The number of vertices of degree 5 in a contraction-critically 5-connected graph

Kiyoshi Ando ${ }^{\text {a,* }}$, Takashi Iwase ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Informatics, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu City, Tokyo, 182-8585, Japan
${ }^{\mathrm{b}}$ Department of Measurement System Development, Anritsu Engineering Co., Ltd., 5-1-1 On-na, Atsugi-City, Kanagawa 243-0032, Japan

A R T I CLE INFO

Article history:

Received 30 September 2008
Received in revised form 27 April 2011
Accepted 29 April 2011
Available online 12 June 2011
Keywords:
5-connected graph
Contraction-critically 5-connected
Degree 5 vertex

Abstract

An edge of a 5-connected graph is said to be 5-contractible if the contraction of the edge results in a 5 -connected graph. A 5 -connected graph with no 5 -contractible edge is said to be contraction-critically 5 -connected. Let $V(G)$ and $V_{5}(G)$ denote the vertex set of a graph G and the set of degree 5 vertices of G, respectively. We prove that each contraction-critically 5 -connected graph G has at least $|V(G)| / 2$ vertices of degree 5 . We also show that there is a sequence of contraction-critically 5-connected graphs $\left\{G_{i}\right\}$ such that $\lim _{i \rightarrow \infty}\left|V_{5}\left(G_{i}\right)\right| /\left|V\left(G_{i}\right)\right|=1 / 2$.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we deal with finite undirected graphs with neither loops nor multiple edges. For a graph G, let $V(G)$ and $E(G)$ denote the set of vertices of G and the set of edges of G, respectively. Let $V_{k}(G)$ denote the set of vertices of degree k and let $V_{\geq k}(G)$ denote the set of vertices of degree greater than or equal to k. For an edge $e \in E(G)$, we denote the set of end vertices of e by $V(e)$. Let $E_{G}(x)=\{e \in E(G) \mid x \in V(e)\}$. For a vertex $x \in V(G)$, we denote by $N_{G}(x)$ the neighborhood of x in G. Moreover, for a subset $S \subset V(G)$, let $N_{G}(S)=\cup_{x \in S} N(x)-S$. We denote the degree of $x \in V(G)$ by $\operatorname{deg}_{G}(x)$. Then $\operatorname{deg}_{G}(x)=\left|E_{G}(x)\right|=\left|N_{G}(x)\right|$. When there is no ambiguity, we write $V_{k}, V_{\geq k}, E(x), N(x), N(S)$ and deg (x) for $V_{k}(G), V_{\geq k}(G), E_{G}(x), N_{G}(x), N_{G}(S)$ and $\operatorname{deg}_{G}(x)$, respectively. For $S \subset V(G)$, let $G[S]$ denote the subgraph induced by S in G. Let G be a connected graph. A subset $S \subset V(G)$ is said to be a cutset of G, if $G-S$ is not connected. A cutset S is said to be a k-cutset if $|S|=k$. For a noncomplete connected graph G, the order of a minimum cutset of G is said to be the vertex connectivity of G. We denote the vertex connectivity of G by $\kappa(G)$.

Let k be an integer such that $k \geq 2$ and let G be a k-connected graph. An edge e of G is said to be k-contractible if the contraction of the edge results in a k-connected graph. Note that, in the contraction, we replace each resulting pair of double edges by a simple edge. If an edge is not k-contractible, then it is called a noncontractible edge. Note that an edge e of G is not k-contractible if and only if there is a k-cutset S of G such that $V(e) \subset S$. If a k-connected graph G has no k-contractible edge, then G is said to be contraction-critically k-connected.

It is known that every 3-connected graph of order 5 or more contains a 3-contractible edge [9]. There are infinitely many contraction-critically 4 -connected graphs. It is known that a 4-connected graph G is contraction-critical if and only if G is 4-regular, and for each edge e of it, there is a triangle which contains e.[3,6]. If $k \geq 4$, then there are infinitely many contraction-critically k-connected graphs [8].

Egawa determined the following sharp minimum degree condition for a k-connected graph to have a k-contractible edge.

[^0]Theorem A (Egawa [2]). Let $k \geq 2$ be an integer, and let G be a k-connected graph with $\delta(G) \geq\left\lfloor\frac{5 k}{4}\right\rfloor$. Then G has a k-contractible edge, unless $2 \leq k \leq 3$ and G is isomorphic to K_{k+1}.

Kriesell extended Egawa's Theorem and determined the following sharp degree sum condition for a k-connected graph to have a k-contractible edge.

Theorem B (Kriesell [4]). Let $k \geq 2$ be an integer, and let G be a noncomplete k-connected graph. If $\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y) \geq$ $2\left\lfloor\frac{5 k}{4}\right\rfloor-1$ for any pair of distinct vertices x, y of G, then G has a k-contractible edge.

There is a contraction-critically 5-connected graph which is not 5-regular. However, we see from Theorem A that the minimum degree of a contraction-critically 5-connected graph is 5 . Ando et al. [1] posed Problem D and proved Theorem C, which says that each contraction-critically 5-connected graph has many vertices of degree 5 .

Theorem C. Let G be a contraction-critically 5-connected graph of order n. Then each vertex of G has a neighbor of degree 5 and G has at least $n / 5$ vertices of degree 5 .

Problem D. Determine the maximum value of the constant c such that the inequality $\left|V_{5}(G)\right| \geq c|V(G)|$ holds for each contraction-critically 5-connected graph G.

The following important result was showed by Su [7].
Theorem E. Every vertex of a contraction-critically 5-connected graph has two neighbors of degree five.
As an immediate consequence of Theorem E, we have the following.
Theorem F. For every contraction-critically 5-connected graph G, $\left|V_{5}\right| \geq \frac{2}{5}|V(G)|$ holds.
By more detailed investigation of contraction-critically 5-connected graphs, Yuan and others [10] proved the following Theorems H and G.

Theorem G. Let G be a contraction-critically 5 -connected graph and let x be a vertex of G with $\operatorname{deg}_{G}(x) \geq 8$. If x has adjacent two neighbors of degree five, then x has three neighbors of degree five.

Theorem H. For every contraction-critically 5-connected graph $G,\left|V_{5}(G)\right| \geq \frac{4}{9}|V(G)|$ holds.
On the other hands, there is a contraction-critically 5-connected graph G such that $\left|V_{5}(G)\right|=\frac{8}{13}|V(G)|[1]$.
Ando posed the following conjecture.
Conjecture I. The constant c for Problem D is $\frac{8}{13}$.
In this paper we prove the following stronger version of Theorem G (Proposition 1). And using Proposition 1, by detailed investigation on vertices not in $V_{5}(G)$ each of which has just two neighbors of degree 5, we show the constant c in Problem D is not less than $\frac{1}{2}$ (Main Theorem). Moreover, we construct a sequence of contraction-critically 5-connected graphs $\left\{G_{i}\right\}$ such that $\lim _{i \rightarrow \infty}\left|V_{5}^{2}\left(G_{i}\right)\right| /\left|V\left(G_{i}\right)\right|=1 / 2$.

This sequence disproves Conjecture I and, together with Main Theorem, it gives the answer for Problem D, that is $c=\frac{1}{2}$.
Proposition 1. Let G be a contraction-critically 5-connected graph and let x be a vertex of G such that $x \notin V_{5}(G)$. Suppose $\left|N_{G}(x) \cap V_{5}(G)\right|=2$, say $N_{G}(x) \cap V_{5}(G)=\left\{y_{1}, y_{2}\right\}$. Then $y_{1} y_{2} \notin E(G)$.

Next we concentrate on vertices not in $V_{5}(G)$ each of which has just two neighbors of degree 5 and we find two specific configurations.

Configuration of the first kind. A subgraph H on eight vertices (in degenerated case, on seven vertices) of a contractioncritically 5-connected graph G is called a configuration of the first kind around (x, y) if the following (1)-(4) hold (see Fig. 1).
(1) $V(H)=\left\{x, y, z_{1}, z_{2}, z_{3}, z_{4}, u_{1}, u_{2}\right\}$,
(2) $E(H) \supset\left\{y x, y z_{1}, y z_{2}, y z_{3}, y z_{4}, x z_{4}, z_{1} z_{2}, z_{1} z_{3}, z_{1} u_{1}, z_{1} u_{2}, z_{2} u_{1}, z_{3} u_{2}\right\}$,
(3) $\left\{y, z_{1}, z_{2}, z_{3}\right\} \subset V_{5}$ and $\left\{x, z_{4}\right\} \cap V_{5}=\emptyset$,
(4) There is a 5-cutset S such that $\left\{x, y, z_{1}\right\} \subset S$ and S separates $\left\{u_{1}, z_{2}\right\}$ and $\left\{u_{2}, z_{3}, z_{4}\right\}$.

In a configuration of the first kind, if $z_{4}=u_{2}$, then it is said to be a degenerated configuration of the first kind.
Configuration of the second kind. A subgraph H on nine vertices of a contraction-critically 5-connected graph G is called a configuration of the second kind around (y, x) if the following (1)-(4) hold (see Fig. 2).
(1) $V(H)=\left\{x, y, z_{1}, z_{2}, z_{3}, z_{4}, u_{1}, w_{1}, w_{2}\right\}$,
(2) $E(H) \supset\left\{y x, y z_{1}, y z_{2}, y z_{3}, y z_{4}, x z_{3}, x z_{4}, z_{1} z_{2}, z_{1} z_{3}, z_{1} z_{4}, z_{1} u_{1}, z_{2} u_{1}, z_{3} z_{4}, z_{3} w_{1}, z_{3} w_{2}, z_{4} w_{1}, z_{4} w_{2}\right\}$,
(3) $\left\{y, z_{1}, z_{2}, w_{1}, w_{2}\right\} \subset V_{5}, x \notin V_{5}$.
(4) $\left\{x, y, z_{1}, w_{1}, w_{2}\right\}$ is a 5-cutset of G which separates $\left\{z_{2}, u\right\}$ and $\left\{z_{3}, z_{4}\right\}$, and hence $\left\{z_{3}, z_{4}\right\} \subset V_{6}(G)$.

Fig. 1. A configuration of the first kind.

Fig. 2. Configuration of the second kind.

Proposition 2. Let G be a contraction-critically 5-connected graph. Let x be a vertex of G such that $x \notin V_{5}$ and $\left|N(x) \cap V_{5}(G)\right|=2$. Let $y \in N(x) \cap V_{5}(G)$. Then, around (y, x), there is either a configuration of the first kind or a configuration of the second kind.

By virtue of Proposition 2, we get the following result.
Main Theorem. For every contraction-critically 5-connected graph $G,\left|V_{5}(G)\right| \geq \frac{1}{2}|V(G)|$ holds.
Recently, Li and Su [5] proved the same bound of the constant c in Problem D.
The organization of the paper is as follows. Section 2 contains preliminary results. In Section 3 we give a proof of Proposition 1. In Section 4 we give a proof of Proposition 2 and in Section 5 we give a proof of Main Theorem.

To conclude this section we give three contraction-critically 5-connected graphs. The first one has a configuration of the first kind. The second has a configuration of the second kind. The third shows that there is a sequence of contraction-critically 5-connected graphs $\left\{G_{i}\right\}$ such that $\lim _{i \rightarrow \infty}\left|V_{5}\left(G_{i}\right)\right| /\left|V\left(G_{i}\right)\right|=1 / 2$.

Example 1. The graph G_{1} illustrated in Fig. 3 is contraction-critically 5-connected, and we observe that it has a configuration of the first kind.

Example 2. The graph G_{2} illustrated in Fig. 4 is contraction-critically 5-connected. We observe that G_{2} has a configuration of the second kind.

Example 3. The graph G_{3} illustrated in Fig. 5 is contraction-critically 5-connected. Adding pairs of vertices $\left(x_{4}, y_{4}\right),\left(x_{5}, y_{5}\right)$, $\ldots,\left(x_{i}, y_{i}\right)$ to this graph by the similar way, we can construct a sequence of contraction-critically 5-connected graphs $\left\{G_{i}\right\}$. We see that $\left|V\left(G_{i}\right)\right|=2 i+15$ and $\left|V_{5}\left(G_{i}\right)\right|=i+10$ since $\left\{y_{1}, y_{2}, \ldots, y_{i}\right\} \subset V_{5}\left(G_{i}\right)$ and $\left\{x_{1}, x_{2}, \ldots, x_{i}\right\} \subset V_{6}\left(G_{i}\right)$. Hence we have $\lim _{i \rightarrow \infty}\left|V_{5}\left(G_{i}\right)\right| /\left|V\left(G_{i}\right)\right|=1 / 2$.

Fig. 3. G_{1}.

Fig. 4. G_{2}.

Fig. 5. G_{3}.

2. Preliminaries

In this section we give some more definitions and preliminary results.
For a graph G, we denote $|G|$ for $|V(G)|$. For a subgraphs A and B of a graph G, when there is no ambiguity, we write simply A for $V(A)$ and B for $V(B)$. So $N(A)$ and $A \cap B$ mean $N(V(A))$ and $V(A) \cap V(B)$, respectively. Also for a subgraph A of G and a subset S of $V(G)$ we write $A \cap S$ and $A \cup S$ for $V(A) \cap S$ and $V(A) \cup S$, respectively. For $S \subset V(G)$, we let $G-S$ denote the
graph obtained from G by deleting the vertices in S together with the edges incident with them; thus $G-S=G[V(G)-S]$. When there is no ambiguity, we write $E(S)$ for $E(G[S])$. For subsets S and T of $V(G)$, we denote the set of edges between S and T by $E_{G}(S, T)$. We write $E_{G}(x, S)$ for $E_{G}(\{x\}, S)$. Then $E_{G}(x)=E_{G}(x, V(G)-\{x\})$.

An induced subgraph A of a k-connected graph G is called a fragment if $|N(A)|=k$ and $V(G)-(A \cup N(A)) \neq \emptyset$. In other words, a fragment A is a nonempty union of components of $G-S$ where S is a k-cutset of G such that $V(G)-(A \cup S) \neq \emptyset$. By the definition, if A is a fragment of G, then $G-(A \cup N(A))$ is also a fragment of G. Let \bar{A} stand for $G-(A \cup N(A))$.

Let A be a fragment of a k-connected graph G and let e be an edge of G. Then A is said to be a fragment with respect to e if $V(e) \subset N(A)$. For a set of edges $F \subset E(G)$, we say that A is a fragment with respect to F if A is a fragment with respect to some $e \in F$. Sometimes we write "an F-fragment" for "a fragment with respect to F ". If $F=\{e\}$, then we write e-fragment instead of $\{e\}$-fragment. For $S \subset V(G)$, a fragment A is said to be S-free and S-opposite if $A \cap S=\emptyset$ and $S \subset \bar{A}$, respectively. Hence, if A is S-opposite, the A is S-free. If $S=\{y\}$, then we write y-free and y-opposite instead of $\{y\}$-free and $\{y\}$-opposite, respectively. An F-fragment A is said to be minimum (resp. minimal) if there is no F-fragment B other than A such that $|B|<|A|$ (resp. $B \subsetneq A)$.

Hereafter, we consider 5-connected graphs. Let A be a fragment of a 5-connected graph G and let $S=N(A)$. Let $x \in S$ and let $y \in N(x) \cap A$. A vertex z is said to be an admissible vertex of $(x, y ; A)$, if the following two conditions hold.
(1) $z \in N(x) \cap N(y) \cap S \cap V_{5}$.
(2) $|N(z) \cap A| \geq 2$.

