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Natural languages arise in an unpremeditated fashion resulting in words and syntax as individual
units of information content that combine in a manner that is both complex and contextual, yet
intuitive to a native reader. In an analogous manner, protein interaction domains such as the Src
Homology 2 (SH2) domain recognize and “read” the information contained within their cognate
peptide ligands to determine highly selective protein—-protein interactions that underpin much of
cellular signal transduction. Herein, we discuss how contextual sequence information, which com-
bines the use of permissive and non-permissive residues within a parent motif, is a defining feature
of selective interactions across SH2 domains. Within a system that reads phosphotyrosine modifica-
tions this provides crucial information to distinguish preferred interactions. This review provides a
structural and biochemical overview of SH2 domain binding to phosphotyrosine-containing peptide
motifs and discusses how the diverse set of SH2 domains is able to differentiate phosphotyrosine
ligands.

© 2012 Federation of European Biochemical Societies. Published by Elsevier B.V.
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1. Introduction

The Src Homology 2 (SH2) domain is the primary “reader” of
phosphotyrosine in metazoa. SH2 domains emerged and expanded
alongside the protein tyrosine kinases (PTKs) and protein tyrosine
phosphatases (PTPs) [1,2]. First identified as a conserved subunit of
cytoplasmic tyrosine kinases (CTKs) such as viral Fps (v-Fps) [3,4],
the SH2 domain is widely considered the founding and prototypic
member of the broad class of protein interaction domains, and the
principal domain responsible for recognizing phosphotyrosine
(pTyr) in metazoan cells [5]. Other pTyr binding modules have
been identified that include the phosphotyrosine binding (PTB)
[6], C2 [7], pyruvate kinase M2 [8]and the Hakai-tyrosine binding
(HYB) domain [9]. Following the identification of the SH2 domain
[3,10] a large class of protein recognition domains, many of which
recognize short linear peptide motifs have been identified [5]. In
humans, 111 genes have been identified to date that contain at
least one SH2 domain within their encoded polypeptide chain,
with a total of 121 individual SH2 domains expressed from the
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human genome [11,12] (Fig. 1A). The orthologies of specific SH2
domains and SH2 domain families has been mapped through evo-
lution. Human SH2 domains can be grouped into some 38 families
that contain a diverse array of additional modular protein domains
and short linear motifs that allow pTyr signaling to control a wide
range of cellular functions [11,12]. Thus, SH2 domains are found in
the context of and serve alongside tyrosine kinases, phosphatases,
actin cytoskeletal regulators, transcriptional activators and an ar-
ray of other functional motifs to coordinate specific responses to
discrete pTyr signaling events (Fig. 1B) [11]. SH2 domains are
known to couple pTyr signaling from receptor tyrosine kinases
(RTKs) to downstream signaling and coordinate temporal and
spatial information critical for numerous cellular processes. These
include cellular differentiation, cell migration and regulation of
RTKs. Because of this SH2 domains can serve as reagents to profile
the pTyr state of various cancers and provide diagnostic informa-
tion for clinicians [13,14] (see reviews by Kazuya Machida and Eric
B. Haura in this issue).

In this review, we will elaborate the mechanisms by which SH2
domains achieve selectivity as a system using relatively short pep-
tide interfaces and limited diversity in the primary motif space. We
will also discuss recent high-throughput approaches and structural
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Fig. 1. The human complement of SH2 domain proteins. (A) An unrooted tree of the 121 human SH2 domains was generated using previously described multiple sequence
alignments [11]. (B) The modular domain organization of select SH2 domain families and gene members which display a diverse set of non-catalytic and catalytic domains for
mediating protein-protein interactions and enzyme catalysis. More information on the individual domains portrayed can be found at http://www.mshri.on.ca/pawson/
domains.html and http://smart.embl-heidelberg.de/. For a complete list of the 38 SH2 families and gene members can be found at http://sh2domain.org.

studies aimed at defining interaction selectivity on a systems level
(see also [15]). We pay particular attention to the complex lan-
guage of specificity and how contextual information plays a signif-
icant part in understanding the role of SH2 domains in cellular
signaling networks.

