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SUMMARY

Trypanosoma cruzi, the agent of Chagas’ dis-
ease, is an obligate intracellular parasite that
invades various organs including several cell
types in the nervous system that express the
Trk receptor tyrosine kinase. Activation of Trk
is a major cell-survival and repair mechanism,
and parasites could use Trks to invade cells
as a strategy to protect their habitat and pro-
long parasitism of vertebrate hosts. We show
that T. cruzi binds to TrkA specifically and acti-
vates TrkA-dependent survival mechanisms.
This interaction facilitates parasite adherence
and promotes efficient invasion of neuronal, ep-
ithelial, and phagocytic cells via a process that
requires TrkA kinase activity. Diffusible TrkA
and TrkA-blocking agents neutralized infection
in cellular and animal models of acute Chagas’
disease, suggesting cellular receptors as thera-
peutic targets against parasitic diseases. Thus,
TrkA, the nerve growth factor receptor com-
monly associated with neural survival and pro-
tection, may also underlie clinical progression
of an important human parasitic disease.

INTRODUCTION

The receptor tyrosine kinases (RTK) TrkA, TrkB, and TrkC

are widely expressed in peripheral (PNS) and central

(CNS) nervous systems, where they primarily regulate sur-

vival and proliferation of cells (Bibel and Barde, 2000;

Huang and Reichardt, 2003). Trks are also expressed on

dendritic cells, lymphocytes, and other cells of the im-

mune and inflammatory system (Vega et al., 2003), but

their function in nonneural tissues is not as well under-

stood, though it may also entail cell-survival promotion

(Torcia et al., 1996). The Trk family shares a common

structure: the extracellular domain (ECD) comprises leu-

cine-rich motifs sandwiched between two cysteine clus-

ters, followed by two immunoglobulin (Ig)-like domains,

a single transmembrane domain, and an intracellular
Cell H
domain (ICD) that contains a conserved tyrosine kinase

(see Figure 4D). The second Ig-like domain of TrkA,

TrkB, and TrkC reacts selectively with the neurotrophins

nerve growth factor (NGF), brain-derived neurotrophic

factor (BDNF), and neurotrophin-3 (NT-3), respectively.

Neurotrophin engagement initiates receptor dimerization,

autophosphorylation, and activation of three main signal-

ing pathways, one of which, phosphatidylinositol (PI)

3-kinase/Akt protein kinase, is a foremost mediator of

Trk-induced cell survival (Huang and Reichardt, 2003;

Kaplan and Miller, 2000). Thus, it stands to reason that

microbial pathogens should greatly facilitate and prolong

parasitism if, while invading host cells, they were to bind

Trks and trigger survival and protection mechanisms

normally associated with neurotrophin engagement.

Trypanosoma cruzi, the agent of a chronic and incurable

illness (Chagas’ disease) that afflicts millions of people in

the Americas, is an obligate intracellular parasite that in-

vades various organs throughout the body. In the nervous

system, it inhabits Trk-expressing astrocytes, microglia,

Schwann cells, enteric glial cells, and neurons (Da Mata

et al., 2000; Rosenberg et al., 1991; Tafuri, 1970). Infection

of the gastrointestinal tract can almost completely

destroy the autonomous nervous system and cause meg-

acolon and megaesophagus (megaviscera) (Brener, 1973;

Köberle, 1968). T. cruzi also invades Trk-expressing cells

in nonneural tissues such as keratinocytes and Langer-

hans cells (dendritic cells) in the skin (Nargis et al.,

2001), a site where transmission of Chagas’ disease starts

after a reduviid insect bite (Brener, 1973).

Recent studies showed that a T. cruzi protein with neur-

aminidase (Pereira, 1983) and sialyl-transferase (trans-

sialidase or TS) (Parodi et al., 1992; Schenkman et al.,

1992; Scudder et al., 1993) activities mimics NGF by

binding and activating TrkA; hence, TS is also known as

parasite-derived neurotrophic factor (PDNF) (Chuenkova

and Pereira, 2000; Chuenkova and PereiraPerrin, 2004,

2006). Given that PDNF/TS is readily shed into the extra-

cellular milieu (Prioli et al., 1991), we originally thought

that it operated as a diffusible exogenous molecule

facilitating neuroregenerative events in Chagas’ disease

(Chuenkova and Pereira, 2000). However, PDNF/TS is

also bound to the outer membrane of invasive T. cruzi

trypomastigotes through a glycosylphosphatidylinositol

(GPI) anchor (Prioli et al., 1991; Rosenberg et al., 1991)
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Figure 1. Specific Interaction of T. cruzi

Trypomastigotes with Soluble TrkAECD

and Transmembrane TrkA

(A) Binding of TrkAECD to T. cruzi. Trypomasti-

gotes were incubated with the indicated

amounts (per ml) of TrkAECD or FGFRECD for

1 hr at 4�C, centrifuged, resuspended in SDS,

and analyzed by immunoblotting with anti-

human IgG to identify T. cruzi-bound growth

factor receptor. Arrowheads indicate bands

corresponding to TrkAECD (closed arrowhead)

and FGFRECD (open arrowhead). Amount of

T. cruzi-bound receptors was estimated by

scanning densitometry and plotted using the

GraphPad software.

(B) Displacement of T. cruzi-bound TrkAECD by

NGF. TrkAECD was pulled down by T. cruzi as

described in (A) in the presence or absence of

NGF. TrkAECD binding to T. cruzi in the absence

of NGF was set as 100%.

