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a b s t r a c t

Biogeography-based optimization (BBO) is a bio-inspired metaheuristic based on the mathematics of
island biogeography. The paper proposes a new variation of BBO, named ecogeography-based
optimization (EBO), which regards the population of islands (solutions) as an ecological system with a
local topology. Two novel migration operators are designed to perform effective exploration and
exploitation in the solution space, mimicking the species dispersal under ecogeographic barriers and
differentiations. Experimental results show that the EBO outperforms the basic BBO and several other
popular evolutionary algorithms (EAs) on a set of well-known benchmark problems. We also present a
real-world application of the proposed EBO to an emergency airlift problem in the 2013 Ya'an–Lushan
Earthquake, China.

& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

Nature-inspired computing has been fascinating computer
scientists for a long time, giving rise to popular areas such as
artificial neural networks [1], cellular automata [2], molecular
computing [3], and evolutionary computation. Taking inspiration
from natural evolution processes, evolutionary algorithms (EAs)
are a class of heuristic methods for solving complex optimization
problems which typically have non-convex and highly nonlinear
solution spaces, and which are otherwise computationally difficult
to solve by conventional mathematical programming methods [4].

Biogeography-based optimization (BBO) [5] is a relatively new EA
borrowing ideas from biogeographic evolution for global optimiza-
tion. As most EAs, BBO maintains a population of solutions (called
“habitats” or “islands” in the metaheuristic) to the optimization
problem, and uses a fitness function for evaluating the solutions. A
distinct feature of BBO is its migration operator, which works on the
principle of immigration and emigration of the species from one
island to another, and therefore evolves the islands to find better
solutions to the problem. BBO has proven itself to be a competitive
heuristic to other well-known EAs on a wide set of problems (e.g. [5–
9]). Moreover, several variations of BBO [10–14] and hybridizations of
BBO with other metaheuristics [15–18] have been proposed to
improve the performance of the optimization method.

In this paper we propose a new variation of BBO, named
ecogeography-based optimization (EBO), which designs two novel
migration operators that mimic the species dispersal under
ecogeographic barriers and differentiations, and thus achieves a
much better balance between exploration (global search) and
exploitation (local search). Experiments on a set of well-known
benchmark problems show that EBO is highly competitive with
several state-of-the-art EAs. Also, the proposed EBO has been
successfully applied to an emergency airlift problem in the 2013
Ya'an–Lushan Earthquake, Sichuan Province, China.

The rest of this paper is organized as follows: Section 2
introduces the basic BBO algorithm. Section 3 describes our EBO
method in detail. Section 4 presents the experimental results,
Section 5 depicts the application of EBO to the real-world
emergency airlift problem, and finally Section 6 concludes with
discussion.

2. Biogeography-based optimization (BBO)

Biogeography is the science of the geographical distribution of
biological organisms over space and time. It was first studied by
Wallace and Darwin as early as the 19th century. In 1960s,
MacArthur and Wilson [19] worked together on mathematical
models of island biogeography, which shows that the species
richness of an island could be predicted in terms of such factors
as habitat area, immigration rate, and extinction rate.
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Based on the mathematics of island biogeography, Simon
[5] developed the BBO algorithm, where a solution is analo-
gous to an island (which can refer to any habitat that is
geographically isolated from others), the solution compo-
nents are analogous to a set of suitability index variables
(SIVs), and the fitness of the solution is analogous to the
species richness or habitat suitability index (HSI) of the
island. Central to the algorithm is the equilibrium theory of
island biogeography, which indicates that high HSI islands
have a high species emigration rate and low HSI islands have a
high species immigration rate. Fig. 1 illustrates a simple linear
model of species richness in a single island, where the
immigration rate λ and the emigration rate μ are functions
of the HSI value of the island. Note that BBO can also use other
nonlinear migration models, which are more complicated but
may produce better optimization results [5,20].

BBO uses two operators: migration and mutation. At each time,
the migration operator migrates an SIV from an emigrating island
to an immigrating island, which are probabilistically selected
according to the rates μ and λ of the islands. The mutation
operator randomly modifies an SIV according to the island's
steady-state probability p of species count. Algorithm 1 presents
the basic procedure of BBO, where randðÞ generates a random real
number in the range of [0,1] and randdðÞ generates a random value
in the range of the dth SIV.

Algorithm 1. The basic BBO algorithm.

1 Randomly initialize a population P of n islands (solutions) to
the problem;

2 while stop criterion is not satisfied do
3 Calculate λi, μi, and pi for each island Xi;
4 for each XiAP do
5 for each SIV Xi;d of the island do
6 if randðÞoλi then
7 Select an emigrating island Xj with probability

pμj;
8 Xi;d’Xj;d; //migration
9 for each XiAP do
10 for each SIV Xi;d of the island do
11 if randðÞopi then
12 Xi;d’randdðÞ; //mutation
13 Evaluate the fitness values of the habitats;
14 return the best known solution.

It should be noted that, in recent BBO code released by Simon
[21], it is suggested to perform another round of fitness evaluation
and solution sorting before the mutations (Line 9 of Algorithm 1)
at each generation. Such an implementation can improve the
algorithm performance; however, it doubles the number of func-
tion evaluations (NFE) of each generation. As we will see in the
next section, given a population size of n, our new algorithm can
achieve considerable performance improvement with only n
function evaluations at a generation.

The migration operator of the basic BBO directly clones an SIV
from one island to another, and thus limits the component
diversity of new islands. Ma and Simon [11] developed the
blended BBO (B-BBO), which uses the blended migration to
replace the line 8 of Algorithm 1 as follows:

Xi;d ¼ αXi;dþð1�αÞXj;d ð1Þ

where α is a real number between 0 and 1. Though the B-BBO
method was proposed for constrained optimization in [11], it also
outperforms the basic BBO on many other optimization problems.

I = E

HSI

ra
te

Fig. 1. A linear model of emigration and immigration rates.

Fig. 2. Different topologies of the islands. (a) Fully connected, (b) local ring, and (c) local random.
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3. Ecogeography-based optimization

BBO uses a global topology where all the islands interconnect
with each other: if a given island is chosen to be immigrated, any
other island has a chance to be an emigrating habitat, as shown in
Fig. 2(a). In other words, the basic BBO does not consider ecogeo-
graphic isolation in migration, and the biological and ecological
features can be shared between any two islands. From the
algorithmic point of view, such a fully connected topology often
makes most solutions to be strongly attracted by one or several
high HSI solutions, thereby causing premature convergence; the
situation is aggravated by the fact that the clone-based migration
operator cannot produce any new SIVs. In consequence, the
population diversity and search performance heavily rely on the
mutations, but the simple random mutation operator of the basic
BBO is not very effective in exploring the solution space. That is
why studies in [16,17,12] seek for new mutation operators to
enhance the BBO.

In historical biogeography, Wallace and Darwin considered that
species originate in one center of origin, from which some
individuals subsequently disperse by chance, and then change
through natural selection [22]. From this viewpoint, species
richness is correlated with many biological, ecological and geo-
graphical factors, and speciation is characterized by the evolution
of barriers to genetic exchange between previously interbreeding
populations [23].