2. SH2 structure and modes of phosphopeptide binding

In order to appreciate the diversity of SH2 domain binding to
pTyr peptides, let us begin with an overview of the SH2 domain
in structural terms. The SH2 domain is an independently folding
protein module of approximately 100 residues with an evolution-
arily conserved phosphopeptide binding site [16] that binds to
pTyr-containing peptide ligands with on the order of 1000-fold
greater affinity than to non-phosphorylated counterpart peptides
[17,18]. Structures for a large number of SH2 domains have been
solved [11] and these reveal a canonical SH2 domain fold that
has a core anti-parallel B-sheet interposed between two o-helices
followed by another tripled-stranded B-sheet on the C-terminus
[17] (Fig. 2A). Multiple contacts across the surface of the SH2 do-
main mediate pTyr recognition and selectivity for residues around
the pTyr, particularly those C-terminal at positions +1 to +5 rela-
tive to the pTyr residue. The negatively charged phosphate moiety
on tyrosine inserts into a pocket in the B-sheet, where an invariant
arginine at position BB5 (beta-strand B, position 5) at the base of
the pocket, together with arginine A2 and histidine D4, coordi-
nate the oxygen atoms of the phosphate moiety (Fig. 2B). This pTyr
interaction provides roughly half of the ligand binding energy and
is a near-universal characteristic of SH2 domains. Mutation of Arg

BB5 or His pD4 abolishes pTyr-specific binding [19]. Of the 121 hu-
man SH2 domains, 118 SH2 domains contain an Arg at the BB5 po-
sition, while 2 possess a His (Rin2, Tyk) or a Trp (SH2D5) (Fig. 2B)
[11]. A second binding pocket, termed the ‘specificity pocket’ is
formed by the loop regions (CD, DE, BG) and strands BD and BE
of the SH2 domain. The loops and strands that define the specificity
pocket usually are responsible for making contact with residues
C-terminal to the pTyr and are more variable in sequence than
the rest of the Sh2 domain (Fig. 2C). Despite variations in the attri-
butes of the specificity pocket across SH2 domains, this region
forms an identifiably conserved pocket from early invertebrates
to humans [12]. This suggests that the specificity of many SH2
domains may have been fixed relatively early while pTyr ligands
continue to evolve to make additional connections.

The first SH2 structure bound to a pTyr ligand, solved by Kuri-
yan and co-workers, was that of the Src SH2 domain bound to a
high affinity peptide ligand from the middle T-antigen centred
around a pY-E-E-I peptide motif. This structure revealed the core
pTyr binding pocket and a hydrophobic pocket coordinating the
+3 Ile [18] (Fig. 3A). Following structures of other SH2 domains re-
vealed a highly conserved pTyr binding pocket but diversity in the
ability to recognize residues surrounding the pTyr. The Grb2 SH2
has a very strong preference for a +2 Asn (pY-x-N-x motif) as a
result of a Trp residue in the DE loop of the SH2 domain
(Fig. 3B). Other SH2 domain structures reveal important contacts
beyond the +3 position. Peptide array and structural studies of
the BRDG1 SH2 domain show a strong preference for a hydropho-
bic Leu at the +4 position [20,21] (Fig. 3C). In a similar manner, the
SH2 domain of PLCG1_C can recognize a longer extended peptide
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Fig. 2. SH2 domain structure. (A) A ribbon structure of the SH2 domain Src consists of several anti-parallel p-strands (green) flanked by two o-helices (blue). The
phosphotyrosine peptide (red, sticks figure) is bound perpendicular to the face of the SH2 domain structure. PDB: 1SPS (B) The contact residues within the SH2 domain that
coordinate the phosphorylated tyrosine are shown in colored circles according the charge of the amino acids: red, basic; blue, acidic; grey, hydrophobic; yellow, polar
uncharged (see alignment below). Indicated within the circles are the number of SH2 domains that contain these conserved residues. (C) A multiple sequence alignment of
human SH2 domains from Grb2, Ptpn11_N (Shp2-N), Abl1 and Src. Highlighted in red are positively charged residues such as the BB5 arginine residue (underlined is the
conserved FLVR motif) that are mainly responsible for the interaction with the negatively charged phosphotyrosine. The sequence alignment was created using ClustalW with

the secondary structural elements indicated above.

