N(x) \cap (A \cap C)$. Then, there is no admissible vertex of (x, v'; C) since $N(x) \cap N(C) \cap V_5 = \{y_1\}$ and $y_1v' \notin E(G)$. Then, since $|\overline{C}| \ge 2$, $|C| \ge 3$ and $Ad(x, v'; C) = \emptyset$, applying Lemma 3 with the roles of y and A replaced by v' and C, respectively, we see that there is an xv'-fragment C' such that $C' \subsetneq C$, which contradicts the minimality of C. This contradiction shows that $N(x) \cap (A \cap C) = \emptyset$. \Box

Subsubclaim 3.1.2 assures us that $N(x) \cap C \subset S \cap C$. Subsubclaim 3.1.3. $N(x) \cap C = S \cap C$.

Proof. Assume $N(x) \cap C \subseteq S \cap C$. Then, since $|S \cap C| = 2$, we observe that $|N(x) \cap C| = 1$. Since $|\overline{C}| \ge 2$, $|C| \ge 3$, $|N(x) \cap C| = 1$ and $N(x) \cap C \subset V_{\ge 6}$, applying Lemma 7 with the role of *A* replaced by *C*, we see that y_1 is a strongly admissible vertex of (x; C). Hence $|N(y_1) \cap \overline{C}| = 1$, which contradicts Subsubclaim 3.1.1. This contradiction proves $N(x) \cap C = S \cap C$. \Box

We are in a position to complete the proof of Subclaim 3.1. By Subsubclaim 3.1.3, we know $N(x) \cap C = N(y_1) \cap C$, which implies that $N(y_1) \cap C \cap V_5 = \emptyset$ since $N(x) \cap C \cap V_5 = \emptyset$. Since $|\bar{C}| \ge 2$, $|C| \ge 3$ and $N(y_1) \cap C \cap V_5 = \emptyset$, applying Lemma 6 with the roles of x and A replaced by y_1 and C, respectively, we see that $Ad(y_1; C) \ne \emptyset$. On the other hand, since $N(y_1) \cap N(C) = \{x\}$ and $x \in V_{\ge 6}$, we see that there is no admissible vertex of $(y_1; C)$, which contradicts the previous assertion. This contradiction proves Subclaim 3.1. \Box By Subclaim 3.1 we know that $N(x) \subset (S \cup T') \cup \{y_1, y_2\}$. Since $N(x) \cap V_5 = \{y_1, y_2\}$ and $z_3, u_3 \in V_5$, we see that $z_3, u_3 \notin N(x)$. Hence, we observe that $y_1, y_2, z_1, z_2, u_1, u_2$ are distinct and $N(x) = \{y_1, y_2, z_1, z_2, u_1, u_2\}$ because $|N(x)| \ge 6$. Hence, we observe that $\{z_1, z_2, u_1, u_2\} \cap V_5 = \emptyset$ since $N(x) \cap V_5 = \{y_1, y_2\}$.

Subclaim 3.2. Let C be a y_1x -fragment such that $|S \cap C| \ge |S \cap \overline{C}|$ and $|S \cap N(C)| \ge 2$. Then, either (1) $\overline{C} = \{y_2\}$ or (2) $\{z_1, z_2\} \subset C$ and $z_3 = u_3$.

Proof. Since $\overline{A} = \{y_1\}$ and $y_1 \in N(C)$, we observe that neither $S \cap C$ nor $S \cap \overline{C}$ is empty. Hence, since $|S \cap C| \ge |S \cap \overline{C}|$ and $|S \cap N(C)| \ge 2$, we see that $|S \cap \overline{C}| = 1$, say $S \cap \overline{C} = \{v\}$.

At first we consider the case that $A \cap \overline{C} = \emptyset$. In this case $\overline{C} = S \cap \overline{C} = \{v\}$. Hence $v \in N(x) \cap S \cap V_5$, which implies that $v = y_2$. Now it is shown that if $A \cap \overline{C} = \emptyset$, then (1) holds.

Next we assume $A \cap \overline{C} \neq \emptyset$. In this case, since $|\overline{A} \cap N(C)| = |S \cap \overline{C}|$, we see that $A \cap \overline{C}$ is a fragment of C. If $|A \cap \overline{C}| = 1$, then $N(x) \cap (A \cap \overline{B}) \cap V_5 \neq \emptyset$, which contradicts the fact that A is $\{y_1, y_2\}$ -free. Hence $|A \cap \overline{C}| \ge 2$, which implies $|\overline{C}| \ge 3$. Since $S \cap C \neq \emptyset$ and $|A \cap N(C)| = |S \cap C|$, we observe that $A \cap \overline{C} \subseteq A$. If $\{z_1, z_2\} \cap (N(C) \cup \overline{C}) \neq \emptyset$, then we observe that $A \cap \overline{C} \subseteq A$. If $\{z_1, z_2\} \cap (N(C) \cup \overline{C}) \neq \emptyset$, then we observe that $A \cap \overline{C} \subseteq A$. If $\{z_1, z_2\} \cap (N(C) \cup \overline{C}) \neq \emptyset$, then we observe that $A \cap \overline{C}$ is a y_1 -opposite E'(x)-fragment, which contradicts the minimality of A. Hence we have $\{z_1, z_2\} \subset C$. Since $\{z_1, z_2\} \subset C$, we observe that $|C| \ge 2$ and either $w = y_2$ or $w = z_3$. Now we know that $|C| \ge 2$, $|\overline{C}| \ge 3$ and $N(y_1) \cap \overline{C} = \{w\}$. Hence, applying Corollary 4 with the roles of x and A replaced by y_1 and \overline{C} , respectively, we see that $Ad(y_1, w; \overline{C}) \neq \emptyset$. If $w = z_3$, then y_2 is an admissible vertex of $(y_1, z_3; \overline{C})$, which implies that $y_2 z_3 \in E(G)$. If $w = y_2$, then z_3 is an admissible vertex of $(y_1, y_2; \overline{C})$, which again implies that $y_2 z_3 \in E(G)$. Thus we have $z_3 = u_3$. Now it is shown that if $A \cap \overline{C} \neq \emptyset$, then (2) holds and Subclaim 3.2 is proved. \Box

Subclaim 3.3. $z_3 = u_3$.

