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We provide a different proof for Morken's result on necessary and sufficient con-
ditions for a minor of the discrete B-spline collocation matrix to be positive and
supply intuition for those conditions. � 1996 Academic Press, Inc.

1. Introduction

In [3, Theorem 6] Morken gives necessary and sufficient conditions for
a minor of the discrete B-spline collocation matrix to be positive, correct-
ing an error in an earlier theorem of Jia [2]. One of these conditions may
not be intuitively obvious. In this note we attempt to supply such intuition,
and we provide a different proof.

Recapping Morken's notation, let k be a positive integer; let
t=[ti]�

i=&� be a bi-infinite, nondecreasing sequence of real numbers
(knots) with ti<ti+k for all i; and let { be a bi-infinite subsequence of t,
{/t. We study the discrete B-spline collocation matrix A{, t with elements
given by (A{, t) i, j=:j, k, t, {(i). Here :j, k, t, {(i) are the coefficients in the
expansion of the B-spline Bj, k, { on the coarse knot sequence { in terms of
the B-splines on the fine knot sequence t,

Bj, k, {=:
i

:j, k, t, {(i) Bi, k, t .

Denote, further,

mt(x)=max[q&p | tq�x and x�tp+1],

lt(i)=max[ p | ti&p=ti],

rt(i)=max[ p | ti+p=ti].
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We are interested in the conditions under which a minor of A{, t has a
strictly positive determinant, as formulated by Morken [3].

Theorem 1.1. Let k�1 be given, let t be a knot vector with ti<ti+k for
all i, and let { be a subsequence of t. Let i1<i2< } } } <im and
j1<j2< } } } <jm be two increasing integer sequences. Then

det A{, t\ i1 , ..., im

j1 , ..., jm+�0,

with strict positivity if and only if both of the following conditions are
satisfied:

(i) (A{, t) iq, jq>0 for q=1, 2, ..., m.

(ii) If for some q, the multiplicity of tiq in t is greater than the multi-
plicity of tiq in {, that is m{(tiq)<mt(tiq), then

iq&dq<iq&dq&fq ,

where

dq=k&rt(iq),

fq=min[lt(iq), mt(tiq)&m{(tiq)&1].

To ease the ascertainment and use of condition (i) we employ the index
mappings +L( j; {, t) and +R( j; {, t), introduced in [1]. By definition they
are such that whenever {b&1�ta&1<ta={b ,

+L(b+u; {, t)=a+mt(ta)&m{(ta)+u,
+R(b+u; {, t)=a+u, = u=0, ..., m{(ta)&1.

Thus +L( j; {, t) is the index of the t-knot corresponding to {j , when
multiple {-knots are viewed as aligned in order at the right end of the
corresponding (multiple) t-knot. Note that +R(b+m{(ta))&1�+L(b+
m{(ta)&1), and that both index mappings are strictly monotone. In these
terms Jia [2, Lemma 5] can be rephrased as follow (see [1]).

Lemma 1.2. (A{, t) i, j>0 if and only if

+L( j; {, t)�i�+R( j+k ; {, t)&k. (1.1)

In the sequel we will therefore refer to condition (i) as the ``interlacing
conditions.''
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For later use we record the following, easily proven, property of +. If
{j<{j+r , or if {j={j+r and m{({j)=mt({j), then

+L( j; {, t)�+R( j+r; {, t)&r. (1.2)

In particular, the assumption that ti<ti+k for all i implies that if {/t then

+L( j; {, t)�+R( j+k&1; {, t)&k+1 for all j. (1.3)

Let us turn now to an examination of condition (ii). The intuition
behind this condition and, indeed, our proof of the theorem, is based on
the following observation of Jia [2].

Lemma 1.3. Suppose that {/\/t. Then

det A{, t\ i1 , ..., im

j1 , ..., jm+>0

if and only if there exist !1< } } } <!m such that

det A\, t\ i1 , ..., im

!1 , ..., !m+ } det A{, \\!1 , ..., !m

j1 , ..., jm +>0.

