
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 162, Ill-143 (1991) 

Triangular Norm-Based Measures 
and Their Markov Kernel Representation 

DAN BUTNARIU 

Department of Mathematics and Computer Science, 
University of Haifa, 31905 Hatfa, Israel 

AND 

ERICH PETER KLEMENT 

Institut ftir Mathematik, 
Johannes Kepler Universitiit, A-4040 Linz, Austria 

Submitted by Ulrich Hiihle 

Received October 23, 1989 

We approach the problem whether left-continuous triangular norm-based valua- 
tions (called T-measures or T-probability measures) defined on triangular norm- 
based tribes of the unit cube can be disintegrated by Markov kernels. We prove 
that each T-measure based on a “fundamental” triangular norm (these triangular 
norms T, together with their corresponding triangular conorms S, satisfy the func- 
tional equation 7(x, y) + S(.x, y) = x + y) can be uniquely represented as a sum of 
a “disintegrable” T-measure and a “hard core” which is either identically zero or 
which is monotonically irreducible (i.e., cannot be disintegrated). 1 1991 Academtc 

Press, Inc 

INTRODUCTION 

The concept of a triangular norm is due to Menger [28], and it was 
studied from algebraic and topological points of view in fields like 
Probabilistic Metric Spaces (Wald [39], Schweizer and Sklar [ 34-37]), 
Multivalued Logic (Rose and Rosser [30], Hamacher [ 17]), and Semi- 
groups (Climescu [ll], Schweizer and Sklar [36], Paalman-de Miranda 
[29], Ling [27], Kimberling L-193). 

Frank [lS] has shown that the class of continuous triangular norms T, 
which together with their corresponding triangular conorms S satisfy the 
equation T(x, y) + S(x, y) = x + y, consists of the ordinal sums of sequences 
of “fundamental” triangular norms and conorms. 
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Triangular norm-based measures (T-measures) appear under various 
names, and in specific analytical forms, in fields ranging from A4uthematical 
Statistics (Dvoretzki, Wald, and Wolfowitz [13], Aczel and Alsina [2]), 
to Capacity Theory (Frank [lS]), Probability and Measure Theory 
(Schmidt [31], Klement et al. [25,26-J, Klement [22-241, Butnariu 
[S, 6]), Pattern Recognition (Sugeno [38]), Game Theory (Aumann and 
Shapley [4], Aubin [3], Butnariu [7, 9, lo]), etc. In this paper we study 
the triangular norm-based measures in their proximal context, namely 
T-measures defined on subsets of the unit cube [0, l]“, which are 
triangular norm-based tribes (T-tribes). The main purpose is to find out 
whether, or under which conditions, T-measures can be represented as 
integrals of specific Markov kernels. We concentrate on fundamental 
triangular norm-based T-measures mainly because this class of T-measures 
is of interest in most of the applications mentioned above. One may also 
note that there are classes of nonfundamental triangular norms, on which 
no nontrivial T-measure is based (cf. Klement [24]). 

We first deal with T-tribes, the main result being Theorem 2.1 showing 
that any fundamental triangular norm based T-tribe Y consists of func- 
tions, which are measurable with respect to the intrinsic a-algebra f” 
corresponding to Y (i.e., with respect to the o-algebra of those sets whose 
characteristic functions belong to .Y). In this context, we give a charac- 
terization of the generated T-tribes introduced by Klement [22]-see 
Theorem 2.1 and Remark 2.3. Theorem 2.1 allows the deduction (see 
Section 5) that on a fundamental triangular norm based tribe .Y any 
function m of the form 

is a well-defined monotone T-measure, provided g, h are nonnegative Y “- 
measurable functions, and p is a probability measure on Y “. The question 
is whether any monotone T-measure on Y is of the form (*). In fact, this 
is equivalent to the question whether any T-measure is disintegrable by a 
Markov kernel, and it is not essentially new. It arises implicitly in many 
works dealing with T-measures, and it was already known that for 
fundamental triangular norm-based measures on generated T-tribes Y the 
answer is affirmative (cf. Klement [24]). Also, it was previously known 
that, even if Y is nongenerated, T, -based measures are necessarily of the 
form (*) (cf. Butnariu [ lo]-see also Theorem 4.1). The main result of the 
paper is Theorem 5.3 showing that, in general, each finite monotone 
fundamental triangular norm-based measure can be uniquely decomposed 
into a sum of a T-measure of the form (*) and a monotonically irreducible 
T-measure m* (that is a T-measure which is either identically zero, or such 
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that there is no T-measure of the form (*) differing monotonically from 
m*). 

The relevance of our results may be seen under several aspects. First, we 
describe analytically a large class of T-tribes, which are in fact abstractions 
of the concept of a Boolean ring (see Schmidt [32]), and we characterize 
fundamental triangular norm-based measures defined on general T-tribes. 
These are among the generalizations of ordinary probability measures 
naturally involved in problems of Pattern Recognition and Plausihilit!, 
Theory (cf. Sugeno [38], Hohle and Klement [ 18]), Automata Theory 
( Eilenberg [ 143 ), Capacity Theory (Frank [ 15 ] ), Mathematical Economics 
(Aczel and Alsina [2]), and Game Theory (Butnariu [lo]). On the other 
hand, one may look at our results from a probabilistic point of view. In 
such a context, Theorems 3.5 and 4.1 say that fundamental triangular 
norm-based T-measures, which are defined on generated T-tribes and 
T, -measures on arbitrary T, -tribes, are “totally disintegrable” (i.e., they 
can be written as integrals of Markov kernels). Theorem 5.3 implies that, 
in general, fundamental triangular norm-based measures are disintegrable 
up to a hard core which is essentially irreducible. These facts open a way 
to a proof that on a significant space of coalitional games (known in the 
literature as PM) a maximally monotone multiualued oalue operator exists. 
On the other hand, Theorem 4.1 allows formulation of an alternative inter- 
pretation of the concept of Lebesgue integral; i.e., it shows that a Lebesgue 
integral on the set X is precisely a T, -measure on a T, -tribe in the unit 
cube [0, 11 X. 

Finally, we must point out that our representation theorems for 
triangular norm-based measures are valid for monotone T-measures only. 
The question whether they are true for nonmonotone T-measures, too, is 
equivalent to whether for triangular norm-based measures there exist 
Jordan decompositions (by monotone T-measures). It follows from a result 
of Schmidt [31] that T-measures on T-tribes can be written as differences 
of monotone T-countable additive functions, but this does not mean 
automatically that for T-measures Jordan decompositions exist (except in 
the case of TX-measures, where Schmidt’s results apply according to 
Example 3.2 (iii) and Remark 4.2 (iii)). 

1. TRIANGULAR NORMS. T-CLANS AND T-TRIBES 

A triangular norm (t-norm for short) is a two-place function 
T: [0, 1 ] x [0, l] + [0, l] which is commutative, associative, monotone in 
each component and satisfies the boundary condition T(x, 1) = x. A t-norm 
T is called strict if it is continuous und satisfies T(x, y) < T(x, Z) whenever 
y < z. It is called Archimedian if it satisfies T(x, X) < x for all x E 10, 1 [. The 
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corresponding t-conorm of T is the function S: [0, 11 x [0, 11 .+ [0, 1 ] 
defined by S(x,y)=l-T(l-x, l-y). 

As an example, a most important family of t-norms {T,},, Co,m, (cf. 
[lS]), which we call fundamental t-norms, is given by 

TAX, Y) = mink Y) if s = 0, 

=x.y if s= 1, 

=max(O,x+y-1) if s=co, 

=log, l +w- l).(sY- 1) 

[ S-l 1 if sE]O, co[\{l}. 

Their corresponding t-conorms are 

SAX, Y) = max(x, Y) 

=x+y-x.y 

= min( 1, x + y) 

if s=O, 

if s= 1, 

if s=co, 

=1-log, 1+ 
[ 

(s’-*-l).(s’-Y-l) 
S-l I if ~~10, co[\(l). 