Proof. Let *C* be a y_1z_3 -fragment. Then, if $x \in C$, then, since $N(y_1) \subset N(x) \cup \{x, z_3\}$, we observe that $N(y_1) \cap \overline{C} = \emptyset$, which contradicts the choice of *C*. Hence $x \notin C$. By symmetry, we see that $x \notin \overline{C}$ and hence $x \in N(C)$, which implies that *C* is a y_1x -fragment and $|S \cap N(C)| \ge 2$. Without loss of generality, we may assume that $|S \cap C| \ge |S \cap \overline{C}|$. Now we can apply Subclaim 2.2. If Subclaim (2) holds, then $z_3 = u_3$ and we are done. Hence, we may assume that Subclaim 2.2(1) holds, that is $\overline{C} = \{y_2\}$. Thus $y_2z_3 \in E(G)$, which implies again $z_3 = u_3$. Subclaim 3.3 is proved. \Box

We proceed with the proof of Claim 3. By Subclaim 3.3, we know that $z_3 = u_3$, say $w = z_3 = u_3$. Since $w \in V_5$, and $\{y_1, y_2\} \subset N(w)$, we see that $|\{z_1, z_2, u_1, u_2\} \cap N(w)| \leq 3$. Without loss of generality, we may assume that $z_1 \notin N(w)$. Let C be a fragment with respect to y_1z_1 . We show that $x \in N(C)$. Assume $x \in C$. Then we observe that $N(y_1) \cap \overline{C} = \{w\}$ since $N(y_1) \subset N(x) \cup \{x, w\}$. Since $xy_2, y_2w \in E(G)$, we observe that $y_2 \in N(C)$. Furthermore, since $\{z_1, z_2, u_1, u_2\} \subset N(x)$, we see that $N(\{y_1, y_2\}) \cap \overline{C} = \{w\}$. Hence, applying Lemma 1 with the roles of S and A replaced by $\{y_1, y_2\}$ and \overline{C} , respectively, we see that $\overline{C} = \{w\}$ and N(C) = N(w). This contradicts the fact that $z_1 \notin N(w)$, and this contradiction proves $x \notin C$. By symmetry, we see that $x \notin \overline{C}$. Now it is shown that $x \in N(C)$.

Without loss of generality, we may assume that $|S \cap C| \ge |S \cap \overline{C}|$. Applying Subclaim 3.2, we see that $\overline{C} = \{y_2\}$ since the fact that $z_1 \in N(C)$ assures us that Subclaim 3.2(2) does not occur. Hence, we observe that $y_2z_1 \in E(G)$. However $N(y_2) = \{x, y_1, u_1, u_2, w\}$ and $y_1, y_2, z_1, z_2, u_1, u_2$ are distinct, which implies $y_2z_1 \notin E(G)$. This contradicts the previous assertion and we have shown that $|\overline{A}| \ge 2$.

Using the same arguments with the roles of *A* and *B'* replaced by *B* and $G - N(y_1) \cup \{y_1\}$, respectively, we can show that $|\bar{B}| \ge 2$. Now Claim 3 is proved. \Box

Recall that *A* and *B* are a minimum y_1 -opposite E'(x)-fragment and a minimum y_2 -opposite E'(x)-fragment, respectively, and S = N(A) and T = N(B). By Claim 3, we know that $|\bar{A}|, |\bar{B}| \ge 2$. Then, applying Claim 1(2), we see that $|A|, |B| \ge 3$. Claim 4. (1) $N(x) \cap A \subset N(y_2) \cap A$ and (2) $N(x) \cap B \subset N(y_1) \cap B$.

Proof. We show (1). Assume that there is a vertex $v \in N(x) \cap A$ such that $v \notin N(y_2)$. Since $N(x) \cap S \cap V_5 = \{y_2\}$, there is no admissible vertex of (x, v; A). Then, since $|\overline{A}| \ge 2$ and $|A| \ge 3$, applying Lemma 3 with the role y replaced by v, we see that there is an xv-fragment A' such that $A' \subsetneq A$. Then A' is a y_1 -opposite E'(x)-fragment such that $A' \subsetneq A$, which contradicts that minimality of A. This contradiction shows (1).

By the similar arguments, we can show (2) and Claim 4 is proved. \Box

Since *A* is y_1 -opposite and *B* is y_2 -opposite, Claim 4 assures us that $N(x) \cap (A \cap B) = \emptyset$. Claim 5. *Neither* $\overline{A} \cap B$ nor $A \cap \overline{B}$ is empty.

Proof. Assume that either $\overline{A} \cap B = \emptyset$ or $A \cap \overline{B} = \emptyset$. Without loss of generality, we may assume that $\overline{A} \cap B = \emptyset$. We show $A \cap B = \emptyset$. Assume $A \cap B \neq \emptyset$. Then, since $N(x) \cap (A \cap B) = \emptyset$, we observe that $|(S \cap B) \cup (S \cap T) \cup (S \cap T)| \ge 6$. Then Lemma 2(1) assures us that $\overline{A} \cap \overline{B} = \emptyset$, which implies $\overline{A} = \overline{A} \cap T$. Since $|\overline{A} \cap T| = |\overline{A}| \ge 2$, by Lemma 2(2), we observe that $|S \cap B| \ge |\overline{A} \cap T| + 1 = 3$, which implies $|S \cap \overline{B}| = |S| - |S \cap T| - |S \cap B| \le 1$. Then we observe that $|S \cap \overline{B}| < |\overline{A} \cap T|$ and Lemma 2(2) again assures us that $A \cap \overline{B} = \emptyset$, which implies that $|\overline{B}| = |S \cap \overline{B}| \le 1$. This contradicts Claim 3 and it is shown that $A \cap B = \emptyset$. Since $A \cap B = \emptyset$, $\overline{A} \cap B = \emptyset$ and $|B| \ge 3$, we observe that $|S \cap B| = |B| \ge 3$. Next we show that $|A \cap T| \ge 3$. Assume $|A \cap T| \le 2$. Then, $|A \cap T| < |S \cap B|$ and Lemma 2(2) assures us that $A \cap \overline{B} = \emptyset$, which implies $|A \cap A| = |A \cap A \cap B| = |B| \ge 3$. Next we show that $|A \cap T| \ge 3$. Assume $|A \cap T| \le 2$. Then, $|A \cap T| < |S \cap B|$ and Lemma 2(2) assures us that $A \cap \overline{B} = \emptyset$, which implies $|A| = |A \cap T| \ge 3$. Since $|A \cap T| \le 2$. Then, $|A \cap T| < |S \cap B|$ and Lemma 2(2) assures us that $A \cap \overline{B} = \emptyset$, which implies $|A| = |A \cap T| \le 3$. Since $|A \cap T| \le 3$. We observe that $|\overline{A} \cap T| = |T| - |S \cap T| - |A \cap T| \le 1$. Hence, since $|\overline{A} \cap T| < |S \cap B|$, we see that $\overline{A} \cap \overline{B} = \emptyset$, which implies that $\overline{A} = \overline{A} \cap T$. Thus $|\overline{A}| = |\overline{A} \cap T| \le 1$, which contradicts Claim 3. This contradiction proves Claim 5. \Box

