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Abstract

A new physical model for very large floating structures (VLFSs) connected with an immersed module is investigated for a

two-layer fluid, which may provide the basic knowledge to analyze multi-module floating structures in the stratified ocean. Under

the hypothesis of small-amplitude wave theory, the case with the coupling effects by the wave motion, elastic deformation of

the plate and the rigid body’s oscillation is solved by considering a scattering problem and a radiation one. An inner product

with orthogonality is used to calculate the undetermined coefficients in eigenfunction expansions. The exciting forces and the

coefficients for added mass, damping, and stiffness are obtained.
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1. Introduction

A floating elastic plate connected with an immersed rigid body may be a representative physical model for multi-

module very large floating structures (VLFSs). The body stands for a certain buildings, for example, living facilities,

oil storages, airport terminals, on the VLFS. The method of matched eigenfunction expansions is a wildly used

technique for the hydroelastic interaction between waves and a marine structure. A prior manner for calculating the

numerical coefficients is the error function method presented by Fox and Squire [1,2] for the interaction of waves with

a semi-infinite elastic plate. Sahoo et al. [3] adopted an inner product method for the same problem. Xu and Lu [4]

employed the vertical eigenfunctions at free surface region to make an inner product with orthogonality, by which the

numerical approximation for the series solution can converge quickly after truncating a few terms in the expansions.

Under the small-amplitude wave hypothesis and the linear potential flow theory, we consider the above-mentioned

model by a linear superposition of a scattering potential and a radiation one. The difficulty is to match the velocity

potentials at vertical interfaces between different regions. We try to employ the vertical eigenfunctions at the free

surface region to make an inner product. It is shown that this manner is effective and will yield some orthogonal

relations which are helpful for simplifying the matching equations, and thus the computation efficiency is promoted.
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2. Mathematical formulation

We consider a two-dimensional model composed of an immersed rigid body and two pieces of thin elastic plate

floating on a two-layer fluid, as shown in Fig. 1. The pitch and heave motions of the rigid body are taken into account

while the surge motion is neglected here. The density and the thickness of the upper fluid are denoted by ρ1 and h1

while those of the lower fluid by ρ2 and h2. With the assumption of linearity and time-harmonic motion, we write

the velocity potential as Φ(x, z, t) = �[φ(x, z)e−iωt], where ω refers to the frequency and φ(x, z) is the spatial potential

function which satisfies ∇2φ(x, z) = 0.
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Fig. 1. Schematic diagram of the floating structure

The combined boundary conditions on top surface, the middle interface and the bottom seabed should be

− ρ1ω
2φ +

(
D
∂4

∂x4
− Mω2 + ρ1g

)
∂φ

∂z
= 0, (|x| > B, z = 0), (1)

γ
[
Kφ(x,−h+1 ) − ∂φ(x,−h+1 )

∂z

]
= Kφ(x,−h−1 ) − ∂φ(x,−h−1 )

∂z
, (−∞ < x < +∞), (2)

∂φ(x,−h+1 )

∂z
=
∂φ(x,−h−1 )

∂z
, (−∞ < x < +∞), (3)

∂φ

∂z
= 0, (−∞ < x < +∞, z = −H), (4)

where g is the gravitational acceleration; γ = ρ1/ρ2 and K = ω2/g; D and M are piecewise parameters with D =
Ed3

e/[12(1− ν2)] and M = ρede for the plate-covered region (B < |x| < L) while D = 0 and M = 0 for the free-surface

region (|x| > L); E, de, ρe, and ν are Young’s Modulus, thickness, density, and Poisson’s ratio of the plate respectively.

The conditions for the submerged surface of the rigid body and the edge of the plates are given below in the procedure

for solving the problem.

3. Method of solution

The spatial potential is linear superposition of two parts, namely φ = φr + φs, in which φr refers to the radiation

potential due to the rigid body’s motion and φs accounts for the wave scattering by the rigid body without motion.

Given corresponding boundary conditions, φr and φs can be solved respectively.

3.1. Radiation potential

The radiation potential can be written in the form of φr = −iω
∑2

r=1 Ar
rφ

r
r, where Ar

1 and Ar
2 are the amplitudes for

the heave and pitch motions, respectively. φr
1 is the heave component per unit response speed and φr

2 for the pitch one.