This is a “continuous” family of t-norms in the sense that lim,, f T, = T,. 
Moreover, each pair (T,, S,) satisfies the functional equation 

W, Y) + S(x, Y) = x + Y. (1) 

TO is not Archimedean (and hence not strict), T, is Archimedean but not 
strict, and each T, with s IZ 10, co [ is strict (and hence Archimedean). 

Consider a countable set J, a family { ]aj, bi[}j.J of mutually disjoint 
open subintervals of [0, 11, and a family of t-norms { Tj}jsJ. Then the 
function T: [0, l] x [O, l] -+ [0, l] defined by 

> 
if X, Y E ]aj, bj[ for some j in J, 

= min(x, y) otherwise, 

is a t-norm called ordinal sum of the t-norms { Tj}j,J over the intervals 
(]aj, bj[}jEJ (see 1373). Ordinal sums of t-conorms can be defined 
dually. Frank [ 151 proved that the only pairs (T, S) of continuous t-norms 
and corresponding t-conorms solving Eq. (1) are the fundamental t-norms 
and the ordinal sums of fundamental t-norms T, (S > 0) together with their 
corresponding t-conorms S, (S > 0). 
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The function 

Wb, Y) = mink Y) if max(x, y) = 1, 

=o otherwise, 

is a t-norm, its corresponding t-conorm is 

W, Y) = mad4 Y) if min(x, y) = 0, 

= 1 otherwise. 

W is not Archimedean (and hence not strict) and not continuous. It is the 
“smallest” t-norm, and the fundamental t-norm r, is the “largest” t-norm, 
i.e., for any t-norm T we have 

Given a t-norm T and its corresponding t-conorm S their associativity 
allows to extend them to n-ary operations T;=, : [0, 11” -+ [0, l] and 
S?=, : [0, 11” -+ [0, 11. In what follows we write Ty=, xi and $‘=, x, 
instead of Tr=, (x,, . . . . x,) and Sr=, (x,, . . . . xn), respectively. For any 
sequence 1~1,~ N in [0, 1 ] the sequence { Ty=, xi} nE N is nonincreasing; 
therefore its limit T,“= I x, = lim, _ o. Ty=, xi always exists. By duality, the 
sequence {S:=, xi}neN is nondecreasing, its limit, denoted S,F=, x,, exists, 
and we have S,“= , x, = 1 -‘I’,“=, (1 - x,). 

1.1 PROPOSITION. Let T be a continuous Archimedean t-norm and let 
bJntN be a constant sequence in [0, l[. Then we have 

Proof. Assume that x, = a #O for each n E N. Let us consider the 
continuous function h from X to [O, l] defined by h(x)= T(x, x). 
Putting h’ = h and h”+l = h 0 h”, we have, for each x E 10, 1 [, h(x) -C x and 
h”+‘(x) < h”(x). Then for b =lim,,, h”(a) we obtain the equality 
h(b) = h(lim, _ ~ h”(a)) = lim,, cc h” + ‘(a) = b which implies b = 0. Since 
the sequence {hn(a)),eN is a subsequence of the convergent sequence 
UT=, 4nsw our result follows. 1 

1.2 PROPOSITION. (i) Zf T is a t-norm which is either fundamental or the 
ordinal sum of a family of fundamental t-norms, then T, < T < T,. 

(ii) Zf 0 <s < 1 < t < 00, and T, and T, are the corresponding 
fundamental t-norms, then T, ,< T, d T,v. 
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Proof: (i) Let T be a t-norm which is either fundamental or the 
ordinal sum of a family of fundamental t-norms. If T is fundamental, then 
T, < T because T and its corresponding t-conorm S satisfy (1). If T itself 
is not fundamental but an ordinal sum of a family of fundamental t-norms 
{Tj}j,, over a family of subintervals {]uj, bj[}jEJ of [0, 11, then for any 
j E J and for any x, y E ]uj, b,[ we have 

= max [x + y - bj, uj] 

a TK!(x, Y), 

and this, together with Td TO completes the proof of (i). 
(ii) Consider two fundamental t-norms T, and T, with 

O<s<l<t<co. If x~{O,lj or y~{O,l), then T,(~,y)=T~(x,y)= 
T,(x, y). It remains to show that if x, y E 10, 1[ then Tt(x, y) d T,(x, y) d 
T,(x, y). The first inequality is equivalent to 

log l+(t”-l)+Y-l) f 
[ t-l 1 <x.y. 

This inequality is equivalent to 

ix- 1 f-l 
6- P-1 tY-1 (X,YElO,1Lf>l) 

and, substituting u = t”, to 

v-l t-l 
-<--- 
vy- 1 ty- 1 

(l<u<tandyE]O, l[). 

Thus, it is sufficient to show that the function fy(v)= (v- l)/(v’- 1) is 
nondecreasing in the interval ]I, t[ for any fixed y in 10, 1 [. Computing 
the derivative we get 

vy-1 vY-vY-' 
-- 

fl(v)=y. Y-0 Y-(Y-1) 
(ZP- 1)2 (0) 1, YE IO, 1C). 

The function y + vy is convex on IF4 for any fixed v>O. Therefore, the 
denominator of fi is nonnegative in ] 1, cc [, and f, is nondecreasing. For 
the second inequality fix SE 10, l[. In fact, it is sufficient to prove that the 
function f, attains its minimal value in the interval [s, l[ at the point z, = s 
for any y E IO, 1 [. Since, for v E Is, 1 [, f; is as above and the denominator 
of the derivative is still nonnegative for u E [s, 1 [, it follows that fY is non- 
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decreasing on [s, 1[ for any y fixed in 10, l[. By consequence, the minimal 
value of fV on [s, l[ is attained at v = s. 1 

A function A : X -+ [0, 1 ] has been called a fuzzy subset of the ordinary 
set X (Zadeh [41]). This generalizes the concept of a (Cantorian) subset 
A of X which can be identified with its characteristic function A : X+ 
(0, 1) defined by A(x) = 1 if XE A, and A(x) = 0 if x 4 A. If A is a fuzzy 
subset of X, then the value A(x) is interpreted as the degree of membership 
of the point x in A. The collection of all fuzzy subsets of X is denoted 
co, ll”, as usual. 

Let T be a t-norm and S be its corresponding t-conorm. We extend 
T and S to [0, 11” pointwise, i.e., (A T B)(x)= T(A(x), B(x)) and 
(A S B)(x) = S(A(x), B(x)). These operations can be considered as “inter- 
section” and “union” of fuzzy subsets, respectively. Also, finite (countable) 
“intersections” T:= i A i (T,"= i Ai) and “unions” Sr, , A i (S,“= i A ;) of fuzzy 
subsets are defined in the straightforward way. They satisfy the De Morgan 
laws 

i > 
; A,, ‘= ; A:, and i A,, ‘= + A;, 

n=l ,I= I ( > n-l ,I= I 

where the “complement” A’ is defined by A’(x)= 1 -A(x). Restricted to 
ordinary sets (i.e., characteristic functions), these operations coincide with 
intersection, union, and complement, respectively, regardless which t-norm 
and t-conorm is considered. The class [0, 11” of the fuzzy subsets of X 
together with the operations T and S form a partially ordered commutative 
semigroup having 121 as smallest (and as null) element and X as largest 
(and as unit) element. However, [0, 1-J” provided with the operations T, S, 
and the complement ““’ is not a Boolean algebra. It is not even a lattice, 
except in the case T= To and S = S,. In general, T and S are not 
distributive with respect to each other, A T A’ may be different from 0 
and A S A’ may be different from X. 

Let T be a t-norm. A subfamily ‘?2 of [0, 11” containing 0 and being 
closed under the operation T and under complementation will be called a 
T-clan. Obviously, by the duality of T and S, the closedness with respect 
to T can be replaced by the closedness with respect to S in the definition 
above. 

1.3 EXAMPLE. (i) Since we identify ordinary subsets of X with their 
characteristic functions, any algebra of subsets of X is a T-clan with respect 
to any t-norm T. 