(C) Displacement of T. cruzi-bound TrkAECD by

PDNF. Same protocol as in (B), except PDNF

and not NGF was included in the TrkAECD/

T.cruzimixtures.Results in (A)–(C)are represen-

tative data of three independent experiments.

(D) Visualization of T. cruzi adherence to PC12

cells. Trypomastigotes were labeled with Cell-

Tracker Red CMTPX and added to PC12WT

and PC12nnr5 cells for 30 min at 4�C, and the

cell monolayers were gently washed to remove

unattached parasites, fixed with 4% parafor-

maldehyde, and visualized by fluorescence

(upper panels) and phase-contrast (lower

panels) microscopy. Scale bar, 10mm.

(E) Quantitation of TrkA-mediated adherence of T. cruzi to neuronal cells. Adherence assay performed exactly as in (D) except parasites were incubated

without (�) or with TrkAECD (1 mg/ml) in the absence or presence of NGF (3 mg/ml), 1 hr prior to addition to the cells. Parasites adhering to PC12 cells were

estimated by fluorescence microscopy. Results represent the average of two independent experiments.

Error bars indicate the standard error of the mean.
and thus it is strategically located to directly interact with

host cell surface receptors such as TrkA. Here we report

that T. cruzi adhered to PC12 cells in a TrkA-dependent

manner and that it invaded neuronal and nonneuronal

cells through functional, but not through kinase-deficient,

TrkA. In synchrony with concepts of antiadhesion therapy

in infectious diseases (Sharon, 2006), an inhibitor of TrkA

kinase autophosphorylation specifically attenuated infec-

tion in a mouse model of acute Chagas’ disease, as did

passive administration of diffusible TrkAECD, presumably

by competing with transmembrane TrkA for TrkA-

dependent cellular invasion.

RESULTS

T. cruzi Adheres to PC12 Cells through

the TrkA Receptor

The rat pheochromocytoma PC12 cell line is widely used

in studies designed to understand mechanisms of NGF

binding to TrkA and resultant intracellular signaling cas-

cades. Therefore, we exploited the PC12 cell model to

find out whether TrkA is a cellular receptor for T. cruzi to

adhere to and invade host cells.

Intracellular microbial pathogens must first bind to sur-

face receptors as a prelude to entry, differentiation, and
252 Cell Host & Microbe 1, 251–261, June 2007 ª2007 Elsevier
multiplication inside host cells (Cossart and Sansonetti,

2004; Sibley, 2004; Smith and Helenius, 2004). To

determine whether TrkA mediates T. cruzi adhesion to

PC12 cells, we first ascertained whether trypomastigotes

(�25 mm 3 3 mm), the invasive stage of the parasite, inter-

act specifically with the neurotrophin RTK. For this, we

performed whole-cell pull-down assays in which parasites

were incubated with various concentrations of TrkAECD

fused to the Fc domain of human IgG at 4�C for 1 hr

(to prevent receptor internalization). Figure 1A and the

Figure 1A inset show that TrkAECD-Fc, but not fibroblast

growth factor receptor (FGFRECD-Fc), bound to T. cruzi

in a dose-dependent manner. The negative result with

FGFRECD-Fc implied that the Fc fragment did not

appreciably contribute to TrkAECD-Fc binding to T. cruzi.

Preincubating TrkAECD-Fc with various amounts of en-

dogenous (NGF) (Figure 1B) or exogenous (PDNF/TS)

(Figure 1C) ligands effectively inhibited adsorption of the

recombinant receptor to the parasites, reinforcing the

conclusion that TrkAECD-Fc bound to T. cruzi specifically.

To find out if the parasites interact with transmembrane

TrkA, trypomastigotes were labeled with the fluorescent

dye CellTracker Red and added to wild-type PC12 cells

(PC12WT) and TrkA-deficient PC12 cells (PC12nnr5) (Loeb

and Greene, 1993) at 4�C for 30 min to allow adhesion to
Inc.
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Figure 2. TrkA-Dependent T. cruzi Invasion of Neuronal and Epithelial Cells

(A) PC12WT cells, TrkA null mutant PC12nnr5cells, and PC12nnr5 cells stably expressing human TrkA (PC12TrkA) were infected with T. cruzi and, after

2 days, fixed and stained with DAPI and with human chagasic serum followed by anti-human IgG-Alexa 594 to visualize host cell nuclei and intracel-

lular parasite, respectively, by fluorescence microscopy.

(B and C) PC12WT, PC12nnr5, and PC12TrkA cells were infected with the indicated concentration of T. cruzi for 2 hr, and the degree of infection was

estimated, after 2 days, by counting infected and noninfected cells (>300 cells) by phase-contrast microscopy after staining with Diff-Quik.

(D) Infection ratio of mink lung epithelial cells (Mv1Lu) stably transfected with human TrkA gene (Mv1LuTrkA) over cells transfected with empty vector

(Mv1LuEV) following a protocol analogous to the one for PC12 cells. Experiments were performed in triplicates and repeated at least three times with

similar results.

Error bars indicate the standard error of the mean.
host cell plasma membrane with minimum cellular entry.

Adherent T. cruzi was readily ascertained by fluorescent

microscopy, which revealed a great preference (p <

0.0001) for PC12 cells expressing TrkA (PC12WT) com-

pared to the mutant cells (PC12nnr5) (Figures 1D and 1E).

Adsorption of TrkAECD-Fc (1 mg/ml) to trypomastigotes

(107/ml) in a ratio that produced strong binding of chimeric

receptor to the parasites (Figures 1A, 1B, and 1C) brought

down adherence to PC12 cells to a level analogous to that

of TrkA-minus nnr5 cells (p < 0.0001) (Figure 1E). Further-

more, TrkAECD-Fc interference in T. cruzi-PC12 cell adhe-

sion was, in turn, reversed by NGF (p < 0.001) (Figure 1E).