Moreover, if $|N(z) \cap \bar{A}|=1$, then z is said to be strongly admissible.
A vertex z is said to be an admissible vertex of $(x ; A)$ or a strongly admissible vertex of $(x ; A)$, if z is an admissible vertex of $(x, y ; A)$ or a strongly admissible vertex of $(x, y ; A)$ for some $y \in N(x) \cap A$. Let $\operatorname{Ad}(x, y ; A)$ denote the set of admissible vertices of $(x, y ; A)$ and let $\operatorname{Ad}(x ; A)$ denote the set of admissible vertices of $(x ; A)$. Let A be a fragment of a 5-connected graph G and let $x \in N(A)$. A fragment B of G is said to be $(x ; A)$-fit if $\{x\} \cup A \subset N(B)$. A vertex $x \in N(A)$ is said to be tractable with A if there is an $(x ; A)$-fit fragment B such that $|S \cap B|=|S \cap \bar{B}|=2$. If there is no ambiguity, we sometimes write " A-tractable" for "tractable with A ".

We begin with the following two lemmas, which are both simple observations.
Lemma 1. Let A be a fragment of a 5-connected graph G and let $S \subset N(A)$. If $|N(S) \cap A|<|S|$, then $A \subset N(S)$.
Proof. Assume that $A \neq N(S) \cap A$. Let $A^{\prime}=A-(N(S) \cap A)$. Since $A^{\prime} \neq \emptyset$ and $N\left(A^{\prime}\right) \cap(\bar{A} \cup S)=\emptyset,(N(A)-S) \cup(N(S) \cap A)$ separates A^{\prime} and $\bar{A} \cup S$. Since $|N(S) \cap A|<|S|$, we see that $|(N(A)-S) \cup(N(S) \cap A)|=|N(A)|-|S|+|N(S) \cap A|<|N(A)|=5$, which contradicts the assumption that G is 5 -connected.

Lemma 2. Let G be a 5-connected graph, and let A and B be fragments of G Let $S=N(A)$ and $T=N(B)$.

B	$\bar{A} \cap B$	$S \cap B$	$A \cap B$
T	$\bar{A} \cap T$	$S \cap T$	$A \cap T$
\bar{B}	$\bar{A} \cap \bar{B}$	$S \cap \bar{B}$	$A \cap \bar{B}$
	\bar{A}	S	A

Then the following hold.
(1) If $|(\underset{-}{S} \cap B) \cup(S \cap T) \cup(A \cap T)| \geq 6$, then $|(\bar{A} \cap T) \cup(S \cap T) \cup(S \cap \bar{B})| \leq 4$ and $\bar{A} \cap \bar{B}=\emptyset$. In particular, if neither $A \cap B$ nor $\bar{A} \cap \bar{B}$ is empty, then both $A \cap B$ and $\bar{A} \cap \bar{B}$ are fragments of G.
(2) $|(S \cap B) \cup(S \cap T) \cup(A \cap T)|=5+|S \cap B|-|\bar{A} \cap T|$. In particular, if $A \cap B \neq \emptyset$, then $|S \cap B| \geq|\bar{A} \cap T|$.
(3) If $|\bar{A}| \geq 2$, then either $|(S \cap B) \cup(S \cap T) \cup(A \cap T)| \leq 5$ or $|(S \cap \bar{B}) \cup(S \cap T) \cup(A \cap T)| \leq 5$.

Proof. (1) Since S and T are both 5-cutsets, $|S|+|T|=|(S \cap B) \cup(S \cap T) \cup(S \cap \bar{B})|+|(\bar{A} \cap T) \cup(S \cap T) \cup(A \cap T)|=10$. Hence, if $|(S \cap B) \cup(S \cap T) \cup(A \cap T)| \geq 6$, then $|(\bar{A} \cap T) \cup(S \cap T) \cup(S \cap \bar{B})| \leq 4$, which implies that $\bar{A} \cap \bar{B}=\emptyset$, since G is 5-connected. If neither $A \cap B$ nor $\bar{A} \cap \bar{B}$ is empty, then $|(S \cap B) \cup(S \cap T) \cup(\bar{A} \cap T)|,|(\bar{A} \cap T) \cup(S \cap T) \cup(S \cap \bar{B})| \geq 5$, which implies $|(S \cap B) \cup(S \cap T) \cup(A \cap T)|=|(\bar{A} \cap T) \cup(S \cap T) \cup(S \cap \bar{B})|=5$. Hence, we see that both $A \cap B$ and $\bar{A} \cap \bar{B}$ are fragments of G.
(2) Since $|T|=|(\bar{A} \cap T) \cup(S \cap T) \cup(A \cap T)|=5$, we see that $|(S \cap B) \cup(S \cap T) \cup(A \cap T)|=|T|+|S \cap B|-|\bar{A} \cap T|=5+|S \cap B|-|\bar{A} \cap T|$. Next assume $A \cap B \neq \emptyset$. Then $(S \cap B) \cup(S \cap T) \cup(A \cap T)$ is a cutset of G since $\bar{A} \cup \bar{B} \neq \emptyset$. Hence $|(S \cap B) \cup(S \cap T) \cup(A \cap T)| \geq 5$. Thus, we have $|S \cap B| \geq|\bar{A} \cap T|$.
(3) Assume $|(S \cap B) \cup(S \cap T) \cup(A \cap T)| \geq 6$ and $|(S \cap \bar{B}) \cup(S \cap T) \cup(A \cap T)| \geq 6$. Then, by (1), we have $\bar{A} \cap B=\bar{A} \cap \bar{B}=\emptyset$, which implies $|\bar{A} \cap T|=|\bar{A}| \geq 2$. Hence we see that $|(S \cap T) \cup(A \cap T)|=|T|-|\bar{A} \cap T| \leq 3$. On the other hand, since $|S|=5$, we observe that either $|S \cap B| \leq 2$ or $|S \cap \bar{B}| \leq 2$. This together with the fact $|(S \cap T) \cup(A \cap T)| \leq 3$ implies either $|(S \cap B) \cup(S \cap T) \cup(A \cap T)| \leq 5$ or $|(S \cap \bar{B}) \cup(\bar{S} \cap T) \cup(A \cap T)| \leq 5$, which contradicts the assumption.

Lemma 3. Let x be a vertex of a contraction-critically 5-connected graph G. Let A be a fragment with respect to $E(x)$ such that $|\bar{A}| \geq 2$ and $|A| \geq 3$. For each $y \in N(x) \cap A$, if $\operatorname{Ad}(x, y ; A)=\emptyset$, then there is a fragment A^{\prime} with respect to $x y$ such that $A^{\prime} \subsetneq A$.

Proof. Assume that there is neither an admissible vertex of ($x, y ; A$) nor an $x y$-fragment A^{\prime} such that $A^{\prime} \subsetneq A$. Let B be an $x y$ fragment. Let $S=N(A)$ and let $T=N(B)$. Since $|\bar{A}| \geq 2$, by Lemma 2(3), we see that either $|(S \cap B) \cup(S \cap T) \cup(A \cap T)| \leq 5$ or $|(S \cap \bar{B}) \cup(S \cap T) \cup(A \cap T)| \leq 5$. Without loss of generality we may assume $|(S \cap B) \cup(S \cap T) \cup(A \cap T)| \leq 5$. Then, since there is no $x y$-fragment A^{\prime} such that $A^{\prime} \subsetneq A$, we see that $A \cap B=\emptyset$.
Claim 3.1. $A \cap \bar{B} \neq \emptyset$.
Proof. Assume $A \cap \bar{B}=\emptyset$. Then, since $A \cap B=\emptyset$, we have $A=A \cap T$ and $|A|=|A \cap T| \geq 3$, which implies that $|\bar{A} \cap T|=|T|-|S \cap T|-|A \cap T| \leq 1$. Hence, since $|\bar{A}| \geq 2$, by symmetry, we may assume that $\bar{A} \cap \bar{B} \neq \emptyset$. Then, by Lemma 2(2), we observe that $|S \cap \bar{B}| \geq|A \cap T| \geq 3$, which implies that $|S \cap B|=|S|-|S \cap T|-|S \cap \bar{B}| \leq 1$. If $S \cap B=\emptyset$, then we have $B=\emptyset$, which contradicts the choice of B. Hence $|S \cap B|=1$, say $S \cap B=\{z\}$. Then we observe that $z \in N(x) \cap N(y) \cap S \cap V_{5}$ and $|N(z) \cap A|=|A \cap T|=3$. Now we see that $z \in \operatorname{Ad}(x, y ; A)$, which contradicts the assumption.

By Claim 3.1, we see that $A \cap \bar{B} \neq \emptyset$. If $|(S \cap \bar{B}) \cup(S \cap T) \cup(A \cap T)|=5$, then $A \cap \bar{B}$ is an $x y$-fragment such that $A \cap \bar{B} \subsetneq A$, which contradicts the assumption. Hence we have $|(S \cap \bar{B}) \cup(S \cap T) \cup(A \cap T)| \geq 6$. Thus, by Lemma 2(1), we observe that $\bar{A} \cap B_{-}=\emptyset$, which implies $B=S \cap B$ since $A \cap B=\emptyset$. We show that $|B|=|S \cap B|=1$. Assume that $|S \cap B| \geq 2$. Since $|(S \cap \bar{B}) \cup(S \cap T) \cup(A \cap T)| \geq 6$, applying Lemma 2(2) with the roles $S \cap B$ and $\bar{A} \cap T$ replaced by $A \cap T$ and $S \cap B$, respectively, we see that $|A \cap T| \geq|S \cap \bar{B}|+1 \geq 3$, which implies that $|\underline{A} \cap T|=|T|-|S \cap T|-|\underline{A} \cap T| \leq 1$ since $x \in S \cap T$. Hence, since $|\bar{A} \cap T|<|S \cap B|$, applying Lemma 2(2), we see that $\bar{A} \cap \bar{B}=\emptyset$, which implies $|\bar{A}|=|\bar{A} \cap T| \leq 1$. This contradicts the assumption and it is shown that $|S \cap B|=1$, say $B=S \cap B=\{z\}$. Then we observe that $z \in N(x) \cap N(y) \cap S \cap V_{5}$ and $|N(z) \cap A|=|A \cap T| \geq|S \cap B|+1=2$. Hence z is an admissible vertex of $(x, y ; A)$, which contradicts the assumption. This contradiction proves Lemma 3.

The following corollary is an immediate consequence of Lemma 3.
Corollary 4. Let x be a vertex of a contraction-critically 5-connected graph G. Let A be a fragment with respect to $E(x)$ such that $|\bar{A}| \geq 2,|A| \geq 3$. Suppose $|N(x) \cap A|=1$, say $N(x) \cap A=\{y\}$. Then there is an admissible vertex of $(x, y ; A)$.
Proof. Assume that there is no admissible vertex of $(x, y ; A)$. Then, Lemma 3 assure us that there is an $x y$-fragment A^{\prime} such that $A^{\prime} \subsetneq A$. Since $N(x) \cap A=\{y\}$, we observe that $N(x) \cap A^{\prime}=\emptyset$, which contradicts the fact that A^{\prime} is an $x y$-fragment. This contradiction proves Corollary 4.

Let A be a fragment of a 5-connected graph and let $x \in N(A)$. Recall that a fragment B is $(x ; A)$-fit if $A \cup\{x\} \subset N(B)$ and a vertex $x \in N(A)$ is tractable with A if there is an $(x ; A)$-fit fragment B such that $|S \cap B|=|S \cap \bar{B}|=2$.

Lemma 5. Let G be a contraction-critically 5-connected graph. Let A be a fragment such that $|\bar{A}| \geq 2,|A|=2$ and $A \cap V_{\geq 6} \neq \emptyset$. Then the following (1), (2) and (3) hold.
(1) $|\{x \in N(A) \mid \operatorname{Ad}(x ; A) \neq \emptyset\}| \geq 4$.
(2) If $\operatorname{Ad}(x ; A)=\emptyset$ for $x \in N(A)$, then $N(x) \cap N(A)=\emptyset$.
(3) $\left|N(A) \cap V_{5}\right| \geq 4$.

Proof. Let $S=N(A)$ and let $A=\left\{y_{1}, y_{2}\right\}$. We may assume that $\operatorname{deg}_{G}\left(y_{1}\right) \leq \operatorname{deg}_{G}\left(y_{2}\right)$, then we observe that $\operatorname{deg}_{G}\left(y_{2}\right)=6$ and $S \subset N\left(y_{2}\right)$ since $A \cap V_{\geq 6} \neq \emptyset$.
Claim 5.1. For each $x \in S$, there is an $(x ; A)$-fit fragment.
Proof. At first we consider the case that $x y_{1} \in E(G)$. Let B be an $x y_{1}$-fragment. Then, since $S \subset N\left(y_{2}\right)$, we observe that $y_{2} \in N(B)$, which implies that B is an $(x ; A)$-fit fragment. Next assume that $x y_{1} \notin E(G)$. Then we observe that $S-\{x\} \subset N\left(y_{1}\right)$. Let B be an $x y_{2}$-fragment. Then, since $S-\{x\} \subset N\left(y_{1}\right)$, we see that $y_{1} \in N(B)$, which implies that B is an ($x ; A$)-fit fragment. Now Claim 5.1 is proved.

Claim 5.2. If $x \in S$ is not tractable with A, then $\operatorname{Ad}(x ; A) \neq \emptyset$.
Proof. Assume x is not tractable with A. By Claim 5.1, let B an $(x ; A)$-fit fragment and let $T=N(B)$. Since x is not tractable with A, we know that either $|S \cap B|=1$ or $|S \cap \bar{B}|=1$. Without loss of generality, we may assume that $|S \cap B|=1$, say $S \cap B=\{z\}$. Then, since $|S \cap B|<|A \cap T|$, by Lemma 2(2), we see that $A \cap B=\emptyset$, which implies that $B=S \cap B=\{z\}$. Hence, we observe that $z \in N(x) \cap N(y) \cap S \cap V_{5}$ and $|N(z) \cap A|=|A|=2$, which implies that $z \in \operatorname{Ad}(x ; A)$ and Claim 5.2 is proved.

Let $S=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$.
Claim 5.3. If both x_{1} and x_{2} are tractable with A, then neither $\operatorname{Ad}\left(x_{1} ; A\right)$ nor $\operatorname{Ad}\left(x_{2} ; A\right)$ is empty.
Proof. Since both x_{1} and x_{2} are tractable with A, there are an $\left(x_{1} ; A\right)$-fit fragment B_{1} and an $\left(x_{2} ; A\right)$-fit fragment B_{2} such that $\left|S \cap B_{1}\right|=\left|S \cap \bar{B}_{1}\right|=\left|S \cap B_{2}\right|=\left|S \cap \bar{B}_{2}\right|=2$. Let $T_{1}=N\left(B_{1}\right)$ and $T_{2}=N\left(B_{2}\right)$. Then, we observe that $A \subset T_{1} \cap T_{2}, S \cap T_{1}=\left\{x_{1}\right\}$ and $S \cap T_{2}=\left\{x_{2}\right\}$. Without loss of generality, we may assume that $S \cap B_{1}=\left\{x_{2}, x_{3}\right\}$ and $S \cap \bar{B}_{1}=\left\{x_{4}, x_{5}\right\}$. Furthermore, without loss of generality, we may assume that $x_{1} \in S \cap B_{2}$.

At first we consider the case that $x_{3} \in S \cap B_{2}$. In this case $S \cap B_{2}=\left\{x_{1}, x_{3}\right\}$ and $S \cap \bar{B}_{2}=\left\{x_{4}, x_{5}\right\}$. Then we observe that $x_{3} \in B_{1} \cap B_{2}$ and $\left\{x_{4}, x_{5}\right\} \subseteq \bar{B}_{1} \cap \bar{B}_{2}$, which implies that neither $B_{1} \cap B_{2}$ nor $\bar{B}_{1} \cap \bar{B}_{2}$ is empty. Then, Lemma 2(1) assures us that both $B_{1} \cap B_{2}$ and $\bar{B}_{1} \cap \bar{B}_{2}$ are fragments of G. Moreover, we observe that $\left\{y_{1}, y_{2}\right\} \subset T_{1} \cap T_{2}, x_{1} \in T_{1} \cap B_{2}$ and $x_{2} \in B_{1} \cap T_{2}$, which implies that $N\left(\left\{y_{1}, y_{2}\right\}\right) \cap\left(B_{1} \cap B_{2}\right)=\left\{x_{3}\right\}$. Hence, applying Lemma 1 with the roles S and A replaced by $\left\{y_{1}, y_{2}\right\}$ and $B_{1} \cap B_{2}$, respectively, we see that $B_{1} \cap B_{2}=\left\{x_{3}\right\}$. Now we have $x_{3} \in V_{5}, A=\left\{y_{1}, y_{2}\right\} \subset N\left(x_{3}\right)$, and $x_{1}, x_{2} \in N\left(x_{3}\right)$, which implies $x_{3} \in \operatorname{Ad}\left(x_{1} ; A\right)$ and $x_{3} \in \operatorname{Ad}\left(x_{2} ; A\right)$. Hence we have the desired conclusion that neither $\operatorname{Ad}\left(x_{1} ; A\right) \operatorname{nor} \operatorname{Ad}\left(x_{2} ; A\right)$ is empty.