By Claim 5 we know that neither $\overline{A} \cap B$ nor $A \cap \overline{B}$ is empty. Then, Lemma 2(1) assures us that both $\overline{A} \cap B$ and $A \cap \overline{B}$ are fragments of *G*. We show that $S \cap B = A \cap B = A \cap T = \emptyset$. Since *A* is an E'(x)-fragment, $E(S) \cap E'(x) \neq \emptyset$, say $xz \in E(S) \cap E'(x)$. If $z \in S \cap (T \cup \overline{B})$, then $A \cap \overline{B}$ is a y_1 -opposite E'(x)-fragment. Then, the minimality of *A* assures us $A = A \cap \overline{B}$, which implies that $S \cap B = A \cap B = A \cap T = \emptyset$. Hence, $z \in S \cap B$, which implies that $\overline{A} \cap B$ is a y_2 -opposite E'(x)-fragment. In this case, the minimality of *B* assures us $B = \overline{A} \cap B$, which implies again that $S \cap B = A \cap B = A \cap T = \emptyset$. Now we know that $A = A \cap \overline{B}, B = \overline{A} \cap B$ and $S \cap B = A \cap B = A \cap T = \emptyset$. Since $A = A \cap \overline{B}, B = \overline{A} \cap B$ and $|A|, |B| \ge 3$, we see that $|\overline{A}|, |\overline{B}| \ge 3$. Claim 6. $N(y_2) \cap \overline{A} = \{y_1\}, N(y_1) \cap \overline{B} = \{y_2\}$.

Proof. We show that $N(y_2) \cap \overline{A} = \{y_1\}$. Since $y_1 \in N(y_2) \cap \overline{A}$, it suffices to show that $|N(y_2) \cap \overline{A}| = 1$. If $|N(y_2) \cap A| = 3$, then $|N(y_2) \cap \overline{A}| = |N(y_2)| - |N(y_2) \cap S| - |N(y_2) \cap A| = 1$ and we are done. Hence we may assume that $|N(y_2) \cap A| = 2$. Then, by Claim 4, we observe that $|N(x) \cap A| \le |N(y_2) \cap A| = 2$. If $|N(x) \cap A| = 1$, then we see that y_2 is a strongly admissible vertex of (x; A), which implies that $|N(y_2) \cap \overline{A}| = 1$. Hence we may assume that $|N(x) \cap A| = 2$. In this situation, by Claim 4, we see that $N(x) \cap A = N(y_2) \cap \overline{A}| = 1$. Hence we may assume that $|N(x) \cap A \cap V_5 = \emptyset$. Since $|\overline{A}| \ge 2$ and $N(y_2) \cap A \cap V_5 = \emptyset$, applying Lemma 6 with the role of *x* replaced by y_2 , we see that $Ad(y_2; A) \neq \emptyset$, which implies that y_2 has a neighbor other than *x* in *S*. Thus we observe that $|N(y_2) \cap S| \ge 2$, which implies that $|N(y_2) \cap \overline{A}| = 1$. Hence, it is shown $N(y_2) \cap \overline{A} = \{y_1\}$.

By the similar arguments, we can show that $N(y_1) \cap \overline{B} = \{y_2\}$, and Claim 6 is proved. \Box

Since $|\bar{A}|$, $|A| \ge 3$ and $N(y_2) \cap \bar{A} = \{y_1\}$, applying Corollary 4 with the roles of x, y and A replaced by y_2, y_1 and \bar{A} , respectively, we see that $Ad(y_2, y_1; \bar{A}) \ne \emptyset$. Since $|\bar{B}|$, $|B| \ge 3$ and $N(y_1) \cap \bar{B} = \{y_2\}$, applying Corollary 4 with the roles of x, y and A replaced by y_1, y_2 and \bar{B} , respectively, we also see that $Ad(y_1, y_2; \bar{B}) \ne \emptyset$. Say $w \in Ad(y_2, y_1; \bar{A})$. Then, since $w \in N(y_1) \cap N(y_2)$, we observe that $N(y_2) = (N(y_2) \cap A) \cup \{x, w, y_1\}$ and $N(y_1) = (N(y_1) \cap B) \cup \{x, w, y_2\}$, which implies $w \in N(y_1) \cap N(y_2)$ and $Ad(y_2, y_1; \bar{A}) = Ad(y_1, y_2; \bar{A}) = \{w\}$.

Claim 7. $|N(w) \cap A| \ge 2$ and $|N(w) \cap B| \ge 2$.

Proof. We show $|N(w) \cap A| \ge 2$. Assume $|N(w) \cap A| = 1$, say $N(w) \cap A = \{u_1\}$.

Subclaim 7.1. $|N(x) \cap A| = 1$.

Proof. Assume $|N(x) \cap A| = 2$. Then, since $|N(y_2) \cap A| = 2$, Claim 4 assures us that $N(y_2) \cap A = N(x) \cap A$, which implies $N(y_2) \cap A \cap V_5 = \emptyset$ since $N(x) \cap A \cap V_5 = \emptyset$. Since $|\overline{A}| \ge 3$, applying Lemma 6 with the role of *x* replaced by y_2 , we see that $Ad(y_2; A) \ne \emptyset$. Since $N(y_2) \cap S \cap V_5 = \{w\}$, we observe that *w* is an admissible vertex of $(y_2; A)$, which implies $|N(w) \cap A| \ge 2$. This contradicts the assumption and Subclaim 7.1 is proved. \Box

By Subclaim 7.1, we know that $|N(x) \cap A| = 1$, say $N(x) \cap A = \{u_2\}$. We show that $u_1 \neq u_2$. Assume $u_1 = u_2$. Then, since $N(\{x, w\}) \cap A = \{u_1\}$, applying Lemma 1 with the role *S* replaced by $\{x, w\}$, we see that $A = \{u_1\}$, which contradicts the fact that $|A| \ge 3$. Now it is shown that $u_1 \neq u_2$.

Subclaim 7.2. $|A| \ge 4$.