Therefore, these results supported the conclusion that

transmembrane TrkA mediates T. cruzi adhesion.

T. cruzi Exploits the TrkA Receptor to Invade

Neuronal and Engineered Epithelial Cells

Adhesion of microbes to surface receptors may or may

not conduce invasion into cells (Sharon, 2006; Smith and

Helenius, 2004), thus we sought to determine whether

TrkA-mediated adhesion leads to TrkA-dependent

invasion.
Cell H
Monolayers of PC12WT cells and PC12nnr5 cells infected

with trypomastigotes (�30 parasites per cell, 37�C) re-

vealed wild-type PC12 cells to be much more permissive

to T. cruzi than mutant PC12 cells (Figures 2A and 2B);

transfecting TrkA to the TrkA-deficient PC12nnr5 (Loeb

and Greene, 1993) cells restored wild-type cell infection

levels (Figures 2A and 2C).

Similarly, T. cruzi invaded mink lung epithelial Mv1Lu

cells, which normally do not express TrkA, about 4-fold

more efficiently in cells engineered to express wild-type

human TrkA (Mv1LuTrkA) (Figure 2D), which additionally

suggests TrkA to be a mediator of T. cruzi invasion. TrkA

expressed in the epithelial cells was biologically active,

as NGF activated phosphorylation of TrkA-dependent

transcription factor CREB in Mv1LuTrkA, but not in

empty-vector-transfected Mv1Lu (Figure S1 in the Sup-

plemental Data available with this article online), consis-

tent with earlier results by other investigators (Ip et al.,

1993).

To determine whether the TrkA-binding site on T. cruzi

mediates invasion, trypomastigotes were preincubated

with TrkAECD-Fc to block trypanosome-bound PDNF/TS,
ost & Microbe 1, 251–261, June 2007 ª2007 Elsevier Inc. 253
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Figure 3. Specific Inhibition of T. cruzi Invasion by TrkAECD and TrkA Ligands

(A) TrkAECD inhibits T. cruzi invasion of PC12 cells. T. cruzi trypomastigotes were incubated in DME medium for 1 hr without (vehicle medium) or with

control FGFRECD (1 mg), and TrkAECD (1 mg) without (TrkAECD) or with either 3 mg NGF (TrkAECD + NGF) or 12 mg PDNF (TrkAECD + PDNF). Parasites were

washed by centrifugation to remove unbound TrkAECD and allowed to infect PC12 cells for 2 hr. Infection in vehicle medium was set at 0% inhibition.

(B) TrkA ligands (NGF, PDNF, rPDNF, and NT-3), but not non-TrkA ligands (LIF, BDNF), inhibit infection of PC12 cells. Cells were treated with DME

medium without (vehicle) or with 100 ng/ml TrkA ligands and 100 ng/ml non-TrkA ligands for 30 min prior to the infection. Infection levels of vehicle-

treated cells were used to calculate percentage of inhibition.

(C) TrkA ligands do not inhibit residual infection in PC12nnr5 cells, as determined by a protocol similar to that in (B). Experiments in (A)–(C) were

repeated five times, and the results represent average of those five experiments.

Error bars indicate the standard error of the mean.
washed to remove parasite-unbound receptors, and used

to infect PC12 cells. The results showed that TrkAECD-Fc,

but not control FGFRECD-Fc, inhibited T. cruzi invasion

and that the inhibition was reversed by loading the neuro-

trophin-binding site of TrkA with either endogenous (NGF)

or exogenous (PDNF/TS) ligands (Figure 3A).

To verify whether T. cruzi invasion depends on the inter-

action of the parasite with the neurotrophin-binding site

of TrkA, PC12 cells were preincubated for 30 min with

TrkA-binding ligands (NGF, NT-3, and PDNF isolated

from T. cruzi or from engineered bacteria) and with non-

TrkA-binding ligands (leukemia inhibitory factor [LIF] and

BDNF). The results showed that all TrkA ligands inhibited

T. cruzi infection of PC12WT cells (Figure 3B), but not of

TrkA-deficient PC12nnr5 cells (Figure 3C), whereas non-

TrkA ligands did not alter T. cruzi invasion of PC12 cells

(Figure 3B). These results suggest that T. cruzi invasion

of PC12 cells depends on TrkA NGF-binding site occu-

pancy by the parasite PDNF/TS.

TrkA-Dependent T. cruzi Invasion Requires TrkA

Kinase Activity

Microbes do not automatically activate the surface recep-

tors that they use to invade cells, as exemplified by rabies

virus, which enters host cells by binding, but without acti-

vating, the panneurotrophin receptor p75NTR (Langevin

et al., 2002). Three distinct approaches suggest that

T. cruzi invasion through TrkA requires receptor tyrosine

kinase activity.

First, we determined whether T. cruzi triggers phos-

phorylation of TrkA and the TrkA-dependent survival sig-

naling pathways. The results showed that T. cruzi induced

TrkA autophosphorylation and activated MAPK and PI3K/

Akt kinase pathways in a TrkA-dependent manner (Fig-

ure S2), consistent with earlier results showing that soluble

PDNF/TS induces neurite outgrowth and cell survival
254 Cell Host & Microbe 1, 251–261, June 2007 ª2007 Elsevier I
through TrkA activation (Chuenkova and PereiraPerrin,

2004).