Next we consider the case that $x_{3} \notin S \cap B_{2}$. In this case, without loss of generality, we may assume that $S \cap B_{2}=\left\{\underline{x}_{1}, x_{4}\right\}$ and $S \cap \bar{B}_{2}=\left\{x_{3}, x_{5}\right\}$. Then we observe that $x_{3} \in B_{1} \cap \bar{B}_{2}, x_{4} \in \bar{B}_{1} \cap B_{2}$ and $x_{5} \in \bar{B}_{1} \cap \bar{B}_{2}$, which implies that neither $B_{1} \cap \bar{B}_{2}$ nor $\bar{B}_{1} \cap B_{2}$ is empty. Then, Lemma 2(1) again assures us that both $B_{1} \cap \bar{B}_{2}$ and $\bar{B}_{1} \cap B_{2}$ are fragments of G. Moreover, we observe that $\left\{y_{1}, y_{2}\right\} \subset T_{1} \cap T_{2}, x_{1} \in T_{1} \cap B_{2}$ and $x_{2} \in B_{1} \cap T_{2}$. Since $N\left(\left\{y_{1}, y_{2}\right\}\right) \cap\left(B_{1} \cap \bar{B}_{2}\right)=\left\{x_{3}\right\}$, applying Lemma 1 with the roles S and A replaced by $\left\{y_{1}, y_{2}\right\}$ and $B_{1} \cap \bar{B}_{2}$, respectively, we see that $B_{1} \cap \bar{B}_{2}=\left\{x_{3}\right\}$, which implies $x_{3} \in V_{5}, A=\left\{y_{1}, y_{2}\right\} \subset N\left(x_{3}\right)$ and $x_{3} \in N\left(x_{2}\right)$. Hence we see that $x_{3} \in \operatorname{Ad}\left(x_{2} ; A\right)$. We can similarly prove $x_{4} \in \operatorname{Ad}\left(x_{1} ; A\right)$. Now we obtain that neither $\operatorname{Ad}\left(x_{1} ; A\right)$ nor $\operatorname{Ad}\left(x_{2} ; A\right)$ is empty.

In both cases, we have the desired conclusion that neither $\operatorname{Ad}\left(x_{1} ; A\right)$ nor $\operatorname{Ad}\left(x_{2} ; A\right)$ is empty and Claim 5.3 is proved.
By virtue of Claim 5.3, we show (1). Assume $\operatorname{Ad}\left(x_{1} ; A\right)=\emptyset$. Then, by Claim 5.2, we see that x_{1} is tractable with A. If there is a A-tractable vertex other than x_{1}, then Claim 5.3 assures us that $\operatorname{Ad}\left(x_{1} ; A\right) \neq \emptyset$, which contradicts the assumption that $\operatorname{Ad}\left(x_{1} ; A\right)=\emptyset$. Hence we see that none of x_{2}, x_{3}, x_{4} and x_{5} is A-tractable. Hence, again Claim 5.2 assures us that $\operatorname{Ad}\left(x_{i} ; A\right) \neq \emptyset$ for $i=2,3,4,5$. Now (1) is proved.

Next we prove (2). Assume $\operatorname{Ad}\left(x_{1} ; A\right)=\emptyset$ and $N\left(x_{1}\right) \cap S \neq \emptyset$. Then, by (1), we know that $\operatorname{Ad}\left(x_{i} ; A\right) \neq \emptyset$ for $i=2,3,4,5$. Then, since $\operatorname{Ad}\left(x_{1} ; A\right)=\emptyset$, Claim 5.2 assures us that x_{1} is A-tractable. Hence there is an $\left(x_{1} ; A\right)$-fit fragment B_{1} such that $\left|S \cap B_{1}\right|=\left|S \cap \bar{B}_{1}\right|=2$. Since $\left|S \cap B_{1}\right|=\left|S \cap \bar{B}_{1}\right|=2$, we observe that $S \cap T_{1}=\left\{x_{1}\right\}$, which implies that $\left|\bar{A} \cap T_{1}\right|=\left|T_{1}\right|-\left|S \cap T_{1}\right|-\left|A \cap T_{1}\right|=2$. By symmetry, we may assume that $S \cap B_{1}=\left\{x_{2}, x_{3}\right\}$ and $S \cap \bar{B}_{1}=\left\{x_{4}, x_{5}\right\}$. Note that, in this situation, $E_{G}\left(\left\{x_{2}, x_{3}\right\},\left\{x_{4}, x_{5}\right\}\right)=\emptyset$. Since $N\left(x_{1}\right) \cap S \neq \emptyset$, without loss of generality, we may assume $x_{2} \in N\left(x_{1}\right) \cap S$. Then, since $\operatorname{Ad}\left(x_{1} ; A\right)=\emptyset$, we observe that either $x_{2} \in V_{\geq 6}$ or $\left|N\left(x_{2}\right) \cap A\right|=1$, which implies that x_{2} cannot be an admissible vertex of $\left(x_{3} ; A\right)$. Since $N\left(x_{3}\right) \cap S \subset\left\{x_{1}, x_{2}\right\}, x_{2} \notin \operatorname{Ad}\left(x_{3} ; A\right)$, and $\operatorname{Ad}\left(x_{3} ; A\right) \neq \emptyset$, we see that x_{1} is an admissible vertex of $\left(x_{3} ; A\right)$, which implies $\left\{y_{1}, y_{2}, x_{2}, x_{3}\right\} \subset N\left(x_{1}\right)$. Let $N\left(x_{1}\right)=\left\{y_{1}, y_{2}, x_{2}, x_{3}, v\right\}$. Then, since neither $N\left(x_{1}\right) \cap \bar{A}$ nor $N\left(x_{1}\right) \cap \bar{B}_{1}$ is empty, we see that $v \in \bar{A} \cap \bar{B}_{1}$, which implies that $|\bar{A}| \geq\left|\bar{A} \cap T_{1}\right|+\left|\bar{A} \cap \bar{B}_{1}\right| \geq 3$. Since $|\bar{A}| \geq 3,|A|=2$ and $\left|N\left(x_{1}\right) \cap \bar{A}\right|=1$, applying Corollary 4 with the roles of x, y and A replaced by x_{1}, v and \bar{A}, respectively, we see that $\operatorname{Ad}\left(x_{1}, v ; \bar{A}\right) \neq \emptyset$. Since $N\left(\left\{x_{2}, x_{3}\right\}\right) \cap \bar{B}_{1}=\emptyset$, we observe that $v \notin N\left(\left\{x_{2}, x_{3}\right\}\right)$, which implies that neither x_{2} nor x_{3} is an admissible vertex of $\left(x_{1}, v ; \bar{A}\right)$. Since $N\left(x_{1}\right) \cap S=\left\{x_{2}, x_{3}\right\}$, we have $\operatorname{Ad}\left(x_{1}, v ; \bar{A}\right)=\emptyset$, which contradicts the previous assertion. This contradiction proves (2).

At last we show (3). $\operatorname{By}(1)$, we know that $|\{x \in N(A) \mid \operatorname{Ad}(x ; A) \neq \emptyset\}| \geq 4$. To begin with the case that $\mid\{x \in N(A) \mid$ $\operatorname{Ad}(x ; A) \neq \emptyset\} \mid=4$, let $\operatorname{Ad}\left(x_{1} ; A\right)=\emptyset$ and $\operatorname{Ad}\left(x_{i} ; A\right) \neq \emptyset$ for $i=2,3,4,5$. By Claim 5.2, let B_{1} be an $\left(x_{1} ; A\right)$-fit fragment such that $\left|S \cap B_{1}\right|=\left|S \cap \bar{B}_{1}\right|=2$. By symmetry, we may assume that $S \cap B_{1}=\left\{x_{2}, x_{3}\right\}$ and $S \cap \bar{B}_{1}=\left\{x_{4}, x_{5}\right\}$. By (2), we see that $N\left(x_{1}\right) \cap S=\emptyset$. Then, since neither $\operatorname{Ad}\left(x_{2} ; A\right)$ nor $\operatorname{Ad}\left(x_{3} ; A\right)$ is empty, we see that x_{2} is an admissible vertex of $\left(x_{3} ; A\right)$ and x_{3} is an admissible vertex of $\left(x_{2} ; A\right)$. Similarly we see that x_{4} is an admissible vertex of $\left(x_{5} ; A\right)$ and x_{5} is an admissible vertex of $\left(x_{4} ; A\right)$. Now we have $\left|S \cap V_{5}\right| \geq 4$.

Hereafter, we assume that $\operatorname{Ad}\left(x_{i} ; A\right) \neq \emptyset$ for $i=1,2,3,4,5$. Assume $\left|S \cap V_{5}\right| \leq 3$, say $x_{4}, x_{5} \in V_{\geq 6}$. Since $\operatorname{Ad}\left(x_{i} ; A\right) \neq \emptyset$ for $i=1,2$, 3, we observe that $N\left(x_{i}\right) \cap S \cap V_{5} \neq \emptyset$ for $i=1,2$, 3. Hence we can find a path of length 2 in $G\left[\left\{x_{1}, x_{2}, x_{3}\right\}\right]$ whose center vertex has degree 5 . Without loss of generality, we may assume that $x_{1} x_{2}, x_{2} x_{3} \in E(G)$ and $v_{2} \in V_{5}$. We show $x_{2} \notin \operatorname{Ad}\left(x_{4} ; A\right)$. Assume $x_{2} \in \operatorname{Ad}\left(x_{4} ; A\right)$. Then, since $x_{2} \in V_{5},\left\{x_{1}, x_{3}\right\} \subset N\left(x_{2}\right)$ and $N\left(x_{2}\right) \cap \bar{A} \neq \emptyset$, we observe that $\left|N\left(x_{2}\right) \cap\left(A \cup\left\{x_{4}, x_{5}\right\}\right)\right| \leq 2$. Hence, we observe that either $N\left(x_{2}\right) \cap\left\{x_{4}, x_{5}\right\}=\emptyset$ or $\left|N\left(x_{2}\right) \cap A\right|=1$. If $N\left(x_{2}\right) \cap\left\{x_{4}, x_{5}\right\}=\emptyset$, then we observe that neither $x_{2} \in \operatorname{Ad}\left(x_{4} ; A\right)$ nor $x_{2} \in \operatorname{Ad}\left(x_{5} ; A\right)$. Otherwise, if $\left|N\left(x_{2}\right) \cap A\right|=1$, then we also observe that neither $x_{2} \in \operatorname{Ad}\left(x_{4} ; A\right)$ nor $x_{2} \in \operatorname{Ad}\left(x_{5} ; A\right)$. This contradicts the assumption and it is shown that $x_{2} \notin \operatorname{Ad}\left(x_{4} ; A\right)$. Since $\operatorname{Ad}\left(x_{4} ; A\right) \neq \emptyset$ and $x_{2}, x_{5} \notin \operatorname{Ad}\left(x_{4} ; A\right)$, by symmetry, we may assume that $x_{1} \in \operatorname{Ad}\left(x_{4} ; A\right)$, which implies that $x_{1} \in V_{5},\left\{y_{1}, y_{2}, x_{2}, x_{4}\right\} \subset N\left(x_{1}\right)$ and $\left|N\left(x_{1}\right) \cap \bar{A}\right|=1$, say $N\left(x_{1}\right) \cap \bar{A}=\left\{v_{1}\right\}$. Since $N\left(x_{1}\right) \cap S=\left\{x_{2}, x_{4}\right\}$ and $x_{4} \in V_{\geq 6}$, we see that $x_{2} \in \operatorname{Ad}\left(x_{1} ; A\right)$, which implies that $x_{2} \in V_{5},\left\{y_{1}, y_{2}, x_{1}, x_{4}\right\} \subset N\left(x_{2}\right)$ and $\left|N\left(x_{2}\right) \cap \bar{A}\right|=1$, say $N\left(x_{2}\right) \cap \bar{A}=\left\{v_{2}\right\}$. Since $\operatorname{Ad}\left(x_{5} ; \underline{A}\right) \neq \emptyset$ and $N\left(x_{5}\right) \cap\left\{x_{1}, x_{2}\right\}=\emptyset$, we see that $x_{3} \in \operatorname{Ad}\left(x_{5} ; A\right)$, which implies that $x_{3} \in V_{5},\left\{y_{1}, y_{2}, x_{2}, x_{5}\right\} \subset N\left(x_{3}\right)$ and $\left|N\left(x_{3}\right) \cap \bar{A}\right|=1$, say $N\left(x_{3}\right) \cap \bar{A}=\left\{v_{3}\right\}$. If $v_{1}=v_{2}$, then, applying Lemma 1 with the roles of S and A replaced by $\left\{x_{1}, x_{2}\right\}$ and \bar{A}, respectively, we see that $|\bar{A}|=1$, which contradicts the assumption that $|\bar{A}| \geq 2$. Hence $v_{1} \neq v_{2}$. By similar arguments, we know that v_{1}, v_{2}, v_{3} are distinct, which implies that $|\bar{A}| \geq 3$. Since $|\bar{A}| \geq 3,|A|=2$ and $\left|N\left(x_{1}\right) \cap \bar{A}\right|=1$, applying Corollary 4 with the roles of x and A replaced by x_{1} and \bar{A}, respectively, we see that $\operatorname{Ad}\left(x_{1} ; \bar{A}\right) \neq \emptyset$. However, we already know that $N\left(x_{1}\right) \cap S=\left\{x_{2}, x_{4}\right\},\left|N\left(x_{2}\right) \cap \bar{A}\right|=1$ and $x_{4} \in V_{\geq 6}$, which implies that there is no admissible vertex of $\left(x_{1} ; \bar{A}\right)$. This contradicts the previous assertion and this contradiction proves (3) and Lemma 5 is proved.

The following is an immediate corollary from Lemmas 3 and 5.
Lemma 6. Let x be a vertex of a contraction-critically 5-connected graph. Let A be a fragment with respect to $E(x)$ such that $|\bar{A}| \geq 2$. If $N(x) \cap A \cap V_{5}=\emptyset$, then there is an admissible vertex of $(x ; A)$.

Proof. We prove Lemma 6 by induction on $|A|$. Note that $|A| \geq 2$, since $N(x) \cap A \cap V_{5}=\emptyset$. If $|A|=2$, then, since $|\bar{A}| \geq 2$ and $N(x) \cap N(A) \neq \emptyset$, Lemma $5(2)$ assures us that there is an admissible vertex of $(x ; A)$. Now the initial step is completed.

Next assume $|A| \geq 3$ and let $y \in N(x) \cap A$. If there is an admissible vertex of ($x, y ; A$), then we are done. Hence, assume that $\operatorname{Ad}(x, y ; A)=\emptyset$. Then, by Lemma 3, we see that there is an $x y$-fragment A^{\prime} such that $A^{\prime} \subsetneq A$. Then we see that A^{\prime} is an $E(x)$-fragment, $\left|\bar{A}^{\prime}\right|>|\bar{A}| \geq 2, N(x) \cap A^{\prime} \cap V_{5}=\emptyset$ and $\left|A^{\prime}\right|<|A|$. Hence, by the induction hypothesis, we see that $\operatorname{Ad}\left(x ; A^{\prime}\right) \neq \emptyset$. Since $A^{\prime} \subsetneq A$ and $N(x) \cap A \cap V_{5}=\emptyset$, we see that an admissible vertex of $\left(x ; A^{\prime}\right)$ is an admissible vertex of $(x ; A)$. The induction step is now completed and Lemma 6 is proved.