Proof. Assume |A| = 3. Recall that $zx \in E(S) \cap E'(x)$. Since $w \in V_5$, we observe that $z \neq w$. Let $A_1 = A - \{u_1\}$. Then, since $N(w) \cap A = \{u_1\}$, we observe that $N(A_1) = (S - \{w\}) \cup \{u_1\}$. This implies that A_1 is a fragment of G. Since |A| = 3 and $u_2 \in A_1 \cap V_{\geq 6}$, we observe that $|A_1| = 2$ and $A_1 \cap V_{\geq 6} \neq \emptyset$. Then, since $|\bar{A}_1| \geq 3$, $|A_1| = 2$ and $A_1 \cap V_{\geq 6} \neq \emptyset$, applying Lemma 5(3) with the role of A replaced by A_1 , we see that $|N(A_1) \cap V_5| \geq 4$. However, since $\{x, z\} \subset N(A_1) \cap V_{\geq 6}$, we observe that $|N(A_2) \cap V_5| \leq 3$. This contradicts the previous assertion. and Subclaim 7.2 is proved. \Box

Recall that $N(x) \cap A = \{u_2\}$ and y_2 is an admissible vertex of $(x, u_2; A)$. Hence, we observe that $u_2 \in N(x) \cap N(y_2) \cap A$. Let $A_2 = A - \{u_2\}$. Then A_2 is a fragment of G since $N(x) \cap A = \{u_2\}$. Subclaim 7.2 assures us that $|A| \ge 4$, which implies that $|A_2| \ge 3$. Since $|N(y_2) \cap A| = 2$ and $u_2 \in N(y_2) \cap A$, we observe that $|N(y_2) \cap A_2| = 1$. Then, since $|A_2| \ge 2$, $|A_2| \ge 3$ and $|N(y_2) \cap A_2| = 1$, applying Corollary 4 with the roles x and A replaced by y_2 and A_2 , respectively, we see that $Ad(y_2; A_2) \ne \emptyset$. Then, since $N(y_2) \cap S \cap V_5 = \{w\}$, w is an admissible vertex of $(y_2; A_2)$, which implies $|N(w) \cap A_2| \ge 2$. This contradicts the assumption that $|N(w) \cap A| = 1$. This contradiction proves $|N(w) \cap A| \ge 2$.

By the similar arguments, we can show $|N(w) \cap B| \ge 2$ and Claim 7 is proved. \Box

We are in a position to complete the proof of Proposition 1. Claim 7 assures us that $|N(w) \cap A| \ge 2$ and $|N(w) \cap B| \ge 2$. Since $A \cap B = \emptyset$, we observe that $|N(w) \cap (A \cup B)| = |N(w) \cap A| + |N(w) \cap B| \ge 4$. Since $\{y_1, y_2\} \subset N(w)$ and both A and B are $\{y_1, y_2\}$ -free, we see that $|N(w)| \ge |N(w) \cap (A \cup B \cup \{y_1, y_2\})| = |N(w) \cap (A \cup B)| + |N(w) \cap \{y_1, y_2\}| \ge 6$, which contradicts the fact that $w \in V_5$. This is the final contradiction and the proof of Proposition 1 is completed. \Box

4. Proof of Proposition 2

In this section we prove Proposition 2.

Let *G* be a contraction-critically 5-connected graph. Let *x* be a vertex of *G* such that $x \notin V_5$ and $|N(x) \cap V_5| = 2$. Let $N(x) \cap V_5 = \{y_1, y_2\}$. Then, Proposition 1 assures us that $y_1y_2 \notin E(G)$.

Claim 1. $|G| \ge 10$.

Proof. Assume $|G| \leq 9$. Let A be a $\{y_2\}$ -free xy_1 -fragment and let S = N(A). Then, since $N(x) \cap A \cap V_5 = \emptyset$, we observe that $|A| \geq 2$. If $\overline{A} \cap \{y_2\} = \emptyset$, then, by the same reason, we see that $|\overline{A}| \geq 2$. Otherwise, if $y_2 \in \overline{A}$, then we also see that $|\overline{A}| \geq 2$ since $y_1y_2 \notin E(G)$. Hence, since $|G| \leq 9$, we observe that $|A| = |\overline{A}| = 2$. Let $A = \{u_1, u_2\}$ and $\overline{A} = \{v_1, v_2\}$. Then, since $|A| = |\overline{A}| = 2$ and $A \cap V_{\geq 6} \neq \emptyset$, applying Lemma 5, we see that $|S \cap V_5| \geq 4$, which implies that $S - \{x\} \subset V_5$. Since $x \notin V_5$ and $|A \cup \overline{A}| = 4$, we observe that $|N(x) \cap S| \geq 2$, which implies $N(x) \cap S = \{y_1, y_2\}$ and $N(x) = \{y_1, y_2, u_1, u_2, v_1, v_2\}$. Let $S = \{x, y_1, y_2, w_1, w_2\}$. Since $N(x) \cap V_5 = \{y_1, y_2\}$, we observe that $\{u_1, u_2, v_1, v_2\} \subset V_{\geq 6}$, which implies that $S \subset N(u_1) \cap N(u_2) \cap N(v_1) \cap N(v_2)$. Hence, we see that $N(y_1) = N(y_2) = \{x, u_1, u_2, v_1, v_2\}$, which implies $N(\{w_1, w_2\}) = \{u_1, u_2, v_1, v_2\}$. This contradicts the assumption that G is 5-connected. This contradiction proves Claim 1. \Box

We start with the following observation, which has a somewhat technical appearance but is useful.

Claim 2. Let $y \in \{y_1, y_2\}$. Let A be an xy-fragment such that $|\overline{A}| \ge 2$ and $|A| \ge 3$. Suppose $|N(y) \cap A| = 2$, $N(y) \cap N(A) = \{x\}$ and $N(x) \cap N(y) \cap A \ne \emptyset$. Then, for each $u \in N(x) \cap N(y) \cap A$, there is an xy-fragment A' such that $A' \subseteq A$ and $N(y) \cap A' = \{u\}$.

Proof. Let S = N(A). Let $N(y) \cap A = \{u, u'\}$ and $u \in N(x) \cap N(y) \cap A$. Since $N(y) \cap S = \{x\}$ and $x \notin V_5$, there is no admissible vertex of (y, u'; A). Hence, since $|\overline{A}| \ge 2$, $|A| \ge 3$ and $Ad(y, u'; A) = \emptyset$, applying Lemma 3 with the roles of x and y replaced by y and u', respectively, we see that there is a yu'-fragment A' such that $A' \subsetneq A$. Since $N(y) \cap A' \neq \emptyset$, $N(y) \cap A = \{u, u'\}$ and $A' \subsetneq A$, we observe that $N(y) \cap A' = \{u\}$. Since $x \notin A, A' \subsetneq A, u \in A'$ and $xu \in E(G)$, we see that $x \in N(A')$, which implies that A' is an xy-fragment. Hence A' is a desired fragment and Claim 2 is proved. \Box

Claim 3. There is a y_2 -opposite xy_1 -fragment.