with contacts that reach out and recognize up to the +5 position
(Fig. 3D). While these examples are representative of the dominant
C-terminal to the pTyr binding mode, there are a few SH2 domains
which recognize peptide ligands using information N-terminal to
the pTyr (Table 1). For example the SHP-2 SH2 domain prefers a
—2 hydrophobic residue [22] (Fig. 3E). Loop regions within the
SH2 fold play a role in ligand selectivity through their ability to
occlude certain contact regions and limit ligand access to the bind-
ing surface. By engineering variability in the composition and
length of the EF and BG loops in an SH2 domain one can alter its
specificity [20]. While these examples represent the primary mode
of pTyr binding, recent structures have revealed alternate modes of
pTyr binding including some SH2 domains that can recognize non-
phosphorylated peptides and coordinate binding in unique ways
discussed below.

While phosphorylation of the tyrosine is a necessary require-
ment for most SH2 domains to engage pTyr ligands, phospho-
independent binding has been observed suggesting that this is
not an absolute requirement. The singular example of pTyr-inde-
pendent SH2 domain binding that has been investigated in depth
and demonstrated in structural studies is the SLAM-associated
protein (SAP) SH2 domain. SAP (SH2D1A) SH2 can also bind its tar-
get receptor, SLAM, in a manner independent of phosphorylation,
albeit with somewhat lower affinity [23]. This is a result of an
extended contact face on the SAP SH2 domain that allows interac-
tions with ligands residues both N- and C-terminal of the pTyr

residue. Other examples of SH2 domains that have been reported
to bind in a phospho-independent manner include the Shc, Ten-
sin2, and Cten SH2 domains [24-26]. This raises the questions of
why some SH2 domains have acquired this function and whether
all members of their respective families evolved the ability to bind
non-phosphorylated ligands or potentially other ligands that re-
main to be identified.

As mentioned above, the canonical mode of SH2 binding to pTyr
peptides involves the coordination of residues C-terminal to the
pTyr in a perpendicular fashion that crosses the core beta strands
of the SH2 domain surface (BB, BC, gD). This is not, however, a uni-
versal mechanism. The Cbl tyrosine kinase binding domain (TKB,
an embedded SH2 domain with an integral EF-Hand and four-helix
bundle) is an excellent example of an SH2 domain which can break
all the rules. Firstly, Cbl has a strong preference for an asparagine
(Asn), aspartate (Asp) or arginine (Arg) residue N-terminal to the
pY in addition to the canonical C-terminal residue preferences (Ta-
ble 1, Fig. 3F). Within a given ligand, the N-terminal Asn/Asp/Arg
residue helps orient the pY via an intrapeptidyl hydrogen bond
with a phosphate oxygen [27,28]. Secondly, this N-terminal resi-
due preference extends into a conserved motif characterized by
the binding mode of the complex between the Cbl TKB and a tyro-
sine phosphorylated region of the adaptor protein APS [29]
(Fig. 3G, top panel). The binding interface in this instance extends
six residues N-terminal to the pY, and incorporates a portion of the
four-helix bundle. And lastly, analogously to some SH3 domain



2600

SRC

pY-x-x-I-x

GRB2

BRDG1

PLCG1_C

SHP2_N

pY-x-N-x-x

pY-x-x-x-L

pY-x-x-P-x-P

L-x-pY-x-x-L

B.A. Liu et al./FEBS Letters 586 (2012) 2597-2605

F APS Y618
CBL TKB

EGFR Y1069

R-pY-S-S-D-P

Fig. 3. Mode of phosphotyrosine binding. The electrostatic surface of the various SH2 domains (left panel) reveals the positive charged pTyr binding pocket (blue = positive,
red = negative) and the ligand-binding pocket (ligands shown in gray sticks). The ribbon structure of the SH2 domains are shown on the right for (A) Src SH2 (PDB: 1SPS), (B)
Grb2 SH2 (PDB: 1BMB) (C) Brdg1 SH2 (3MAZ), (D) PLCG1_C SH2 (2PLD) (E) Shp2_N SH2 (domains bound to their respective ligands (shown in gray). (F) The phosphotyrosine
binding pocket of the Cbl tyrosine kinase binding domain, which includes the SH2 domain embedded within the EF-Hand and 4-helix bundle (4-HB) also referred to as the
TKB in complex with peptides from APS (magenta), EGFR (green) and c-MET (orange). (G) Top panel, a close-up view of the TKB in complex with an extended peptide from
APS making contact with the 4-HB (PDB: 1YVH). Middle panel, Cbl TKB in complex with the MET peptide is oriented in the reverse direction with the amino acids N-terminus
to the pTyr extended across the SH2 domain (PDB: 3BUX). Bottom panel, bound in the canonical fashion with EGFR peptide pYSSDP (gray) with the C-terminus extended

across the SH2 surface (PDB, 3BUO).