Lemma 7. Let x be a vertex of a contraction-critically 5-connected graph G. Let A be a fragment with respect to $E(x)$ such that $|\bar{A}| \geq 2$ and $|A| \geq 3$. Suppose $|N(x) \cap A|=1$, say $N(x) \cap A=\{y\}$. If $y \notin V_{5}$, then there is a strongly admissible vertex of $(x, y ; A)$.
Proof. Assume that there is no strongly admissible vertex of $(x, y ; A)$. By Corollary 4, we know that $\operatorname{Ad}(x, y ; A) \neq \emptyset$, say $z \in \operatorname{Ad}(x, y ; A)$. Let $B=\{z\}$ and $\underline{T}=N(z)$. By the assumption, z is not strongly admissible, which implies $|N(z) \cap \bar{A}| \geq 2$. Since $|N(z) \cap A| \geq 2$ and $|N(z) \cap \bar{A}| \geq 2$, we observe that $|N(z) \cap A|=|N(z) \cap \bar{A}|=2$ and $S \cap T=\{x\}$. Let $N(z) \cap A=\{y, u\}$ and $S \cap \bar{B}=\left\{v_{1}, v_{2}, v_{3}\right\}$.
Claim 7.1. $|A|=3$.
Proof. Assume $|A| \geq 4$. Let $A^{\prime}=A-\{y\}$ and $S^{\prime}=(S-\{x\}) \cup\{y\}$. Then we observe that A^{\prime} is a $z y$-fragment, $\left|\bar{A}^{\prime}\right|>$ $|\bar{A}| \geq 2,\left|A^{\prime}\right|=|A|-1 \geq 3$ and $N(z) \cap A^{\prime}=\{u\}$. Hence, by Corollary 4, we see that there is an admissible vertex of $\left(z, u ; A^{\prime}\right)$. But we know that $N(z) \cap S^{\prime}=\{y\}$ and $y \in V_{\geq 6}$, which implies that there is no admissible vertex of $\left(z, u\right.$; $\left.A^{\prime}\right)$. This contradicts the previous assertion and it is shown that $|A|=3$.

Let $A=\{y, u, w\}$, then $A \cap T=\{y, u\}$ and $A \cap \bar{B}=\{w\}$. In this situation, since $N(x) \cap(A \cap \bar{B})=\emptyset$, we observe that $w \in V_{5}$ and $N(w)=\left\{y, u, v_{1}, v_{2}, v_{3}\right\}$. Let $A^{\prime}=\{u, w\}$ and let $S^{\prime}=N\left(A^{\prime}\right)=\left\{z, y, v_{1}, v_{2}, v_{3}\right\}$.
Claim 7.2. z is tractable with A^{\prime}.
Proof. Assume z is not tractable with A^{\prime}. Let C be a $z u$-fragment. Since $S^{\prime}-\{z\}=\left\{y, v_{1}, v_{2}, v_{3}\right\} \subset N(w)$, we observe that C is a $\left(z ; A^{\prime}\right)$-fit fragment. Since z is not tractable with A^{\prime}, we see that either $\left|S^{\prime} \cap C\right| \leq 1$ or $\left|S^{\prime} \cap C\right| \leq 1$. Without loss of generality, we may assume that $\left|S^{\prime} \cap C\right| \leq 1$. Since C is $\left(z ; A^{\prime}\right)$-fit, we know that $S^{\prime} \cap C \neq \emptyset$, which implies $\left|S^{\prime} \cap C\right|=1$,
 $C=S^{\prime} \cap C=\left\{y^{\prime}\right\}$. Then, we observe that $y^{\prime} \in N(z) \cap S^{\prime} \cap V_{5}$, which contradicts the fact that $N(z) \cap S^{\prime}=\{y\}$ and $y \notin V_{5}$. This contradiction proves Claim 7.2.

Let C be a $z u$-fragment. By Claim 7.2, we know that $A^{\prime} \subset N(C),\left|S^{\prime} \cap C\right|=\left|S^{\prime} \cap \bar{C}\right|=2$ and $S^{\prime} \cap N(C)=\{z\}$. Without loss of generality, we may assume that $S^{\prime} \cap C=\left\{y, v_{1}\right\}$ and $S^{\prime} \cap \bar{C}=\left\{v_{2}, v_{3}\right\}$. Then, we observe that $N(y) \cap\left\{v_{2}, v_{3}\right\}=\emptyset$, which implies that $N(y) \subset(S \cup A)-\left\{y, v_{2}, v_{3}\right\}=\left\{x, z, u, w, v_{1}\right\}$. Now we have $\operatorname{deg}_{G}(y)=|N(y)| \leq 5$, which contradicts the fact that $y \in V_{\geq 6}$. This contradiction proves Lemma 7 .

3. Proof of Proposition 1

Let G be a contraction-critically 5-connected graph and let $x \in V(G)$ such that $x \notin V_{5}$ and $\left|N(x) \cap V_{5}\right|=2$, say $N(x) \cap V_{5}=\left\{y_{1}, y_{2}\right\}$. By way of contradiction, assume $y_{1} y_{2} \in E(G)$. Let $E^{\prime}(x)=E(x)-\left\{x y_{1}, x y_{2}\right\}$. Let A be a $E^{\prime}(x)$-fragment of G. Then, since $y_{1} y_{2} \in E(G)$, we observe that either $A \cap\left\{y_{1}, y_{2}\right\}=\emptyset$ or $\bar{A} \cap\left\{y_{1}, y_{2}\right\}=\emptyset$. Hence there is a $\left\{y_{1}, y_{2}\right\}$-free $E^{\prime}(x)$-fragment of G.
Claim 1. Let $x z \in E^{\prime}(x)$ and let A be a minimal $\left\{y_{1}, y_{2}\right\}$-free $x z$-fragment.
Then, (1) $\bar{A} \cap\left\{y_{1}, y_{2}\right\} \neq \emptyset$ and (2) if $|\bar{A}| \geq 2$, then $|A| \geq 3$.
Proof. (1) Assume that $\bar{A} \cap\left\{y_{1}, y_{2}\right\}=\emptyset$. Then $\left\{y_{1}, y_{2}\right\} \subset N(A)$. Then, since $N(x) \cap A \cap V_{5}=\emptyset$, we observe that $|A| \geq 2$. Since $N(x) \cap \bar{A} \cap V_{5}=\emptyset$, we also see that $|\bar{A}| \geq 2$. We show that $\left|N\left(y_{1}\right) \cap A\right| \geq 2$. Assume $\left|N\left(y_{1}\right) \cap A\right|=1$, say $N\left(y_{1}\right) \cap A=\{u\}$. Let $A^{\prime}=A-\{u\}$. Then we see that A^{\prime} is a $\left\{y_{1}, y_{2}\right\}$-free $x z$-fragment of G and $A^{\prime} \subsetneq A$, which contradicts the minimality of A. This contradiction proves that $\left|N\left(y_{1}\right) \cap A\right| \geq 2$. By symmetry, we have $\left|N\left(y_{2}\right) \cap A\right| \geq 2$. Hence $\left|N\left(y_{1}\right) \cap(N(A) \cup A)\right| \geq\left|\left\{x, y_{2}\right\}\right|+\left|N\left(y_{1}\right) \cap A\right| \geq 4$, which implies $\left|N\left(y_{1}\right) \cap \bar{A}\right|=1$. Similarly we have $\left|N\left(y_{2}\right) \cap \bar{A}\right|=1$. Hence, we see that $\left\{y_{1}, y_{2}\right\} \cap \operatorname{Ad}(x ; \bar{A})=\emptyset$. Since $N(x) \cap V_{5}=\left\{y_{1}, y_{2}\right\}$, this implies that $\operatorname{Ad}(x ; \bar{A})=\emptyset$. On the other hand, since $|A| \geq 2$ and $N(x) \cap \bar{A} \cap V_{5}=\emptyset$, Lemma 6 assures us that there is an admissible vertex of $(x ; \bar{A})$, which contradicts the previous assertion. This contradiction proves (1).
(2) Assume that $|\bar{A}| \geq 2$ and $|A| \leq 2$. Since $N(x) \cap V_{5}=\left\{y_{1}, y_{2}\right\}$ and A is $\left\{y_{1}, y_{2}\right\}$-free, we observe that $N(x) \cap A \cap V_{5}=\emptyset$, which implies $A \cap V_{\geq 6} \neq \emptyset$ and $|A| \geq 2$. Hence we see that $|A|=2$. Since $|\bar{A}| \geq 2,|A|=2$ and $A \cap V_{\geq 6} \neq \emptyset$, applying Lemma 5(3), we see that $\left|N(A) \cap V_{5}\right| \geq 4$. However, since $\{x, z\} \subset N(A) \cap V_{\geq 6}$, we observe that $\left|N(A) \cap V_{5}\right| \leq 3$, which contradicts the previous assertion. This contradiction shows (2) and Claim 1 is proved.

Claim 2. There is a y_{i}-opposite $E^{\prime}(x)$-fragment of G for each $i \in\{1,2\}$.

Proof. Let A be a minimal $\left\{y_{1}, y_{2}\right\}$-free $E^{\prime}(x)$-fragment of G and let $S=N(A)$. Then Claim 1 assures us that $\bar{A} \cap\left\{y_{1}, y_{2}\right\} \neq \emptyset$. Hence, by symmetry, we may assume that A is a minimal y_{1}-opposite $E^{\prime}(x)$-fragment of G. Say $x z \in E(S) \cap E^{\prime}(x)$. Since $N(x) \cap A \cap V_{5}=\emptyset$, we see that $|A| \geq 2$. Assume that there is no y_{2}-opposite $E^{\prime}(x)$-fragment. Let $u \in N(x) \cap A$ and let B be a minimal $\left\{y_{1}, y_{2}\right\}$-free $x u$-fragment of G. Then, since $N(x) \cap B \cap V_{5}=\emptyset$, we observe that $|B| \geq 2$. Applying Claim 1 with the roles of $x z$ and A replaced by $x u$ and B, respectively, we see that $\left\{y_{1}, y_{2}\right\} \cap \bar{B} \neq \emptyset$, which implies $y_{1} \in \bar{A} \cap \bar{B}$ since B is not a y_{2}-opposite $E^{\prime}(x)$-fragment. Since both A and B are $\left\{y_{1}, y_{2}\right\}$-free and neither A nor B is y_{2}-opposite, we observe that $y_{2} \in S \cap T$.
Subclaim 2.1. (1) $A \cap B=\emptyset$ and (2) $|S \cap B|=1$.
Proof. (1) Assume $A \cap B \neq \emptyset$. Then, since neither $A \cap B$ nor $\bar{A} \cap \bar{B}$ is empty, Lemma 2(1) assures us that $A \cap B$ is y_{1}-opposite $E^{\prime}(x)$-fragment, which contradicts the minimality of A since $u \notin A \cap B$. This contradiction proves (1).
(2) Assume $|S \cap B| \geq 2$. Then, since $\bar{A} \cap \bar{B} \neq \emptyset$, Lemma 2(2) assures us $|\bar{A} \cap T| \geq|S \cap B| \geq 2$, which implies $|A \cap T|=1$ since $\left\{x, y_{2}\right\} \subset S \cap T$. Hence, we observe that $|A \cap T|<|S \cap B|$ and again Lemma 2(2) assures us that $A \cap \bar{B}=\emptyset$, which implies that $|A|=|A \cap T|=1$. This contradicts the fact that $|A| \geq 2$ and it is shown that $|S \cap B|=1$.

By Subclaim 2.1, we know that $A \cap B=\emptyset$ and $|S \cap B|=1$, which implies $\bar{A} \cap B \neq \emptyset$ since $|B| \geq 2$. Hence, by Lemma 2(2), we see that $|A \cap T| \leq|S \cap B|=1$, which implies $A \cap \bar{B} \neq \emptyset$ since $|A| \geq 2$. Now we observe that neither $\bar{A} \cap B$ nor $A \cap \bar{B}$ is empty. Hence, by Lemma 2(1), we see that $A \cap \bar{B}$ is a y_{1}-opposite $E^{\prime}(x)$-fragment, which contradicts the minimality of A since $u \notin A \cap \bar{B}$. This contradiction shows the existence of a y_{2}-opposite $E^{\prime}(x)$-fragment and Claim 2 is proved.

Let A be a minimum y_{1}-opposite $E^{\prime}(x)$-fragment and let B be a minimum y_{2}-opposite $E^{\prime}(x)$-fragment. Let $S=N(A)$ and let $T=N(B)$.
Claim 3. $|\bar{A}| \geq 2$ and $|\bar{B}| \geq 2$.
Proof. We show $|\bar{A}| \geq 2$. Assume $|\bar{A}|=1$. Then $\bar{A}=\left\{y_{1}\right\}$ and $S=N\left(y_{1}\right)$. Let $S=N\left(y_{1}\right)=\left\{x, y_{2}, z_{1}, z_{2}, z_{3}\right\}$. Let $B^{\prime}=G-N\left(y_{2}\right) \cup\left\{y_{2}\right\}$ and let $T^{\prime}=N\left(B^{\prime}\right)$. Then $\bar{B}^{\prime}=\left\{y_{2}\right\}$. Let $T^{\prime}=N\left(y_{2}\right)=\left\{x, y_{1}, u_{1}, u_{2}, u_{3}\right\}$. By Theorem E, we know that $\left|N\left(y_{1}\right) \cap V_{5}\right| \geq 2$ and $\left|N\left(y_{2}\right) \cap V_{5}\right| \geq 2$. Hence, since $x \notin V_{5}$, we observe that neither $\left\{z_{1}, z_{2}, z_{3}\right\} \cap V_{5}$ nor $\left\{u_{1}, u_{2}, u_{3}\right\} \cap V_{5}$ is empty. Without loss of generality, we may assume $z_{3}, u_{3} \in V_{5}$.
Subclaim 3.1. $N(x) \subset S \cup T^{\prime} \cup\left\{y_{1}, y_{2}\right\}$.
Proof. Assume $N(x) \cap\left(A \cap B^{\prime}\right) \neq \emptyset$. Let $E^{\prime \prime}(x)=E_{G}\left(x, A \cap B^{\prime}\right)$. Then $E^{\prime \prime}(x) \neq \emptyset$. Let C be a minimum $\left\{y_{1}, y_{2}\right\}$-free $E^{\prime \prime}(x)$ fragment. Say $x v \in E(N(C)) \cap E_{G}\left(x, A \cap B^{\prime}\right)$. Note that $v \in V_{\geq 6}$ since $N(x) \cap V_{5}=\left\{y_{1}, y_{2}\right\}$. Since $v \in A \cap B^{\prime}, \bar{A}=\left\{y_{1}\right\}$ and $\bar{B}^{\prime}=\left\{y_{2}\right\}$, we observe that $N(v) \cap\left\{y_{1}, y_{2}\right\}=\emptyset$. Then, applying Claim 1 with the role of A replaced by C, we see that $\left\{y_{1}, y_{2}\right\} \cap \bar{C} \neq \emptyset$. Since $v \in N(C)$ and $N(v) \cap\left\{y_{1}, y_{2}\right\}=\emptyset$, we see that $|\bar{C}| \geq 2$. If $y_{1} \in \bar{C}$, then we observe that $\bar{A} \cap N(C)=\bar{A} \cap C=S \cap C=\emptyset$, which implies that C is a y_{1}-opposite $E^{\prime}(x)$-fragment such that $C \subset A-\{v\}$. This contradicts the minimality of A. Hence $y_{1} \notin \bar{C}$, which implies that $y_{2} \in S \cap \bar{C}$ and $y_{1} \in N(C)$. Since $|\bar{C}| \geq 2$, applying Claim 1(2) with the roles of A and $E^{\prime}(x)$ replaced by C and $E^{\prime \prime}(x)$, respectively, we see that $|C| \geq 3$. Since $|\bar{C}| \geq 2,|C| \geq 3$ and $N(x) \cap C \cap V_{5}=\emptyset$, applying Lemma 6 with the role of A replaced by C, we see that $\operatorname{Ad}(x ; C) \neq \emptyset$. Since $N(x) \cap N(C) \cap V_{5}=\left\{y_{1}\right\}$, we observe that y_{1} is an admissible vertex of ($x ; C$), which implies that $\left|N\left(y_{1}\right) \cap C\right|=|S \cap C| \geq 2$.
Subsubclaim 3.1.1. $|S \cap \bar{C}| \geq 2$.
Proof. Assume $|S \cap \bar{C}|=1$. Then, since $|\bar{C}| \geq 2$, we observe that $A \cap \bar{C} \neq \emptyset$. Then, since $|S \cap \bar{C}|=|\bar{A} \cap N(C)|$, applying Lemma 2(2), we see that $|(S \cap \bar{C}) \cup(S \cap N(C)) \cup(A \cap N(C))|=5$. Hence we observe that $A \cap \bar{C}$ is a y_{1}-opposite $E^{\prime}(x)$-fragment, which contradicts the minimality of A since $v \notin A \cap \bar{C}$. This contradiction proves Subsubclaim 3.1.1.