Embedding this idea into the algorithm, we suggest using a
local topology of isolated islands, where each island is connected
to a subset of islands in the population: migratory routes between
adjacent islands can be considered as corridors, while those
between nonadjacent islands can be considered as filter bridges
or sweepstakes routes [24]. One of the simplest local topologies is
the ring topology, which connects each island to just two other
islands, as shown in Fig. 2(b). Another idea is use a random
topology, i.e., the neighbors for each island are chosen at random,
as shown in Fig. 2(c). Typically, the neighborhood structure in a
ring topology is fixed in one run of the algorithm, but that in a
random topology may be subject to change during the evolution.

In contrast to the global topology, the local topology can
effectively maintain the diversity of the population and avoid
premature convergence [14], but it may also slow the convergence
speed of the algorithm. In order to preserve the fast convergence
rate of BBO, we design a new “global” migration operator to
replace the line 8 of Algorithm 1. That is, based on the emigration
rates of the islands, we select a neighbor Xnb and a non-neighbor
Xfar of Xi, and update the component of Xi as follows:

Xi;d ¼
Xfar;dþαðXnb;d�Xi;dÞ fitðXfarÞ4 fitðXnbÞ
Xnb;dþαðXfar;d�Xi;dÞ fitðXfarÞr fitðXnbÞ

(
ð2Þ

where a is a coefficient in the range from 0 to 1. Here ðXnb;d�Xi;dÞ
or ðXfar;d�Xi;dÞ is regraded as the “ecological differentiation”
between the two islands, and a is called the “evolutionary force”
coefficient.

Eq. (2) indicates that the island accepts immigrants from both
neighboring and non-neighboring islands: the fitter one between
Xfar and Xnb acts as the “primary” immigrant, while the other acts
as the “secondary” immigrant that needs to compete with the
“original inhabitants” of Xi.

Global migration is preferred in early stages of evolution, where
species are easier to disperse to a wide range of new habitats. With
the increase of species richness, the ecological system has more
stability or more resistance to invasions. The increase of invasion
resistance facilitates divergence, which increases invasion resis-
tance even further. Such a feedback loop, given enough time, leads
to a stable connection between the islands. Thereby, in later stages

of evolution, the islands are more likely to accept immigrants from
their neighbors. This is mimicked by the following “local” migra-
tion operator:

Xi;d ¼ Xi;dþαðXnb;d�Xi;dÞ ð3Þ
In general, global migration facilitates exploration (global

search) and local migration facilitates exploitation (local search).
We introduce a parameter η, named the immaturity index, to
represent the island immaturity of the ecological system (popula-
tion), which is inversely proportional to the invasion resistance of
the system. During the search process of EBO, the value of η can be
fixed, e.g. η¼ 0:5 gives equal chances for global and local migra-
tion. We can also use a dynamically changing value of η, such as

η¼ ηmax� t
tmaxðηmax�ηminÞ ð4Þ

where t is the current generation number and tmax is the total
generation number of the algorithm, and ηmax and ηmin are
respectively the upper limit and the lower limit of η.

Whenever an island is to be immigrated, we generate a random
number uniformly distributed in [0,1]. If the number is less than η,
the global migration (2) is used; otherwise the local migration (3)
is used.

Besides, there are two other differences in comparison with the
basic BBO:

� The migration operator of EBO does not directly modify an
existing island Xi. Instead, it produces a new island X0

i, and
keeps the better one of Xi and X0

i to the next generation.
� The random mutation operator of the basic BBO is no longer

needed, because the two new migration operators can provide
enough diversity to the population.

From another perspective, Eqs. (2) and (3) can be seen as two
variant differential evolution (DE) operators [25], but they are
different from those popular DE methods in that the current
solution Xi is included into the differential part, and the two other
solutions Xfar and Xnb are selected based on the migration model.
In the most widely used DE/rand/1/bin method, the three solu-
tions on the right side of the equations are all randomly selected.
The combination of the two elaborately designed operators in EBO
is expected to enhance the exploitation ability of the DE operator
without harming its exploration capability very much.

Algorithm 2 presents the procedure of our EBO method. In
comparison with the basic BBO, EBO adds up to three parameters,
namely α, ηmax and ηmin, the fine-tuning of which may be
beneficial but costly. However, we find that using a random value
in (0,1) for the coefficient α is very competitive on most test
functions; empirically, we also suggest to set ηmax between 0.7 and
0.8, and ηmin between 0.2 and 0.4. Moreover, the maximum
immigration rate and the maximum emigration rate in BBO are
typically set to 1, and the EBO algorithm does not need to use the
mutation rate. Thereby, the parameter selection of EBO is not very
difficult in most cases.

Algorithm 2. The proposed EBO algorithm.

1 Randomly initialize a population P of n islands to the
problem;

2 while stop criterion is not satisfied do
3 Calculate ηaccording to Eq. (4);

4 Calculate λi and μi for each island Xi;
5 for each XiAP do
6 Clone Xi to a new island X0

i;
7 for each SIV Xi;d of the island do
8 if randðÞoλi then
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9 Select a neighboring island Xnb with probability
pμ;

10 if randðÞoη then
11 Select a non-neighbor Xfar with probability pμ;
12 if Xfar is fitter than Xnb then
13 Xi;d’Xfar;dþαðXnb;d�Xi;dÞ;
14 else
15 Xi;d’Xnb;dþαðXfar;d�Xi;dÞ;
16 else
17 Xi;d’Xi;dþαðXnb;d�Xi;dÞ;
18 if at least one dimensionof X0

i is changed then
19 Evaluate the new Xi;
20 if X 0

i is better than Xi then
21 Xi’X0

i;
22 return the best known solution.

4. Numerical experiments

4.1. Experimental settings

For evaluating the proposed EBO algorithm, we compare it with
the basic BBO, the B-BBO, the DE algorithmwith the DE/rand/1/bin
scheme [25], and the hybrid DE/BBO method [16] on a set of well-
known benchmark functions. The 13 test functions, denoted as f1–
f13, are scalable high-dimensional problems taken from Yao et al.
[26] and briefly described in Table 1. In this paper, we conduct
experiments on 10, 30, and 50 dimensional functions. For a fair
comparison, on each test problem we set a maximum number of
function evaluations (MNFE) as 5000D which is the same for all
the algorithms, where D is the dimension of the function. In
addition, we record the required number of function evaluations
(RNFE) of the algorithms to reach the required function error
value, which is set to 10�8 for all the functions.

We implement two versions of EBO, one with the ring topology
and the other with the local random topology, denoted by EBO1
and EBO2 respectively. For EBO2, the topology is randomly
generated such that each island has probably K neighbors, i.e.,
the probability of any two islands being connected is K=ðn�1Þ, as
used by the neighborhood topology of the standard PSO 2007 [27].
Moreover, the random topology will be reset after every non-
improvement generation, i.e., when no new best solution has been
found in the generation. Empirically, we set the neighborhood size
K¼2 in the experiments.