(ii) For any n E N the family 9?,JX) = {0, l/n, . . . . (n - 1 )/n, 1 } x is a 
T-clan for T = To, and also for T = T, , but not with respect to any other 
fundamental t-norm. 
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(iii) If the r-norm T is continuous (measurable), and if X is a 
topological (measurable) space, then the family of all continuous 
(measurable) fuzzy subsets of X is a T-clan. 

A T-clan r which is also closed under countable “intersections,” i.e., 
which satisfies 

is called a T-tribe. A pair (X, y), where X is a set and y is a T-tribe, is 
called a T-measurable space. 

1.4 EXAMPLE. (i) Obviously, not any T-clan is a T-tribe. For instance, 
the family of all constant functions on X with values in Q n [0, 11 is a 
T,-clan but not a T,-tribe. 

(ii) Any o-algebra of subsets of X is a T-tribe with respect to any 
t-norm T. 

(iii) Given a o-algebra d of subsets of X, the family d” of all 
d-measurable fuzzy subsets of X is a T-tribe with respect to any Borel- 
measurable t-norm T. 

(iv) Given a T-tribe y-, the family TV of all characteristic functions 
contained in 5 is a a-algebra, and hence a T-tribe. 

(v) (Klement [20]) The family y consisting of all fuzzy subsets of 
X= [0, l] which are either constant or have all their values in the interval 
[i, f] is a T-tribe in the case T= Wand for T= T,, but it is not a T-tribe 
for T= T, with t E 10, co]. It is interesting to note that there is no 
a-algebra of sets d such that y = & h. 

(vi) (Klement [22]) If in Example (v) we additionally require all 
elements of y to be continuous, then r is a W-tribe but not a To-tribe. 

(vii) Consider a nonempty subset Y of X such that Y # X. The family 
F of fuzzy subsets of X which are constant on Y and assume only values 
0 and 1 outside of Y, is a T-tribe with respect to any t-norm T, but it does 
not contain any constant fuzzy subset (except 0 and X). 

1.5 THEOREM. If s E 10, 00 [ and T, is the corresponding fundamental 
t-norm, then any T,-tribe F is a T, -tribe. Moreover, any T, -tribe is a 
T, - tribe. 

ProojI We fix an arbitrary SE 10, co[. The proof is carried out in 
several steps. 

(a) First we prove that if A, BE y then there exists a CE y such 
that A S, B= A S, C. Let A and B be any two fuzzy subsets in the TX-tribe 
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Y. Define a double sequence as follows: A, = A, B, = B, A,, 1 = A, S, B,,, 
and B,+, = A, T, B,. The sequence {A,},, N is nondecreasing, the 
sequence 14, > n E N is nonincreasing, and both sequences are contained in 
Y. Since the pair (T,, S,) satisfies (1 ), by induction we get for all n E IV 

A,+B,,=A+B. (2) 

Claim 1. For each a E [0, 1 [ there exists a number c E [0, 1[ such that 
for all b in [0, a] we have 

T,(a, T,(a, 6)) d c . T,(a, b). (3) 

Indeed, from Proposition 1.2 we have that T,, d T, for s 2 1; and this 
implies that if s > 1 we can choose c = a. If s < 1, consider c = (sU - 1 )/ 
(s - 1). It is clear that c < 1. Then for each b E [0, a[ the inequality (3) is 
equivalent to 

ln[l +c2(.rb-l)] >c.ln[l +c(s’- l)]. 

The expansion of the logarithms in power series leads to 

jf, (-l)ip, .C2XSb- ‘Ii2 t (-1)‘m 1 .Cff’(Sb- 1Y 
i ,=I i 

which is equivalent to c i- ’ < 1 Since this inequality holds for all i E N, it 
follows that (3) is valid for all i E JO, a [. 

Claim 2. We have 

AScoB= $ C,, (4) 
II=, 

where C,=A, and Cn+,= B,, (n E N). In order to prove that, we fix an 
XEX and put CI= (A S, B)(x). If c(< 1, then A,(x)dcc< 1 for all no N 
because of (2). Let c be a number in [0, a[ such that (3) is satisfied. Then, 
by the monotonicity of the t-norm T, we get 

B,(x)<c”-~.cx if s<l 

<a n if sdl 

for all n 3 2. Since u and c are both in [O, l[, it follows that 

lim B,(x) = 0 
n-x 

and, because of (2), 
lim A,(x) = (A S, B)(x), 

n-oc (5) 
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which is exactly (4) by the definition of the double sequence. Now, assume 
that CI = 1. In this case (5) also holds, since assuming the contrary we get 

lim A,(x) < 1, 
n-m 

and this means that there exists a number d in [0, l[ such that 
A,(x) 6 d < 1 for all n E N. But using analogous arguments as above, with 
d instead of a, we deduce that 

lim A,(x)9 1 
n4cc 

contradicting our assumption. Hence (4) is always true. Putting C= 

g C,, the proof of part (a) is complete. This also shows that the T,-tribe 
II=; 
F is a T, -clan. 

(W Let PAeN be a sequence in Y. There exists a sequence 
RlncN in Y such that for each n E N we have 

&, Dj= 6 E,. (6) 
j=l lc=s 

For n = 2 this follows from part (a). Suppose we have proved (6) for n E N. 
Then we get, again using part (a), 

= S,E,,,,=“;l Ej. 
j=f 

Now, because of (6), we obtain 

g, D,,=!~I 8, Dj=,‘imm $,E,= is E,, 
n=l j=l I=1 n=l 

the latter fuzzy subset being an element of Y. This shows that Y is a 
T, -tribe. 

(c) In order to show that a T,-tribe 5 is a To-clan it suffices to 
observe that for any two fuzzy subsets A and B one has A T, B = 
AT, (BS, A’). Actually, Y is even a To-tribe: If {An}nGN is an 
increasing sequence in Y put B, = A, T, AA- I for each n E fW with A, = fzr 
and observe that 

A,= &Bi (rlE N). 
i=I 
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Hence, 

&Ai= lim A,= iXB,~.Y. i 
n=l n + cc n=l 

Theorem 1.5 shows that T-tribes based on fundamental t-norms T are 
implicitly a-complete lattices with respect to the pointwise order and that 
they are closed sets with respect to the weak topology on the unit cube 
[0, 11”. Moreover, viewed as T, -tribes, the fundamental norm based 
T,s-tribes with SE 10, co] are implicitly “clans” in the sense of Wyler [40], 
where the subtraction is defined by A 0 B = A T I B’ (see also Schmidt 
1221 I 

2. REPRESENTATION OF T-TRIBES, DISJOINTNESS 

We already observed that any T-tribe Y on X includes a g-algebra .Y ” 
of subsets of X, and that the family (Y ” ) A of all F “-measurable func- 
tions X -+ [0, l] is a T-tribe (if T is Borel-measurable (see Example 1.4)). 
Now we study the precise relationship between .Y and (Y ” ) A. In par- 
ticular, we are interested to know under which conditions they coincide. In 
this case, the T-tribe Y is called generated. For a nongenerated T-tribe see 
Example 1.4 (v). 

2.1 THEOREM. For any ,fundamental t-norm T, with s > 0, and ,for each 
T, -tribe Y we have 5 G (Y ” ) A 

Proof: For any A E Y and for any a E [0, 1 ] we denote A, = {.x E X; 
A(x) 2 a}, and we must show that A,E Y “. For a = 0 this is trivial. 
Assume a = 1. Then, because of Proposition 1.1, for any fuzzy subset B we 
have 

B(x)>00 g, B,,(x)= 1 (where B,, = B for each n E: N). 
,I = 1 

Putting B = A’ this yields A, E Y “. Now choose a E 10, 1 [. Then there 
exists a sequence {a,} n c N of positive rational numbers increasing to cc, and 
we have 

Thus, it suffices to show that A,E Y” for any aE 10, l[ which can be 
represented in the form 

k a(i) 
a= C 2’ with a(i) E (0, l> for 1 di<k, and /cEN. (7) 

i= 1 
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We proceed by induction upon the positive integer k involved in (7). 
If k=l than a(l)=1 and a=$. Thus we have A,= {.xEX; 
(A S, A)(x) = l} = (A S, A),. But A S, A E.F because of Theorem 1.5. 
Therefore, A, = (A S, A), belongs to F “. Let us assume that for every A 
in F and for every aE]O, l[ of the form (7) with k<n we have A,EF”. 
Suppose that 

?I+’ a(i) 
a= C 2’ with a(i) E (0, 1 } 

i= 1 

for ldi<n+l and a(n+l)#O. 03) 

Then a= b/2, where b =c;_‘,’ (a(i)/2’-‘). If bE [O, 11, then A,= 
(A T, A)b E F ” by the inductive assumption. If b # [O, 11, then a > f, and 
it can be written as 

a = (c + 1)/2 
n a(i+l) 

with c= c 2i -E 10, 11. 
i=l 

Thus we get A,= (A’T, A’):E$” by Theorem 1.5 and the inductive 
assumption. 1 

In general a T,-tribe F is not generated (i.e., F may be different from 
(F ” ) A ) even if T, is a fundamental t-norm with s > 0 (see Example 1.4 
(v)), However, we have the following result: 

2.2 THEOREM. For any fundamental t-norm T,Y with s > 0, a T,-tribe on 
X is generated if and only if it contains all the constant fuzzy subsets of X. 