Second, cells were treated with K252a (Berg et al.,

1992) and AG879 (Ohmichi et al., 1993) to see if these spe-

cific inhibitors of TrkA kinase autophosphorylation affect

T. cruzi invasion. The results showed that infecting

PC12WT cells sensitized with K252a (Figure 4A) and

AG879 (Figure 4C) reduced permissiveness to the level

of TrkA-deficient PC12nnr5 cells. Neither K252a nor

AG879 affected T. cruzi invasion of the TrkA-deficient cells

(Figures 4B and 4C), strongly suggesting that the two

compounds reduced infection by specifically inactivating

the TrkA kinase pathway of T. cruzi invasion. Furthermore,

screening various cell lines with TrkA kinase inhibitors

showed that only TrkA-expressing cells (PC12 cells and

dendritic cells) became less permissive to invasion upon

treatment with the TrkA kinase inhibitors (Table 1).

K252a-dependent inhibition of infection was not due to

toxicity on T. cruzi because preincubating parasites, but

not host cells, with the inhibitor did not affect invasion

(Figure S3). Treatment of PC12 cells with a specific tyro-

sine kinase inhibitor of insulin-like growth factor receptor

(IGF-1R) did not reduce T. cruzi infection (Figure 4D) (Gir-

nita et al., 2004; Zheng and Quirion, 2006), further under-

scoring specific action of K252 and AG879.

And third, a TrkA deletion mutant was expressed in neu-

ronal and epithelial cells to additionally find out if the

kinase domain of the receptor is required for TrkA-depen-

dent invasion. A TrkA derivative (TrkADICD) that contained

intact ECD and transmembrane domains but lacked most

of the intracellular kinase domain, including all residues

that become phosphorylated upon TrkA dimerization

(Figure 4E), was generated. Transfecting TrkA-deficient

PC12nnr5 cells with TrkADICD produced cells (PC12-

nnr5TrkA-DICD) that were poorly permissive, comparable

to cells transfected with empty vector (PC12-nnr5EV),
nc.
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Figure 4. TrkA Kinase Inhibitors and Deletion of TrkA Intracellular Domain Block T. cruzi Invasion

(A) K252a inhibits T. cruzi infection of PC12 cells. PC12WT cells were pretreated with 500 nM K252a for 1 hr prior to parasite addition. Infection assay is

similar to that described in the Figure 2 legend.

(B) K252a does not inhibit T. cruzi infection of PC12nnr5 cells; protocol is similar to that in (A).

(C) AG879 inhibits T. cruzi infection of PC12WT but not of PC12nnr5 cells. Protocol is similar to that in (A) and (B) except for the pretreatment with 50 mM

AG879.

(C) IGF1-R inhibitor does not block T. cruzi infection of PC12WT cells. Protocol is similar to that in (A) except that cells were pretreated with several

concentration of IGF-1R inhibitor and K252a.

(E) Diagram of wild-type TrkA (TrkAWT) and TrkA lacking intracellular domain (TrkADICD). Tyrosine residues that become phosphorylated upon TrkA

dimerization are missing in TrkADICD.

(F) NGF (10 ng/ml, 48 hr) does not stimulate neurite extension in PC12nnr5 cells transfected with TkADICD (PC12-nnr5TrkA-DICD) or empty vector (PC12-

nnr5EV), in contrast to the response of PC12nnr5 cells transfected with TrkAWT. After treatment, cells were fixed and stained with anti-neurofilament-

200 antibody and Alexa-conjugated secondary antibody. Scale bar, 10mm.

(G) TrkAWT, but not TrkADICD, rescues T. cruzi invasiveness in TrkA null PC12nnr5 cells. Infection assays are similar to the protocol in (A)–(C), which

show PC12-nnr5TrkA-WT cells supporting T. cruzi infection as well as PC12WT cells, in contrast to equally poorly permissive PC12-nnr5TrkA-DICD cells

and PC12nnr5-EV cells.

(H) TrkAWT, but not TrkADICD, enhances T. cruzi invasion of mink lung epithelial cells (Mv1Lu). Mv1LuTrkA-WT, Mv1LuTrkA-DICD, and Mv1LuEV cells were

infected with the indicated concentrations of T. cruzi. Results were plotted as the ratio of Mv1LuTrkA-WT and Mv1LuTrkA-DICD over Mv1LuEV.

The experiments in (A)–(D), (G), and (H) were repeated three times. The results are representative of one experiment of triplicate samples. Error bars

indicate the standard error of the mean.
both in contrast to the rescue produced by TrkAWT in

PC12-nnr5TrkA-WT cells (Figure 4G). The rescue in invasion

produced by TrkAWT, but not TrkADICD, could not be ex-

plained by low expression of the kinase-deficient con-
Cell H
structs because TrkADICD and TrkAWT gene products

were expressed at similar levels (Figure S4). In agreement

with the expectation that TrkADICD is devoid of kinase ac-

tivity, PC12-nnr5TrkA-DICD cells did not extend neurites in
ost & Microbe 1, 251–261, June 2007 ª2007 Elsevier Inc. 255
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Table 1. Selective Inhibition of T. cruzi Invasion by TrkA Kinase Inhibitors

Cell Type

TrkA

Expression Infectiona p Valueb
Inhibition

of Infection (%)

Vehicle Medium
(% ± SD)

TrkA Kinase Inhibitor
(% ± SD)