ligand interactions Cbl can bind an a pY ligand of Met in the reverse
orientation [27] (Fig. 3G, middle panel). The Cbl TKB in complex
with the MET peptide is oriented with the amino acids N-terminal
to the pTyr extended across the beta strands of the SH2 domain,
occupying the specificity pocket in the same manner as residues
C-terminal to the pTyr do normally (Fig. 3G, bottom panel).
Dimerization between two identical SH2 domains can alter the
binding pocket of and mechanism of binding. This is the case for
the APS adaptor where the SH2 domain forms a back to back dimer
which stabilizes the activation of RTKs including the insulin recep-
tor (InsR), through interaction with the activation loop [30]. This
dimerization is important for trans-phosphorylation and activation

of the kinase domains of these receptors [31,32]. The structure of
the dimerized APS SH2 domains bound to the InsR activation loop
peptide reveals pTyr binding to Y1158 within the canonical pTyr
binding pocket coordinated by the invariant Arg in BB5. Dimeriza-
tion induces a conformational change that creates a second pTyr
binding pocket, and a turn in the peptide ligand such that it runs
parallel to the B-strands. This new conformation allows for charged
interactions between the second pTyr site on InsR Y1162 and two
Lys residues in the D strand [30,33]. Dimerization of identical SH2
domains can also facilitate the inhibition of RTK activity. Dimeriza-
tion of the SH2 domain of the Grb14 protein functions in this man-
ner by simultaneously binding to the activation loop of the InsR
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Table 1
General phosphotyrosine motifs for SH2 domain families. (visit http://sh2domain.org
for a complete list of SH2 domains within a family).

SH2 domain family  General motifs

ABL pY-E-N-P

BRK pY-E-E-I/L/V/P

CBL D/N-x-pY-S/T-x-x-P; x-D-pY-R-X, R-A-®-X-N-Q-pY-S/T

CRK pY-x-x-P/L

CSK pY-S/A-x-P|V

FPS pY-E-x-L/V

GRB2 pY-E/V-N-x

GRB7 pY-D/E-N-x

NCK pY-DE-DE-V/P

PI3K_N pY-M-x-M

PI3K_C pY-M-x-M

PLCG_N pY-V/I/L-E/D-L/I}V

PLCG_C pY-V/I/L-E/D-P/V/I

PTPN_N V/I/L-x-pY-A-x-(L/V)
pY-F-X-F/P/L|Y

PTPN_C T/V/[I-X-pY-A/S/T/V-X-I/L/V

RASA1_N pY-x-x-P

RASA1_C pY-x-x-P

SH2B pY-E/F/Y-x-x

SH2D1 T-x-Y/pY-x-x-I/L/V

SH2D2 M-pY-D/E-N-x

SH3BP2 pY-E/M/V-N/V/I-x

SHB pY-x-X-L-D/E

SHC pY-E-x-I/L/V

SHIP I/L/V-I/L/V-pY

SLP76 pY-D-x-x-x

SRC pY-E-E-I/L/V/P

STAP pY-x-x-x-I/L

STAT pY-x-x-Q

SYK_N pY-x-x-I/L

SYK_C pY-X-X-L

TEC pY-D/E-D/E-I/L/V/P

TNS pY-E-N-x

VAV pY-x-x-P

x Denotes any natural amino acid.

kinase domain and facilitating the presentation of the BPS region of
the protein into the substrate recognition site [34]. Domain
swapped dimerization of SH2 domains is a distinct mechanism
from interfacially mediated dimerization [35]. This type of dimer-
ization has been shown to change the affinity for cognate ligands
[36], however both the scope of the affinity and specificity differ-
ences and the physiological significance of such domain swapped
dimer ligand interactions remains to be elucidated.