All the six EAs use the same population size of 50. We also set
both the maximum immigration rate and the maximum emigra-
tion rate to 1 for BBO, DE/BBO, and EBO. For BBO and DE/BBO, we
set the mutation rate to 0.01. The coefficient α in B-BBO could be
random or deterministic, and here we set it to 0.5 which is
preferable on most problems [11]. The other control parameters
of BBO, B-BBO, DE and DE/BBO are set as suggested in the
literature [25,5,11,16].

The experiments are conducted on a computer of Intel Core i5-
2520M processor and 4 GB DDR3 memory. All the algorithms have
been run for 60 times (with different random seeds) on every
problem, and the resulting function values are averaged over the
60 runs.

4.2. Impact of the immaturity index η

First we test the impact of different η values on the perfor-
mance of EBO. We select 9 functions including f1–f4, f6, f7, and f10–
f12, and on each function respectively set η to 7 fixed values
including 0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0, in addition with a linearly
decreasing value with ηmax ¼ 0:7 and ηmin ¼ 0:4. When η is fixed to
0, the algorithm only uses the local migration operator, and when
η¼ 1 it only uses the global migration operator.

Fig. 3(a) and (b) presents the mean function error values
obtained by EBO1 and EBO2 respectively. As we can see, for both

Table 1
Summary of the 13 benchmark functions.

Name Type Expression Search range

Sphere Unimodal f 1ðxÞ ¼∑D
i ¼ 1x

2
i ½�100;100�D

Schwefel 2.22 Unimodal f 2ðxÞ ¼∑D
i ¼ 1jxijþ∏D

i ¼ 1jxij ½�10;10�D
Schwefel 1.2 Unimodal

f 3ðxÞ ¼∑D
i ¼ 1 ∑i

j ¼ 1xj
� �2 ½�100;100�D

Schwefel 2.21 Unimodal f 4ðxÞ ¼maxifjxij;1r irDg ½�100;100�D
Rosenbrock Unimodal f 5ðxÞ ¼∑D�1

i ¼ 2 ð100ðx2i �xi�1Þ2þðxi�1Þ2Þ ½�30;30�D
Step Discrete f 6ðxÞ ¼∑D

i ¼ 1ð⌊xiþ0:5cÞ2 ½�100;100�D
Quartic Noisy f 7ðxÞ ¼∑D

i ¼ 1ix
4
i þrand½0;1Þ ½�1:28;1:28�D

Schwefel Multimodal f 8ðxÞ ¼ 418:9829� D�∑D
i ¼ 1xi sin ðjxij1=2Þ ½�500;500�D

Rastrigin Multimodal f 9ðxÞ ¼∑D
i ¼ 1ðx2i �10 cos ð2πxiÞþ10Þ ½�5:12;5:12�D

Ackley Multimodal
f 10ðxÞ ¼ �20 expð�0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D
∑D

i ¼ 1x
2
i

r
Þ ½�32;32�D

�exp
1
D
∑D

i ¼ 1 cos ð2πxiÞ
� �

þ20þe

Griewank Multimodal
f 11ðxÞ ¼

1
4000

∑D
i ¼ 1x

2
i �∏D

i ¼ 1 cos ð xiffiffi
i

p Þþ1 ½�600;600�D

Penalized1 Multimodal f 12ðxÞ ¼
π

30
ð10 sin 2ðπy1Þþ∑D�1

i ¼ 1 ðyi�1Þ2ð1þ10 sin 2ðπyiþ1ÞÞ ½�50;50�D

þðyD�1Þ2Þþ∑D�1
i ¼ 1uðxi ;10;100;4Þ

where yi ¼ 1þ1
4
ðxiþ1Þ

Penalized2 Multimodal
f 13ðxÞ ¼ 0:1 sin 2ð3πx1Þþ∑D�1

i ¼ 1 ðxi�1
� �2

ð1þ sin 2ð3πxiþ1ÞÞ ½�50;50�D

þðxD�1Þ2ð1þ sin 2ð2πxDÞÞÞþ∑D�1
i ¼ 1uðxi ;5;100;4Þ

where uðxi ; a; k;mÞ ¼
kðxi�aÞm ; xi4a

0; �arxira

kð�xi�aÞm ; xio�a

8><
>:
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the methods, η¼ 0 leads to the worst results on all the functions.
In general, the EBO methods with η¼ 0:4 or 0.5 perform well on
most functions, but on f4 and f7 a large η between 0.8 and 1.0 is
preferable. However, no single fixed value of η can always be
superior to other fixed values. In comparison, when η linearly
decreases from 0.7 to 0.4, the overall performance of EBO on the
9 functions is more competitive and robust. Thus we use this
dynamic strategy in the following comparative experiments.

4.3. Comparison on the 10-D functions

Table 2 presents the experimental results on the 10-D func-
tions, where “mean” denotes the result function error value
averaged over the 60 runs, “std” is the corresponding standard
deviation, and “RNFE” is the average NFE used to reach the
required function error value. The best mean error and RNFE
values are shown in bold. As we can see,

� All the six algorithms reach the same optimum on function f6,
where EBO1 uses the minimum RNFE.

� DE, DE/BBO, EBO1 and EBO2 also reach the same optimum on
f12 and f13, where EBO2 uses the minimum RNFE on both the
functions.

� DE/BBO, EBO1 and EBO2 also reach the same optimum on f8
and f9, where EBO1 uses the minimum RNFE on f8, and DE does
so on f9.

On the remaining 8 test functions, EBO1 has both the best
mean error and RNFE values on f1–f3, and EBO2 uniquely achieves
the best mean error values on f4, f7 and f10. DE achieves the best
mean error value on f5, where none of the algorithms can reach
the required accuracy. DE/BBO does so on f11, but its RNFE is larger
than the two EBO methods.

We have also conducted paired t-tests on the differences
between the mean error values of EBO1/EBO2 and the other
comparative algorithms, the resulting p-values of which are shown
in Table 3. The results indicate that, EBO1 has statistically sig-
nificant improvement over the BBO and B-BBO on 11 functions,
over DE on 8 functions, and over DE/BBO on 7 functions; EBO2 has
significant improvement over the BBO and B-BBO on 11 functions,
over DE 8 functions, and over DE/BBO on 7 functions.

The above results show that the performance of EBO methods
is significantly better than the other four EAs. By comparing the
two EBO versions, in terms of statistical tests, EBO1 outperforms
EBO2 on two functions, EBO2 outperforms EBO1 on one function,
and on the remaining 10 functions there is no significant differ-
ence between them. In general, EBO2 has more advantage in the
mean error values, while EBO1 is more preferable in terms
of RNFE.

4.4. Comparison on the 30-D functions

Table 4 presents the mean function error and RNFE values of
the six algorithms on the 30-D functions, and Table 5 presents
their statistical test results. On this group,

� B-BBO, DE/BBO, EBO1 and EBO2 reach the same optimum on
function f6, where EBO1 uses the minimum RNFE.