Proof: Necessity is obvious. Conversely, assume that the T,-tribe F 
contains all the constant fuzzy subsets of X. We must show that each A in 
(5 ” ) A is contained in F (cf. Theorem 2.1). Define the sequence of fuzzy 
subsets 

where 

VP’= {xEX; (2k-1)/2”<A(x)<2k/2”} if k<2”-‘, 

= (xd; (2”- 1)/2”QA(x)l otherwise 

and Ai”] is the constant fuzzy subset AL”](x) = a:“‘, with the number up1 
chosen such that S,((2k - 2)/2”, al”]) = (2k - 1)/2”. Note that this choice 
of a/$“’ is possible since the function S,((2k - 2)/2”, .): [0, l] + 
[ (2k - 2)/2”, I] is a surjection. Because of the F “-measurability of A each 
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Vi”] is contained in F “, and hence in F-. Since F contains the constant 
fuzzy subsets ApI, and since it is a T,-clan (cf. Theorem 1.5), it follows 
that U, E F. Now it is a matter of computation to check that 

(9) 

where 

Win’= {xEX; (k- 1)/2”<A(x)<k/2”) if k < 2”, 

= {XEX; (2”- 1)/2”<A(x)} otherwise. 

Since the functions on the right-hand side of (9) are convergent to A, we 

get A = g U,, showing that A ~9. 1 
n=Y 

2.3 Remark. (i) A T,V-tribe F may be not generated even if T,, is a 
fundamental t-norm with s > 0. See, for instance, Example 1.4 (vii). 

(ii) By virtue of Theorem 1.5, in Theorem 2.2 the condition “F con- 
tains all the constant fuzzy subsets of x” can be replaced by the condition 
“F contains a sequence {AnIneN of constant fuzzy subsets of X with 
A,(x) = l/z” (n E fV), where z > 2 is an integer.” 

In order to introduce the important concept of disjointness of fuzzy sub- 
sets with respect to r-norms, let X be a nonempty set, T a t-norm and S 
its corresponding t-conorm. Afinitefamily of fuzzy subsets A,, A 2, . . . . A,, of 
X is said to be T-disjoint if 

( ) 
s A, TAk=@ (1 dkbn). (10) 

Ifk 

An infinite sequence { Aj}ic N of fuzzy subsets of X is called T-disjoint if for 
any n E N, n > 2, the finite family A i, . . . . A,, is T-disjoint. 

2.4 Remark. (i) Any subfamily (Ai}iE, of a countable T-disjoint 
family {Ai}j,J is also T-disjoint. Obviously, it suffices to prove this for a 
finite set J= { 1, 2, . . . . n} and a subset I= {i,, . . . . ik} E J. Indeed, for any 
i, E I we have 

(ii) The definition of T-disjointness does not depend on the order in 
which the fuzzy subsets {Aj}ic N are numbered, i.e., if rt is a permutation 
of IV and {Aj}iEN is T-disjoint so is {A,(,,},,N. 
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Different t-norms may lead to different concepts of “disjointness.” 
However, for some classes of t-norms the corresponding “disjointness” 
concepts do not depend on the choice of the t-norm in that class. 

2.5 EXAMPLE. Let {Aj}jeN be a countable family of fuzzy subsets. 

(i) If all Aj are (characteristic functions of) ordinary sets then 
T-disjointness is .equivalent with pairwise disjointness with respect to any 
t-norm. 

(ii) T-disjointness implies pairwise T-disjointness according to 2.4 
(i), but the converse is not generally true: if we take A, = i for i= 1,2, 3, 
then A,, AZ, A3 are pairwise T,-disjoint, but they are not T,-disjoint. 

(iii) For SE [0, co[ we get: (Aj},EN is T,-disjoint if and only if each 
x is “contained” in at most one A, (that is if and only if Ak(x) > 0 for at 
most one k). 

(iv) IV-disjointness of { Aj}j, N means that for each x E X exactly one 
of the following conditions holds: 

(1) There is at most one k E N such that Ak(x) = 1. 
(2) There are at most two indices k, 1~ N such that 0 <AA(x), 

A,(x) < 1. 

2.6 PROPOSITION. Let T be a t-norm and S be its corresponding t-conorm 
such that (1) holds. Then for any n z 2 the following conditions are 
equivalent : 

(i) Al, . . . . A,, are T-disjoint. 

(ii) For any k = 2, . . . . n: (Sf:,’ Ai) T A, = 0. 

(iii) For any k=2, . . . . n: Skzl Ai=Cf=, Ai. 

(iv) For each set IS (1, 2, . . . . n} containing at least n - 1 elements: 
SiE,Ai=Cie,Ai. 

Proof: (i) =P (ii) is an immediate consequence of Remark 2.4 (i). 

(ii) =S (iii). Using (1) we have 

(~;Ai)TA~+(~~~Ai)SA~=~~A~+A~, (11) 

which implies 

i Ai=kS1 A,+A,. 
i= 1 i=l 

Repeating this (k- 1) times gives the desired result. 
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(iii)*(iv). If n=2 or I= {1,2 ,..., n} or Z= {1,2 ,..., n- 1) nothing 
is to prove. Otherwise, observe that for 2 6 k <n we have (1 I), which 
implies 

k-l 

( > 
s Ai TAk=a. 

i=l 

Now, for k = 2, . . . . n+l andjbk-1 define Zk,i=(l,...,k-l}\{j). Then 
( 11) together with the monotonicity of S and T implies 

( > 
s Ai T/d,=@. (1-J) 

is Ik., 

Since from (1) we have 

(,,,,Ai)TAk+(,~,,Ai)sAk=,~,;A.+Ak 

and because of (12) we get 

s A,= s A,+A,. (13) 
lEIk+I., ltIk., 

Now, put k = n and j < n - 1. If j = n - 1 we obtain the desired result from 
(13). Ifj<n-1, compute Sisck, Ai using ( 13), and insert it in ( 13) again. 
Continue until j = k - 1, and this gives again the desired result. 

(iv) * (i). For 1 <k 6 n put I, = { 1, 2, . . . . n}\(k). Then because of 
(1) we have 

(~~Ai)TAk+(~~Ai)SA*=~~Ai+A,, 

which immediately implies T-disjointness. 1 

2.7 COROLLARY. Let T be a t-norm and S its corresponding t-conorm 
such that (1) holds. Then the following assertions are equivalent: 

(i) The family {An},EN is T-disjoint. 

(ii) For any k >, 2 we have: (sf:i Ai) T A, = 0. 
(iii) For any k>2 we have: S:=, Ai=Cf=, A,. 

(iv) For each finite subset Z of N we have: Sis, Ai=Ci,, A,. 

2.8 Remark. Let { A/},EJ be a countable family of fuzzy subsets. 

6) {A,),,, is T, -disjoint if and only if CitJ A, d 1. 
(ii) From Proposition 2.6 and Corollary 2.7 we know that if T and 

its corresponding t-conorm S satisfy (1) and if {A,} jEJ is T-disjoint, then 
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CisJ Ai < 1. However, the converse is not generally true (see Example 
2.5(iii)). 