Recent biochemical studies have indicated dual ligands binding
to a single SH2 domain [37]. The crystal structure of the N-terminal
SH2 domain of phosphatase PTPN11 (SHP-2) bound to the VIpYFVP
revealed a non-canonical 1:2; protein-peptide complex. The first
peptide binds in a canonical manner with the pY side chain
inserted within the conserved pTyr-binding pocket, while the sec-
ond pairs up with the first to form two antiparallel B-strands that
extend the central B-sheet of the SH2 domain. This unique binding
mode is confirmed by NMR and confirmed using pTyr peptides
derived from physiological or cellular proteins. Mutation and bio-
chemical analysis reveal that the binding of the first peptide is
pY-dependent while the second peptide bound in a phosphoryla-
tion independent manner. The binding of two peptides to a single
SH2 domain may imply the ability to function as a molecular clamp
by facilitating the dimerization of target proteins. Thus, structural
studies reveal unique modes of pTyr binding that may allow cer-
tain SH2 domains to recognize multiple peptide motifs depending
on the conformation and dimerization status of the protein
domain. David Gfeller’s review in this issue discusses other new
aspects of specificity landscapes for peptide recognition domains.

SH2 binding to pTyr ligands may be subject to regulation during
cell signaling events. For example, phorbol ester stimulation

results in serine phosphorylation of the PI3K SH2 domains in a
manner that occludes pTyr peptide binding [38], suggesting that
this phosphorylation may prevent SH2-mediated recruitment and
activation. Other serine phosphorylation sites on PI3K C-SH2
(within the BF and aB loop) have been shown to be phosphorylated
by the inhibitor of kappaB kinase (IKK) and modulate pTyr binding
[39]. Further investigation is required to determine whether these
Ser/Thr phosphorylation sites located within the SH2 domain may
represent a broader mechanism of SH2 domain regulation. In addi-
tion analysis of these sites may provide insight into the emergent
patterns of cross-talk between various pathways. It would be
interesting to determine whether PTM by phosphorylation or other
PTMs can modulate specificity of SH2 domains and switch ligand
binding partners. For example, the Src SH2 domain is reported to
be tyrosine phosphorylated on Y213 within the EF loop by the
PDGF receptor and this alters specificity of the domain [40]. Upon
Y213 tyrosine phosphorylation, the Src SH2 domain no longer
binds the C-terminal inhibitory site Y517, while binding to other
ligands remains unaffected. On the ligand side, PTMs of residues
surrounding the pTyr motif may also directly effect SH2 domain
binding in a manner analogous to other protein interaction do-
mains such as SH3 and PDZ domains (see the review by Ylva Ivars-
son in this issue on plasticity of PDZ domain interactions). Thus,
modulation of SH2 domain binding can be mediated through PTMs
to coordinate temporal and spatial aspects of specificity [41].