� DE/BBO, EBO1 and EBO2 also reach the same optimum on f8
and f11, where EBO1 and EBO2 uses the minimum RNFE.

� DE/BBO achieves the best mean error value on f5, where none
of the algorithms can reach the required accuracy.

� On the remaining 9 test functions, both the mean error and
RNFE values of the EBO methods are better than all the other
four EAs. Individually, EBO1 has the best mean error values on
3 functions, EBO2 does so on 2 functions, and the two methods
achieve the same best results on 4 functions.

According to the statistical test results, both EBO1 and EBO2
have significant performance improvement over BBO on all the 13
functions, and over B-BBO on 12 functions. EBO1 also has sig-
nificant improvement over DE and DE/BBO on 10 functions and
8 functions respectively, and EBO2 does so on 11 functions and
8 functions respectively.

We can find that the EBO methods have much performance
advantage over the other four EAs on the 30-D functions, and the
advantage is more obvious than that on the 10-D functions. By
comparing EBO1 and EBO2, they outperform the counterpart on
3 functions, and there is no significant difference between them on
the remaining 7 functions.

We have also present the convergence curves of algorithms on
the 30-D functions f1–f12 in Fig. 4(a)–(l) respectively. The conver-
gence curves on f13 are very similar to f12 and thus are omitted
here. As we can see from the curves, the overall convergence

0 0.2 0.4 0.5
0.6 0.8 1 A

1E-60

1E-30

1

1E-120

1E-90

0 0.2 0.4 0.5
0.6 0.8 1 A

1.0E-60

1.0E-30

1.0E+00

1.0E-120

1.0E-90

f1 f2 f3 f4 f6 f7 f10 f11 f12 f1 f2 f3 f4 f6 f7 f10 f11 f12

Fig. 3. Mean function values obtained by (a) EBO1 and (b) EBO2 with different η values, where ‘A’ denotes the linearly decreasing value of η.
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speeds of the EBO methods are much better than the other
algorithms on almost all of the problems. On some problems
(such as f5–f8), BBO and B-BBO converge fast at the very early

stage, but their curves soon become flat. DE/BBO typically con-
verges faster than BBO and slower than DE, but it often converges
longer and thus reaches better results than DE. In comparison, the

Table 2
The experimental results of the six EAs on the 10-D problems.

f Metrics BBO B-BBO DE DE/BBO EBO1 EBO2

f1 Mean 1.35E�01 1.06E�03 1.52E�41 3.46E�49 1.16E�127 9.25E�124
std 8.82E�02 1.03E�03 2.60E�41 8.46E�49 3.46E�127 4.93E�123
RNFE – – 11,2727398 10,6677260 71437174 71937199

f2 Mean 7.61E�02 1.86E�03 3.32E�25 1.11E�24 4.62E�68 5.78E�66
std 2.34E�02 1.24E�03 2.86E�25 8.66E�25 8.91E�68 1.23E�65
RNFE – – 182127518 14,5817292 98637223 99797214

f3 Mean 6.27E�01 6.55E�03 1.03E�48 4.18E�41 2.13E�126 1.78E�122
std 4.08E�01 8.12E�03 1.71E�48 7.42E�41 8.76E�126 5.47E�122
RNFE – – 11,93374.36 11,3257271 75637172 76297201

f4 Mean 8.54E�01 2.18E�01 8.53E�06 8.52E�13 4.93E�30 1.11E�34
std 2.64E�01 7.61E�02 3.95E�05 6.58E�13 3.76E�29 7.64E�34
RNFE – – 28,18677394 35,1107865 18,7287496 18,8887526

f5 Mean 4.27Eþ01 1.92Eþ02 1.99Eþ00 3.91Eþ00 2.06Eþ00 2.32Eþ00
std 2.96Eþ01 8.05Eþ01 1.33Eþ00 8.80E�01 2.19Eþ00 2.22Eþ00
RNFE – – – – – –

f6 Mean 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00
std 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00
RNFE 27,60578042 10,90272641 40947316 38347216 25347135 25667119

f7 Mean 3.84E�02 3.37E�02 8.01E�02 6.67E�02 3.23E�02 2.66E�02
std 2.67E�02 2.22E�02 5.88E�02 4.77E�02 2.23E�02 1.73E�02
RNFE – – – – – –

f8 Mean 4.00E�01 1.09E�02 2.63E�07 0.00Eþ00 0.00Eþ00 0.00Eþ00
std 3.40E�01 1.06E�02 2.00E�06 0.00Eþ00 0.00Eþ00 0.00Eþ00
RNFE – – 37,3537574 13,5037451 13,27371913 13,34771561

f9 Mean 6.18E�02 4.18E�04 9.80Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00
std 3.85E�02 7.57E�04 6.58Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00
RNFE – – – 16,5417771 19,08771119 19,25971178

f10 Mean 2.12E�01 1.12E�01 4.00E�15 4.00E�15 3.70E�15 3.35E�15
std 8.80E�02 2.78E�02 0.00Eþ00 0.00Eþ00 9.90E�16 1.39E�15
RNFE – – 18,4377535 16,7437403 10,1187185 10,3007204

f11 Mean 2.45E�01 6.21E�02 2.10E�02 0.00Eþ00 1.32E�10 4.46E�12
std 8.86E�02 1.14E�01 3.12E�02 0.00Eþ00 6.56E�10 2.16E�11
RNFE – – – 30,92273687 30,59678049 29,82777706

f12 Mean 5.11E�03 4.33E�01 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00
std 4.82E�03 9.50E�02 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00
RNFE – – 10,7837495 10,6047311 79687369 79517301

f13 Mean 2.20E�02 3.64Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00
std 1.66E�02 1.12Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00
RNFE – – 11,8277533 11,3267402 84567395 84257371

Table 3
Statistical test results on the 10-D problems.

f EBO1 vs. EBO2 vs.