Since $\left|N\left(y_{1}\right) \cap C\right|=|S \cap C| \geq 2$, Subsubclaim 3.1.1 assures us that $|S \cap C|=|S \cap \bar{C}|=2$ and $S \cap N(C)=\{x\}$. Subsubclaim 3.1.2. $N(x) \cap(A \cap C)=\emptyset$.
Proof. Assume $v^{\prime} \in N(x) \cap(A \cap C)$. Then, there is no admissible vertex of $\left(x, v^{\prime} ; C\right)$ since $N(x) \cap N(C) \cap V_{5}=\left\{y_{1}\right\}$ and $y_{1} v^{\prime} \notin E(G)$. Then, since $|\bar{C}| \geq 2,|C| \geq 3$ and $\operatorname{Ad}\left(x, v^{\prime} ; C\right)=\emptyset$, applying Lemma 3 with the roles of y and A replaced by v^{\prime} and C, respectively, we see that there is an $x v^{\prime}$-fragment C^{\prime} such that $C^{\prime} \subsetneq C$, which contradicts the minimality of C. This contradiction shows that $N(x) \cap(A \cap C)=\emptyset$.

Subsubclaim 3.1.2 assures us that $N(x) \cap C \subset S \cap C$.
Subsubclaim 3.1.3. $N(x) \cap C=S \cap C$.
Proof. Assume $N(x) \cap C \subsetneq S \cap C$. Then, since $|S \cap C|=2$, we observe that $|N(x) \cap C|=1$. Since $|\bar{C}| \geq 2,|C| \geq 3,|N(x) \cap C|=1$ and $N(x) \cap C \subset V_{\geq 6}$, applying Lemma 7 with the role of A replaced by C, we see that y_{1} is a strongly admissible vertex of ($x ; C$). Hence $\left|N\left(y_{1}\right) \cap \bar{C}\right|=1$, which contradicts Subsubclaim 3.1.1. This contradiction proves $N(x) \cap C=S \cap C$.

We are in a position to complete the proof of Subclaim 3.1. By Subsubclaim 3.1.3, we know $N(x) \cap C=N\left(y_{1}\right) \cap C$, which implies that $N\left(y_{1}\right) \cap C \cap V_{5}=\emptyset$ since $N(x) \cap C \cap V_{5}=\emptyset$. Since $|\bar{C}| \geq 2,|C| \geq 3$ and $N\left(y_{1}\right) \cap C \cap V_{5}=\emptyset$, applying Lemma 6 with the roles of x and A replaced by y_{1} and C, respectively, we see that $\operatorname{Ad}\left(y_{1} ; C\right) \neq \emptyset$. On the other hand, since $N\left(y_{1}\right) \cap N(C)=\{x\}$ and $x \in V_{\geq 6}$, we see that there is no admissible vertex of $\left(y_{1} ; C\right)$, which contradicts the previous assertion. This contradiction proves Subclaim 3.1.

By Subclaim 3.1 we know that $N(x) \subset\left(S \cup T^{\prime}\right) \cup\left\{y_{1}, y_{2}\right\}$. Since $N(x) \cap V_{5}=\left\{y_{1}, y_{2}\right\}$ and $z_{3}, u_{3} \in V_{5}$, we see that $z_{3}, u_{3} \notin N(x)$. Hence, we observe that $y_{1}, y_{2}, z_{1}, z_{2}, u_{1}, u_{2}$ are distinct and $N(x)=\left\{y_{1}, y_{2}, z_{1}, z_{2}, u_{1}, u_{2}\right\}$ because $|N(x)| \geq 6$. Hence, we observe that $\left\{z_{1}, z_{2}, u_{1}, u_{2}\right\} \cap V_{5}=\emptyset$ since $N(x) \cap V_{5}=\left\{y_{1}, y_{2}\right\}$.
Subclaim 3.2. Let C be a $y_{1} x$-fragment such that $|S \cap C| \geq|S \cap \bar{C}|$ and $|S \cap N(C)| \geq 2$. Then, either (1) $\bar{C}=\left\{y_{2}\right\}$ or (2) $\left\{z_{1}, z_{2}\right\} \subset C$ and $z_{3}=u_{3}$.
Proof. Since $\bar{A}=\left\{y_{1}\right\}$ and $y_{1} \in N(C)$, we observe that neither $S \cap C$ nor $S \cap \bar{C}$ is empty. Hence, since $|S \cap C| \geq|S \cap \bar{C}|$ and $|S \cap N(C)| \geq 2$, we see that $|S \cap \bar{C}|=1$, say $S \cap \bar{C}=\{v\}$.

At first we consider the case that $A \cap \bar{C}=\emptyset$. In this case $\bar{C}=S \cap \bar{C}=\{v\}$. Hence $v \in N(x) \cap S \cap V_{5}$, which implies that $v=y_{2}$. Now it is shown that if $A \cap \bar{C}=\emptyset$, then (1)holds.

Next we assume $A \cap \bar{C} \neq \emptyset$. In this case, since $|\bar{A} \cap N(C)|=|S \cap \bar{C}|$, we see that $A \cap \bar{C}$ is a fragment of G. If $|A \cap \bar{C}|=1$, then $N(x) \cap(A \cap \bar{B}) \cap V_{5} \neq \emptyset$, which contradicts the fact that A is $\left\{y_{1}, y_{2}\right\}$-free. Hence $|A \cap \bar{C}| \geq 2$, which implies $|\bar{C}| \geq 3$. Since $S \cap C \neq \emptyset$ and $|A \cap N(C)|=|S \cap C|$, we observe that $A \cap \bar{C} \subsetneq A$. If $\left\{z_{1}, z_{2}\right\} \cap(N(C) \cup \bar{C}) \neq \emptyset$, then we observe that $A \cap \bar{C}$ is a y_{1}-opposite $E^{\prime}(x)$-fragment, which contradicts the minimality of A. Hence we have $\left\{z_{1}, z_{2}\right\} \subset C$. Since $\left\{z_{1}, z_{2}\right\} \subset C$, we observe that $|C| \geq 2$ and either $w=y_{2}$ or $w=z_{3}$. Now we know that $|C| \geq 2,|\bar{C}| \geq 3$ and $N\left(y_{1}\right) \cap \bar{C}=\{w\}$. Hence, applying Corollary $4 \bar{w}$ ith the roles of x and A replaced by y_{1} and \bar{C}, respectively, we see that $\operatorname{Ad}\left(y_{1}, w ; \bar{C}\right) \neq \emptyset$. If $w=z_{3}$, then y_{2} is an admissible vertex of $\left(y_{1}, z_{3} ; \bar{C}\right)$, which implies that $y_{2} z_{3} \in E(G)$. If $w=y_{2}$, then z_{3} is an admissible vertex of $\left(y_{1}, y_{2} ; \bar{C}\right)$, which again implies that $y_{2} z_{3} \in E(G)$. Thus we have $z_{3}=u_{3}$. Now it is shown that if $A \cap \bar{C} \neq \emptyset$, then (2) holds and Subclaim 3.2 is proved.

Subclaim 3.3. $z_{3}=u_{3}$.
Proof. Let C be a $y_{1} z_{3}$-fragment. Then, if $x \in C$, then, since $N\left(y_{1}\right) \subset N(x) \cup\left\{x, z_{3}\right\}$, we observe that $N\left(y_{1}\right) \cap \bar{C}=\emptyset$, which contradicts the choice of C. Hence $x \notin C$. By symmetry, we see that $x \notin \bar{C}$ and hence $x \in N(C)$, which implies that C is a $y_{1} x$-fragment and $|S \cap N(C)| \geq 2$. Without loss of generality, we may assume that $|S \cap C| \geq|S \cap \bar{C}|$. Now we can apply Subclaim 2.2. If Subclaim (2) holds, then $z_{3}=u_{3}$ and we are done. Hence, we may assume that Subclaim 2.2(1) holds, that is $\bar{C}=\left\{y_{2}\right\}$. Thus $y_{2} z_{3} \in E(G)$, which implies again $z_{3}=u_{3}$. Subclaim 3.3 is proved.

We proceed with the proof of Claim 3. By Subclaim 3.3, we know that $z_{3}=u_{3}$, say $w=z_{3}=u_{3}$. Since $w \in V_{5}$, and $\left\{y_{1}, y_{2}\right\} \subset N(w)$, we see that $\left|\left\{z_{1}, z_{2}, u_{1}, u_{2}\right\} \cap N(w)\right| \leq 3$. Without loss of generality, we may assume that $z_{1} \notin N(w)$. Let C be a fragment with respect to $y_{1} z_{1}$. We show that $x \in N(C)$. Assume $x \in C$. Then we observe that $N\left(y_{1}\right) \cap \bar{C}=\{w\}$ since $N\left(y_{1}\right) \subset N(x) \cup\left\{x, w \underline{\}}\right.$. Since $x y_{2}, y_{2} w \in E(G)$, we observe that $y_{2} \in N(C)$. Furthermore, since $\left\{z_{1}, z_{2}, u_{1}, u_{2}\right\} \subset N(x)$, we see that $N\left(\left\{y_{1}, y_{2}\right\}\right) \cap \bar{C}=\{w\}$. Hence, applying Lemma 1 with the roles of S and A replaced by $\left\{y_{1}, y_{2}\right\}$ and \bar{C}, respectively, we see that $\bar{C}=\{w\}$ and $N(C)=N(w)$. This contradicts the fact that $z_{1} \notin N(w)$, and this contradiction proves $x \notin C$. By symmetry, we see that $x \notin \bar{C}$. Now it is shown that $x \in N(C)$.

Without loss of generality, we may assume that $|S \cap C| \geq|S \cap \bar{C}|$. Applying Subclaim 3.2, we see that $\bar{C}=\left\{y_{2}\right\}$ since the fact that $z_{1} \in N(C)$ assures us that Subclaim 3.2(2) does not occur. Hence, we observe that $y_{2} z_{1} \in E(G)$. However $N\left(y_{2}\right)=\left\{x, y_{1}, u_{1}, u_{2}, w\right\}$ and $y_{1}, y_{2}, z_{1}, z_{2}, u_{1}, u_{2}$ are distinct, which implies $y_{2} z_{1} \notin E(G)$. This contradicts the previous assertion and we have shown that $|\bar{A}| \geq 2$.

Using the same arguments with the roles of A and B^{\prime} replaced by B and $G-N\left(y_{1}\right) \cup\left\{y_{1}\right\}$, respectively, we can show that $|\bar{B}| \geq 2$. Now Claim 3 is proved.

Recall that A and B are a minimum y_{1}-opposite $E^{\prime}(x)$-fragment and a minimum y_{2}-opposite $E^{\prime}(x)$-fragment, respectively, and $S=N(A)$ and $T=N(B)$. By Claim 3, we know that $|\bar{A}|,|\bar{B}| \geq 2$. Then, applying Claim 1(2), we see that $|A|,|B| \geq 3$.
Claim 4. (1) $N(x) \cap A \subset N\left(y_{2}\right) \cap A$ and (2) $N(x) \cap B \subset N\left(y_{1}\right) \cap B$.
Proof. We show (1). Assume that there is a vertex $v \in N(x) \cap A$ such that $v \notin N\left(y_{2}\right)$. Since $N(x) \cap S \cap V_{5}=\left\{y_{2}\right\}$, there is no admissible vertex of $(x, v ; A)$. Then, since $|\bar{A}| \geq 2$ and $|A| \geq 3$, applying Lemma 3 with the role y replaced by v, we see that there is an $x v$-fragment A^{\prime} such that $A^{\prime} \subsetneq A$. Then A^{\prime} is a y_{1}-opposite $E^{\prime}(x)$-fragment such that $A^{\prime} \subsetneq A$, which contradicts that minimality of A. This contradiction shows (1).

By the similar arguments, we can show (2) and Claim 4 is proved.
Since A is y_{1}-opposite and B is y_{2}-opposite, Claim 4 assures us that $N(x) \cap(A \cap B)=\emptyset$.
Claim 5. Neither $\bar{A} \cap B$ nor $A \cap \bar{B}$ is empty.
Proof. Assume that either $\bar{A} \cap B=\emptyset$ or $A \cap \bar{B}=\emptyset$. Without loss of generality, we may assume that $\bar{A} \cap B=\emptyset$. We show $A \cap B=\emptyset$. Assume $A \cap B \neq \emptyset$. Then, since $N(x) \cap(A \cap B)_{-}=\emptyset$, we observe that $|(S \cap B) \cup(S \cap T) \cup(S \cap T)| \geq 6$. Then Lemma 2(1) assures us that $\bar{A} \cap \bar{B}=\emptyset$, which implies $\bar{A}=\bar{A} \cap T$. Since $|\bar{A} \cap T|=|\bar{A}| \geq 2$, by Lemma 2(2), we observe that $|S \cap B| \geq|\bar{A} \cap T|+1=3$, which implies $|\underline{S} \cap \bar{B}|=|S|-|S \cap T|-|S \cap B| \leq 1$. Then we observe that $|S \cap \bar{B}|<|\bar{A} \cap T|$ and Lemma 2(2) again assures us that $A \cap \bar{B}=\emptyset$, which implies that $|\bar{B}|=|S \cap \bar{B}| \leq 1$. This contradicts Claim 3 and it is shown that $A \cap B=\emptyset$. Since $A \cap B=\emptyset, \bar{A} \cap B=\emptyset$ and $|B| \geq 3$, we observe that $|S \cap B|=|B| \geq 3$. Next we show that $|A \cap T| \geq 3$. Assume $|A \cap T| \leq 2$. Then, $|A \cap T|<|S \cap B|$ and Lemma 2(2) assures us that $A \cap \bar{B}=\emptyset$, which implies $|A|=|A \cap T|_{-} \leq 2$. This contradicts the assertion before Claim 4, and it is shown that $|A \cap T| \geq 3$. Since $|A \cap T| \geq 3$, we observe that $|\bar{A} \cap \underline{T}|=|\underline{T}|-|S \cap T|-|A \cap T| \leq 1$. Hence, since $|\bar{A} \cap T|<|S \cap B|$, we see that $\bar{A} \cap \bar{B}=\emptyset$, which implies that $\bar{A}=\bar{A} \cap T$. Thus $|\bar{A}|=|\bar{A} \cap T| \leq 1$, which contradicts Claim 3. This contradiction proves Claim 5 .