3. SH2 domains and phosphotyrosine motifs

The ligand selectivity of SH2 domains has been investigated
in vitro using various phosphopeptide library screening methods
[42,43] (see reviews by Volkmer et al. in this issue on use of syn-
thetic peptide arrays). Pioneering studies by Songyang et al. [42]
developed degenerate peptide libraries that were used to establish
broad specificity profiles for a wide range of SH2 domains. Other
approaches related to this including SPOT synthesis-based ori-
ented peptide array library (OPAL) have been expanded to capture
profiles for up to 76 human SH2 domains [21]. These studies re-
veal that, in addition to pTyr, amino acids in positions from —2
to +4 relative to phosphotyrosine contribute to high-affinity bind-
ing in most cases though more extended contacts (—6 to +6) have
been observed in some structural studies. Examples of well-char-
acterized binding motifs include those for the SH2 domains of
Grb2, which recognizes pY-x-N motifs, PI3K binding to pY-M-x-
M motifs, and Crk binding to pY-x-x-L/P motifs (see Table 1 for
a comprehensive set of general pTyr motifs). These approaches
capture general binding motifs through paneling individual posi-
tions independently of neighboring positions. Secondary effects
such as neighboring residue effects are likely to be missed, and
hence contextual peptide sequence information may be over-
looked. However generalized motifs provide the ability to readily
identify sites on their protein of interest and seed hypotheses
relating to pTyr mediated signaling. Motifs generated using
degenerate peptide library or SPOT peptide arrays have been com-
piled into prediction algorithms such as Scansite and SMALI,
respectively. While SH2 domains differ in their binding prefer-
ences for specific phosphorylated ligands, resulting in specificity
in signal transduction [1], it was less clear how SH2 domains with
similar profiles distinguish between one another. The challenge to
using generalized motifs is to determine whether SH2 domains
that recognize similar consensus motifs have the ability to distin-
guish between peptide motifs with the conserved core sequence
such as pY-x-x-P. Proteomics studies of SH2 domains identify
numerous SH2 domains that can recognize this pY-x-x-P core mo-
tif that include p120 RasGAP (RASAT1), Crk, Nck, Brk, Vav and oth-
ers (Table 1).
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Fig. 4. The complex language of SH2 domain interactions with peptide ligands integrates permissive and non-permissive residues in a contextual manner. (A) Array based
approaches such as degenerate peptide library and OPAL identify favorable residues at position C-terminus to the pTyr. This data is utilized to generate predictions using a
position specific scoring matrix (PSSM) which weights favorable amino acids at individual positions independent of neighboring positions. Context peptide specificity takes
into account the effects of neighboring residues and the presence and absence of permissive and non-permissive factors (anti-motifs). (B) SH2 domains utilize sequence
context and non-permissive residues to discriminate phosphotyrosine peptide ligands such as pY-x-x-P. This underlies a wider channel for information flow between the
ligand and the SH2 domain. (C) For example, the SH2 domains of Brk and Crk can each engage a subset of peptides containing a Pro or Leu at +3 (three residues C-terminus to
pTyr), left panel. Brk and Crk distinguish between peptides containing a +3 Pro through distinct recognition of permissive and non-permissive residues at +1 and +4. Brk SH2-
domain binding is favored with permissive factors for Brk (+1 Glu and +4 Glu), which are also non-permissive factors for Crk favor Brk binding (middle panel). A +1 Asp and +4
Arg favors Crk binding over Brk (right panel). This is suggestive of co-evolution between SH2 domains and peptide ligands to maximize specific recognition events using
available peptide sequence information. (D) The SH2 domain of Crk can sense the contextual sequence between pY-x-x-P and pY-x-x-L.

4. Contextual peptide specificity

Within ‘physiological’ peptides drawn from naturally occurring
phosphoproteins that are known SH2 binding partners it is clear
that contextual peptide sequence information is used to differenti-
ate SH2 domain binding preferences [44]. Peptide library and OPAL
based approaches capture general binding motifs through paneling
individual positions independently of neighboring positions
(Fig. 4A, left panel) and in some cases clearly identify under-repre-
sented residues that are non-permissive for binding. However, the
general binding motifs may miss secondary effects such as neigh-
boring residue effects and hence contextual peptide sequence
information may be overlooked (Fig. 4A, right panel). These effects
are apparent in the prediction algorithms based on such data that
generally favor positive motifs important for achieving specificity
for SH2 domain binding while discounting the role of non-permis-
sive residues (anti-motifs). This may lead to failure to accurately
distinguish potential binding partners, particularly between SH2
domains that share similar primary binding motifs and rely on
non-permissive residues to determine distinct binding partners.
Peptide sequence context, it turns out, is a major determinant for
SH2 domain selectivity. Minor changes in peptide ligand sequence
can significantly impact both the enthalpic and entropic contribu-
tions to binding and thus significantly influences binding energet-
ics [45]. Understanding the full impact of contextual sequence
information would thus improve the accuracy of predicting SH2
binding sites and thus significantly improve the precision of net-
work predictions [46]. Anecdotally, non-permissive residue and
contextual effects have been noted in a wide range of protein-

peptide interactions, suggesting that context-sensitive approach
to understanding modular domain interactions may be a factor in
systems level selectivity of other modular peptide recognition
modules and thus could be considered a general feature to be ac-
counted for in prediction scenarios.