BBO B-BBO DE DE/BBO EBO2 BBO B-BBO DE DE/BBO EBO1

f1
†4.56E�22 †5.46E�13 †9.87E�04 †7.35E�06 7.46E�02 †4.56E�22 †5.46E�13 †9.87E�04 †7.35E�06 9.25E�01

f2
†1.17E�49 †1.68E�21 †2.59E�15 †1.49E�17 †2.15E�04 †1.17E�49 †1.68E�21 †2.59E�15 †1.49E�17 1.00Eþ00

f3
†2.79E�22 †3.37E�09 †4.56E�06 †1.38E�05 †6.60E�03 †2.79E�22 †3.37E�09 †4.56E�06 †1.38E�05 9.93E�01

f4
†2.51E�49 †3.59E�44 †4.86E�02 †8.43E�18 8.44E�01 †2.51E�49 †3.59E�44 †4.86E�02 †8.43E�18 1.56E�01

f5
†3.88E�19 †2.01E�36 5.83E�01 †8.47E�09 2.62E�01 †5.62E�19 †2.26E�36 8.36E�01 †4.99E�07 7.38E�01

f6 – – – – – – – – – –

f7 8.92E�02 3.62E�01 †1.37E�06 †2.39E�05 9.38E�01 †2.50E�03 †2.63E�02 †3.04E�08 †3.19E�07 6.17E�02
f8

†1.19E�15 †4.77E�13 1.60E�01 – – †1.19E�15 †4.77E�13 1.60E�01 – –

f9
†1.75E�23 †1.95E�05 †2.24E�21 – – †1.75E�23 †1.95E�05 †2.24E�21 – –

f10 1.74E�32 †5.17E�19 †9.00E�03 †9.00E�03 9.46E�01 †1.74E�32 †5.17E�19 †9.00E�03 †9.00E�03 5.45E�02
f11

†8.94E�43 †2.36E�05 †3.92E�07 9.39E�01 9.33E�01 †8.94E�43 †2.36E�05 †3.92E�07 9.44E�01 †6.75E�02
f12

†4.10E�03 †8.03E�65 – – – †4.10E�03 †8.03E�65 – – –

f13
†1.68E�04 †1.31E�37 – – – †1.68E�04 †1.31E�37 – – –

The symbol † indicates that the EBO method has statistically significant improvement over the corresponding algorithms at 95% confidence level.
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curves of EBO fall not only fast but also deep, which demonstrates
that they achieve a much better balance between exploration and
exploitation.

The shapes of convergence curves of the 10-D and 50-D
functions are also similar to those of the 30-D functions, and thus
we do not present them here.

Table 4
The experimental results of the six EAs on the 30-D problems.

f Metrics BBO B-BBO DE DE/BBO EBO1 EBO2

f1 Mean 1.19Eþ00 1.08Eþ00 5.66E�51 7.04E�31 1.46E�187 3.34E�174
std 4.65�01 2.42E�01 2.95E�50 1.08E�30 0.00Eþ00 0.00Eþ00
RNFE – – 33,82371188 37,7997571 16,3287294 17,0177285

f2 Mean 3.09E�01 6.10E�02 7.44E�28 1.73E�19 4.17E�102 9.82E�95
std 5.57E�02 1.24E�02 7.10E�28 9.34E�20 6.81E�102 1.14E�94
RNFE – – 51,84471187 52,5977796 23,7207294 24,7287331

f3 Mean 2.46Eþ01 2.86Eþ01 6.85E�49 2.94E�30 1.07E�183 3.25E�173
std 8.75Eþ00 6.76Eþ01 4.66E�48 4.62E�30 0.00Eþ00 0.00Eþ00
RNFE – – 36,77071319 41,1127711 17,7527349 18,6037317

f4 Mean 3.05Eþ00 1.40Eþ00 8.92Eþ00 8.03E�04 4.17E�12 1.63E�13
std 5.80E�01 1.57E�01 4.14Eþ00 2.83E�04 1.12E�11 3.76E�13
RNFE – – – – 71,56372154 73,31271797

f5 Mean 2.60Eþ02 9.02Eþ03 2.67Eþ01 2.11Eþ01 2.24Eþ01 2.15Eþ01
std 2.64Eþ02 2.49Eþ03 1.82Eþ01 4.31E�01 6.25E�01 7.01E�01
RNFE – – – – – –

f6 Mean 8.50E�01 0.00Eþ00 1.83E�01 0.00Eþ00 0.00Eþ00 0.00Eþ00
std 8.20E�01 0.00Eþ00 4.31E�01 0.00Eþ00 0.00Eþ00 0.00Eþ00
RNFE – 126,361713529 37,506751725 13,9977511 61167196 63647189

f7 Mean 1.74E�02 1.37E�02 2.56E�02 2.11E�02 9.80E�03 7.09E�03
std 1.14E�02 8.83E�03 1.70E�02 1.41E�02 7.60E�03 5.02E�03
RNFE – – – – – –

f8 Mean 1.92Eþ00 1.76Eþ02 2.40Eþ03 0.00Eþ00 0.00Eþ00 0.00Eþ00
std 7.83E�01 7.44E�01 1.80Eþ03 0.00Eþ00 0.00Eþ00 0.00Eþ00
RNFE – – – 67,81175147 43,33576631 44,78375673

f9 Mean 3.91E�01 4.32E�02 2.09Eþ01 2.96E�11 0.00Eþ00 0.00Eþ00
std 1.58E�01 2.50E�02 1.38Eþ01 2.18E�10 0.00Eþ00 0.00Eþ00
RNFE – – – 124,391710,831 90,95579068 10,3282710,443

f10 Mean 2.69E�01 2.70E�02 6.78E�15 6.90E�15 4.00E�15 4.00E�15
std 7.02E�02 7.54E�03 1.86E�15 1.39E�15 0.00Eþ00 0.00Eþ00
RNFE – – 52,87371778 60,5627966 23,1257388 24,3487389

f11 Mean 8.16E�01 8.44E�01 2.87E�03 0.00Eþ00 0.00Eþ00 0.00Eþ00
std 1.44E�01 9.47E�02 8.23E�03 0.00Eþ00 0.00Eþ00 0.00Eþ00
RNFE – – 61,631749,174 41,59172752 18,79375083 18,48573252

f12 Mean 8.82E�02 5.65Eþ00 1.74E�30 1.02E�31 1.57E�32 1.57E�32
std 3.07E�02 1.05Eþ00 2.19E�30 3.38E�31 2.21E�47 2.21E�47
RNFE – – 40,1327983 36,40173053 18,7457412 19,4207536

f13 Mean 4.08E�01 3.91Eþ00 1.64E�24 4.16E�30 1.35E�32 1.35E�32
std 1.35E�01 1.30Eþ00 1.27E�23 4.77E�30 8.28E�48 8.28E�48
RNFE – – 46,936714,924 42,7857933 19,7557501 20,8047527

Table 5
Statistical test results on the 30-D problems.

f EBO1 vs. EBO2 vs.

BBO B-BBO DE DE/BBO EBO2 BBO B-BBO DE DE/BBO EBO1

f1
†1.03E�39 †4.17E�64 6.99E�02 †8.71E�07 †0.00Eþ00 †1.03E�39 †4.17E�64 6.99E�02 †8.71E�07 1.00Eþ00

f2
†3.60E�74 †2.22E�68 †2.70E�13 †5.42E�28 †4.16E�10 †3.60E�74 †2.22E�68 †2.70E�13 †5.42E�28 1.00Eþ00

f3
†2.20E�43 †1.99E�61 1.28E�01 †1.39E�06 †0.00Eþ †2.20E�43 †1.99E�61 †1.28E�01 †1.39E�06 1.00Eþ00

f4
†1.23E�71 †2.03E�97 †4.25E�33 †7.29E�44 9.97E�01 †1.23E�71 †2.03E�97 †4.25E�33 †7.29E�44 †3.30E�03

f5
†9.06E�11 †3.69E�54 †3.59E�02 1.00Eþ00 1.00Eþ00 †7.92E�11 †3.66E�54 †1.47E�02 1.00Eþ00 †6.15E�12