Proof. Assume that there is no y_2 -opposite xy_1 -fragment. Let A be a fragment with respect to xy_1 and let S = N(A). Then, since neither A nor \overline{A} is y_2 -opposite, we observe that $\{x, y_1, y_2\} \subset S$, which implies $N(x) \cap V_5 \subset S$. Hence we see that $N(x) \cap A \cap V_5 = N(x) \cap \overline{A} \cap V_5 = \emptyset$, which implies $|A|, |\overline{A}| \ge 2$. We choose a fragment A with respect to xy_1 so that $|N(y_1) \cap A|$ is as small as possible. Furthermore, subject to the above condition, we choose A so that |A| is as large as possible. Subclaim 3.1. $|N(y_2) \cap A| = |N(y_2) \cap \overline{A}| = 2$.

Proof. Assume $|N(y_2) \cap A| = 1$, say $N(y_2) \cap A = \{u\}$. Then, since $|A| \ge 2$, $S' = (S - \{y_2\}) \cup \{u\}$ is a 5-cutset of *G* and $A - \{u\}$ is a y_2 -opposite xy_1 -fragment, which contradicts the assumption. Hence $|N(y_2) \cap A| \ge 2$. By symmetry, we see that $|N(y_2) \cap \overline{A}| \ge 2$. Since $x \in N(y_2) \cap S$ and $|N(y_2)| = 5$, we have the desired conclusion. \Box

Subclaim 3.2. (1) $|N(y_1) \cap A| \le 2$. Furthermore, if $|N(y_1) \cap A| = 2$, then $|N(y_1) \cap \bar{A}| = 2$ and $|A| \ge |\bar{A}|, (2) |A| \ge 3$.

Proof. (1) By the choice of *A*, we know that $|N(y_1) \cap A| \le |N(y_1) \cap \overline{A}|$. Since $x \in N(y_1) \cap S$ and $|N(y_1)| = 5$, we observe that $|N(y_1) \cap A| + |N(y_1) \cap \overline{A}| \le 4$. Hence, since $|N(y_1) \cap A| \le |N(y_1) \cap \overline{A}|$, we see that $|N(y_1) \cap A| \le 2$. Now the former part of (1) is shown. Next assume that $|N(y_1) \cap A| = 2$. Then, since $|N(y_1) \cap A| \le |N(y_1) \cap \overline{A}|$ and $x \in N(y_1) \cap S$, we observe that $|N(y_1) \cap A| = 2$. Hence, by the choice of *A*, we see that $|A| \ge |\overline{A}|$ and the latter part of (1) is proved.

(2) Assume |A| = 2, say $A = \{u, u'\}$. If $y_1u \notin E(G)$, then $u \in V_5$ and $xu \in E(G)$, which contradicts the assumption that $N(x) \cap V_5 = \{y_1, y_2\}$. Hence $y_1u \in E(G)$. Similarly we observe that $y_1u' \in E(G)$. Thus we have $|N(y_1) \cap A| = 2$. Hence, (1) assures us that $|A| \ge |\bar{A}|$. On the other hand, by Claim 1, we know that $|G| \ge 10$, which implies that $|A| + |\bar{A}| = |G| - |S| \ge 5$. This together with the fact $|A| \ge |\bar{A}|$ implies $|A| \ge 3$, which contradicts the assumption that |A| = 2. This contradiction proves (2). \Box

Subclaim 3.3. $y_1 \notin Ad(x; A)$.

Proof. Assume y_1 is an admissible vertex of (x; A). Then $N(x) \cap N(y_1) \cap A \neq \emptyset$ and $|N(y_1) \cap A| \ge 2$. Since $|N(y_1) \cap A| \ge 2$, Subclaim 3.2(1) assures us that $|N(y_1) \cap A| = |N(y_1) \cap \bar{A}| = 2$, $N(y_1) \cap N(A) = \{x\}$ and $|A| \ge |\bar{A}|$. Also Subclaim 3.2(2) assures us that $|A| \ge 3$. Now we know that $|\bar{A}| \ge 2$, $|A| \ge 3$, $|N(y_1) \cap A| = 2$, $N(y_1) \cap N(A) = \{x\}$ and $N(x) \cap N(y_1) \cap A \neq \emptyset$. Applying Claim 2 with the role of y replaced by y_1 , we see that there is an xy_1 -fragment A' such that $|N(y_1) \cap A'| = 1$, which contradicts the choice of A. This contradiction proves Subclaim 3.3. \Box

We proceed with the proof of Claim 3. Subclaim 3.2(2) assures us $|A| \ge 3$, hence now we know $|\bar{A}| \ge 2$, $|A| \ge 3$ and $N(x) \cap A \cap V_5 = \emptyset$. Applying Lemma 6, we see that there is an admissible vertex of (x; A). Since $N(x) \cap V_5 = \{y_1, y_2\}$, either y_1 or y_2 is an admissible vertex of (x; A). By Subclaim 3.3, we know that $y_1 \notin Ad(x; A)$. Hence y_2 is an admissible vertex of (x; A), which implies $N(x) \cap N(y_2) \cap A \neq \emptyset$. Let $u \in N(x) \cap N(y_2) \cap A$. By Subclaim 3.1 we know that $|N(y_2) \cap A| = 2$. Thus we have $|\bar{A}| \ge 2$, $|A| \ge 3$, $|N(y_2) \cap A| = 2$, $N(y_2) \cap N(A) = \{x\}$ and $u \in N(x) \cap N(y) \cap A$. Applying Claim 2 with the role of y replaced by y_2 , we see that there is an xy_2 -fragment A' such that $A' \subseteq A$ and $N(y_2) \cap A' = \{u\}$. Since $N(x) \cap A' \cap V_5 = \emptyset$, we observe that $|A'| \ge 2$. We show $|A'| \ge 3$. Assume |A'| = 2, say $A' = \{u, w\}$. Since $N(y_2) \cap A' = \{u\}$ and $x \in N(A')$, we see that $w \in V_5$ and $xw \in E(G)$, which contradicts the assumption that $N(x) \cap V_5 = \{y_1, y_2\}$. Hence, it is shown that $|A'| \ge 3$. Since $|\bar{A}'| \ge 2$, $|A'| \ge 3$ and $N(x) \cap A' \cap V_5 = \emptyset$, applying Lemma 6 with the role of A replaced by A', we see that $Ad(x; A') \neq \emptyset$. By Subclaim 3.3, we observe that $y_1 \notin Ad(x; A)$, which implies y_1 is not an admissible vertex of (x; A') since $A' \subseteq A$. Since $|N(y_2) \cap A'| = 1$, y_2 is not an admissible vertex of (x; A'). Hence, since neither y_1 nor y_2 is an admissible vertex of (x; A') and $N(x) \cap V_5 = \{y_1, y_2\}$, we see that $Ad(x; A') = \emptyset$, which contradicts the previous assertion. This contradiction proves Claim 3. \Box

By Claim 3, there is a y_2 -opposite xy_1 -fragment. Let A be a minimal y_2 -opposite xy_1 -fragment and let S = N(A). Since A is $\{y_1, y_2\}$ -free, we observe that $N(x) \cap A \cap V_5 = \emptyset$ and $|A| \ge 2$. Since $y_2 \in A$ and $y_1y_2 \notin E(G)$, we also see that $|\bar{A}| \ge 2$. Claim 4, $|\bar{A}| > 3$.