The complex linguistics of interactions that combines permis-
sive, non-permissive and contextual information allows SH2
domains to distinguish subtle differences in peptide ligands. This
is especially evident among SH2 domains that recognize conserved
core binding motifs, such as the pY-x-x-P motif, which is one of the
most overrepresented in phosphorylated proteins relative to the
proteome as a whole [47]. The SH2 domains of the p120 RasGAP
(RASA1), Crk, Nck, Brk, Vav families all share a general preference
for the pY-x-x-P motif, yet each SH2 domain has a preference for
only a subset of peptides containing this motif. The features that
allow for selectivity between SH2 domains are the non-permissive
residues and contextual preferences of each SH2 domain (Fig. 4B
and C) [44]. Contextual dependence substantially increases the
accessible information content embedded in short peptide ligands
that can be effectively integrated to determine binding [44]. For
example, while keeping the pY and the +3 Pro constant, at the +4
position, Crk strongly disfavors acidic residues such as Glu or Asp
while these amino acids are tolerable by Brk. Conversely, basic res-
idues such as Lys or Arg are disfavored by Brk but are favored by
Crk allowing distinction between these two domains with one ami-
no acid. Non-permissive amino acids are specific to the core motif.
For example Crk can recognize both pY-x-X-L or pY-x-x-P peptides
(Fig. 4D). The presence of an Ala residue at +1 in the context of Pro
at +3 is permissible, while in the context of a Leu at +3, a +1 Ala
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residue abolishes binding. Likewise a Pro residue at + 2 is permit-
ted in the context of a +3 leucine but prohibited in the context of
a +3 Pro residue. Such subtle discriminatory changes within the
peptide motifs have broad implications for the selectivity of SH2
domains, but similar rules are apparent for other domains such
as Chromo [48] and 14-3-3 [46] domains. At a cellular level, anti-
motif information also allows for discrimination of phosphoryla-
tion sites by mitotic kinases when spatial localization information
is lost upon nuclear envelope breakdown [49].

5. SH2 domain-phosphotyrosine ligand interaction predictions

As mass-spectrometry techniques continue to improve, phos-
phoproteomics is revealing a wealth of phosphorylation data. At
the time of this writing, over 10000 pTyr sites have identified on
more than 2000 proteins [50]. Databases such as Phosida [50,51],
Phosphosite [52], PhosphoELM [53,54], and PhosphoBLAST [55]
store and annotate this vast set of data on phosphorylated proteins
and peptides. Combining the vast supply of phosphorylation data,
motif data available from Scansite and SMALI in the form of PSSMs
and regular expression motifs [21,56] has been extremely valuable
in generating prediction of potential kinase phosphorylation sites
and SH2 domain binding potential. Algorithms such as Networkin
and NetPhorest compile data from the specificity of phospho-bind-
ing domains such as FHA, 14-3-3, PTB, BRCT, WW, SH2 and kinases,
together with phospho-proteomics to generate in-silico predic-
tions for networks of interactions [57,58]. Computational ap-
proaches such as these are making headway towards gaining a
systems-level understanding of cellular signaling networks.

In many cases, structures of peptide recognition domains with
ligands helps support the fundamental assertions of these motifs.
For instance, we know from both Scansite as well as a series of ele-
gant structural studies that the Grb2 SH2 domain has a very strong
preference for an asparagine residue at the +2 position C-terminal
to the pTyr residue to accommodate a beta-turn required by a tryp-
tophan residue in the SH2 domain that obstructs the peptide-bind-
ing channel. Similarly, the Crk SH2 domain has a very strong
preference for a Pro or Leu at the +3 position of its cognate peptide
ligands that has been repeatedly confirmed in multiple indepen-
dent studies [44,42]. While motifs are by no means absolute and
over-simplify binding data to a level that ignores contextual infor-
mation, they do provide an excellent test of highthroughput (HTP)
data sets. If, for instance, a HTP study indicates ligands for the Grb2
domain that do not conform to the pY-x-N motif, this suggests
either an issue with non-selective interactions (false-positives)
or, at the very least, identifies interactions that should be subject
to additional validation. Similarly well-established and largely
invariant motifs for other protein interaction domains (PIDs) serve
an analogous function. Early studies using protein microarrays
contain numerous examples of apparent binding peptides that do
not conform to established motifs [59]. As these early studies
lacked positive controls for proteins or peptides, functional activ-
ity, and performed little orthologous validation, it is difficult to
establish the precise issues that led to a high rate of apparent
false-positives. While the protein microarray technology employed
in these studies has a high level of false-positives and the apparent
dissociation constants reported often do no correlate with equilib-
rium dissociation constant values measured in carefully controlled
solution phase binding experiments [15,60], there may be useful
data to be extracted, and lessons to be applied to future HTP stud-
ies in terms of the necessary controls and validation. Indeed, con-
trols and validation strategies elsewhere are largely drawn from
lessons learned in the past decade of HTP studies of PID-peptide
interactions. Such experience is a necessary first step towards
using HTP studies to generate high quality interaction data [15].