f6
†4.07E�13 – †6.58E�04 – – †4.07E�13 – †6.58E�04 – –

f7
†1.69E�05 †5.50E�03 †7.03E�10 †1.14E�07 9.89E�01 †1.38E�09 †8.72E�07 †3.04E�13 †1.94E�11 †1.15E�02

f8
†5.82E�38 †1.22E�36 †1.59E�18 – – †5.82E�38 †1.22E�36 †1.59E�18 – –

f9
†2.62E�38 †9.91E�26 †6.72E�22 1.47E�01 – †2.62E�38 †9.91e-26 †6.72E�22 1.47E�01 –

f10
†7.80E�57 †7.02E�54 †1.71E�21 †4.18E�32 5.00E�01 †7.80E�57 †7.02E�54 †1.71E�21 †4.18E�32 5.00E�01

f11
†2.81E�75 †1.35E�97 †3.90E�03 – – †2.81E�75 †1.35E�97 †3.90E�03 – –

f12
†2.18E�44 †5.93E�73 †6.96E�09 †2.59E�02 5.00E�01 †2.18E�44 †5.93E�73 †6.96E�09 †2.59E�02 5.00E�01

f13
†1.50E�46 †3.70E�46 1.59E�01 †3.16E�10 5.00E�01 †1.50E�46 †3.70E�46 1.59E�01 †3.16E�10 5.00E�01

The symbol “†” indicates that the EBO method has statistically significant improvement over the corresponding algorithms at 95% confidence level.
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4.5. Comparison on the 50-D functions

Table 6 presents the mean function error and RNFE values of
the six algorithms on the 50-D functions, and Table 7 presents
their statistical test results. On this group,

� DE/BBO, EBO1 and EBO2 reach the same optimum on function
f6, where EBO1 uses the minimum RNFE.

� BBO achieves the best mean error value on f8, where none of
the algorithms can reach the required accuracy.

� On the remaining 11 test functions, the EBO methods outper-
form all the other four EAs. Individually, EBO1 has the best
mean error values on 2 functions, EBO2 does so on 6 functions,

and the two methods achieve the same best results on
3 functions.

According to the statistical test results, EBO1 has significant
performance improvement over BBO, B-BBO, DE and DE/BBO on
11, 12, 11 and 9 functions respectively, and EBO2 does so on 11, 12,
11 and 10 functions respectively. EBO1 outperforms EBO2 on
2 functions, while EBO2 outperforms EBO1 on 5 functions.

4.6. Discussion

In summary, our EBO methods exhibit much performance
advantage over the other four comparative algorithms on the
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Fig. 4. Convergence curves of the comparative algorithms on the 30-D functions. (a) Sphere. (b) Schwefel 2.22. (c) Schwefel 1.2. (d) Schwefel 2.21. (e) Rosenbrock. (f) Step.
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benchmark problems, and the advantage becomes more obvious
with the increase of problem dimension. The basic BBO and B-BBO
sometimes converge fast at the very early stage, but they are easy
to be trapped by local optima because of poor exploration abilities.
DE/BBO combines the DE's ability in exploration and BBO's ability
in exploitation, and thus keeps a fast convergency speed longer
than BBO and exploits more precise optima than DE. The EBO
methods can achieve a much better balance between exploration
and exploitation due to the two newmigration operators, and they
are more capable of jumping out of local optima by using the
immaturity index η.

By comparing EBO1 and EBO2, we find that the former
generally converges faster, while the latter achieves better
results on more test functions. That is, the local random topology
is expected to produce results slightly better than the ring
topology, but the ring topology is easier to implement and
consumes less computational time in neighbor selection. In
addition, the random topology exhibits more performance advan-
tage on higher dimensional problems. In general, we prefer to use
the random topology in EBO for most unknown global optimiza-
tion problems, and favor the use of the ring topology for urgent
problems.

Table 6
The experimental results of the six EAs on the 50-D problems.

Metrics BBO B-BBO DE DE/BBO EBO1 EBO2

f1
Mean 2.67Eþ00 1.13Eþ01 2.97E�46 2.38E�27 6.15E�184 3.86E�182
std 7.14E�01 2.12Eþ00 1.83E�45 1.65E�27 0.00Eþ00 0.00Eþ00
RNFE – – 60,77574132 77,68571177 24,7937406 26,6157423

f2
Mean 6.16E�01 3.79E�01 8.81E�29 3.14E�17 5.47E�110 1.57E�104
std 7.75E�02 5.35E�02 2.80E�28 1.63E�17 2.68E�109 3.51E�104
RNFE – – 81,84072472 107,97671524 36,5437366 39,0067481

f3
Mean 1.11Eþ02 4.20Eþ02 1.46E�44 1.53E�26 3.69E�178 2.47E�179
std 3.06Eþ01 7.38Eþ01 7.95E�44 1.69E�26 0.00Eþ00 0.00Eþ00
RNFE – – 66,51673714 85,03871255 27,1987439 29,2287392

f4

Mean 4.90Eþ00 1.16Eþ00 1.96Eþ01 3.75E�01 1.06E�05 3.23E�07
std 5.84E�01 1.30E�01 4.71Eþ00 7.78E�02 1.61E�05 6.00E�07
RNFE – – – – – 215,916745246

f5
Mean 4.43Eþ02 1.49Eþ03 7.10Eþ01 4.10Eþ01 4.00Eþ01 3.88Eþ01
std 2.32Eþ02 3.23Eþ02 3.56Eþ01 9.73Eþ00 7.11E�01 5.39E�01
RNFE – – – – – –

f6
Mean 2.13Eþ00 1.44Eþ01 5.18Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00
std 1.40Eþ00 3.30Eþ00 1.16Eþ01 0.00Eþ00 0.00Eþ00 0.00Eþ00
RNFE – – – 29,27371060 93587277 10,1387364

f7
Mean 1.38E�02 1.49E�02 0.015186991 1.33E�02 4.94E�03 3.40E�03
std 7.59E�03 6.75E�03 0.011797576 9.58E�03 3.98E�03 2.70E�03
RNFE – – – – – –

f8
Mean 4.00Eþ00 7.60Eþ01 4.21Eþ03 1.01Eþ02 4.25Eþ02 3.27Eþ02
std 1.16Eþ00 4.42Eþ01 2.69Eþ03 1.21Eþ02 1.75Eþ02 1.68Eþ02
RNFE – – – – – –

f9
Mean 8.05E�01 9.65E�01 3.12Eþ01 1.43Eþ01 7.30E�01 6.09E�01
std 2.69E�01 5.14E�01 7.83Eþ00 1.19Eþ01 7.74E�01 7.08E�01
RNFE – – – – – –

f10
Mean 2.80E�01 7.66E�02 9.74E�02 1.07E�14 6.96E�15 6.72E�15
std 5.23E�02 1.25E�02 2.97E�01 2.78E�15 1.34E�15 1.52E�15
RNFE – – – 126,62071889 34,8847480 37,5407498

f11
Mean 9.77E�01 1.10Eþ00 3.32E�03 1.85E�18 0.00Eþ00 0.00Eþ00
std 7.57E�02 2.00E�02 6.70E�03 1.43E�17 0.00Eþ00 0.00Eþ00
RNFE – – 104,991780,730 81,13072079 25,18773691 27,70374315

f12
Mean 2.15E�01 1.51Eþ00 1.28E�02 1.46E�26 1.57E�32 1.57E�32
std 4.14E�02 3.41E�01 3.88E�02 2.21E�26 6.25E�35 6.25E�35
RNFE – – 105,568750,594 84,06271604 28,7987552 31,0187695

f13
Mean 1.31Eþ00 2.82Eþ01 6.07E�01 6.86E�26 1.35E�32 1.35E�32
std 3.32E�01 6.69Eþ00 1.42Eþ00 8.28E�26 8.28E�48 8.28E�48
RNFE – – 213,305743,033 90,75872169 30,7637753 33,0217858
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5. Application to a real-world emergency airlift problem