Dendritic cellsy (primary culture) + 11.9 ± 3.2 5.6 ± 1.7 0.008* 52.94

PC12WT (neuronal cell line) + 14.6 ± 0.9 7.8 ± 2.3 0.02* 46.70

Smooth muscle cells (primary culture) � 57.0 ± 1.6 53.9 ± 13.4 ns 5.57

L6E9 (skeletal muscle cell line) � 39.4 ± 8.0 39.8 ± 4.1 ns �0.96

Schwann (glial cell line) � 47.0 ± 12.6 44.7 ± 7.5 ns 4.99

PC12nnr5 (neuronal cell line) � 4.3 ± 0.1 4.7 ± 1.4 ns �10

a Cell monolayers were treated with vehicle medium (DMEM + 0.001% DMSO) or TrkA inhibitor (500 nM K252a for neuronal cells,

smooth and skeletal muscle cells, and glial cells, and 10 mM TrkA inhibitor for dendritic cells [y]) for 1 hr prior to infection with 5 3 106

T.cruzi/ml. After 2 days, cell were fixed and stained with Diff-Quick to visualize intracellular parasites. + and � denote expression

and absence of TrkA receptor, respectively.
b p value was calculated based on paired t test. *Statistically significant infection inhibition; ns, not statistically significant.
response to NGF, in contrast to PC12-nnr5TrkA-WT

cells (Figure 4F). Furthermore, TrkAWT-transfected

Mv1Lu (Mv1LuTrkA-WT) became 4- to 5-fold more permis-

sive to T. cruzi than TrkADICD-transfected Mv1Lu

(Mv1LuTrkA-DICD) (Figure 4H), further supporting the con-

clusion that the kinase domain of TrkA is important for

T. cruzi invasion. Preliminary experiments showed that

Mv1Lu transfectants expressed TrkAWT and TrkADICD pro-

teins at similar levels (data not shown), excluding the pos-

sibility that Mv1LuTrkA-DICD cells were poor T. cruzi hosts

due to low expression of TrkADICD compared to TrkAWT.

Competitive Inhibitors of NGF-TrkA Interaction

Attenuate T. cruzi Infection in Experimental

Chagas’ Disease

Chagas’ disease is mostly transmitted to man after the

bite of reduviid insects on the skin, where resident nerves

and TrkA-expressing cells (such as mast cells, keratino-

cytes, and dendritic cells) upregulate TrkA expression

after injury (Pincelli, 2000; Shu and Mendell, 1999). While

some parasites may immediately leave the bite site,

many remain at the inoculation site and invade local host

cells (Schuster and Schaub, 2000). To find out whether

T. cruzi exploits the TrkA pathway to infect cells in subcu-

taneous tissues in vivo, we inoculated TrkAECD-Fc/T. cruzi

complex into the footpads of mice in a protocol meant to

mimic the inhibition of adhesion and invasion brought by

the chimeric receptor-parasite complex in vitro (Figures

1E and 3A, respectively). On days 8, 11, and 14 postinoc-

ulation, mice infected with TrkAECD-Fc-trypomastigotes

exhibited parasitemia 81%, 80%, and 53% lower than

mice inoculated with control T. cruzi adsorbed with vehicle

medium or control receptor FGFRECD-Fc (Figure 5A and

inset).

One likely explanation for these in vivo results is that

binding of TrkAECD-Fc to trypomastigotes blocked para-

site recognition of transmembrane TrkA. A corollary to

this hypothesis is that addition of NGF to TrkAECD-Fc

should inhibit receptor binding to the parasites and re-
256 Cell Host & Microbe 1, 251–261, June 2007 ª2007 Elsevier
verse the blockade of parasite recognition of transmem-

brane TrkA in vivo, which was observed experimentally

(Figure 5B and inset).

Given that TrkA-dependent T. cruzi invasion of cells

in vitro requires tyrosine kinase activity of the receptor,

we also sought to determine whether this would be the

case for infection in vivo. First we sensitized footpads of

mice with K252a (11.7 mg/kg body weight) to inhibit TrkA

tyrosine kinase of permissive host cells in situ, followed

by inoculation of T. cruzi in the same site 1 hr later. Priming

with K252a at 11.7 mg/kg body weight was based on pre-

liminary dose-response experiments that showed this

dosage to optimally inhibit parasitemia (data not shown).

Measurement of tissue parasitism by real-time PCR (Cum-

mings and Tarleton, 2003) in the inoculation site 3 and

10 days later, and parasitemia at multiple days thereafter,

showed that K252a significantly reduced parasite load in

the inoculation site (Figures 6A and 6B) and in the blood

(parasitemia) (Figure 6C). Such reduced parasite load

was reflected in the decreased inflammatory response in

histological slices of the inoculation site 10 days after in-

fection (Figures 6E and 6F). That K252a attenuated infec-

tion in mice by inhibiting TrkA kinase activity of susceptible

cells in the inoculation site was validated by the results of

two other experiments. Here, we inoculated parasites in

a footpad distinct from the one primed with K252a or in

the same footpad sensitized with a tyrosine kinase inhibi-

tor specific for a growth factor receptor unrelated to TrkA

(IGF-1R). K252a did not reduce parasitemia when injected

into a site far away from the T. cruzi inoculation site (Fig-

ure S5), nor did the IGF-1R kinase inhibitor administered

in the same site as the trypanosomes (Figure 6D).

DISCUSSION

During prenatal development and adulthood, NGF medi-

ates proliferation, differentiation, and survival of neuronal

(Bibel and Barde, 2000; Huang and Reichardt, 2003)

and nonneuronal (muscle, astrocytes, monocytes, and
Inc.
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Figure 5. Specific Inhibition of T. cruzi Infection In Vivo by Soluble TrkAECD

(A) TrkAECD, but not FGFRECD, reduces parasitemia in a murine model of Chagas’ disease. Trypomastigotes (2 3 106/ml) were incubated with DME

medium without (vehicle medium) or with TrkAECD, FGFRECD (1 mg/ml, 1 hr), washed by centrifugation to remove receptor unbound to parasites, and

inoculated (3 3 103/mouse) subcutaneously in the mice footpads. Parasitemia was monitored every 3 days for the indicated times. Inset shows the

degree of inhibition by TrkAECD (but not FGFRECD).