Proof. Assume $|\bar{A}| = 2$, say $\bar{A} = \{y_2, z\}$. Then, Claim 1 assures us that $|A| = |G| - |S| - |\bar{A}| \ge 3$. Let *B* be an xy_2 -fragment and let T = N(B). Since $N(x) \cap \bar{A} \cap V_5 = \{y_2\}$, we observe $S - \{x\} \subset N(z)$, which implies that *B* is an (x, \bar{A}) -fit fragment.

We show *x* is tractable with \overline{A} . Assume *x* is not tractable with \overline{A} . Then, we observe that either $|S \cap B| = 1$ or $|S \cap \overline{B}| = 1$. Without loss of generality, we may assume $|S \cap B| = 1$, say $S \cap B = \{w\}$. Since $|S \cap B| < |\overline{A} \cap T|$, Lemma 2(2) assures us that $A \cap B = \emptyset$, which implies $B = S \cap B = \{w\}$ and T = N(w). Hence $w \in V_5$ and $xw \in E(G)$, which implies $w = y_1$ since $N(x) \cap V_5 = \{y_1, y_2\}$. Then, since T = N(w) and $y_2 \in T$, we see that $y_1y_2 \in E(G)$, which contradicts Proposition 1. This contradiction proves $|S \cap B| \ge 2$. By symmetry, we have $|S \cap \overline{B}| \ge 2$ and $|S \cap B| = |S \cap \overline{B}| = 2$. It is shown that *x* is tractable with \overline{A} .

Since *x* is tractable with \overline{A} , we observe that $S \cap T = \{x\}$. Then, without loss of generality, we may assume that $y_1 \in S \cap B$. Since $|\overline{A} \cap T| = 2$ and $S \cap T = \{x\}$, we observe that $|A \cap T| = 2$. Now we know that $|A \cap T| = 2$ and $|(S \cap B) \cup (S \cap T) \cup (A \cap T)| = |(S \cap \overline{B}) \cup (S \cap T) \cup (A \cap T)| = 5$. Hence, since $y_1 \in S \cap B$, if $A \cap B \neq \emptyset$, then $A \cap B$ is a y_2 -opposite xy_1 -fragment, which contradicts the minimality of A. Thus $A \cap B = \emptyset$, which implies that $A \cap \overline{B} \neq \emptyset$ since $|A| \ge 3$ and $|A \cap T| = 2$. Let $v \in N(x) \cap (A \cap \overline{B})$. Then, since $y_1 \in S \cap B$ and $v \in A \cap \overline{B}$, we see that $vy_1 \notin E(G)$. Hence, since $N(x) \cap S \cap V_5 = \{y_1\}$ and $vy_1 \notin E(G)$, we observe that $Ad(x, v; A) = \emptyset$. Since $|\overline{A}| = 2$, $|A| \ge 3$ and $Ad(x, v; A) = \emptyset$, applying Lemma 3 with the role of A replaced by A', we see that $Ad(x; A') \neq \emptyset$, which implies that y_1 is an admissible vertex of (x; A') since $N(x) \cap N(A') \cap V_5 \subset \{y_1\}$. Hence, we observe that A' is a y_2 -opposite xy_1 -fragment, which contradicts the minimality of A since $A' \subsetneq A$. This contradiction proves Claim 4. \Box

Claim 5. $N(x) \cap N(y_1) \cap A \neq \emptyset$ and $|N(y_1) \cap A| \ge 2$.

Proof. Since $|\bar{A}| \ge 2$, $|A| \ge 2$ and $N(x) \cap A \cap V_5 = \emptyset$, applying Lemma 6, we see that there is an admissible vertex of (x; A). Then, since $N(x) \cap S \cap V_5 = \{y_1\}$, we see that y_1 is an admissible vertex of (x; A) and $|N(y_1) \cap A| \ge 2$, which implies the desired conclusion. \Box

Claim 6. $|N(y_1) \cap \bar{A}| = 1$.

Proof. Assume $|N(y_1) \cap \bar{A}| \ge 2$. Then, by Claim 5, we see that $|N(y_1) \cap \bar{A}| = |N(y_1) \cap A| = 2$, $N(y_1) \cap S = \{x\}$ and $N(x) \cap N(y_1) \cap A \neq \emptyset$.

Subclaim 6.1. |A| = 2.

Proof. Assume $|A| \ge 3$. Then, we know that $|\overline{A}| \ge 2$, $|A| \ge 3$, $|N(y_1) \cap A| = 2$, $N(y_1) \cap S = \{x\}$ and $N(x) \cap N(y_1) \cap A \ne \emptyset$. Then, applying Claim 2 with the role of *y* replaced by y_1 , we see that there is a fragment *A'* with respect to xy_1 such that $A' \subsetneq A$, which contradicts the minimality of *A*. This contradiction proves that |A| = 2. \Box

Since $N(x) \cap A \cap V_5 = \emptyset$, we know that $A \cap V_{\geq 6} \neq \emptyset$. Furthermore, since $N(y_1) \cap S = \{x\}$ and $x \in V_{\geq 6}$, we observe that $Ad(y_1; A) = \emptyset$. Since $|\overline{A}| \geq 2$, |A| = 2, $A \cap V_{\geq 6} \neq \emptyset$ and $Ad(y_1; A) = \emptyset$, applying Lemma 5(2) with the role of *x* replaced by y_1 , we see that $N(y_1) \cap S = \emptyset$, which contradicts the fact that $N(y_1) \cap S = \{x\}$. This contradiction proves Claim 6. \Box