(iii) The requirement that T and S satisfy (1) cannot be dropped in 
Proposition 2.6 and in Corollary 2.7. If, for instance, we take S= V and 
T= W, then the conditions (i), (ii), and (iii) are no longer equivalent. 

3. T-MEASURES AND A FIRST REPRESENTATION THEOREM 

Throughout this paragraph let X be a nonempty set, T a t-norm, and S 
its corresponding t-conorm. For a T-clan Y c [0, 1 ] X we consider functions 
m: 5 + [ - co, + co] which assume at most one of the values - cc and 
+ co. A function m: Y + [ - “0, -t co] is called a T-valuation (on Y) if it 
satisfies the following conditions: 

m(0)=0 (14) 

A,BEF=-m(ATB)+m(ASB)=m(A)+m(B). (15) 

A function m : .Y + [ - co, + co] is said to be T-additive if it satisfies (14) 
and 

(A,BEYandATB=@)*m(ASB)=m(A)+m(B). (16) 

3.1 Remark. (i) If m : Y + [ - co, + co] is a T-valuation on the 
T-clan Y then m is also T-additive, the converse not being generally true 
since, for instance, if Y consists of all the constant functions in [0, 11” and 
if s E [0, + co [, then, because of the absence of any nontrivial T,-disjoint 
elements in the T,-clan Y, each function m: Y + [ - co, + co] which 
satisfies (14) is T,-additive without necessarily being a T,-valuation. This 
shows that our T-valuations are particular additivefunctions in the sense of 
Schmidt [31, p. 5581 and that, consequently, if they are finite, they can be 
represented as differences of monotone T-additive functions (cf. Schmidt 
[31, Theorem 2.21). However, this is not sufficient to conclude directly that 
T-valuations always have Jordan decompositions. 

(ii) If Y is a T,-clan and if m is a finite T,-additive function on 
Y, then m is also a T,-valuation. 

(iii) If Y is a T-clan consisting of characteristic functions only, then 
the finite T-additive functions are Q-valuations for any t-norm Q. 

A function m from a T-clan Y to [ - co, + co] is called a T-measure if 
it is a T-valuation and if the following left-continuity is satisfied 

WJ neNzY, A,TA and AEF)=> lim m(A,)=m(A). 
n-m (17) 
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to [ - co, + co] is said to be T-countably 

\i=l / I= 1 

for any T-disjoint sequence {A,},, N G Y. 

3.2 EXAMPLE. (i) T-countably additive functions are T-additive. 
(ii) T-measures on T-tribes are T-countably additive: Take a 

T-disjoint sequence (A,},, N in Y, and define B,, = SF=, A, ; then 
PJ neN~Y and B,f(S,“=, A,,) and 

m i A,, = ( 1’ 
( ! 

m im B,)= lim m(B,)= lim i m(A,)= f m(A,). 
n=l n-c.2 n-rcc n-m i=, n=l 

(iii) T, -countably additive functions on T, -tribes are necessarily 
T,-measures (cf. Butnariu [S]), but, in general, for arbitrary t-norms T 
and T-tribes Y the T-countably additivity does not imply the left-con- 
tinuity (17). For example, if T= T, with s E [0, 00 [ and Y = [0, llX, then 
for any fixed x0 E X the function m from Y to [ - 00, + XJ] defined by 
m(A) = 1 if A(x,) = 1, and m(A) = 0 if A(x,) < 1 is T,-countably additive, 
but it is not a T,,-measure since it does not satisfy (17). 

(iv) If Y is a T-tribe which consists of characteristic functions only, 
then the family of T-countable additivity functions coincides with the 
family of T-measures for any t-norm T, since in this case all t-norms on Y 
coincide with T,. 

(v) One can strengthen in some way the left-continuity (17) 
replacing it by 

WrJ ntNsY, A,tAand AEF)a lim m(A,)=m g A, . (19) 
n-cc ( > n=l 

(vi) For T-tribes consisting of characteristic functions only condi- 
tions (17) and (19) are equivalent. 

(vii) If m: F -+ [-co, + CO] is monotone in the sense that 

(A, BETaand AdB)=m(A)dm(B), (20) 
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then (19) implies (17) for any t-norm T and for any T-tribe F, since for 
{An}neN~Y, A,?,4 and AEY we have 

&<A= goA,< g A,, 
n=l fl=l 

which implies lim, _ o. WA,) = m(A) < m(S,“, 1 A,). 

3.3 PROPOSITION. Zf Y is both a T-clan and a TO-clan, then each 
T-valuation is a TO-valuation. 

ProoJ: For any A and B in Y we have 

m(A To B) + m(A S, B) 

= m((A T,, B) T (A So B)) + m((A T, B) S (A S,, B)) 

=m(ATB)+m(ASB)=m(A)+m(B). 1 

3.4 Remark. (i) Proposition 3.3 shows that if m is a T-measure on Y 
(Y being both a T- and a T,,-clan), then it is also a TO-measure. 

(ii) If m is a T,-measure on a T,-tribe 5 with s E 10, co], then it is 
also a T,,-measure (cf. Theorem 1.5). 

(iii) The converse of Proposition 3.3 does not generally hold: Let Y 
be the family of all Borel-measurable fuzzy subsets on X= [O, 11. Then the 
function m:F+ [-co, +co] defined by 

m(A)=[ (1 + A(x)) dx 
{A>01 

is a To-valuation (even a TO-measure) but not a T,-valuation. 

The TO-measures play a fundamental role in the following. In order to 
give an integral representation for them let (X, -QI) be a measurable 
space, go be the family of all Bore1 subsets of [0, l] and g, = go n [0, l[. 
A function K: Xx gi -+ R is called an &-Markov kernel if it satisfies the 
following conditions: 

(a) For each XE X, the function K(x, .): g1 -+ R is a probability 
measure on ai; 

(b) For each BE S$, the function K( -, B) : X --) R is measurable. 

It was observed above (see Example 1.4 (iii)) that, if (X, @‘) is a 
measurable space then the family zJh of all d-measurable functions from 
X to [0, l] is a To-tribe. The following result shows that To-measures on 
JZ? A can be represented as integrals of Markov kernels. 
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3.5 THEOREM (First Representation Theorem, Klement [Zl]). If T,, 
is a fundamental t-norm with s E [0, co], tf F is a generated T,-tribe 
and if m is a finite monotone T,-measure on F, then there exists a unique 
measure ti on Jr” and an &a.e. uniquely determined F V -Markov kernel 
K: Xx9?, -+R such that 

m(A) = s K(x, LO, A(x)lI) dMx) (AE.~). (21) 
x 

Proof. Immediate if one combines Proposition 3.3, Remark 3.4 (ii), and 
the representation theorem in Klement [21, Section 61. 1 

4. INTEGRAL REPRESENTATION OF T x-M~~~~~~~ 

The First Representation Theorem shows that monotone finite measures 
based on fundamental t-norms T and defined on generated T-tribes can be 
represented as integrals of Markov kernels. It is clear that this holds for 
T = T,, too. However, in this particular case the condition that Y must 
be generated can be dropped. This is a consequence of the results of [S] 
showing that for finite T, -measures on T, -tribes nonnegativity implies 
continuity in the sense of 

({A,},,,,c3andJ[r A,=A)a lim y(A,)=m(A), (22) t1 -+ % 

and that nonnegativity is equivalent to monotonicity. The following 
Representation Theorem of T, -measures is essentially Theorem 2.6 (c) of 
Butnariu [lo]. We present it here with an alternative proof. 

4.1 THEOREM. If 5 is a TX-tribe and if m is a finite nonnegative 
T, -measure on .Y then there exists a unique measure ti on Y- V, namely the 
restriction of m to .!T “, such that for any A in F 

m(A) = 1 A(x) dti(x). (23) 
X 

Proof It is clear that if (23) holds then rh must be the restriction of m 
to JC”. 