(B) NGF reverses the infection-inhibition action of TrkAECD. Protocol is similar to that in (A) except parasites were incubated for 1 hr with vehicle me-

dium without or with TrkAECD (1 mg/ml), TrkAECD (1 mg/ml) + NGF (3 mg/ml), washed by centrifugation, and inoculated into mice footpads. Inset shows

the degree of inhibition of parasitemia produced by TrkAECD and TrkAECD + NGF relative to control vehicle medium (dotted line). Experiments were

repeated twice with similar results.

Error bars indicate the standard error of the mean.
dendritic) cells through the activation of tyrosine kinase re-

ceptor TrkA (Hutton and Perez-Polo, 1995; Rende et al.,

2000; Vega et al., 2003). NGF binding to TrkA also induces

receptor endocytosis and retrograde transport of signal-

ing endosomes (Huang and Reichardt, 2003; Kaplan and

Miller, 2000). Thus, if pathogenic microbes were to exploit

a neurotrophic survival receptor such as TrkA to access

the host cell intracellular milieu, one would expect such

a type of invasion to stimulate survival and metabolism

of the infected cells.

The results presented here show that the intracellular

protozoa parasite T. cruzi adheres to and invades PC12

cells through the recognition of TrkA, and that such recog-

nition triggers TrkA-dependent MAPK and PI3K/Akt ki-

nase signaling. Blocking TrkA activation in neuronal

(PC12) and nonneuronal (dendritic) cells by pharmacolog-

ical and genetic means greatly reduced T. cruzi invasion.

Conversely, forced expression of wild-type TrkA, but not

kinase-deficient TrkA, in a cell line naturally resistant to

T. cruzi (mink lung epithelial Mv1Lu cells) increased inva-

sion by 4-fold. Most interesting, interfering with the

T. cruzi/TrkA crosstalk either with a TrkA autophosphory-

lation inhibitor—K252a—or an NGF antagonist—soluble

ectodomain of TrkA—profoundly attenuated tissue para-

sitism, parasitemia, and inflammation in an animal model

of Chagas’ disease. Therefore, our findings support the

novel concept that a survival receptor—TrkA—tradition-

ally associated with development and repair of the ner-

vous system, functions as a vehicle for invasion by the in-

tracellular pathogen T. cruzi. Activated TrkA-dependent

survival pathways, whether by extracellular T. cruzi,

T. cruzi product PDNF/TS, or NGF, can last at least 2–3

days (Chuenkova and Pereira, 2000; Chuenkova et al.,

2001; Chuenkova and PereiraPerrin, 2004). Such durable
Cell H
response is consistent with the idea of invasion receptor

TrkA prolonging the life span of infected cells, which could

be further extended and/or augmented by intracellular

T. cruzi, as they, through mechanisms that have yet to

be elucidated, seem to inhibit apoptosis in Schwann cells

(Chuenkova et al., 2001) and cardiomyocytes (Aoki et al.,

2004; Petersen et al., 2006). And these cell-survival-pro-

moting actions would be particularly valuable in nondivid-

ing postmitotic cells such as neurons and heart muscle

cells.

The ligand that mediates TrkA-dependent T. cruzi inva-

sion is PNDF/TS, a protein widely studied for its ability to

catalyze the transfer of sialic acid from glycoconjugates

into the aqueous environment (neuraminidase activity)

(Pereira, 1983) and to b-galactosyl substrates (trans-siali-

dase activity) (Parodi et al., 1992; Schenkman et al., 1992;

Scudder et al., 1993). Although earlier work suggested

that these enzymatic activities may mediate T. cruzi inter-

action with epithelial and fibroblast cell lines (Ming et al.,

1993; Schenkman et al., 1993), subsequent findings did

not support such idea because a monoclonal antibody

against PDNF/TS, which completely inhibit trans-sialidase

activity, did not alter infection in vivo (Risso et al., 2006).

Similarly, TrkA-dependent entry of T. cruzi into cells may

not require the sialic-acid-binding site of PDNF/TS be-

cause a deletion mutant of the enzyme that inactivate

both neuraminidase and sialyl-transferase activities did,

nevertheless, promote neurite extension and survival of

PC12 cells to the same extent as enzymatically active

enzyme (Chuenkova and Pereira, 2000). Furthermore,

a PDNF/TS-based synthetic linear peptide of 21 amino

acids (Y21) reproduced neurotrophic properties of the in-

tact enzyme (Chuenkova and PereiraPerrin, 2005). That

trans-sialidase activity is dispensable for TrkA-dependent
ost & Microbe 1, 251–261, June 2007 ª2007 Elsevier Inc. 257
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Figure 6. TrkA Kinase Inhibitor K252a

Reduces Parasite Tissue Load, Parasite-

mia, and Inflammation in Experimental

Chagas’ Disease

(A and B) K252a reduces tissue parasitism in

the inoculation site. Vehicle medium without

and with K252a (11.7 mg/kg of body weight)

was injected in the right footpad of C57BL/6

mice followed by inoculation of T. cruzi (3 3

103/ml) in the same site 1 hr later. Parasite

load at the inoculation site was quantified after

3 (A) and 10 days (B) by real-time PCR. Each

symbol represents a single infected mouse.