In particular, given any intermediate knot sequence \, it must be
possible to pick a monotonically increasing integer sequence !1< } } } <!m

such that the interlacing conditions are satisfied for t and \, (A\, t) iq, !q>0
for q=1, 2, ..., m. Let us look at a case in which this is not possible. We will
demonstrate this by showing that if the interlacing conditions do hold then
the ! sequence cannot be strictly monotonic.

Suppose there are indices ip and iq such that tip+k=tiq=tz with tz&1<tz .
In fact, let us require slightly more: that z+m{(tz)�ip+k�z+mt(tz)&1
and that z�iq�z+mt(tz)&1&m{(tz). Consider now a sequence \ which
is the same as t except that the multiplicity of the knot tz in \ is
m :=ip+k&z, instead of mt(tz). Note that by assumption m{(tz)�m�
mt(tz)&1. If (A\, t) ip, !p>0 and (A\, t) iq, !q>0 for some !p and !q , then it is
easily seen (cf. the proof of Lemma 2.1) that necessarily

!p�ip , !q�iq&mt(tz)+max(m, z+mt(tz)&1&iq).

The sequence ! will certainly fail to be strictly monotonic if !p+q&p>!q ,
which by the above is assuredly true if

ip+q&p>iq&mt(tz)+max(ip+k&z, z+mt(tz)&1&iq).
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The following lemma spells this condition out and shows that it is in fact
equivalent to condition (ii); it is therefore, somewhat surprisingly, the only
type of case that needs to be ruled out. Incidentally, the assumption
0�iq&z�mt(tz)&1&m{(tz) is not stated explicitly because it is a conse-
quence of the other conditions and the interlacing conditions for t and {.

Lemma 1.4. Condition (ii) is violated for iq , with tz&1<tz=tiq , if and
only if there exists an ip for which all of the following hold:

(a) z+m{(tz)�iq+k�z+mt(tz)&1,

(b) iq+q&p�z,

(c) q&p�dq .

Proof. Suppose condition (ii) is violated, and set p=q&dq . Writing
out the definition of fq while noting that iq&dq=z+mt(tz)&1&k and
iq&lt(iq)=z, we get

ip�iq&dq&(mt(tz)&m{(tz)&1)=z&k+m{(tz), (1.4)

ip�iq&(q&p)&lt(iq)=z&(q&p), (1.5)

proving (b) and half of (a). To prove the remaining half observe that
ir&1�ir&1 for all r and so

ip=iq&dq�iq&dq=z&k+mt(tz)&1.

To prove the converse we note that if (a), (b), (c) hold for some p� , then
they must also hold for p=q&dq�p� . Namely, the left-hand side of (a) is
immediate while the right-hand side follows from ip=iq&dq�iq&dq ; and
(b) follows from ip&p�ip� &p� . Therefore, the proof is already implicit in
inequalities (1.4), (1.5). K

2. Proof of the Theorem

The necessity of the interlacing conditions is fairly clear and proven in
[2]. To establish the necessity of condition (ii), Lemma 2.1 exhibits a sub-
sequence {/\/t such that if the condition is violated then

det A\, t\ i1 , ..., im

!1 , ..., !m+=0,
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whatever the choice of [!r]. It follows then from Lemma 1.3 that

det A{, t\ ij , ..., im

j1 , ..., jm+=0.

To prove the converse we proceed by induction on the difference in the
number of knots in t and {. If the difference is zero, t={, it is easily seen
from Lemma 1.2 that condition (i) implies iq=jq , q=1, ..., m, and hence
the determinant is positive. For the induction step we exhibit in Lemma
2.2, if conditions (i) and (ii) hold, a subsequence \, {/\/t, and a set of
indices [!r] such that conditions (i) and (ii) hold again for \ and t with
respect to [!r] and [ir], and at the same time

det A{, \\!1 , ..., !m

j1 , ..., jm +>0.

Thus, another application of Lemma 1.3 completes the theorem.

Lemma 2.1. Suppose condition (ii) is violated for iq . Then there exists a
subsequence \, {/\/t, for which condition (i) can never hold, i.e., whatever
the choice of !1< } } } <!m , there is an is such that (A\, t) is, !s=0. To be
specific, \ coincides with t everywhere except at tiq where it has a knot of
multiplicity

m\(tiq)=ip+k&z, (2.1)

where ip is an index whose existence is ensured by Lemma 1.4.