Claim 1. IfAEY,~,jIE[O,l]anda<flthentheset 

A a.p= {x~X;r<‘A(x)<fl} 

belongs to r “, A . A,, belongs to Y-, and 

(24) 
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The first assertion follows from Theorem 2.1. The second results from the 
fact that for any ME F ” we have AJ4= A T, MET. Now, in order to 
prove (24) it is suflicient to show that it holds for any A in F and for any 
~1, p in [O, 11, where CI < b and CI = a with a of the form (8). Indeed, if (24) 
is true in this case, then for any 0 < c( < fi < 1 we can find a sequence 
bz~“.N which is nonnegative, nondecreasing, and convergent to a, and 
such that each a, is of the form (8). Using the continuity of m we get 

a. ti(A,@) = lim a, . ti(Aan,,) < lim m(A . A,,,a) = m(A . A,,), 
n-m n-t’x 

since in our setting we have Aan,, 1 A,,,. Let us assume a = a, where a is of 
the form (8). If a = 0 there is nothing to prove. Suppose a > 0. In this situa- 
tion we proceed by induction upon the number k involved in (8). If k = 1, 
then a = 0 or a = 4. In the first case (24) clearly holds. In the second case 
we have A,, = (A . Acl,B) S, (A . A,,), and this implies 

W4J = m(A,,d 

= MA -A,p) + WA .A,,) - mC(A .&) T, (A .&Al 

d 2 .m(A . Aar,B) 

which is exactly (24) with a = 4. Suppose that (24) holds for all A E F and 
for all a, B in [0, 11 with a <p and a = a, where a is of the form (8) with 
k d m. Consider 

m+’ u(i) 
a= C 7 

2’ 
with up (0, l}, (1 <i<m+l), and u(m+ l)#O. 

i= 1 

Then we get a = 8/2 with 

m+1 u(i) e= 1 2’-‘. 
i= 1 

(25) 

Cm 1. Assume 8< 1 and /?< 4. Then A,,= (A S, A)o,ZB. Using 
the inductive assumption for the set (A S, A)8,28 (this is possible since 
the sum in (25) has at most m nonzero terms in our case) we get 
0. h(A,J G m[(A S, A). Aa,B] and, observing that (A S, A). A,, d 
(A . Ag,p) S, (A . A,,), we obtain 

~~WA,,,dGmC(A S, A).A,,,J GM@ .A,,)S, (A .A,,Jl 
=2.m(A.Az,B)-m[(A.Aa,B)T, (AeAz,B)]<2.m(A-Aa,B) 

by the monotonicity and additivity of m (see [S]). This implies (24) in this 
specific case. 
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Case 2. Assume 0 < 1 and fl= i. Let {y,, } n E N be an increasing 
sequence in ]a, /I[ which converges to p. By Case 1 we have c(. th(A,J 6 
m(A .Aa,J for each n E N. Since m is continuous (cf. [S]) and because of 

we get 

where 

Since the sets forming the union are disjoint one may write 

Since for /? = $ the fuzzy subsets B, and B2 defined by 

B,(x) = B,(x) = 0 if A(x)#P 

= P if A(x)=0 

are T, -disjoint and elements of F, we have m(B, S, B2) = 
2.m(fl.{A=p}) (cf. R emark 3.1 (i)) and B, S, B, = {A = j?}. Hence, 

m(/i’~{A=~})=j?~ti({A=fl})>/a~m({A=~}). 

Combining this with (26) and using the additivity of m, we deduce 

a.m(A,,p)bm A. [ (~~~A’.‘“)]+mlB.iA=~~) 

=m[A.((A=Biu(~~pA~.i~))]=m(A.A,,), 

This proves (24) in this case. 
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Case 3. Assume I?< 1 and p> 1. Then A .A,,,= (A .A,& 
S, (A . A 1,2,8), where the fuzzy subsets on the right-hand side are 
T,-disjoint. Hence, according to Remark 3.1 (i) we have m(A .A,,)= 
m(A --fh)+m(A 412,B). The first term on the right-hand side falls 
under the circumstances of Case 2, and the second one falls under the 
circumstances of the inductive assumption. Hence 

W&J?) 3 f2 . WA l/2,& + i. MA l/2,$) 

B cf. CwL,l,J + WA,p,,)l = a. ~(&I)9 

showing that (24) holds in this case too. 

Case 4. Assume finally B > 1. In this case CI can be written as 

cr=(.5+1)/2, where E= 5 $E [0, 1). 
i=l 

We also have A,, = [(A’S, A’)‘],,zs with 6 =/I - 4. Using the inductive 
assumption for the set [(A’S, A’)‘]E,Zd, we obtain 

Observe that A,J(A’ S, A’)‘] = D T, C’ with D =A,,, and C= 
A,,(A’S, A’). According to Remark 3.1 (i) we have that 

(E, FEY and E>F)=>m(ET, F’)=m(E)-m(F). (28) 

Since we clearly have D >, C, (27) combined with (28) gives 

cr.~(A,,,)d4.~(A,,,)+~.[m(D)-m(C)]=lir(A,p)-~.m(C). (29) 

Now, taking into account that 8 2 1 we deduce C= (A’ . A,@) S, (A’ .A,@) 
and (A’.A,,,)T, (A’.A,,)= @. Thus m(C)=2.m(A’.Ac,B) by the 
additivity of m. Since A’. A,, = A,, T, (A .4,,J, we get m(C) = 
2. [m(,4,,p)-m(A .A,P)] because of (28). Substituting this in (29) we 
obtain (24), and Claim 1 is completely proved. 

Claim 2. If AEF, if O<cc</?dl, and if we put A,,,= 
{x~X;tl<A(x)<p), then ~,,@EF”, AqAor,B~F, and 

m(A . A,,,) <D. ti(A,,). (30) 
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The first two assertions are obvious. To prove (30) observe that 

A x.0 = A;.,,,, where a’ = 1 - LX and /I’ = 1 - /I. (31) 

Then 

m[(A .A,,,j)‘l =WO-MA .A,,)=m(A,,)+m(CA,.,I’)-m(A .A,.d 

=m(A’.A,,B)+m([K,,]‘)=m(A’.A~.,..)+m([A,,l]’) 

3 p’ ‘m(x) + rn( [a,,,]‘) = m(x) - p ‘rn(A,,,j), 

where the inequality and the last equality are consequences of (31) and 
Claim 1, respectively. This implies (30), and Claim 2 is proved. 

In order to complete the proof of our theorem let A be in Y. Denote 

GM.;= {xEX; A(x)=O} if i=O, 

= A (; - 1 )/P, i/2” if 1 <i<2”, 

and 

H, i = Jp, (i + I j/2” if l<i<2”, 

= {xEX;A(X)= 1} if i=2”. 

From Claims 1 and 2 it follows that the step functions 

m i-l 
s,,= c -. G and 

m-’ i+ 1 

I=1 m 
n, I t,= c --HH,,,;+H,.,> 

(=I) m 

where m = 2” are Y ” -measurable. It is clear that S, r A and t, 1 A. Taking 
into account (24) and (30), we deduce 

i 

m i-1 It- I 
s,dti= c --ti(G,,,)< C m(A.G,,i)=m(A) 

x i=l m I=0 

and 

s 

“-Ii+1 
t,driia c - . GI(H,,~) B f m(A . H,,i) = m(A). 

X i=, m i=O 

Taking the limit II + co in these relations we obtain (23), therefore com- 
pleting the proof of the theorem. 1 

4.2 Remark. (i) Comparing the results of [S] with the First 
Representation Theorem, one can easily see that on a generated T-tribe, 
with T being a fundamental t-norm, the T,.-measures are exactly those 
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T-measures for which the corresponding Markov kernel K in the represen- 
tation (21) is given by 

w, c&DC)=P-a (x E X). 