Note that the magnitude on the ordinate in (B)

is 103 greater than that in (A), reflecting para-

site growth with disease progression in early

acute disease.

(C) Kinetics of parasitemia were measured ev-

ery third day in groups of five mice infected

with T. cruzi using a protocol similar to that in

(A) and (B). Experiments were repeated three

times with similar results.

(D) Kinetics of parasitemia were measured ev-

ery 4 days in mice infected with T. cruzi using

protocol similar to that in (A) and (B) except

that mice were primed with IGF-1R inhibitor

(11 mg/kg of body weight).

(E and F) H&E-stained section of inoculation

site (right footpad) 10 days postinfection, re-

vealing reduced inflammation in the subcuta-

neous tissue infected with T. cruzi after priming

with K252a (F) compared with analogous site

sensitized with vehicle medium (G). Inflamma-

tory cells in both (E) and (F) consist of neutro-

phils, macrophages, and mononuclear cells.

Analysis is from two experiments with similar

results.

Error bars indicate the standard error of the

mean.
invasion was further validated by recently identified PDNF/

TS-modeled synthetic peptides that bind TrkA and po-

tently inhibit T. cruzi invasion of PC12 cells (M.d.M.-J.,

M. Chuenkova, and M.P., unpublished data). Thus,

PDNF/TS moonlights as a carbohydrate-binding enzyme

and as a neurotrophic factor, analogous to other moon-

lighting proteins like phosphoglucose isomerase, which

can function as carbohydrate-binding enzyme and as

a growth factor for neurons independently of carbohy-

drate-binding activity (Petsko and Ringe, 2004).

Schneider and Schweiger proposed more than a de-

cade ago that Trks mediate cell-cell interactions

(Schneider and Schweiger, 1991) based on the role played

by leucine-rich/cysteine-rich cassette of other receptors

such as microbial recognition of Toll-like receptors

(Kedzierski et al., 2004) and Leishmania infantum binding

to macrophages (Kedzierski et al., 2004). The results pre-

sented here provide experimental support, perhaps for the

first time, for TrkA-dependent cell-cell adhesion in a heter-
258 Cell Host & Microbe 1, 251–261, June 2007 ª2007 Elsevier
ophilic (mammalian host cell and unicellular trypomano-

some) system (Figure 1). Such TrkA-dependent adhesion,

in turn, serves as a prelude for T. cruzi invasion of cells of

the nervous system and other tissues that express the

NGF receptor. It highlights one invasion mechanism

among various others that T. cruzi most certainly exploits

to infect a diverse range of distinct host cell types in

mammals.

Indeed, two other receptors, transforming growth factor

b receptor II (TGFb-RII) and bradykinin receptor, have

been proposed to mediate T. cruzi infection of cultured

mink lung epithelial Mv1Lu cells and human umbilical

vein endothelial cells, respectively (Ming et al., 1995;

Scharfstein et al., 2000). T. cruzi is not alone in taking

advantage of distinct receptors in the quest to invade

mammalian cells, for even a protozoan parasite—Leish-

mania—that inhabits a single cell type—macrophages—

uses at least three surface receptors (complement recep-

tors 1 and 3, and mannose/fucose receptor) (Handman
Inc.
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and Bullen, 2002). Simpler organisms such as viruses may

also penetrate cells through multiple receptors as best ex-

emplified by HIV-1, which exploits at least four distinct

molecules (CD4, mannose binding C-type lectin, and che-

mokine receptors CXCR4 and CCR5) to infect cells (Smith

and Helenius, 2004). Nevertheless, TrkA is the first among

the Trk receptors and the other two major families of re-

ceptors for neurotrophic factors (neurokines and the

glial-cell-line-derived family of ligands) to be identified as

a mediator for the intracellular invasion of a microbe.

Given that neurotrophins can bind to more than one Trk re-

ceptor, as in the case of NT-3, which can activate TrkA and

TrkC (Huang and Reichardt, 2003), it may be that PNDF

binds and mediates invasion not only through TrkA, but

also via TrkB and/or TrkC as well.

T. cruzi is believed to persist for many years inside my-

ocytes in the heart and gastrointestinal tract of chronic

chagasic patients (Brener, 1973). Adipocyte is also a likely

important T. cruzi reservoir, as parasite DNA can be de-

tected in adipose tissue as long as 300 days postinfection

(Combs et al., 2005). Given that most patients with acute

Chagas’ disease have T. cruzi in their cerebrospinal fluid

(Hoff et al., 1978) and that chronic chagasic patients im-

munosuppressed with HIV, drugs, or irradiation can reac-

tivate infection predominantly in their brains, including

striatum and other parts of the basal ganglia (Antunes

et al., 2002; Kohl et al., 1982; Rosemberg et al., 1992), it

may be that T. cruzi also remains dormant in cholinergic

basal forebrain and striatum, the only CNS site that con-

tains TrkA-expressing neurons (Steininger et al., 1993).

EXPERIMENTAL PROCEDURES

Parasites and Mammalian Cell Lines

The Silvio X-10/4 and Tulahuen strains of T. cruzi were propagated in

a human Schwann cell line as described previously (Chuenkova and

Pereira, 1995) and used for in vitro and in vivo assays, respectively.