By Claim 5 we know that neither $\bar{A} \cap B$ nor $A \cap \bar{B}$ is empty. Then, Lemma 2(1) assures us that both $\bar{A} \cap B$ and $A \cap \bar{B}$ are fragments of G. We show that $S \cap B=A \cap B=A \cap T=\emptyset$. Since A is an $E^{\prime}(x)$-fragment, $E(S) \cap E^{\prime}(x) \neq \emptyset$, say $x z \in E(S) \cap E^{\prime}(x)$. If $z \in S \cap(T \cup \bar{B})$, then $A \cap \bar{B}$ is a y_{1}-opposite $E^{\prime}(x)$-fragment. Then, the minimality of A assures us $A=A \cap \bar{B}$, which implies that $S \cap B=A \cap B=A \cap T=\emptyset$. Hence, $z \in S \cap B$, which implies that $\bar{A} \cap B$ is a y_{2}-opposite $E^{\prime}(x)$-fragment. In this case, the minimality of B assures us $B=\bar{A} \cap B$, which implies again that $S \cap B=A \cap B=A \cap T=\emptyset$. Now we know that $A=A \cap \bar{B}, B=\bar{A} \cap B$ and $S \cap B=A \cap B=A \cap T=\emptyset$. Since $A=A \cap \bar{B}, B=\bar{A} \cap B$ and $|A|,|B| \geq 3$, we see that $|\bar{A}|,|\bar{B}| \geq 3$. Claim 6. $N\left(y_{2}\right) \cap \bar{A}=\left\{y_{1}\right\}, N\left(y_{1}\right) \cap \bar{B}=\left\{y_{2}\right\}$,
Proof. We show that $N\left(y_{2}\right) \cap \bar{A}=\left\{y_{1}\right\}$. Since $y_{1} \in N\left(y_{2}\right) \cap \bar{A}$, it suffices to show that $\left|N\left(y_{2}\right) \cap \bar{A}\right|=1$. If $\left|N\left(y_{2}\right) \cap A\right|=3$, then $\left|N\left(y_{2}\right) \cap \bar{A}\right|=\left|N\left(y_{2}\right)\right|-\left|N\left(y_{2}\right) \cap S\right|-\left|N\left(y_{2}\right) \cap A\right|=1$ and we are done. Hence we may assume that $\left|N\left(y_{2}\right) \cap A\right|=2$. Then, by Claim 4, we observe that $|N(x) \cap A| \leq\left|N\left(y_{2}\right) \cap A\right|=2$. If $|N(x) \cap A|=1$, then we see that y_{2} is a strongly admissible vertex of $(x ; A)$, which implies that $\left|N\left(y_{2}\right) \cap \bar{A}\right|=1$. Hence we may assume that $|N(x) \cap A|=2$. In this situation, by Claim 4, we see that $N(x) \cap A=N\left(y_{2}\right) \cap A$, which implies that $N\left(y_{2}\right) \cap A \cap V_{5}=\emptyset$ since $N(x) \cap A \cap V_{5}=\emptyset$. Since $|\bar{A}| \geq 2$ and $N\left(y_{2}\right) \cap A \cap V_{5}=\emptyset$, applying Lemma 6 with the role of x replaced by y_{2}, we see that $\operatorname{Ad}\left(y_{2} ; A\right) \neq \emptyset$, which implies that y_{2} has a neighbor other than x in S. Thus we observe that $\left|N\left(y_{2}\right) \cap S\right| \geq 2$, which implies that $\left|N\left(y_{2}\right) \cap \bar{A}\right|=1$. Hence, it is shown $N\left(y_{2}\right) \cap \bar{A}=\left\{y_{1}\right\}$.

By the similar arguments, we can show that $N\left(y_{1}\right) \cap \bar{B}=\left\{y_{2}\right\}$, and Claim 6 is proved.
Since $|\bar{A}|,|A| \geq 3$ and $N\left(y_{2}\right) \cap \bar{A}=\left\{y_{1}\right\}$, applying Corollary 4 with the roles of x, y and A replaced by y_{2}, y_{1} and \bar{A}, respectively, we see that $\operatorname{Ad}\left(y_{2}, y_{1} ; \bar{A}\right) \neq \emptyset$. Since $|\bar{B}|,|B| \geq 3$ and $N\left(y_{1}\right) \cap \bar{B}=\left\{y_{2}\right\}$, applying Corollary 4 with the roles of x, y and A replaced by y_{1}, y_{2} and \bar{B}, respectively, we also see that $\operatorname{Ad}\left(y_{1}, y_{2} ; \bar{B}\right) \neq \emptyset$. Say $w \in \operatorname{Ad}\left(y_{2}, y_{1} ; \bar{A}\right)$. Then, since $w \in N\left(y_{1}\right) \cap N\left(y_{2}\right)$, we observe that $N\left(y_{2}\right)=\left(N\left(y_{2}\right) \cap A\right) \cup\left\{x, w, y_{1}\right\}$ and $N\left(y_{1}\right)=\left(N\left(y_{1}\right) \cap B\right) \cup\left\{x, w, y_{2}\right\}$, which implies $w \in N\left(y_{1}\right) \cap N\left(y_{2}\right)$ and $\operatorname{Ad}\left(y_{2}, y_{1} ; \bar{A}\right)=\operatorname{Ad}\left(y_{1}, y_{2} ; \bar{A}\right)=\{w\}$.
Claim 7. $|N(w) \cap A| \geq 2$ and $|N(w) \cap B| \geq 2$.
Proof. We show $|N(w) \cap A| \geq 2$. Assume $|N(w) \cap A|=1$, say $N(w) \cap A=\left\{u_{1}\right\}$.
Subclaim 7.1. $|N(x) \cap A|=1$.
Proof. Assume $|N(x) \cap A|=2$. Then, since $\left|N\left(y_{2}\right) \cap A\right|=2$, Claim 4 assures us that $N\left(y_{2}\right) \cap A=N(x) \cap A$, which implies $N\left(y_{2}\right) \cap A \cap V_{5}=\emptyset$ since $N(x) \cap A \cap V_{5}=\emptyset$. Since $|\bar{A}| \geq 3$, applying Lemma 6 with the role of x replaced by y_{2}, we see that $\operatorname{Ad}\left(y_{2} ; A\right) \neq \emptyset$. Since $N\left(y_{2}\right) \cap S \cap V_{5}=\{w\}$, we observe that w is an admissible vertex of $\left(y_{2} ; A\right)$, which implies $|N(w) \cap A| \geq 2$. This contradicts the assumption and Subclaim 7.1 is proved.

By Subclaim 7.1, we know that $|N(x) \cap A|=1$, say $N(x) \cap A=\left\{u_{2}\right\}$. We show that $u_{1} \neq u_{2}$. Assume $u_{1}=u_{2}$. Then, since $N(\{x, w\}) \cap A=\left\{u_{1}\right\}$, applying Lemma 1 with the role S replaced by $\{x, w\}$, we see that $A=\left\{u_{1}\right\}$, which contradicts the fact that $|A| \geq 3$. Now it is shown that $u_{1} \neq u_{2}$.
Subclaim 7.2. $|A| \geq 4$.
Proof. Assume $|A|=3$. Recall that $z x \in E(S) \cap E^{\prime}(x)$. Since $w \in V_{5}$, we observe that $z \neq w$. Let $A_{1}=A-\left\{u_{1}\right\}$. Then, since $N(w) \cap A=\left\{u_{1}\right\}$, we observe that $N\left(A_{1}\right)=(S-\{w\}) \cup\left\{u_{1}\right\}$. This implies that A_{1} is a fragment of G. Since $|A|=3$ and $u_{2} \in A_{1} \cap V_{\geq 6}$, we observe that $\left|A_{1}\right|=2$ and $A_{1} \cap V_{\geq 6} \neq \emptyset$. Then, since $\left|\bar{A}_{1}\right| \geq 3,\left|A_{1}\right|=2$ and $A_{1} \cap V_{\geq 6} \neq \emptyset$, applying Lemma 5(3) with the role of A replaced by A_{1}, we see that $\left|N\left(A_{1}\right) \cap V_{5}\right| \geq 4$. However, since $\{x, z\} \subset N\left(A_{1}\right) \cap V_{\geq 6}$, we observe that $\left|N\left(A_{1}\right) \cap V_{\geq 6}\right| \geq 2$, which implies that $\left|N\left(A_{2}\right) \cap V_{5}\right| \leq 3$. This contradicts the previous assertion. and Subclaim 7.2 is proved.

Recall that $N(x) \cap A=\left\{u_{2}\right\}$ and y_{2} is an admissible vertex of $\left(x, u_{2} ; A\right)$. Hence, we observe that $u_{2} \in N(x) \cap N\left(y_{2}\right) \cap A$. Let $A_{2}=A-\left\{u_{2}\right\}$. Then A_{2} is a fragment of G since $N(x) \cap A=\left\{u_{2}\right\}$. Subclaim 7.2 assures us that $|A| \geq 4$, which implies that $\left|A_{2}\right| \geq 3$. Since $\left|N\left(y_{2}\right) \cap A\right|=2$ and $u_{2} \in N\left(y_{2}\right) \cap A$, we observe that $\left|N\left(y_{2}\right) \cap A_{2}\right|=1$. Then, since $\left|\bar{A}_{2}\right| \geq 2,\left|A_{2}\right| \geq 3$ and $\left|N\left(y_{2}\right) \cap A_{2}\right|=1$, applying Corollary 4 with the roles x and A replaced by y_{2} and A_{2}, respectively, we see that $\operatorname{Ad}\left(y_{2} ; A_{2}\right) \neq \emptyset$. Then, since $N\left(y_{2}\right) \cap S \cap V_{5}=\{w\}, w$ is an admissible vertex of $\left(y_{2} ; A_{2}\right)$, which implies $\left|N(w) \cap A_{2}\right| \geq 2$. This contradicts the assumption that $|N(w) \cap A|=1$. This contradiction proves $|N(w) \cap A| \geq 2$.

By the similar arguments, we can show $|N(w) \cap B| \geq 2$ and Claim 7 is proved.
We are in a position to complete the proof of Proposition. Claim 7 assures us that $|N(w) \cap A| \geq 2$ and $|N(w) \cap B| \geq 2$. Since $A \cap B=\emptyset$, we observe that $|N(w) \cap(A \cup B)|=|N(w) \cap A|+|N(w) \cap B| \geq 4$. Since $\left\{y_{1}, y_{2}\right\} \subset N(w)$ and both A and B are $\left\{y_{1}, y_{2}\right\}$-free, we see that $|N(w)| \geq\left|N(w) \cap\left(A \cup B \cup\left\{y_{1}, y_{2}\right\}\right)\right|=|N(w) \cap(A \cup B)|+\left|N(w) \cap\left\{y_{1}, y_{2}\right\}\right| \geq 6$, which contradicts the fact that $w \in V_{5}$. This is the final contradiction and the proof of Proposition 1 is completed.

4. Proof of Proposition 2

In this section we prove Proposition 2.
Let G be a contraction-critically 5-connected graph. Let x be a vertex of G such that $x \notin V_{5}$ and $\left|N(x) \cap V_{5}\right|=2$. Let $N(x) \cap V_{5}=\left\{y_{1}, y_{2}\right\}$. Then, Proposition 1 assures us that $y_{1} y_{2} \notin E(G)$.

Claim 1. $|G| \geq 10$.
Proof. Assume $|G| \leq 9$. Let A be a $\left\{y_{2}\right\}$-free $x y_{1}$-fragment and let $S=N(A)$. Then, since $N(x) \cap A \cap V_{5}=\emptyset$, we observe that $|A| \geq 2$. If $\bar{A} \cap\left\{y_{2}\right\}=\emptyset$, then, by the same reason, we see that $|\bar{A}| \geq 2$. Otherwise, if $y_{2} \in \bar{A}$, then we also see that $|\bar{A}| \geq 2$ since $y_{1} y_{2} \notin E(G)$. Hence, since $|G| \leq 9$, we observe that $|A|=|\bar{A}|=2$. Let $A=\left\{u_{1}, u_{2}\right\}$ and $\bar{A}=\left\{v_{1}, v_{2}\right\}$. Then, since $|A|=|\bar{A}|=2$ and $A \cap V_{\geq 6} \neq \emptyset$, applying Lemma 5 , we see that $\left|S \cap V_{5}\right| \geq 4$, which implies that $S-\{x\} \subset V_{5}$. Since $x \notin V_{5}$ and $|A \cup \bar{A}|=4$, we observe that $|N(x) \cap S| \geq 2$, which implies $N(x) \cap S=\left\{y_{1}, y_{2}\right\}$ and $N(x)=\left\{y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}\right\}$. Let $S=\left\{x, y_{1}, y_{2}, w_{1}, w_{2}\right\}$. Since $N(x) \cap V_{5}=\left\{y_{1}, y_{2}\right\}$, we observe that $\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\} \subset V_{\geq 6}$, which implies that $S \subset N\left(u_{1}\right) \cap N\left(u_{2}\right) \cap N\left(v_{1}\right) \cap N\left(v_{2}\right)$. Hence, we see that $N\left(y_{1}\right)=N\left(y_{2}\right)=\left\{x, u_{1}, u_{2}, v_{1}, v_{2}\right\}$, which implies $N\left(\left\{w_{1}, w_{2}\right\}\right)=\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$. This contradicts the assumption that G is 5 -connected. This contradiction proves Claim 1.

We start with the following observation, which has a somewhat technical appearance but is useful.
Claim 2. Let $y \in\left\{y_{1}, y_{2}\right\}$. Let A be an xy-fragment such that $|\bar{A}| \geq 2$ and $|A| \geq 3$. Suppose $|N(y) \cap A|=2, N(y) \cap N(A)=\{x\}$ and $N(x) \cap N(y) \cap A \neq \emptyset$. Then, for each $u \in N(x) \cap N(y) \cap A$, there is an $x y$-fragment A^{\prime} such that $A^{\prime} \subsetneq A$ and $N(y) \cap A^{\prime}=\{u\}$.
Proof. Let $S=N(A)$. Let $N(y) \cap A=\left\{u, u^{\prime}\right\}$ and $u \in N(x) \cap N(y) \cap A$. Since $N(y) \cap S=\{x\}$ and $x \notin V_{5}$, there is no admissible vertex of $\left(y, u^{\prime} ; A\right)$. Hence, since $|\bar{A}| \geq 2,|A| \geq 3$ and $\operatorname{Ad}\left(y, u^{\prime} ; A\right)=\emptyset$, applying Lemma 3 with the roles of x and y replaced by y and u^{\prime}, respectively, we see that there is a $y u^{\prime}$-fragment A^{\prime} such that $A^{\prime} \subsetneq A$. Since $N(y) \cap A^{\prime} \neq \emptyset, N(y) \cap A=\left\{u, u^{\prime}\right\}$ and $A^{\prime} \subsetneq A$, we observe that $N(y) \cap A^{\prime}=\{u\}$. Since $x \notin A, A^{\prime} \subsetneq A, u \in A^{\prime}$ and $x u \in E(G)$, we see that $x \in N\left(A^{\prime}\right)$, which implies that A^{\prime} is an $x y$-fragment. Hence A^{\prime} is a desired fragment and Claim 2 is proved.