(ii) For fundamental c-norms T, with SE 10, co[ and generated 
T,-tribes, one can also specify the form of the Markov kernel involved in 
(21). To be precise, it was shown in [24] that if T, is a fundamental t-norm 
with s E 10, cc [, and if the T,-tribe Y is generated, then for any monotone 
finite TX-measure m on 5 there-exists a unique measure ti on Y “, namely 
the restriction of m to Y “, and an rI-a.e. uniquely determined Y “- 
measurable function f: X + [0, 1 ] such that for all A E Y 

(iii) Theorems 4.1 and 1.5 imply that T,-measures on T,-tribes with 
s E 10, cc [ are also T,-measures. However, not each T,-measure is 
necessarily a T,-measure, even on generated T,-tribes. It was shown in 
[21] that it is necessary and sufficient for a monotone finite T,-measure m 
with s E 10, cc [ to be a T,-measure, that the following condition be 
satisfied: 

cMll”oN CY and A,J@)+ lim m(A,)=O. (33) n-m 

5. DECOMPOSITIONS OF T-MEASURES 

According to (32), finite monotone measures m, based on fundamental 
t-norms T, with SE 10, co], on generated tribes differ from T,-measures 
(i.e., from integrals, according to Theorem 4.2) by functions of the form 
A -+S{A>O) f dti, which are also monotone finite T,-measures. The ques- 
tion is now how much a T,-measure, defined on a nongenerated T,-tribe, 
differs from a T,-measure (i.e., an integral). 

5.1 PROPOSITION. Let T, be a fundamental t-norm with s E [O, CC 1. If 9 
is a T,-tribe and if m is a finite monotone T,-measure on 5, then there 
exists a unique pair (m,, m,) of functions from F to R’ + such that: 

(a) moo is a T, -measure on .F ; 

(b) m, is a T,-measure on F ; 

(cl m=m,+m,; 

(d) mm is “maximal” in the sense that if m’ : F + R + is another 
T, -measure such that m - m’ is monotone, then m’ 6 mot. 
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Moreover, the functions moo and m, have the property that there exists u 
unique measure rin on F ” , namely the restriction of m to F v, and an &a.e. 
unique F v -measurable function f: X -+ [0, l] such that for all A E F 

m,(A)=jx(l-f).Adti, (34) 

andfor all MeYv 

(35) 

Proof: Denote by A& the family of all T, -measures p: F -+ R + such 
that m-p is monotone. The family A%?~ is nonempty since it contains the 
zero TX-measure on F. The family ~2’~ is provided with the partial order 

p < p’ 0 (VA E F : p(A) d p’(A)). (36) 

If {Porjne”! is a chain in A%‘~, then the function p: F + [0, co] defined by 

P(A) = SUP P,(A ) (AEY) (37) 
aeJ 

is a T, -valuation. Indeed, p( @) = 0 clearly holds, and for any A and B in 
F we have 

PM S, W + P(A T, W = SUP P,(A S, B) + SUP p,(A ‘I’, B) 
CitJ SEJ 

= y CP,@ % B) + P,(A T, WI 

= SUP [P,(A) + P,(WI = P(A) + P(B), 
LXtJ 

where the second and the last equality hold because of the monotonicity of 
{PmLJ for every C in J r. It is clear that p is monotone. Hence, 
0 d p(A) <m(A) <m(X) for all A in 5, implying that p is also finite. If 
W~“GN is a nondecreasing sequence in F-, then 

lim ~(4) = SUP P(A,) = SUP (SUP P,WJ 
**cc IIGN nEN XEJ 

= SUP (SUP P,(AJ) = SUP ( lim P,(AJ) = P( h A,), 
*aJ ncN ztJ n-+x n-cc 

showing that p is left-continuous. Hence, p is a finite nonnegative 
T, -measure on .Y. It is easy to see that m - p is also monotone, since 
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m - pa is monotone for each CY E J. Thus we have p E J&. In other words, 
each nondecreasing chain in J?~ has an upper bound in Aa and, by 
Zorn’s lemma, J& has a maximal element denoted m,. Since moo is a 
T, -measure it is a T,-measure, too, and so is the difference m, = m -moo. 
By the definition of m,, m, is monotone and finite, and for the pair 
(mm T m,) the conditions (a), (b), and (c) are satisfied. By the maximality 
of moo in A& the condition (d) is also satisfied; (a) and (d) imply unique- 
ness. It remains to show that there exists an f such that (34) and (35) hold. 
To this end observe that F is a T,-tribe (cf. Theorem 1.5) and that moo 
is a T, -measure on F. Hence, according to Theorem 4.1, moo can be 
written as 

moo= I A dti, (AE~), (38) x 

where m, is the restriction of moo to $ “. Since ma0 d m, it follows that 
ti, is absolutely continuous with respect to the restriction rii of m to F “, 
and the Radon-Nikodym derivative drh,/dti is m-a.e. equal to a function 
g mapping X into [0, 11. Putting f = 1 - g, then f is a F “-measurable 
function with values in [O, 11, and (34) is satisfied due to (38). Now, 
taking into account the definition of m,, we can write 

for all MEF”, and therefore (35) also holds. It also follows that if (34) 
and (35) hold then Gr must be equal to the restriction of m to 9 “. 1 

5.2 Remark. (i) The component m, of a T,-measure in Proposi- 
tion 8.2 is a “pure” T,-measure in the sense that it has a zero 
T,-component: (m,), =O. In fact, assuming the contrary would con- 
tradict the maximality of moo, 

(ii) If in Proposition 5.1 one assumes the T,-tribe F to be 
generated, then (34) holds for any M in F (and not only for A4 in the 
a-algebra F “). Indeed, this follows comparing (32) with (34) and (35), 
and keeping in mind that the function f in (32) must be rii-a.e. unique. 

Consider a T,-tribe F, where T, is a fundamental t-norm with 
SE]~,~O[. If p is any measure on F-“, and if g and h are any F”- 
measurable functions from X to [O, co], then the function m: F + 
[0, + cc ] defined by 

m(A)=f (g+h.A)d@ (39) 
{A>01 
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is a monotone T,-measure on Y. Monotonicity and m(a) = 0 are obvious; 
the left continuity of m follows from the Lebesgue monotone convergence 
theorem, taking into account that for a nondecreasing sequence {A,},, N 
in Y whose pointwise limit is A, one has U,“= I {A,, >O} = (A >O}; the 
T,S-additivity of m is shown as 

m(AT,B)+m(AS,B)=~ Cg+h.(A T, WI di, 
{A>O}n(B>O) 

+ s Cg+h.(A%m14 {A>O)“(B>O} 

= s [2. g + h . (A T, B + A S, B)] di, 
{A>O)n{B>O~ 

+.I [Ig + h(A 5, WI dji {A>O)n{B=O; 

+j{A=o).-(o>ol Cs + WA s, WI 4 

= s [2.g+h.(A+B)]dfi 
:A>O]n(E70) 

+I (g-th.A)dfi 
(A>O)cl{B=O~ 

+I (g+h.B)d$ 
(A=O]n:B~o) 

= m(A) + m(B). 

A T,-measure m on 9, which can be represented in the form (39) by 
some nonnegative measure @ on Y ” and by some pair (g, h) of non- 
negative Y ” -measurable functions on X, is said to be generated (by p, g 
and h). 

It follows from [24] (see Remark 4.2) that if F is generated then all 
finite monotone T,-measures with s E 10, cc [ on r are generated. From 
Theorem 4.2 we already know that the TX-measures on 7 are generated, 
even when 5 is not generated. Thus, it is natural to ask whether, in 
general, T,-measures on T,-tribes are always generated. In order to answer 
this question, we define a T,-measure m on the T,-tribe Y to be monotoni- 
cally irreducible, if it is monotone and if there is no nonidentically zero 
generated T,, -measure q on F such that m - q is monotone on 9. 
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Now, it is obvious that a T,-measure m on Y is generated if and only 
if it can be extended to a T,-measure on the generated T,-tribe (Y “) * 
(since, if m is generated then (39) defines m on (Y “) h, the converse 
following from Theorem 5.1). By contrast, monotonically irreducible 
T,-measures, except for the trivial one, are not generated and, hence, they 
cannot be extended to (Y ” ) “. 