By Claim 6, we know that $|N(y_1) \cap \overline{A}| = 1$, say $N(y_1) \cap \overline{A} = \{z_2\}$. Since $|A| \ge 2$, $|\overline{A}| \ge 3$ and $|N(y_1) \cap \overline{A}| = 1$, applying Lemma 3 with the roles of *x* and *A* replaced by y_1 and \overline{A} , respectively, we see that $Ad(y_1, \overline{A}) \ne \emptyset$. Since $|N(y_1) \cap A| \ge 2$ and $|N(y_1) \cap \overline{A}| = 1$, we have $|N(y_1) \cap S| \le 2$. This together with the fact that $x \in V_{\ge 6}$ assures us that there is the only admissible vertex of (y_1, \overline{A}) . Let z_1 be the admissible vertex of (y_1, \overline{A}) . Then $z_1 \in V_5 \cap S \cap N(y_1)$, $z_1z_2 \in E(G)$ and $|N(z_1) \cap \overline{A}| \ge 2$. If $|N(z_1) \cap A| = 1$, say $N(z_1) \cap A = \{v\}$, then $A - \{v\}$ is a y_2 -opposite xy_1 -fragment, which contradicts the minimality of *A*. Hence we see that $|N(z_1) \cap A| \ge 2$. Since $|N(z_1)| = 5$, we know that $|N(z_1) \cap \overline{A}| = |N(z_1) \cap A| = 2$ and $N(z_1) \cap S = \{y_1\}$. Let $N(z_1) \cap \overline{A} = \{z_2, u_1\}$.

Claim 7. $z_2 \in V_5$ and $z_2u_1 \in E(G)$.

Proof. Since $N(y_1) \cap \overline{A} = \{z_2\}$, we observe that $y_1u_1 \notin E(G)$. Hence, since $N(z_1) \cap S = \{y_1\}$, we observe that $Ad(z_1, u_1; \overline{A}) = \emptyset$. Since $|A| \ge 2$, $|\overline{A}| \ge 3$ and $Ad(z_1, u_1; \overline{A}) = \emptyset$, applying Lemma 3 with the roles of x, y and A replaced by z_1 , u_1 and \overline{A} , respectively, we see that there is a z_1u_1 -fragment A' such that $A' \subsetneq \overline{A}$. Then, since $N(z_1) \cap \overline{A} = \{u_1, z_2\}$ and $A' \subsetneq \overline{A}$ we observe that $N(z_1) \cap A' = \{z_2\}$. Since $y_1 \notin A$, $N(y_1) \cap \overline{A} = \{z_2\}$ and $A' \subsetneq \overline{A}$, we see that $y_1 \in N(A')$ and $N(y_1) \cap A' = \{z_2\}$. Hence we observe that $N(\{z_1, y_1\}) \cap A' = \{z_2\}$. Since $N(\{z_1, y_1\}) \cap A' = \{z_2\}$, applying Lemma 1 with the roles of S and A replaced by $\{z_1, y_1\}$ and A', respectively, we see that $A' = \{z_2\}$, which implies $z_2 \in V_5$ and $z_2u_1 \in E(G)$ and Claim 7 is proved. \Box

By Claim 7, we know that $\{z_1, z_2\} \subset N(y_1) \cap V_5$. Now we know that $N(y_1) \cap S = \{x, z_1\}$ and $|N(y_1) \cap A| = 2$. Let $N(y_1) \cap A = \{z_3, z_4\}$. Since $N(x) \cap N(y_1) \cap A \neq \emptyset$, without loss of generality, we may assume that $z_4 \in N(x) \cap N(y_1) \cap A$. To complete the proof of Proposition 2, we first consider the case that |A| = 2 and later we consider the case that $|A| \ge 3$.

At first suppose |A| = 2. Let $S = \{x, y_1, z_1, w_1, w_2\}$. In this case, since $|A| \ge 2$, |A| = 2 and $A \cap V_{\ge 6} \ne \emptyset$, applying Lemma 5(3), we see that $S - \{x\} = \{y_1, z_1, w_1, w_2\} \subset V_5$. If $xz_3 \in E(G)$, then we see that $\{z_3, z_4\} \subset V_{\ge 6}$ and a configuration of the second kind arises. Otherwise, if $xz_3 \notin E(G)$, then we see that $\{z_1, z_2, z_3\} \subset N(y_1) \cap V_5$ and $\{x, z_4\} \subset N(y_1) \cap (V(G) - V_5)$. Hence a degenerated configuration of the first kind arises.

The remaining case is $|A| \ge 3$. Assume $|A| \ge 3$. We show a configuration of the first kind arises in this case. Recall that $N(y_1) \cap A = \{z_3, z_4\}$ and $z_4 \in N(x) \cap N(y_1) \cap A$.

Claim 8. $z_1 z_3 \in E(G)$.

Proof. Assume $z_1z_3 \notin E(G)$. Then we observe that $Ad(y_1, z_3; A) = \emptyset$ since $N(y_1 \cap S \cap V_5) = \{z_1\}$. Then, since $|\overline{A}| \ge 2$, $|A| \ge 3$ and $Ad(y_1, z_3; A) = \emptyset$, applying Lemma 3 with the roles of *x* and yreplaced by y_1 and z_3 , respectively, we see that there is a y_1z_3 -fragment A' such that $A' \subsetneq A$. Since $N(y_1) \cap A = \{z_3, z_4\}$ and $z_3 \in N(A')$, we observe that $z_4 \in A'$, which implies $x \in N(A')$ since $xz_4 \in E(G)$. Hence we see that A' is a y_2 -opposite xy_1 -fragment, which contradicts the minimality of A. This contradiction proves Claim 8. \Box

By Claim 8, we have $z_3 \in N(z_1) \cap A$. Let $N(z_1) \cap A = \{z_3, u_2\}$.

Claim 9. $u_2 \neq z_4$.

Proof. Assume that $u_2 = z_4$. Then $N(\{y_1, z_1\}) \cap A = \{z_3, z_4\}$. Since $|A| \ge 3$, we observe that $A' = A - \{z_3, z_4\} \ne \emptyset$. Since $|N(A')| = |(S - \{y_1, z_1\}) \cup \{z_3, z_4\}| = 5$, A' is an xz_4 -fragment. Then, since $|\bar{A'}| \ge 2$ and $N(x) \cap A' \cap V_5 = \emptyset$, applying Lemma 6 with the role of A replaced by A', we see that $Ad(x; A') \ne \emptyset$. On the other hand, since $A' \cap \{y_1, y_2\} = \emptyset$, we see that $Ad(x; A') = \emptyset$, which contradicts the previous assertion. This contradiction proves Claim 9. \Box

Claim 10. $z_3 \in N(u_2) \cap V_5$.