Claim 3. There is a y_{2}-opposite $x y_{1}$-fragment.
Proof. Assume that there is no y_{2}-opposite $x y_{1}$-fragment. Let A be a fragment with respect to $x y_{1}$ and let $S=N(A)$. Then, since neither A nor \bar{A} is y_{2}-opposite, we observe that $\left\{x, y_{1}, y_{2}\right\} \subset S$, which implies $N(x) \cap V_{5} \subset S$. Hence we see that $N(x) \cap A \cap V_{5}=N(x) \cap \bar{A} \cap V_{5}=\emptyset$, which implies $|A|,|\bar{A}| \geq 2$. We choose a fragment A with respect to $x y_{1}$ so that $\left|N\left(y_{1}\right) \cap A\right|$ is as small as possible. Furthermore, subject to the above condition, we choose A so that $|A|$ is as large as possible. Subclaim 3.1. $\left|N\left(y_{2}\right) \cap A\right|=\left|N\left(y_{2}\right) \cap \bar{A}\right|=2$.
Proof. Assume $\left|N\left(y_{2}\right) \cap A\right|=1$, say $N\left(y_{2}\right) \cap A=\{u\}$. Then, since $|A| \geq 2, S^{\prime}=\left(S-\left\{y_{2}\right\}\right) \cup\{u\}$ is a 5-cutset of G and $A-\{u\}$ is a y_{2}-opposite $x y_{1}$-fragment, which contradicts the assumption. Hence $\left|N\left(y_{2}\right) \cap A\right| \geq 2$. By symmetry, we see that $\left|N\left(y_{2}\right) \cap \bar{A}\right| \geq 2$. Since $x \in N\left(y_{2}\right) \cap S$ and $\left|N\left(y_{2}\right)\right|=5$, we have the desired conclusion.

Subclaim 3.2. (1) $\left|N\left(y_{1}\right) \cap A\right| \leq 2$. Furthermore, if $\left|N\left(y_{1}\right) \cap A\right|=2$, then $\left|N\left(y_{1}\right) \cap \bar{A}\right|=2$ and $|A| \geq|\bar{A}|,(2)|A| \geq 3$.
Proof. (1) By the choice of A, we know that $\left|N\left(y_{1}\right) \cap A\right| \leq\left|N\left(y_{1}\right) \cap \bar{A}\right|$. Since $x \in N\left(y_{1}\right) \cap S$ and $\left|N\left(y_{1}\right)\right|=5$, we observe that $\left|N\left(y_{1}\right) \cap A\right|+\left|N\left(y_{1}\right) \cap \bar{A}\right| \leq 4$. Hence, since $\left|N\left(y_{1}\right) \cap A\right| \leq\left|N\left(y_{1}\right) \cap \bar{A}\right|$, we see that $\left|N\left(y_{1}\right) \cap A\right| \leq 2$. Now the former part of (1) is shown. Next assume that $\left|N\left(y_{1}\right) \cap A\right|=2$. Then, since $\left|N\left(y_{1}\right) \cap A\right| \leq\left|N\left(y_{1}\right) \cap \bar{A}\right|$ and $x \in N\left(y_{1}\right) \cap S$, we observe that $\left|N\left(y_{1}\right) \cap A\right|=\left|N\left(y_{1}\right) \cap \bar{A}\right|=2$. Hence, by the choice of A, we see that $|A| \geq|\bar{A}|$ and the latter part of (1) is proved.
(2) Assume $|A|=2$, say $A=\left\{u, u^{\prime}\right\}$. If $y_{1} u \notin E(G)$, then $u \in V_{5}$ and $x u \in E(G)$, which contradicts the assumption that $N(x) \cap V_{5}=\left\{y_{1}, y_{2}\right\}$. Hence $y_{1} u \in E(G)$. Similarly we observe that $y_{1} u^{\prime} \in E(G)$. Thus we have $\left|N\left(y_{1}\right) \cap A\right|=2$. Hence, (1) assures us that $|A| \geq|\bar{A}|$. On the other hand, by Claim 1 , we know that $|G| \geq 10$, which implies that $|A|+|\bar{A}|=|G|-|S| \geq 5$. This together with the fact $|A| \geq|\bar{A}|$ implies $|A| \geq 3$, which contradicts the assumption that $|A|=2$. This contradiction proves (2).

Subclaim 3.3. $y_{1} \notin \operatorname{Ad}(x ; A)$.
Proof. Assume y_{1} is an admissible vertex of $(x ; A)$. Then $N(x) \cap N\left(y_{1}\right) \cap A \neq \emptyset$ and $\left|N\left(y_{1}\right) \cap A\right| \geq 2$. Since $\left|N\left(y_{1}\right) \cap A\right| \geq 2$, Subclaim 3.2(1) assures us that $\left|N\left(y_{1}\right) \cap A\right|=\left|N\left(y_{1}\right) \cap \bar{A}\right|=2, N\left(y_{1}\right) \cap N(A)=\{x\}$ and $|A| \geq|\bar{A}|$. Also Subclaim 3.2(2) assures us that $|A| \geq 3$. Now we know that $|\bar{A}| \geq 2,|A| \geq 3,\left|N\left(y_{1}\right) \cap A\right|=2, N\left(y_{1}\right) \cap N(A)=\{x\}$ and $N(x) \cap N\left(y_{1}\right) \cap A \neq \emptyset$. Applying Claim 2 with the role of y replaced by y_{1}, we see that there is an $x y_{1}$-fragment A^{\prime} such that $\left|N\left(y_{1}\right) \cap A^{\prime}\right|=1$, which contradicts the choice of A. This contradiction proves Subclaim 3.3.

We proceed with the proof of Claim 3. Subclaim 3.2(2) assures us $|A| \geq 3$, hence now we know $|\bar{A}| \geq 2,|A| \geq 3$ and $N(x) \cap A \cap V_{5}=\emptyset$. Applying Lemma 6 , we see that there is an admissible vertex of $(x ; A)$. Since $N(x) \cap V_{5}=\left\{y_{1}, y_{2}\right\}$, either y_{1} or y_{2} is an admissible vertex of $(x ; A)$. By Subclaim 3.3, we know that $y_{1} \notin \operatorname{Ad}(x ; A)$. Hence y_{2} is an admissible vertex of $(x ; A)$, which implies $N(x) \cap N\left(y_{2}\right) \cap A \neq \emptyset$. Let $u \in N(x) \cap N\left(y_{2}\right) \cap A$. By Subclaim 3.1 we know that $\left|N\left(y_{2}\right) \cap A\right|=2$. Thus we have $|\bar{A}| \geq 2,|A| \geq 3,\left|N\left(y_{2}\right) \cap A\right|=2, N\left(y_{2}\right) \cap N(A)=\{x\}$ and $u \in N(x) \cap N(y) \cap A$. Applying Claim 2 with the role of y replaced by y_{2}, we see that there is an $x y_{2}$-fragment A^{\prime} such that $A^{\prime} \subsetneq A$ and $N\left(y_{2}\right) \cap A^{\prime}=\{u\}$. Since $N(x) \cap A^{\prime} \cap V_{5}=\emptyset$, we observe that $\left|A^{\prime}\right| \geq 2$. We show $\left|A^{\prime}\right| \geq 3$. Assume $\left|A^{\prime}\right|=2$, say $A^{\prime}=\left\{u\right.$, w\}. Since $N\left(y_{2}\right) \cap A^{\prime}=\{u\}$ and $x \in N\left(A^{\prime}\right)$, we see that $w \in V_{5}$ and $x w \in E(G)$, which contradicts the assumption that $N(x) \cap V_{5}=\left\{y_{1}, y_{2}\right\}$. Hence, it is shown that $\left|A^{\prime}\right| \geq 3$. Since $\left|\bar{A}^{\prime}\right| \geq 2,\left|A^{\prime}\right| \geq 3$ and $N(x) \cap A^{\prime} \cap V_{5}=\emptyset$, applying Lemma 6 with the role of A replaced by A^{\prime}, we see that $\operatorname{Ad}\left(x ; A^{\prime}\right) \neq \emptyset$. By Subclaim 3.3, we observe that $y_{1} \notin \operatorname{Ad}(x ; A)$, which implies y_{1} is not an admissible vertex of $\left(x ; A^{\prime}\right)$ since $A^{\prime} \subsetneq A$. Since $\left|N\left(y_{2}\right) \cap A^{\prime}\right|=1, y_{2}$ is not an admissible vertex of ($x ; A^{\prime}$). Hence, since neither y_{1} nor y_{2} is an admissible vertex of $\left(x ; A^{\prime}\right)$ and $N(x) \cap V_{5}=\left\{y_{1}, y_{2}\right\}$, we see that $\operatorname{Ad}\left(x ; A^{\prime}\right)=\emptyset$, which contradicts the previous assertion. This contradiction proves Claim 3.

By Claim 3, there is a y_{2}-opposite $x y_{1}$-fragment. Let A be a minimal y_{2}-opposite $x y_{1}$-fragment and let $S=N(A)$. Since A is $\left\{y_{1}, y_{2}\right\}$-free, we observe that $N(x) \cap A \cap V_{5}=\emptyset$ and $|A| \geq 2$. Since $y_{2} \in \bar{A}$ and $y_{1} y_{2} \notin E(G)$, we also see that $|\bar{A}| \geq 2$.
Claim 4. $|\bar{A}| \geq 3$.
Proof. Assume $|\bar{A}|=2$, say $\bar{A}=\left\{y_{2}, z\right\}$. Then, Claim 1 assures us that $|A|=|G|-|S|-|\bar{A}| \geq 3$. Let B be an $x y_{2}$-fragment and let $T=N(B)$. Since $N(x) \cap \bar{A} \cap V_{5}=\left\{y_{2}\right\}$, we observe $S-\{x\} \subset N(z)$, which implies that B is an (x, \bar{A})-fit fragment.

We show x is tractable with \bar{A}. Assume x is not tractable with \bar{A}. Then, we observe that either $|S \cap B|=1$ or $|S \cap \bar{B}|=1$. Without loss of generality, we may assume $|S \cap B|=1$, say $S \cap B=\{w\}$. Since $|S \cap B|<|\bar{A} \cap T|$, Lemma 2(2) assures us that $A \cap B=\emptyset$, which implies $B=S \cap B=\{w\}$ and $T=N(w)$. Hence $w \in V_{5}$ and $x w \in E(G)$, which implies $w=y_{1}$ since $N(x) \cap V_{5}=\left\{y_{1}, y_{2}\right\}$. Then, since $T=N(w)$ and $y_{2} \in T$, we see that $y_{1} y_{2} \in E(G)$, which contradicts Proposition 1 . This contradiction proves $|S \cap B| \geq 2$. By symmetry, we have $|S \cap \bar{B}| \geq 2$ and $|S \cap B|=|S \cap \bar{B}|=2$. It is shown that x is tractable with \bar{A}.

Since x is tractable with \bar{A}, we observe that $S \cap T=\{x\}$. Then, without loss of generality, we may assume that $y_{1} \in S \cap B$. Since $|\bar{A} \cap T|=2$ and $S \cap T=\{x\}$, we observe that $|A \cap T|=2$. Now we know that $|A \cap T|=2$ and $|(S \cap B) \cup(S \cap T) \cup(A \cap T)|=|(S \cap \bar{B}) \cup(S \cap T) \cup(A \cap T)|=5$. Hence, since $y_{1} \in S \cap B$, if $A \cap B \neq \emptyset$, then $A \cap B$ is a y_{2}-opposite $x y_{1}$-fragment, which contradicts the minimality of A. Thus $A \cap B=\emptyset$, which implies that $A \cap \bar{B} \neq \emptyset$ since $|A| \geq 3$ and $|A \cap T|=2$. Let $v \in N(x) \cap(A \cap \bar{B})$. Then, since $y_{1} \in S \cap B$ and $v \in A \cap \bar{B}$, we see that $v y_{1} \notin E(G)$. Hence, since $N(x) \cap S \cap V_{5}=\left\{y_{1}\right\}$ and $v y_{1} \notin E(G)$, we observe that $\operatorname{Ad}(x, v ; A)=\emptyset$. Since $|\bar{A}|=2,|A| \geq 3$ and $\operatorname{Ad}(x, \underline{v} ; A)=\emptyset$, applying Lemma 3 with the role y replaced by v, we see that there is a $x v$-fragment A^{\prime} such that $A^{\prime} \subsetneq A$. Then, since $\left|\bar{A}^{\prime}\right| \geq 2, A^{\prime} \cap V_{5} \neq \emptyset$, applying Lemma 6 with the role of A replaced by A^{\prime}, we see that $\operatorname{Ad}\left(x ; A^{\prime}\right) \neq \emptyset$, which implies that y_{1} is an admissible vertex of $\left(x ; A^{\prime}\right)$ since $N(x) \cap N\left(A^{\prime}\right) \cap V_{5} \subset\left\{y_{1}\right\}$. Hence, we observe that A^{\prime} is a y_{2}-opposite $x y_{1}$-fragment, which contradicts the minimality of A since $A^{\prime} \subsetneq A$. This contradiction proves Claim 4.

Claim 5. $N(x) \cap N\left(y_{1}\right) \cap A \neq \emptyset$ and $\left|N\left(y_{1}\right) \cap A\right| \geq 2$.
Proof. Since $|\bar{A}| \geq 2,|A| \geq 2$ and $N(x) \cap A \cap V_{5}=\emptyset$, applying Lemma 6 , we see that there is an admissible vertex of $(x ; A)$. Then, since $N(x) \cap S \cap V_{5}=\left\{y_{1}\right\}$, we see that y_{1} is an admissible vertex of ($x ; A$) and $\left|N\left(y_{1}\right) \cap A\right| \geq 2$, which implies the desired conclusion.

Claim 6. $\left|N\left(y_{1}\right) \cap \bar{A}\right|=1$.
Proof. Assume $\left|N\left(y_{1}\right) \cap \bar{A}\right| \geq 2$. Then, by Claim 5, we see that $\left|N\left(y_{1}\right) \cap \bar{A}\right|=\left|N\left(y_{1}\right) \cap A\right|=2, N\left(y_{1}\right) \cap S=\{x\}$ and $N(x) \cap N\left(y_{1}\right) \cap A \neq \emptyset$.
Subclaim 6.1. $|A|=2$.
Proof. Assume $|A| \geq 3$. Then, we know that $|\bar{A}| \geq 2,|A| \geq 3,\left|N\left(y_{1}\right) \cap A\right|=2, N\left(y_{1}\right) \cap S=\{x\}$ and $N(x) \cap N\left(y_{1}\right) \cap A \neq \emptyset$. Then, applying Claim 2 with the role of y replaced by y_{1}, we see that there is a fragment A^{\prime} with respect to $x y_{1}$ such that $A^{\prime} \subsetneq A$, which contradicts the minimality of A. This contradiction proves that $|A|=2$.

Since $N(x) \cap A \cap V_{5}=\emptyset$, we know that $A \cap V_{\geq 6} \neq \emptyset$. Furthermore, since $N\left(y_{1}\right) \cap S=\{x\}$ and $x \in V_{\geq 6}$, we observe that $\operatorname{Ad}\left(y_{1} ; A\right)=\emptyset$. Since $|\bar{A}| \geq 2,|A|=2, A \cap V_{\geq 6} \neq \emptyset$ and $\operatorname{Ad}\left(y_{1} ; A\right)=\emptyset$, applying Lemma $5(2)$ with the role of x replaced by y_{1}, we see that $N\left(y_{1}\right) \cap S=\emptyset$, which contradicts the fact that $N\left(y_{1}\right) \cap S=\{x\}$. This contradiction proves Claim 6 .