On the submerged surface of the rigid body, the potential φr
r with r = 1, 2 satisfies

∂φr
r

∂x
= (z − zc)δ2r, (|x| = B,−d < z < 0), (5)

∂φr
r

∂z
= δ1r − xδ2r, (|x| < B, z = −d), (6)
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where (0, zc) is the barycenter coordinate of the rigid body, δ1r and δ2r is the Kronecker delta with r = 1, 2. The

radiation potential φr
r with r = 1, 2 should satisfy the body boundary and free edge conditions as follow

∂φr
r(±B±, 0)

∂z
= δ1r ∓ Bδ2r,

∂2φr
r(±B±, 0)

∂x∂z
= −δ2r,

∂3φr
r(±L∓, 0)

∂x2∂z
= 0,

∂4φr
r(±L∓, 0)

∂x3∂z
= 0. (7)

The dispersion relations in every region are derived as

(γt1t2 + 1)ω4 − (t1 + t2)ω2
0ω

2 + εt1t2ω4
0 = 0, (for Region Ω1), (8)

[γt1t2 + 1 + (t1 + γt2)G3]ω4 − [G1t1 +G2t2 + εt1t2G3]ω2
0ω

2 + εG1t1t2ω4
0 = 0, (for Region Ω2), (9)

(t0 + γt2)ω2 − εt0t2ω2
0 = 0, (for Region Ω3), (10)

where ω2
0 = gk, t0 = tanh kh0, t1 = tanh kh1, t2 = tanh kh2, h0 = h1 − d, G1 = Γk4 + 1, G2 = ε + γG1, G3 = σk,

Γ = D/ρ1g, and σ = M/ρ1. For a given ω, we can find roots from Eqs. (8)–(10) with respect to k. Equation (8)

has four real roots ±k01
, ±k02

and infinite numbers of pure imaginary roots ±iki (i = 1, 2, 3 . . . ). Equation (9) has

four real roots ±κ01
, ±κ02

, infinite numbers of pure imaginary roots ±iκ j ( j = 1, 2, 3 . . . ), and two couples of complex

conjugates ±iκI and ±iκII. Equation (10) has one zero root λ01
, two non-zero real roots ±λ02

and infinite numbers of

pure imaginary roots ±iλl (l = 1, 2, 3 . . . ).
In terms of the symmetry and far-field conditions, we have the radiation potentials expanded in series as follow

φr
r1(x, z) = Ar01

e−ik01
(x+L)Z01

+Ar02
e−ik02

(x+L)Z02
+

∞∑
i=1

Arie
ki(x+L)Zi, (Ω1), (11)

φr
r2(x, z) = (Br01

eiκ01
(x+B) + Cr01

e−iκ01
(x+B))Z̃01

+ (Br02
eiκ02

(x+B) + Cr02
e−iκ02

(x+B))Z̃02

+

∞∑
j=1

(Br je
−κ j(x+B) + Cr je

κ j(x+B))Z̃ j +
∑
j=I,II

(Br je
−κ j(x+B) + Cr je

κ j(x+B))Z̃ j, (Ω2), (12)

φr
r3(x, z) =Wr +Dr01

(−x
B

)δ2r

Z01
+Dr02

cos(λ02
x − π

2
δ2r)

cos(λ02
B +
π

2
δ2r)

Z02
+

∞∑
l=1

Drl

cosh(λl x − i
π

2
δ2r)

cosh(λlB + i
π

2
δ2r)

Zl, (Ω3), (13)

where
{
Z01

(z), Z02
(z), Zi(z)

}
=
{
V(k01

, z),V(k02
, z),V(iki, z)

}
,
{
Z̃01

(z), Z̃02
(z), Z̃ j(z)

}
=
{
V(κ01

, z),V(κ02
, z),V(iκ j, z)

}
,{

Z01
(z),Z02

(z),Zl(z)
}
=
{
V(λ01

, z),V(λ02
, z),V(iλl, z)

}
, and

V(k, z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
K cosh kh2 − εk sinh kh2

γK cosh kH
cosh k(z + h1) +

sinh kh2

cosh kH
sinh k(z + h1), (−h1 < z < 0),

cosh k(z + H)

cosh kH
, (−H < z < −h1),

(14)

Wr =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(−x)δ2r

h0 + γh2

[ z2

2
− x2

2 · 3δ2r
+ (h1 + γh2)z − εh2

(
h1 +

1

K

)]
, (−h1 < z < −d),

γ(−x)δ2r

h0 + γh2

( z2

2
− x2

2 · 3δ2r
+ Hz

)
, (−H < z < −h1).

(15)

The first subscript for φr(x, z) denotes the state of motion while the second for the fluid region.

Along the matching boundaries, the continuity of pressure and the conservation of mass flux lead to

φr
r1 = φ

r
r2,

∂φr
r1

∂x
=
∂φr

r2

∂x
, (x = −L,−H < z < 0), (16)

φr
r2 = φ

r
r3, (x = −B,−H < z < −d), (17)

∂φr
r2

∂x
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(z − zc)δ2r, (x = −B,−d < z < 0),
∂φr

r3

∂x
, (x = −B,−H < z < −d).