In this section, we present an emergency airlift problem in the Ms
7.0 Ya'an–Lushan Earthquake, Sichuan Province, Southwest China,
which has been successfully solved by the proposed EBO method.

The problem can be stated as follows. A certain amount of
supplies is planned to be transported by air from a set of m
(potential) air freight hubs to the airport closest to the disaster
area. There are n types of supplies, each of which has a lower
bound lj and an upper bound uj, and the amount of supply j
available at hub i is sij (1r irm;1r jrn). Within a given time
period, hub i can arrange at most Ki flight batches, where batch k

has a capacity cik and requires a preparation time τk (1rkrKi).
Let ti be the travel time from hub i to the target, then the expected
arrival time tik of batch k is (tiþτk).

The problem is to determine the amounts xijk of supply j
delivered in batch k of hub i, such that the supplies arrive as early
as possible:

min f ¼ ∑
m

i ¼ 1
∑
n

j ¼ 1
∑
Ki

k ¼ 1
wjxijktik�α ∑

n

j ¼ 1
wjδj

s:t: ∑
m

i ¼ 1
∑
Ki

k ¼ 1
xijkZ lj; j¼ 1;…;n

Fig. 5. The distribution of the air freight hubs.

Table 7
Statistical test results on the 50-D problems.

f EBO1 vs. EBO2 vs.

BBO B-BBO DE DE/BBO EBO2 BBO B-BBO DE DE/BBO EBO1

f1
†9.82E�56 †1.98E�72 1.06E�01 †1.55E�20 †0.00Eþ00 †9.82E�56 †1.98E�72 1.06E�01 †1.55E�20 1.00Eþ00

f2
†7.42E�92 †4.34E�86 †8.20E�03 †3.22E�29 †3.76E�04 †7.42E�92 †4.34E�86 †8.20E�03 †3.22E�29 1.00Eþ00

f3
†2.73E�54 †1.75E�75 7.93E�02 †9.40E�11 1.00Eþ00 †2.73E�54 †1.75E�75 7.93E�02 †9.40E�11 †0.00Eþ00

f4
†1.50E�94 †1.36E�97 †1.02E�60 †1.86E�67 1.00Eþ00 †1.50E�94 †1.36E�97 †1.02E�60 †1.85E�67 †1.26E�06

f5
†5.90E�26 †4.19E�64 †2.98E�10 2.12E�01 1.00Eþ00 †4.77E�26 †3.84E�64 †8.07E�11 †4.09E�02 †1.22E�18

f6
†4.28E�22 †7.77E�63 †3.60E�04 – – †4.28E�22 †7.77E�63 †3.60E�04 – –

f7
†4.01E�13 †2.54E�17 †1.84E�09 †3.66E�09 9.93E�01 †8.49E�18 †4.94E�23 †5.17E�12 †2.37E�12 †7.30E�03

f8 1.00Eþ00 1.00Eþ00 †9.03E�20 1.00Eþ00 9.99E�01 1.00Eþ00 1.00Eþ00 †1.92E�20 1.00Eþ00 †1.10E�03
f9 2.38E�01 †2.62E�02 †2.68E�57 †5.73E�15 8.12E�01 2.36E�01 †1.00E�03 †1.63E�57 †3.69E�15 1.88E�01
f10

†1.73E�72 †7.01E�79 †6.10E�03 †3.22E�16 8.17E�01 †1.73E�72 †7.01E�79 †6.10E�03 †5.16E�17 1.83E�01
f11

†3.45E�116 †3.58E�190 †9.92E�05 1.60E�01 – †3.45E�116 †3.58E�190 †9.92E�05 1.60E�01 –

f12
†5.11E�71 †1.31E�63 †5.90E�03 †6.20E�07 – †5.11E�71 †1.31E�63 †5.90E�03 †6.20E�07 –

f13
†4.87E�58 †3.76E�61 †6.10E�04 †1.56E�09 – †4.87E�58 †3.76E�61 †6.10E�04 †1.56E�09 –

The symbol “†” indicates that the EBO method has statistically significant improvement over the corresponding algorithms at 95% confidence level.
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∑
Ki

k ¼ 1
xijkrsij; i¼ 1;…;m; j¼ 1;…;n

∑
n

j ¼ 1
xijkrcik; i¼ 1;…;m; k¼ 1;…;Ki

xijkAZþ ; i¼ 1;…;m; j¼ 1;…;n; k¼ 1;…;Ki ð5Þ

where wj is the importance weight of supply j, α is an “award”
coefficient, and δj is the amount of supply j over the lower bound:

δj ¼
∑
m

i ¼ 1
∑
Ki

k ¼ 1
xijk� lj if ∑

m

i ¼ 1
∑
Ki

k ¼ 1
xijkouj

uj� lj else

8><
>: ð6Þ

It is not difficult to see that, if we have determined all the
amounts xij of supply j provided by hub i, then in order to optimize
the objective function, the supplies should be sent in decreasing
order of their weights (until the capacities are exhausted), i.e.,
more important supplies should be arranged to earlier batches.

Table 8
The input parameters of the airlift problem in the Ya'an–Lushan Earthquake.