Proof. Observe that Eq. (2.1) ensures {/\/t, by virtue of Lemma 1.4
(a). According to the definition of \,

+L( j; \, t)={ j,
j+mt(tz)&m\(tz),

if j�z&1,
if j�z,

(2.2)

+R( j; \, t)={ j,
j+mt(tz)&m\(tz),

if j�z+m\(tz)&1,
if j�z+m\(tz).

We will show that the interlacing conditions fail either at the index p or
at the index q. Suppose they do hold at p, so that we have to establish their
failure at q. The interlacing condition at the index p,

+L(!p ; \, t)�ip�+R(!p+k; \, t)&k, (2.3)
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forces !p=ip . This is so because the lefthand side implies, by (2.2), that
!p�ip ; and if !p<ip then by the definition of m\(tz) in Eq. (2.1),
!p+k�ip+k&1=m\(tz)+z&1. Hence, again by (2.2),

+R(!p+k; \, t)&k=!p<ip ,

contradicting the right-hand side of (2.3).
Consider now iq . Since !q�!p+q&p=ip+q&p�z, by Lemma 1.4 (b)

it follows from (2.2) that

+L(!q ; \, t)�ip+q&p+mt(tz)&m\(tz).

Substituting the definition of m\ , and then using Lemma 1.4(c),

+L(!q ; \, t)�q&p+mt(tz)+z&k�dq+mt(tz)+z&k=iq+1.

Hence the interlacing condition fails at the index q. K

Lemma 2.2. Suppose conditions (i) and (ii) hold. Let tz # t be the first
knot not in {, in the sense that m{(tz)<mt(tz), and set \ :={ _ [tz], i.e.,

{j , if {j�tz ,
\j={tz , if {j&1�tz<{j

{j&1 , if {j&1>tz .

Then !1< } } } <!m can be chosen such that conditions (i) and (ii) hold for
\ and t with respect to [!r] and [ir], and

det A{, \\!1 , ..., !m

j1 , ..., jm +>0. (2.4)

Proof. Since \={ _ [tz] we have, as pointed out by Jia [2], that
inequality (2.4) holds if and only if the interlacing conditions are satisfied.
It is easily seen, using Lemma 1.2, that this is the case if and only if

js , if js+k< y+m{(tz),
!s={ js or js+1, if y+m{(tz)&k� js� y&1, (2.5)

js+1, if js� y,

where y is such that {y&1�tz&1<tz�{y . We have therefore to decide
upon the value of !s for those s for which y+m{(tz)&k�js�y&1 and to
prove that the resulting ! sequence is strictly monotonic and that condi-
tions (i) and (ii) hold again for \ and t with respect to [!r] and [ir]. Let
us verify condition (ii) immediately since it does not depend at all on the
definition of !. Were condition (ii) to be violated, so that (a)�(c) of Lemma
1.4 hold for \, then from m\(tz)>m{(tz) and z+m\(tz)�ip+k it follows
that condition (ii) is violated for { as well, a contradiction.

270 AVRAHAM A. MELKMAN



File: 640J 295707 . By:CV . Date:30:01:00 . Time:10:46 LOP8M. V8.0. Page 01:01
Codes: 2815 Signs: 1430 . Length: 45 pic 0 pts, 190 mm

To complete the choice of ! denote for brevity +( j)=+( j; {, t) and
+� ( j)=+( j; \, t). It is easily seen that

+L( j ), if j<y,
+� L( j )={z+mt(tz)&m\(tz), if j=y,

+L( j&1), if j>y,
(2.6)

+R( j ), if j<y+m\(tz)&1,
+� R( j )={z+m\(tz)&1, if j=y+m\(tz)&1,

+R( j&1), if j>y+m\(tz)&1.

Now for s such that y+m{(tz)&k�js�y&1 set

js , if is<+� L( j+1),
!s={ js+1, if is+k>+� R( js+k), (2.7)

max( js , !s&1+1) otherwise.