(18)



273 Q.R. Meng and D.Q. Lu  /  Procedia Engineering   126  ( 2015 )  270 – 274 

For this case, it is difficult to make the velocities beside x = −B be well matched for Eq. (18). We try to employ the

vertical eigenfunctions Zm(z) (m = 01, 02, 1, 2, 3, . . . ) at the free surface region to make inner product for Eqs. (16) and

(18), and Zn(z) (n = 01, 02, 1, 2, 3, . . . ) for Eq. (17), where the inner product is in a general form of

〈U,V; a〉 =
∫ −h1

−H
U · V dz + γ

∫ a

−h1

U · V dz, (a = 0,−d), (19)

where U and V denote the vertical eigenfunctions. It is easy to validate the orthogonality for the inner products

〈Zm, Zn; 0〉 = 0, 〈Zm,Zn;−d〉 = 0, (m, n = 01, 02, 1, 2, 3, . . . ), (20)

〈Z̃m, Zn; 0〉 − Dmn = 0, (m = 01, 02, I, II, 1, 2, 3, . . . ; n = 01, 02, 1, 2, 3, . . . ), (21)

where

Dmn =
γ(Dκ4m − Mω2)

ρ1ω2(k4
n − κ4m)

[
∂Z̃m

∂z
∂3Zn

∂z3
+
∂3Z̃m

∂z3

∂Zn

∂z

]∣∣∣∣∣
z=0
= 0. (22)

Although Eq. (21) is not a completely orthogonal relation without the explicit differential term Dmn, it is remarkably

helpful in improving the efficiency of numerical computation. After truncating the expansions at i, j = N, l = N′ for

the inner products and adding the edge conditions of Eq. (7), we can obtain a set of 3N + N′ + 12 equations for

3N + N′ + 12 coefficients, from which the radiation potentials can be solved numerically.

3.2. Scattering potential

We decompose the scattering potential into a symmetric part φs
1

and an antisymmetric one φs
2

as

φs(x, z) =
1

2
[φs

1(x, z) + φs
2(x, z)], φs

1(x, z) = φs(x, z) + φs(−x, z), φs
2(x, z) = φs(x, z) − φs(−x, z). (23)

For the scattering potential, the velocity on the immersed surface and all of edge conditions should be equal to zero.

The matching conditions about the continuities of mass flux and velocity at x = −L and of mass flux at x = −B are

the same as those in Eqs. (16)–(17), and the velocity at x = −B is changed to

∂φs
r2

∂x
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, (x = −B, − d < z < 0),
∂φs

r3

∂x
, (x = −B, − H < z < −d).

(24)

Subsequently by taking the same method in Sec. 3.1, we can finally obtain the scattering potentials.

3.3. Hydrodynamic coefficients

The components for exciting forces ( fw1, fw2, fe1, fe2), hydrodynamic coefficients of added mass (μ11, μ12, μ21,

μ22), damping (τ11, τ12, τ21, τ22, �11, �12, �21, �22), and stiffness (ϑ11, ϑ12, ϑ21, ϑ22) are given by

fw1 = iωρ1

∫ 0

−B
φs

13(x,−d) dx, fw2 = iωρ1

( ∫ 0

−d
(z − zc)φs

22(−B, z) dz −
∫ 0

−B
xφs

23(x,−d) dx
)
,

fe1 =
iD
ω

∂4φs
12

(−B, 0)

∂x3∂z
, fe2 =

iD
ω

(
B
∂4φs

22
(−B, 0)

∂x3∂z
+
∂3φs

22
(−B, 0)

∂x2∂z

)
,

μ11 +
i

ω
τ11 = 2ρ1

∫ 0

−B
φr

13(x,−d) dx, μ22 +
i

ω
τ22 = 2ρ1

( ∫ 0

−d
(z − zc)φr

22(−B, z) dz −
∫ 0

−B
xφr

23(x,−d) dx
)
,

μ12 +
i

ω
τ12 = μ21 +

i

ω
τ21 = ϑ12 − iω�12 = ϑ21 − iω�21 = 0,

ϑ11 − iω�11 = −2D
∂4φr

12(−B, 0)

∂x3∂z
, ϑ22 − iω�22 = −2D

(
B
∂4φr

22(−B, 0)

∂x3∂z
+
∂3φr

22(−B, 0)

∂x2∂z

)
.
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4. Result and conclusion

We formulate a type of VLFS which is a combination of an immersed rigid body and two elastic plates by rigid

joints. An effective manner of making inner product with orthogonality is presented to process the matching relations.

After applying this approach, the difficulty in handling the velocity continuity along the lateral surface of the rigid body

is reduced. The components induced directly by the velocity potentials, namely ( fw1, fw2), (μ11, μ22) and (τ11, τ22)

will become larger as the ratio B/d increases. The components ( fe1, fe2), (ϑ11, ϑ22) and (�11, �22) due to the elastic

forces at the joints are almost unaffected by B/d. The variations of radiation damping (τ11, τ22) and added stiffness

(ϑ11, ϑ22) versus the frequency are shown in Fig. 2, where Bd = 0.1 is constant.
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Fig. 2. The radiation damping (τ11, τ22) and the added stiffness (ϑ11, ϑ22) against the frequency with different aspect ratio B/d
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