5.3 THEOREM. Zf T, is a fundamental t-norm with s E 10, co], if 9 is a 
T,-tribe, and if m is a finite monotone T,-measure on .F-, then m can be 
uniquely decomposed in a monotonically irreducible and a generated 
T, -measure ; that is there exist a unique monotonically irreducible 
T,-measure m* on F, a measure ti on 5 v ( h h w ic is exactly the restriction 
of m to F y ), and two 6a.e. uniquely determined F “-measurable functions 
g,h: X-, [0, 11, such thatfor all AEFV one has 

m(A)-m*(A)=jIA,ol (g+h.A)dti. (40) 

Proof If s = + co, then the result follows from Theorem 4.1 putting 
g(x) = 0, h(x) = 1 for x E X and m* = 0. Assume s E 10, CC [. In this case the 
theorem is proved in several steps. 

Claim 1. If p is a finite monotone T,-measure on Y-, then there exists 
a unique finite monotone T,-measure Ip( on the generated T,-tribe (F ” ) A 
which is monotonically maximal in the sense that for any T,-measure p’ on 
(Y ” ) h, for which p-p’ is monotone on f, the difference (p( - p’ is also 
monotone on (Y ” ) A. 

In order to prove that, denote by N(p) the family of all T,-measures q on 
(Y ” ) h such that p - q is monotone on Y. This family is partially ordered 
by the dominance relation defined by 

q~q’oq-q’ismonotoneon(~v)A. (41) 

Let hAeJ be a chain in N(p) with respect to the partial order (41) and 
define 

q(A) = sup q,(A) (AE(~“)“). 
ZLEJ 

Similarly as in the proof of Proposition 5.1, one can prove that q is a 
monotone finite T,-measure on (Y ” ) “. For A, BE Y with A d B we have 
that 

P(A) -q(A) = i;f, [P(A) - %(A )I d ,Isf, [P(B) - q,(B)1 = p(B) - q(B), 
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i.e., p-q is monotone on Y. Clearly, q 9 qz (tl EJ). Hence, each chain in 
M(p) has an upper bound in M(p) and, according to Zorn’s lemma, N(p) 
has a maximal element denoted (~1. It is obvious that IpI is the only 
T,-measure with this property. Hence, Claim 1 is proved. 

Let (ml be the T,-measure existing by Claim 1 for p=m. Since Iml is 
defined on the generated tribe (Y ” ) A, it can be represented according to 
Theorem 5.1 by 

Id (A)=[ [w+(l-w)~A]dIml”, 
(A=-01 

where lml” is the restriction of Im( to ((Y-“)^)” =Y”, and w is a cY”- 
measurable function from X to [0, 11. As observed above (Remark 5.2 
(ii)), the unique decomposition ((ml m, [ml,) of (ml according to Proposi- 
tion 5.1 is given by 

and 

ImL (A)=l wdlml”. (42) 
(A>O) 

Furthermore, let (m,, m,) be the unique decomposition pair provided by 
Proposition 5.1 for m, and let f: X-t [0, 1 ] be the function satisfying (34) 
and (35). 

Claim 2. For all A E (F ” ) A we have 

(43) 

To prove this consider qm : (.Y ” ) A -+ [w defined by 

q,(A)=! (l- f).Adti. 
x 

Obviously, this is a finite nonnegative T,-measure on (Y ” ) A whose 
restriction to Y coincides with m,. According to the definition of Iml, the 
function p : F + Iw given by p(A) = m(A) - Iml (A) is a monotone 
TX-measure. Thus m - Jm( o. ( = p + (ml .) is also a monotone T,-measure 
on Y. Because of the maximality of mno we have 

m,(A)2 lmlm (A) (AEF). (44) 
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Taking into account Theorem 4.1 we can write for each A E (9’ ” ) A 

n&)=j A d&c 
X 

and 

Iml, (A)=jxA dImI:. 

where I& and (ml; are the restrictions of m, and Irnl o. to 5 “, respec- 
tively. Since by (44) we have also m, 3 /ml L, it follows that 

q,(A) 2 Iw m (A) (AE(~“)“) (45) 

On the other hand, we know that m -moo and m - qm coincide on 9, and 
that the first one is monotone. Since (ml, is a maximal T,-measure 
dominated (in the sense of (41)) by [ml, it follows that Im(co -qoo is also 
monotone on (5 “)“, and this implies [ml, > qm on (Y “)^, which 
combined with (45) proves Claim 2. 

According to the definition of Irnl (see Claim 1) we have that m 2 (ml ” 
on Y “. Therefore there exists a [0, I]-valued Radon-Nikodym derivative 
u of [ml ” with respect to ti. Putting g = w. u and using (42) one gets 

Iml,W=j gdh (AE(F”V)“), (46) 
IA>O) 

where g is a function with values in [0, 11. From Claim 2 and (46) we 
deduce 

m(A) = Id (A) + (m,(A) - IAs 64)) 

=m*(A)+j [g+(l -f).A] dti (47) 
{A~01 

with 
m*(A) := m,(A) - [ml, (A) (AE~). 

Claim 3. m* is a finite monotonically irreducible T,-measure on Y. It 
is clear that m* is a finite monotone T,-measure on F. In order to show 
that it is also irreducible, it is sufficient to show that Im,J = [ml, on 
(F”)^, where lmsl is the T,-measure existing for m, by Claim 1. First 
observe that lmsl, = 0 on (Y ” ) A because of Proposition 5.1 and of the 
fact, that m = moo + Im,J a, + Jmsjs (on Y) implies lmsl ocI = 0 on Y (by the 
maximality of m,), which in turn implies that the restriction of ]rnJ, to 
J ry is also identically zero. Now, observe that on F we have m - Jm,J = 
m, + (m, - Jm,J), where the right-hand side is a monotone T,-measure on 
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F. Thus, jmj - Irn,l must be monotone on (F ” ) li (cf. Claim 1). But by 
Claim 2 we have m,- jmjs= m - Jmj on 5 implying that m,- Jmj., is 
monotone on 9. Hence, because of the maximality of Jm,l we know that 
Irn,] - Jml, is monotone on (F ” )^. Suppose that lmsl - Jm], # 0. Then the 
functionm,whichisdefinedbym(A)=JmJ,(A)+Jm,~J(A)(AE(~“)^). 
is a monotone T,-measure on (F ” ) h which dominates /ml (in the sense 
of (41)) and satisfies m - m = m,Y - Jm,J on F (cf. Claim 2), where the 
right-hand side is monotone on F. This contradicts the maximality of the 
T,,-measure JmJ. Claim 3 is completely proved. 

Now, putting h := 1 -f in (47), and taking into account Claim 3, we 
obtain a representation of the form (40) for m. Suppose that m = m’ + p’ is 
another decomposition of m by a monotonically irreducible T,-measure m’ 
and a generated T,-measure p’. The generated measure p’ can be extended 
in the canonical way to (F ” ) A. Since m-p’ = m’ is monotone on .F it 
follows that [ml b p’ (cf. Claim 1). Hence on F we have m’ = (m - Irn\ ) + 
(/ml - p’), which shows that there exists a generated T,-measure, namely 
the difference Jmj -p’, which differs from m’ by a monotone T&-measure, 
namely the difference Im( - p’, which differs from m’ by a monotone 
T,%-measure on 3. Thus, m’ cannot be monotonically irreducible. Conse- 
quently the representation (40) of m as a sum of a monotonically 
irreducible and of a generated T,-measure is unique. This also shows that 
the generated component of the decomposition has to be the restriction of 
/ml to F-, whose unique decomposition provided by Proposition 5.1 is 
given by (43) and (46). Therefore the functions g and h involved in the 
representation (40) are ti-a.e. uniquely determined, completing the proof of 
the theorem. 1 

Combining Theorem 3.5 with Theorem 5.3 we deduce the following 
result: 

5.4 COROLLARY. If T, is a fundamental t-norm with s E 10, CC], if F is 
a T,-tribe and if m is a finite monotone T,-measure on 5, then there exists 
a unique finite nonnegative measure p on Y “, a p-a.e. uniquely determined 
3- ” -Markov kernel K from Xx SJ, to R and a unique monotonicall) 
irreducible T,-measure m* on F such that ,for every A E F 

m(A) = m*(A) + Ix W, CO, A@)[) 40). 
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