Proof. Since $u_2 \neq z_4$, we observe that $u_2y_1 \notin E(G)$, which implies that $Ad(z_1, u_2; A) = \emptyset$ since $N(z_1) \cap S = \{y_1\}$. Then, since $|\overline{A}| \geq 2$, $|A| \geq 3$ and $Ad(z_1, u_2; A) = \emptyset$, applying Lemma 3 with the roles of *x* and *y* replaced by z_1 and u_2 , respectively, we see that there is a z_1u_2 -fragment A' such that $A' \subsetneq A$. Since $N(z_1) \cap A = \{z_3, u_2\}$ and $u_2 \in N(A')$, we observe that $N(z_1) \cap A' = \{z_3\}$, which implies $y_1 \in N(A')$ since $y_1z_3 \in E(G)$. If $x \in N(A')$ then A' is a y_2 -opposite xy_1 -fragment, which contradicts the minimality of *A*. Hence $x \notin N(A')$, which implies $z_4 \notin A'$ since $xz_4 \in E(G)$. Since $N(y_1) \cap A = \{z_3, z_4\}$, we see that $N(y_1) \cap A' = \{z_3\}$. Now we observe that $N(\{z_1, y_1\}) \cap A' = \{z_3\}$. Since $N(\{z_1, y_1\}) \cap A' = \{z_3\}$, applying Lemma 1 with the roles of *S* and *A* replaced by $\{z_1, y_1\}$ and A', respectively, we see that $A' = \{z_3\}$. This implies $z_3 \in V_5$ and $z_3u_2 \in E(G)$. Now Claim 10 is proved. \Box

By Claims 8–10, we find a configuration of the first kind around (x, y_1) , and the proof of Proposition 2 is completed.

5. Proof of Main Theorem

In this section we give a proof of Main Theorem.

We use a discharging method to prove Main Theorem.

Let *G* be a contraction-critically 5-connected graph and let $x \in V(G)$. We put $ch_0(x)$ unit of charge on *x* before discharging process according to the following rule.

$$ch_0(x) = \begin{cases} 0, & \text{if } x \in V_5 \\ 1 & \text{otherwise.} \end{cases}$$

In discharging process we move $\varphi(x, y)$ unit of charge from x to y by the following rule.

$$\varphi(x, y) = \begin{cases} \frac{1}{|N(x) \cap V_5|}, & \text{if } xy \in E_G(V(G) - V_5, V_5) \\ 0, & \text{otherwise.} \end{cases}$$

We denote ch(x) the amount of charge on $x \in V(G)$ after discharging process.

Then, since we put a unit of charge on each vertex of $V(G) - V_5$, we observe that $|G| - |V_5| = \sum_{x \in V(G)} ch_0(x)$. Since the discharging process do not change the total amount of charge on V(G), we see that $\sum_{x \in V(G)} ch_0(x) = \sum_{x \in V(G)} ch(x)$. According to the discharging rule, we know ch(x) = 0 for each $x \in V(G) - V_5$. Hence, if $ch(y) \le 1$ for each $y \in V_5$, then $\sum_{y \in V(G)} ch(y) \le |V_5|$. Then $|V(G) - V_5| = \sum_{x \in V(G)} ch_0(x) = \sum_{x \in V(G)} ch(x) \le |V_5|$, which implies that $|V_5| \ge \frac{1}{2}|G|$. Thus, it is enough to show that $ch(y) \le 1$ for each $y \in V_5$.

Let $X = \{x \in V(G) \mid \deg(x) \ge 6 \text{ and } |N(x) \cap V_5| = 2 \}$. We divide V_5 into two sets W and W' as follows. $W = \{y \in V_5 \mid N(y) \cap X = \emptyset\}$ and $W' = V_5 - W$. Let $y \in V_5$. Let $\tilde{N}(y) = N(y) \cap (V(G) - V_5)$. Then, by Theorem E, we know that $|N(y) \cap V_5| \ge 2$, which implies that $|\tilde{N}(y)| \le 3$. At first assume $y \in W$. Then, from each vertex of $\tilde{N}(y)$, yreceives at most $\frac{1}{3}$ unit of charge through the discharging process. Hence $ch(y) \le \frac{1}{3} \times |\tilde{N}(y)| \le 1$ since $|\tilde{N}(y)| \le 3$. Next assume $y \in W'$ and let $x \in N(y) \cap X$. Then, Proposition 2 assures us that there is either a configuration of the first kind or a configuration of the second kind around (x, y). If there is a configuration of the first kind, then we observe that $|\tilde{N}(y)| = 2$. Hence $ch(y) \le \frac{1}{2} \times |\tilde{N}(y)| \le 1$. So assume there is a configuration of the second kind around (x, y). In this case $|\tilde{N}(y)| = 3$. Let $\tilde{N}(y) = \{x, z_3, z_4\}$ as in Proposition 2. Then we see that $|N(z_3) \cap V_5| = |N(z_4) \cap V_5| = 4$, which implies that $\varphi(z_3, y) = \varphi(z_4, y) = \frac{1}{4}$. Hence, $ch(y) = \varphi(x, y) + \varphi(z_3, y) + \varphi(z_4, y) = \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1$. Now it is shown that $ch(y) \le 1$ for each $y \in V_5$ and the proof of Main Theorem is completed. \Box

Acknowledgments

The authors would like to thank the referees for their detailed and valuable comments.

References

- [1] K. Ando, K. Kawarabayashi, A. Kaneko, Vertices of degree 5 in a contraction critically 5-connected graphs, Graphs Combin. 21 (2005) 27–37.
- [2] Y. Egawa, Contractible edges in *n*-connected graphs with minimum degree greater than or equal to $\begin{bmatrix} 5n \\ -2n \end{bmatrix}$, Graphs Combin. 7 (1991) 15–21.
- [3] M. Fontet, Graphes 4-essentiels, C. R. Acad. Sci. Paris 287 (1978) 289–290.
- [4] M. Kriesell, A degree sum condition for the existence of a contractible edge in a κ -connected graph, J. Combin. Theory Ser. B 82 (1) (2001) 81–101.
- [5] T. Li, J. Su, The new lower bound of the number of vertices of degree 5 in contraction critical 5-connected graphs, Graphs Combin. 26 (3) (2010) 395-406.
- [6] N. Martinov, Uncontractible 4-connected graphs, J. Graph Theory 6 (1982) 343-344.
- [7] J. Su, Vertices of degree 5 in contraction critical 5-connected graphs, J. Guangxi Norm. Univ. 3 (1997) 12-16 (in Chinese).
- [8] C. Thomassen, Non-separating cycles in k-connected graphs, J. Graph Theory 5 (1981) 351–354.
- [9] W.T. Tutte, A theory of 3-connected graphs, Indag. Math. 23 (1961) 441-455.
- [10] X. Yuan, C. Qin, J. Su, Some properties of contraction-critical 5-connected graphs, Discrete Math. 23 (2008) 441–455.