By Claim 6, we know that $\left|N\left(y_{1}\right) \cap \bar{A}\right|=1$, say $N\left(y_{1}\right) \cap \bar{A}=\left\{z_{2}\right\}$. Since $|A| \geq 2,|\bar{A}| \geq 3$ and $\left|N\left(y_{1}\right) \cap \bar{A}\right|=1$, applying Lemma 3 with the roles of x and A replaced by y_{1} and \bar{A}, respectively, we see that $\operatorname{Ad}\left(y_{1}, \bar{A}\right) \neq \emptyset$. Since $\left|N\left(y_{1}\right) \cap A\right| \geq 2$ and $\left|N\left(y_{1}\right) \cap \bar{A}\right|=1$, we have $\left|N\left(y_{1}\right) \cap S\right| \leq 2$. This together with the fact that $x \in V_{\geq 6}$ assures us that there is the only admissible vertex of $\left(y_{1}, \bar{A}\right)$. Let z_{1} be the admissible vertex of $\left(y_{1}, \bar{A}\right)$. Then $z_{1} \in V_{5} \cap S \cap N\left(y_{1}\right), z_{1} z_{2} \in E(G)$ and $\left|N\left(z_{1}\right) \cap \bar{A}\right| \geq 2$. If $\left|N\left(z_{1}\right) \cap A\right|=1$, say $N\left(z_{1}\right) \cap A=\{v\}$, then $A-\{v\}$ is a y_{2}-opposite $x y_{1}$-fragment, which contradicts the minimality of A. Hence we see that $\left|N\left(z_{1}\right) \cap A\right| \geq 2$. Since $\left|N\left(z_{1}\right)\right|=5$, we know that $\left|N\left(z_{1}\right) \cap \bar{A}\right|=\left|N\left(z_{1}\right) \cap A\right|=2$ and $N\left(z_{1}\right) \cap S=\left\{y_{1}\right\}$. Let $N\left(z_{1}\right) \cap \bar{A}=\left\{z_{2}, u_{1}\right\}$.
Claim 7. $z_{2} \in V_{5}$ and $z_{2} u_{1} \in E(G)$.
Proof. Since $N\left(y_{1}\right) \cap \bar{A}=\left\{z_{2}\right\}$, we observe that $y_{1} u_{1} \notin E(G)$. Hence, since $N\left(z_{1}\right) \cap S=\left\{y_{1}\right\}$, we observe that $\operatorname{Ad}\left(z_{1}, u_{1} ; \bar{A}\right)=\emptyset$. Since $|A| \geq 2,|\bar{A}| \geq 3$ and $\operatorname{Ad}\left(z_{1}, u_{1} ; \bar{A}\right)=\emptyset$, applying Lemma 3 with the roles of x, y and A replaced by z_{1}, u_{1} and \bar{A}, respectively, we see that there is a $z_{1} u_{1}$-fragment A^{\prime} such that $A^{\prime} \subsetneq \bar{A}$. Then, since $N\left(z_{1}\right) \cap \bar{A}=\left\{u_{1}, z_{2}\right\}$ and $A^{\prime} \subsetneq \bar{A}$ we observe that $N\left(z_{1}\right) \cap A^{\prime}=\left\{z_{2}\right\}$. Since $y_{1} \notin A, N\left(y_{1}\right) \cap \bar{A}=\left\{z_{2}\right\}$ and $A^{\prime} \subsetneq \bar{A}$, we see that $y_{1} \in N\left(A^{\prime}\right)$ and $N\left(y_{1}\right) \cap A^{\prime}=\left\{z_{2}\right\}$. Hence we observe that $N\left(\left\{z_{1}, y_{1}\right\}\right) \cap A^{\prime}=\left\{z_{2}\right\}$. Since $N\left(\left\{z_{1}, y_{1}\right\}\right) \cap A^{\prime}=\left\{z_{2}\right\}$, applying Lemma 1 with the roles of S and A replaced by $\left\{z_{1}, y_{1}\right\}$ and A^{\prime}, respectively, we see that $A^{\prime}=\left\{z_{2}\right\}$, which implies $z_{2} \in V_{5}$ and $z_{2} u_{1} \in E(G)$ and Claim 7 is proved.

By Claim 7, we know that $\left\{z_{1}, z_{2}\right\} \subset N\left(y_{1}\right) \cap V_{5}$. Now we know that $N\left(y_{1}\right) \cap S=\left\{x, z_{1}\right\}$ and $\left|N\left(y_{1}\right) \cap A\right|=2$. Let $N\left(y_{1}\right) \cap A=\left\{z_{3}, z_{4}\right\}$. Since $N(x) \cap N\left(y_{1}\right) \cap A \neq \emptyset$, without loss of generality, we may assume that $z_{4} \in N(x) \cap N\left(y_{1}\right) \cap A$.

To complete the proof of Proposition 2, we first consider the case that $|A|=2$ and later we consider the case that $|A| \geq 3$.

At first suppose $|A|=2$. Let $S=\left\{x, y_{1}, z_{1}, w_{1}, w_{2}\right\}$. In this case, since $|\bar{A}| \geq 2,|A|=2$ and $A \cap V_{\geq 6} \neq \emptyset$, applying Lemma 5(3), we see that $S-\{x\}=\left\{y_{1}, z_{1}, w_{1}, w_{2}\right\} \subset V_{5}$. If $x z_{3} \in E(G)$, then we see that $\left\{z_{3}, z_{4}\right\} \subset V_{\geq 6}$ and a configuration of the second kind arises. Otherwise, if $x z_{3} \notin E(G)$, then we see that $\left\{z_{1}, z_{2}, z_{3}\right\} \subset N\left(y_{1}\right) \cap V_{5}$ and $\left\{x, z_{4}\right\} \subset N\left(y_{1}\right) \cap\left(V(G)-V_{5}\right)$. Hence a degenerated configuration of the first kind arises.

The remaining case is $|A| \geq 3$. Assume $|A| \geq 3$. We show a configuration of the first kind arises in this case. Recall that $N\left(y_{1}\right) \cap A=\left\{z_{3}, z_{4}\right\}$ and $z_{4} \in N(x) \cap N\left(y_{1}\right) \cap A$.
Claim 8. $z_{1} z_{3} \in E(G)$.
Proof. Assume $z_{1} z_{3} \notin E(G)$. Then we observe that $\operatorname{Ad}\left(y_{1}, z_{3} ; A\right)=\emptyset$ since $N\left(y_{1} \cap S \cap V_{5}\right)=\left\{z_{1}\right\}$. Then, since $|\bar{A}| \geq 2,|A| \geq 3$ and $\operatorname{Ad}\left(y_{1}, z_{3} ; A\right)=\emptyset$, applying Lemma 3 with the roles of x and yreplaced by y_{1} and z_{3}, respectively, we see that there is a $y_{1} z_{3}$-fragment A^{\prime} such that $A^{\prime} \subsetneq A$. Since $N\left(y_{1}\right) \cap A=\left\{z_{3}, z_{4}\right\}$ and $z_{3} \in N\left(A^{\prime}\right)$, we observe that $z_{4} \in A^{\prime}$, which implies $x \in N\left(A^{\prime}\right)$ since $x z_{4} \in E(G)$. Hence we see that A^{\prime} is a y_{2}-opposite $x y_{1}$-fragment, which contradicts the minimality of A. This contradiction proves Claim 8.

By Claim 8, we have $z_{3} \in N\left(z_{1}\right) \cap A$. Let $N\left(z_{1}\right) \cap A=\left\{z_{3}, u_{2}\right\}$.
Claim 9. $u_{2} \neq z_{4}$.
Proof. Assume that $u_{2}=z_{4}$. Then $N\left(\left\{y_{1}, z_{1}\right\}\right) \cap A=\left\{z_{3}, z_{4}\right\}$. Since $|A| \geq 3$, we observe that $A^{\prime}=A-\left\{z_{3}, z_{4}\right\} \neq \emptyset$. Since $\left|N\left(A^{\prime}\right)\right|=\left|\left(S-\left\{y_{1}, z_{1}\right\}\right) \cup\left\{z_{3}, z_{4}\right\}\right|=5, A^{\prime}$ is an $x z_{4}$-fragment. Then, since $\left|\bar{A}^{\prime}\right| \geq 2$ and $N(x) \cap A^{\prime} \cap V_{5}=\emptyset$, applying Lemma 6 with the role of A replaced by A^{\prime}, we see that $\operatorname{Ad}\left(x ; A^{\prime}\right) \neq \emptyset$. On the other hand, since $A^{\prime} \cap\left\{y_{1}, y_{2}\right\}=\emptyset$, we see that $\operatorname{Ad}\left(x ; A^{\prime}\right)=\emptyset$, which contradicts the previous assertion. This contradiction proves Claim 9.

Claim 10. $z_{3} \in N\left(u_{2}\right) \cap V_{5}$.
Proof. Since $u_{2} \neq z_{4}$, we observe that $u_{2} y_{1} \notin E(G)$, which implies that $\operatorname{Ad}\left(z_{1}, u_{2} ; A\right)=\emptyset$ since $N\left(z_{1}\right) \cap S=\left\{y_{1}\right\}$. Then, since $|\bar{A}| \geq 2,|A| \geq 3$ and $\operatorname{Ad}\left(z_{1}, u_{2} ; A\right)=\emptyset$, applying Lemma 3 with the roles of x and y replaced by z_{1} and u_{2}, respectively, we see that there is a $z_{1} u_{2}$-fragment A^{\prime} such that $A^{\prime} \subsetneq A$. Since $N\left(z_{1}\right) \cap A=\left\{z_{3}, u_{2}\right\}$ and $u_{2} \in N\left(A^{\prime}\right)$, we observe that $N\left(z_{1}\right) \cap A^{\prime}=\left\{z_{3}\right\}$, which implies $y_{1} \in N\left(A^{\prime}\right)$ since $y_{1} z_{3} \in E(G)$. If $x \in N\left(A^{\prime}\right)$ then A^{\prime} is a y_{2}-opposite $x y_{1}$-fragment, which contradicts the minimality of A. Hence $x \notin N\left(A^{\prime}\right)$, which implies $z_{4} \notin A^{\prime}$ since $x z_{4} \in E(G)$. Since $N\left(y_{1}\right) \cap A=\left\{z_{3}, z_{4}\right\}$, we see that $N\left(y_{1}\right) \cap A^{\prime}=\left\{z_{3}\right\}$. Now we observe that $N\left(\left\{z_{1}, y_{1}\right\}\right) \cap A^{\prime}=\left\{z_{3}\right\}$. Since $N\left(\left\{z_{1}, y_{1}\right\}\right) \cap A^{\prime}=\left\{z_{3}\right\}$, applying Lemma 1 with the roles of S and A replaced by $\left\{z_{1}, y_{1}\right\}$ and A^{\prime}, respectively, we see that $A^{\prime}=\left\{z_{3}\right\}$. This implies $z_{3} \in V_{5}$ and $z_{3} u_{2} \in E(G)$. Now Claim 10 is proved.

By Claims 8-10, we find a configuration of the first kind around (x, y_{1}), and the proof of Proposition 2 is completed.

5. Proof of Main Theorem

In this section we give a proof of Main Theorem.
We use a discharging method to prove Main Theorem.
Let G be a contraction-critically 5-connected graph and let $x \in V(G)$. We put $\mathrm{ch}_{0}(x)$ unit of charge on x before discharging process according to the following rule.

$$
\operatorname{ch}_{0}(x)= \begin{cases}0, & \text { if } x \in V_{5} \\ 1 & \text { otherwise }\end{cases}
$$

In discharging process we move $\varphi(x, y)$ unit of charge from x to y by the following rule.

$$
\varphi(x, y)= \begin{cases}\frac{1}{\left|N(x) \cap V_{5}\right|}, & \text { if } x y \in E_{G}\left(V(G)-V_{5}, V_{5}\right) \\ 0, & \text { otherwise }\end{cases}
$$

We denote $\operatorname{ch}(x)$ the amount of charge on $x \in V(G)$ after discharging process.
Then, since we put a unit of charge on each vertex of $V(G)-V_{5}$, we observe that $|G|-\left|V_{5}\right|=\sum_{x \in V(G)} \mathrm{ch}_{0}(x)$. Since the discharging process do not change the total amount of charge on $V(G)$, we see that $\sum_{x \in V(G)} \operatorname{ch}_{0}(x)=\sum_{x \in V(G)} \operatorname{ch}(x)$. According to the discharging rule, we know $\operatorname{ch}(x)=0$ for each $x \in V(G)-V_{5}$. Hence, if $\operatorname{ch}(y) \leq 1$ for each $y \in V_{5}$, then $\sum_{y \in V(G)} \operatorname{ch}(y) \leq\left|V_{5}\right|$. Then $\left|V(G)-V_{5}\right|=\sum_{x \in V(G)} \operatorname{ch}_{0}(x)=\sum_{x \in V(G)} \operatorname{ch}(x) \leq\left|V_{5}\right|$, which implies that $\left|V_{5}\right| \geq \frac{1}{2}|G|$. Thus, it is enough to show that $\operatorname{ch}(y) \leq 1$ for each $y \in V_{5}$.

Let $X=\left\{x \in V(G) \mid \overline{\operatorname{deg}}(x) \geq 6\right.$ and $\left.\left|N(x) \cap V_{5}\right|=2\right\}$. We divide V_{5} into two sets W and W^{\prime} as follows. $W=\left\{y \in V_{5} \mid N(y) \cap X=\emptyset\right\}$ and $W^{\prime}=V_{5}-W$. Let $y \in V_{5}$. Let $\tilde{N}(y)=N(y) \cap\left(V(G)-V_{5}\right)$. Then, by Theorem E, we know that $\left|N(y) \cap V_{5}\right| \geq 2$, which implies that $|\tilde{N}(y)| \leq 3$. At first assume $y \in W$. Then, from each vertex of $\tilde{N}(y)$, y receives at most $\frac{1}{3}$ unit of charge through the discharging process. Hence ch $(y) \leq \frac{1}{3} \times|\tilde{N}(y)| \leq 1$ since $|\tilde{N}(y)| \leq 3$. Next assume $y \in W^{\prime}$ and let $x \in N(y) \cap X$. Then, Proposition 2 assures us that there is either a configuration of the first kind or a configuration of the second kind around (x, y). If there is a configuration of the first kind, then we observe that
$|\tilde{N}(y)|=2$. Hence $\operatorname{ch}(y) \leq \frac{1}{2} \times|\tilde{N}(y)| \leq 1$. So assume there is a configuration of the second kind around (x, y). In this case $|\tilde{N}(y)|=3$. Let $\tilde{N}(y)=\left\{x, z_{3}, z_{4}\right\}$ as in Proposition 2. Then we see that $\left|N\left(z_{3}\right) \cap V_{5}\right|=\left|N\left(z_{4}\right) \cap V_{5}\right|=4$, which implies that $\varphi\left(z_{3}, y\right)=\varphi\left(z_{4}, y\right)=\frac{1}{4}$. Hence, $\operatorname{ch}(y)=\varphi(x, y)+\varphi\left(z_{3}, y\right)+\varphi\left(z_{4}, y\right)=\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1$. Now it is shown that $\operatorname{ch}(y) \leq 1$ for each $y \in V_{5}$ and the proof of Main Theorem is completed.

Acknowledgments

The authors would like to thank the referees for their detailed and valuable comments.

References

[1] K. Ando, K. Kawarabayashi, A. Kaneko, Vertices of degree 5 in a contraction critically 5-connected graphs, Graphs Combin. 21 (2005) 27-37.
[2] Y. Egawa, Contractible edges in n-connected graphs with minimum degree greater than or equal to [$\frac{5 n}{4}$], Graphs Combin. 7 (1991) 15-21.
[3] M. Fontet, Graphes 4-essentiels, C. R. Acad. Sci. Paris 287 (1978) 289-290.
[4] M. Kriesell, A degree sum condition for the existence of a contractible edge in a κ-connected graph, J. Combin. Theory Ser. B 82 (1) (2001) $81-101$.
[5] T. Li, J. Su, The new lower bound of the number of vertices of degree 5 in contraction critical 5-connected graphs, Graphs Combin. 26 (3) (2010) 395-406.
[6] N. Martinov, Uncontractible 4-connected graphs, J. Graph Theory 6 (1982) 343-344.
[7] J. Su, Vertices of degree 5 in contraction critical 5-connected graphs, J. Guangxi Norm. Univ. 3 (1997) 12-16 (in Chinese).
[8] C. Thomassen, Non-separating cycles in k-connected graphs, J. Graph Theory 5 (1981) 351-354.
[9] W.T. Tutte, A theory of 3-connected graphs, Indag. Math. 23 (1961) 441-455.
[10] X. Yuan, C. Qin, J. Su, Some properties of contraction-critical 5-connected graphs, Discrete Math. 23 (2008) 441-455.

[^0]: * Corresponding author.

 E-mail address: ando@ice.uec.ac.jp (K. Ando).