Supply type 1 2 3 4 5 6 7 8 9

Weight 1.6 1.3 1.2 1.0 0.96 0.87 0.65 0.48 0.35
Lower bound 660 160 1100 2000 700 330 1620 820 910
Upper bound 720 210 1280 2550 830 380 1860 950 1200

Available supplies

Hub 1 189 26 230 200 97 80 107 115 192
Hub 2 130 0 120 333 93 29 176 96 109
Hub 3 0 13 160 561 108 66 318 81 205
Hub 4 94 37 610 818 71 138 336 165 599
Hub 5 48 7 205 525 73 101 159 30 95
Hub 6 0 10 35 270 35 12 136 20 81
Hub 7 18 23 125 170 9 59 320 58 65
Hub 8 26 5 80 121 160 12 530 51 98
Hub 9 55 54 100 520 63 25 1055 130 80
Hub 10 39 24 120 291 0 46 318 106 160
Hub 11 83 21 50 274 24 39 205 126 0
Hub 12 124 5 246 196 50 92 350 0 109
Hub 13 0 31 125 135 92 41 51 0 72
Hub 14 0 0 30 96 59 6 60 18 25
Hub 15 10 8 90 356 76 40 270 62 88
Hub 16 151 0 120 155 100 37 184 0 50
Hub 17 127 12 210 290 91 43 540 79 129
Hub 18 107 68 350 1121 202 71 918 156 316
Hub 19 33 36 200 308 68 71 367 198 75

Flight batches

c τ c τ c τ c τ

Hub 1 600 90 900 180
Hub 2 300 60 300 180 600 270
Hub 3 1200 60 300 150 300 240
Hub 4 600 90 1200 120 600 180 850 285
Hub 5 500 120 900 240
Hub 6 300 90 300 210
Hub 7 300 120 550 180
Hub 8 250 90 500 180 325 225
Hub 9 300 60 600 120 1200 240
Hub 10 600 60 600 180
Hub 11 300 75 550 180
Hub 12 600 50 600 165
Hub 13 300 120 300 300
Hub 14 300 120
Hub 15 500 90 500 195
Hub 16 250 90 250 210 300 270
Hub 17 300 90 600 165 800 300
Hub 18 300 45 1200 90 800 150 1100 240
Hub 19 800 105 550 210 300 315

Table 9
The airlift solution of EBO implemented in the Ya'an–Lushan Earthquake.

Supply type 1 2 3 4 5 6 7 8 9

Hub 1 134 26 121 105 51 29 38 88 8
Hub 2 120 0 91 39 50 0 0 0 0
Hub 3 0 13 113 399 97 42 270 70 196
Hub 4 0 0 0 0 0 0 0 0 0
Hub 5 5 7 56 113 62 53 94 28 82
Hub 6 0 10 33 257 35 12 136 20 81
Hub 7 12 22 111 155 9 59 320 58 65
Hub 8 22 5 53 39 131 0 33 27 93
Hub 9 0 0 0 0 0 0 0 101 0
Hub 10 35 23 95 279 0 12 156 0 34
Hub 11 81 19 29 171 24 39 205 126 0
Hub 12 121 5 232 149 29 64 0 0 79
Hub 13 0 31 125 69 75 0 0 0 0
Hub 14 0 0 30 96 59 6 60 18 25
Hub 15 9 8 76 347 60 0 20 20 55
Hub 16 150 0 100 0 0 0 92 0 49
Hub 17 25 12 14 19 33 17 32 77 71
Hub 18 0 0 0 0 0 0 0 0 0
Hub 19 0 0 0 0 0 0 164 187 72
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Thus we transform the problem (5) into the following form:

min f ¼ ∑
m

i ¼ 1
∑
n

j ¼ 1
wjxijtij�α ∑

n

j ¼ 1
wjδjþM ∑

n

j ¼ 1
PðjÞ

s:t: xijrsij; i¼ 1;…;m; j¼ 1;…;n

xijAZþ ; i¼ 1;…;m; j¼ 1;…;n ð7Þ

where tij is the expected arrival time of supply j from hub i (if xij is
divided into multiple batches, then an arithmetic mean time is
used), M is a large positive constant, and P(j) is the penalty function
for handling the constraint on the lower bound of supply j:

PðjÞ ¼ lj� ∑
m

i ¼ 1
xij if ∑

m

i ¼ 1
xijo lj

0 else

8><
>: ð8Þ

The earthquake occurred at 08:02 Beijing Time (00:02 UTC) on
April 20, 2013. At about 10:30, the disaster relief command center
(DRCC) began to plan the airlift task which involved 9 types of
supplies and 19 air freight hubs (the distribution of which is
shown in Fig. 5). At 11:35, the DRCC obtained the data from the
disaster area and the air freight hubs, as summarized in Table 8. As
we can see, there were 12 items of sij ¼ 0, and thus the problem
had 159 dimensions. α and M were respectively set to 305 and
10,000 for the problem. It was required to work out the airlift
solution before 11:55. Up to 11:48, we prepared the computational
environment and initialized the problem and algorithm para-
meters. Thus we set the maximum running time of the algorithms
to 5 min.

We simultaneously run three instances of the EBO algorithm
and two instances of the DE algorithm on five computers with the
same configuration (Intel Core i5-2430M processor and 4 GB DDR3
memory) for solving the given problem. Note that the algorithms
were adapted for the integer programming problem by rounding
the components of every new generated solution to the nearest
integers, which would not affect significantly the algorithm
performance [28]. The ring topology was employed in EBO for
saving computational resources.

At 11:54, the algorithms produced five solutions, the objective
values of which were 1,712,508 (EBO), 1,713,609 (EBO), 1,714,799
(EBO), 1,733,643 (DE), and 1,743,436 (DE). We submitted the solution
with the best objective value, which was then accepted and put into
implementation. Table 9 gives the detailed information about the
solution. In general, the decision-maker was very satisfied with the
implementation results of the solution produced by EBO.

Afterwards, we conducted a more comprehensive experiments
to validate EBO, DE, BBO, and DE/BBO on the given problem (the
results of which are given in Table 10):

1. We first run each algorithm with a maximum running time of
5 min. The results (averaged over 20 runs) show that EBO has
the best performance among the four algorithms.

2. We then run each algorithm with a maximum running time of
15 min. The results (averaged over 20 runs) show that EBO still

performs much better than the others, but EBO and DE cannot
further improve the solutions of that of 5 min (in terms of
statistical significance).

3. We further run BBO and DE/BBO with a maximum running
time of 30 min. The results (averaged over 20 runs) show that
the two algorithms also fail to improve the solutions of that of
15 min.

In summary, we can believe that EBO has found high quality
solutions in 5 min, and it is most suitable for solving the emer-
gency problem. In fact, during the experiments none of the other
algorithms can find a solution better than the EBO's solution
submitted to the DRCC.

6. Conclusions

BBO is a biogeography-inspired metaheuristic method that has
received much attention in recent years. The basic BBO uses a
global topology of population and a migration operator which has
a good ability of exploitation, but it is not very efficient in
exploration and often suffers from premature convergence. In this
paper, we propose a new variation of BBO, named EBO, which
employs a local topology to distinguish neighbors and non-
neighbors of each island, and defines two newmigration operators
to enrich information sharing between the islands, and thus
improves the exploration ability without harming the exploitation
ability of BBO. Computational experiments demonstrate that the
EBO is a very competitive method for global optimization. A real-
world application has also validated the EBO on an emergency
operational problem.

We believe that the main idea of EBO, i.e., integrating a global
migration operator and a local migration operator to balance
exploration and exploitation, can be applied to a variety of other
problems, including many complex combinatorial optimization
problems. We are currently developing discrete EBO for
permutation-based optimization problems such as the traveling
salesman and the flow-shop scheduling. Our ongoing work also
includes extending the EBO for multiobjective optimization, and
studying the parallelization of EBO, which can be much easier to
conduct on local topologies than on a global one.
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