Tulahuen strain was chosen for in vivo experiments because it pro-

duces readily detectable parasitemia and mortality, while Silvio strain

was used in the in vitro experiments because it grows robustly in cell

cultures. PC12WT and PC12nnr5 cells were gifts from Dr. Lloyd Green

(College of Physicians and Surgeons, Columbia University, NY), as

were PC12nnr5 cells stably expressing human TrkAWT used in

Figure 2A (Green et al., 1986; Loeb and Greene, 1993). The permanent

human Schwann cells cell line was used in a previous study (Chuen-

kova et al., 2001). Primary cultures of human smooth muscle cells

were a gift from Herbert Tanowitz (Albert Einstein College of Medicine,

Bronx, NY), and bone marrow-derived dendritic cells were a gift from

Kristin Stephan (Tufts Medical Center, Boston, MA). Mink lung epithe-

lial cells (Mv1Lu) and the myoblast cell line L6E9 were purchased from

ATCC.

Binding of TrkAECD to T. cruzi

Trypomastigotes (107/ml) were incubated with TrkAECD-Fc and

FGFRECD-Fc (R&D systems) in binding buffer (DMEM, 0.1% BSA) for

1 hr at 4�C without or with putative competitors, washed four times

with binding buffer by centrifugation (1,500 3 g, 10 min) to remove un-

bound receptor, and processed to quantitate bound receptor and

measure cell adhesion and invasion in vitro and in vivo. To ascertain

bound TrkAECD, parasites were resuspended in SDS sample buffer,

run on reducing SDS-PAGE (7.5%), transferred to nitrocellulose, and

probed with anti-human IgG peroxidase-labeled antibody (Promega)

and scanning densitometry (Bio-Rad laboratories). For cell adhesion,
Cell H
trypomastigotes were labeled with fluorescent CellTracker Red

CMTPX (Molecular Probes) as recommended by the manufacturer

and added to PC12WT and PC12nnr5 cells for 30 min at 4�C. Cell mono-

layers were washed four times in the cold, fixed in 4% paraformalde-

hyde for 15 min, washed in PBS three times, and analyzed by fluores-

cent microscopy.

T. cruzi Infection In Vitro

Cells were infected with T. cruzi (Silvio), and infection was visualized by

fluorescence or phase-contrast microscopy as previously described

(Chuenkova and PereiraPerrin, 2004). For inhibition experiments, cells

were preincubated for 30 min with PDNF or rPDNF purified by affinity

chromatography (Chuenkova and Pereira, 2000; Scudder et al., 1993),

NGF (Sigma-Aldrich), NT-3 (R&D Systems), LIF (Sigma-Aldrich), BDNF

(R&D systems), washed three times with DMEM, and infected with var-

ious concentration of T. cruzi. To test the effect of TrkA kinase inhibi-

tors (Calbiochem) on T. cruzi invasion, cells were preincubated for

1 hr with TrkA kinase inhibitor (10 mM, IC50 = 6 nM), K252a (500 nM,

IC50 = 3 nM), and AG879 (50 mM, IC50 = 10 mM), and IGF-1R inhibitor

(125 nM to 2 mM, IC50 = 1 nM) followed (without washing) by various

concentration of parasites for 2–3 hr.

Murine Model of Acute Chagas’ Disease and Real-Time

Quantitative PCR

Groups of five female C57BL/6 mice (Jackson Laboratory), 6–8 weeks

old, were injected subcutaneously into footpad with 3 3 103 trypomas-

tigotes (Tulahuen) pretreated with FGFRECD-Fc or TrkAECD-Fc with or

without NGF. In some experiments, footpads were primed with vehicle

medium containing, or not, K252a (11.7 mg/kg of body weight) or IGF-

1R inhibitor (11 mg/kg of body weight) followed by T. cruzi inoculation in

the same site 1 hr later. Parasitemia was monitored every 3 days

(Chuenkova and Pereira, 1995). In some cases, footpads were col-

lected 3 and 10 days postinfection and tissue processed for hematox-

ylin and eosin staining or for quantification of parasite load by real-time

PCR (Cummings and Tarleton, 2003). Parasite load (relative amounts

of T. cruzi DNA per mouse DNA) was calculated by considering DNA

from uninfected mice as baseline and TNF (one-copy mouse gene)

as internal control. These experiments were approved by the Institu-

tional Animal Care and Use Committees (IACUC) of Tufts University-

New England Medical Center.

TrkA Constructs and Transfection Assays

Primers were designed to amplify TrkA cDNA encoding 796 amino

acids (full-length TrkAWT) (TrkA-1: 50-CCGCTCGAGATGCTGAG

AGGCCA-30 and TrkA-2: 50-CCGGAATTCCGCCCAGAACGTC 30) or

489 amino acids (truncated form that lacks kinase domain, or TrkADicd)

(TrkA-1 and TrkA-4: 50-CCGGAATTCCCTGTGGGTTCTC-30), for which

XhoI and EcoRI restriction sites were added to the 50 and 30 ends, re-

spectively. DNA was digested and ligated into the vector pEYFP-N1

(Clontech). Cells were transfected with Lipofectamine 2000 (Invitro-

gen) according to the manufacturer’s protocol. TrkA function was

tested by neurite outgrowth assay. Transfected PC12nnr5 cells were

treated with 10 ng/ml NGF in 0.5% FCS DMEM for 48 hr. Cells were

fixed in 4% paraformaldehyde, blocked in 5% BSA/PBS, and probed

with anti-neurofilament 200 (Sigma-Aldrich) followed by Alexa 594-

conjugated anti-rabbit IgG (Molecular Probes). Cells were analyzed

in a fluorescent microscope.

Supplemental Data

The Supplemental Data include five supplemental figures and can be

found with this article online at http://www.cellhostandmicrobe.com/

cgi/content/full/1/4/251/DC1/.
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