It is easily seen from the strict monotonicity of [ js] that with this defini-
tion, indeed, js�!s�js+1 for all s.

Let us verify first that the interlacing conditions

+L(!r ; \, t)�ir�+R(!r+k ; \, t)&k, r=1, ..., m, (2.8)

hold. When js+k<y+m{(tz) or js�y it follows from (2.6) that

+� L(!s)=+L( js), +� R(!s+k)=+R( js+k).

Hence for these values of !s inequality (2.8) is an immediate consequence
of the corresponding interlacing conditions for {. On the other hand, for s
such that y+m{(tz)&k�js�y&1 it follows from the interlacing condi-
tions for { and Eq. (2.6) that

+� L( js)=+L( js)�is�+R( js+k)&k=+� R( js+k+1)&k. (2.9)

Taking into account inequality (1.3),

+� L( js+1)�+� R( js+k)&k+1, (2.10)

we have that

v if is<+� L( js+1), so that !s=js , then +� L(!s)�is from inequality
(2.9), and is�+� R(!s+k)&k from inequality (2.10);

v if is+k>+� R( js+k), so that !s=js+1, then +� L(!s)�is from
inequality (2.10), and is�+� R(!s+k)&k from inequality (2.9);

v if +� L( js+1)�is�+� R( js+k)&k then the interlacing condition for
!s holds whether !s is defined as js or as js+1.
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This proves the interlacing conditions. Turning to the proof of the strict
monotonicity of !, suppose to the contrary that there is a least p and a q,
p<q, such that !q&!p<q&p. Since js�!s�js+1 and [ js] is strictly
monotone, it must be the case that jq&jp=q&p and that !p=jp+1 and
!q=jq . Hence it is seen from Eq. (2.5) that

y+m{(tz)&k�jp<jq�y&1. (2.11)

We obtain therefore from Eq. (2.7) that all of the following hold:

(1) ip+k>+� R( jp+k),

(2) iq<+� L( jq+1),

(3) jq&jp=q&p.

To complete the proof we show that if (1), (2), and (3) hold then condi-
tion (ii) is violated in its formulation of Lemma 1.4.

It follows from inequality (2.11) and \y=\y+m{(tz)=tz , that \jq+1�tz�
\jp+k . But \jq+1<\jp+k is impossible because that, together with (1) and
(2) and inequality (1.2), would imply

iq+1�+� L( jq+1)�+� R( jp+k)&( jp+k&jq&1)�ip+jq&jp .

Upon substitution of (3) it is then seen that the i-indices cannot be strictly
monotonic.

Thus, \jq+1=tz=\jp+k . This implies

jq+1=y, jp+k=y+m\(tz)&1, (2.12)

as follows: by (2.11) jq�y&1, but jq<y&1 would result in
\jq+1�\y&1={y&1<tz ; similarly, jp+k>y+m\(tz)&1 yields \jq+1�
\y+m\(tz)={y+m{(tz)>tz , a contradiction.

From Eq. (2.12) it follows that

q&p=jq&jp=k&m\(tz), (2.13)

and also, by (1), (2), and Eq. (2.6), that

iq�+� L( jq+1)&1=z+mt(tz)&m\(tz)&1, (2.14)

ip+k�+� R( jp+k)+1=z+m\(tz). (2.15)

In turn inequalities (2.13)�(2.15) imply

ip+k�iq&q+p+k�z+mt(tz)&1, (2.16)
ip+q&p=ip+k&m\(tz)�z, (2.17)

q&p�k+iq&z&mt(tz)+1=dq . (2.18)
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Actually, for the last equality it still has to be shown that tiq=tz . To this
end, recall that tz is the first knot not in {, so that +L( jq)=z&1. Therefore
if iq<z, then from the given +L( jq)�iq , necessarily iq=z&1=jq . But then
ip�iq+p&q=jq+p&q=jp , contradicting (1).

Since (2.16)�(2.18) establish the conditions of Lemma 1.4, we have
shown that (1)�(3) can hold only if condition (ii) is violated. K
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