6. Specificity through secondary contacts

In addition to the complex language of PID-peptide interactions
at the level of the primary binding contact regions, certain SH2
domains also utilize additional contacts outside of the classical pTyr
& selectivity binding pockets to improve selectivity or allow func-
tional downstream signaling. Structural studies indicate that the
amino-terminal SH2 domain of PLCy1 binds to the pTyr containing
tail of FGFR1 and makes additional contacts with the kinase domain
via a secondary binding site on the SH2 domain [61]. In this case,
the secondary binding site involves the BC and DE loops of the
SH2 domain and contributes to an added level of specificity for this
specific interaction pair unforeseen by peptide library approaches.
The primary recognition by the SH2 domain of the phospho-ligand
on the FGFR1 receptor creates the high affinity interaction
necessary for complex formation, while the secondary interaction
appears to solidify the interaction in a manner that is necessary
for functional downstream signaling [61]. The exact nature of this
is unclear, but may relate to reducing the off-rate to bring the
time-frame of the interaction into the realm required for effective
downstream signaling. In other cases, SH2 domains function in an
auto-inhibitory role through both pTyr-mediated and secondary
contacts to stabilize the inactivate conformation of their host
proteins, such as Src, Crk, Shp-2 (PTPN11), PI3K, Zap70, and others
[62-67]. High affinity ligand binding, dependent on sequence
context, is required to displace the SH2 from its auto-inhibitory
interaction and allow for functional activation of the kinase, phos-
phatase or adaptor molecule for coordinated signaling events.

Additional studies have identified regions of certain SH2 do-
mains that mediate binding to other domains, primarily by creat-
ing docking sites for binding SH3 domains. The DE loop of Crk
contains an extended proline-rich loop capable of co-localizing
Abl kinase through binding of the Abl SH3 domain [64,68]. The
SAP SH2 domain similarly contains a loop region that is bound
by the Fyn SH3 domain in order to nucleate a signaling complex
at the SLAM receptors in hematopoietic cells [69]. The PLCy1
C-SH2 domain can dock onto the tyrosine kinase, ITK, through a
pTyr-independent interaction through the CD loop and C-terminus
of the C-SH2 domain [70]. Such varied allosteric mechanisms sug-
gest an almost limitless potential to participate in signaling inter-
actions beyond the recognition of pTyr.

7. Conclusions

SH2 domains have evolved as the primary “readers” of phos-
photyrosine marks within metazoan cells [2]. To achieve selectivity
and high fidelity of pTyr signaling, the pTyr motifs have co-evolved
alongside SH2 domains and kinases to optimize selective phos-
phorylation and binding. Sequence context is thus critical to not
only promote phosphorylation by tyrosine kinases and binding
by SH2 domains but also as a means to prevent disadvantageous
interactions in order to coordinate temporal and spatial signaling
events while minimizing deleterious binding events in the
crowded competitive binding environment of the cell. These
combine with other factors such as tissue expression, protein local-
ization and secondary contacts to produce defined network behav-
ior patterns that define physiological outputs in terms of cell
behavior. Other reviews in this review issue from Stephen Feller,
Anne-Claude Gingras and Brian Raught discuss protein-protein
interaction networks and factors that influence the networks and
predictions. From the basic principals of modular domains inter-
acting with selective peptide ligands the future unfolds towards
understanding the complex nature of signaling dynamics in vari-
ous tissue types and diseases and applying this towards novel ther-
apeutics targeting signaling downstream of PTKs.
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