Note

Another Proof of the Folkman–Rado–Sanders Theorem

JAROSLAV NEŠETŘIL AND VOJTECH RÖDL

Communicated by the Managing Editors

Received August 5, 1981

The following result (finite union theorem) was obtained by Rado [1], Folkman, and Sanders [3] as an extension of Schur’s theorem [4] (we put \(n = \{0, 1, 2, \ldots, n-1\} \) for a positive integer \(n \)).

Theorem. For all positive integers \(n \) and \(r \), there exists a positive integer \(N = R(n, r) \) such that, if \(\mathcal{P}(N) \) is \(r \)-colored (that is, \(\chi: \mathcal{P}(N) \to r \)), then there exist pairwise disjoint nonempty subsets \(A_1, A_2, \ldots, A_n \) of \(N \) such that \(\bigcup_{i \in S} A_i \) is \(\chi \) monochrome. (That is, there exists \(j \in r \) such that \(\chi\left(\bigcup_{i \in S} A_i \right) = j \) whenever \(\emptyset \neq S \subseteq \{1, 2, \ldots, n\} \).)

The usual (and shorter) proof of this theorem is based on the Van der Waerden theorem. A proof in [3] is based on Ramsey’s theorem. The purpose of this note is to present another simple proof of this result. It appears much the same as the proof of the Schur’s theorem [4] using Ramsey’s theorem. The method of the proof presented here has some further generalizations which will appear elsewhere.

Proof. We proceed by induction on \(n \), the case \(n = 1 \) being immediate. Assume the statement is true for \(n \). We show it is true for \(2n \).

Let \(N = R(n, r) \) and let \(k = r^{2n-1} \). Pick, by Ramsey’s theorem, a positive integer \(c \) such that \(c \rightarrow (3N)_2^N \). (That is, whenever \(\left\lfloor c \right\rfloor^N \) is \(k \)-colored there is some \(B \subseteq \left\lfloor c \right\rfloor^N \) such that \(\left\lfloor B \right\rfloor^N \) is monochrome.) Let \(R(2n, r) = cn \).

Let \(\chi \) be an \(r \)-coloring of \(\mathcal{P}(c \times N) \). Define \(\phi: \left\lfloor c \right\rfloor^N \to \chi(S \subseteq N, S \neq \emptyset) r \) by

\[
\phi\left(\{x_0, x_1, x_1, x_2, \ldots, x_{2N-1}\} \right)_S = \chi \left(\bigcup_{i \in S} (\left\lfloor x_{2i}, x_{2i+1} \right\rfloor) \times \{i\} \right).
\]

(Here \(\{x, y\} = \{z; z\} \) is an integer and \(x \leq z < y \) and \(B_{x, y} \) expresses the fact that the elements of \(B \) are written increasing order.) Then, \(\phi \) is a \(k \) coloring of \(\left\lfloor c \right\rfloor^N \) so pick a subset \(\{y_0, y_1, y_2, \ldots, y_{3N-1}\} \) of \(c \) such that \(\mathcal{P}(\{y_0, y_1, y_2, \ldots, y_{3N-1}\}) \) is \(\phi \) monochrome.
Define $\zeta: P(N) \to r$ by $\zeta(\emptyset) = 0$, and for $\emptyset \neq S \subseteq N$, $\zeta(S) = \chi(\bigcup_{i \in S} ([y_{3i}, y_{3i+1}] \times \{i\}))$. Since $N = R(n, r)$ there are disjoint nonempty subsets B_1, B_2, \ldots, B_n of N and $j \in r$ such that $\zeta(\bigcup_{i \in S} B_i) = j$ whenever $\emptyset \neq S \subseteq \{1, 2, \ldots, n\}$. For $m \in \{1, 2, \ldots, n\}$, let $A_m = \bigcup_{i \in B_m} ([y_{3i}, y_{3i+1}] \times \{i\})$ and $A_{n+m} = \bigcup_{i \in B_m} ([y_{3i+1}, y_{3i+2}] \times \{i\})$. Then, as is easily verified, $\chi(\bigcup_{i \in S} A_i) = j$ whenever $\emptyset \neq S \subseteq \{1, 2, \ldots, 2n\}$. (If an explicit verification is desired: Let $\emptyset \neq S \subseteq \{1, 2, \ldots, 2n\}$, let $L = S \cap \{1, 2, \ldots, n\}$, and let $M = (S \cap \{n + 1, n + 2, \ldots, 2n\}) \setminus n$. Thus $S = L \cup \{k + n: k \in M\}$. For $i \in \bigcup \{B_k: k \in M \cap L\}$, define $w_{2i} = y_{3i}$ and $w_{2i+1} = y_{3i+1}$. For all other $i \in N$, let $w_{2i} = y_{3i}$ and $w_{2i+1} = y_{3i+2}$. For all other $i \in N$, let $z_{2i} = y_{3i}$ and $z_{2i+1} = y_{3i+1}$. Let $T = \bigcup_{k \in L \cup M} B_k$. Then $\chi(\bigcup_{k \in S} A_k) = \chi(\bigcup_{k \in L \cup M} \bigcup_{i \in B_k} ([y_{3i}, y_{3i+1}] \times \{i\}) \cup \bigcup_{k \in L \cup M} \bigcup_{i \in B_k} ([y_{3i+1}, y_{3i+2}] \times \{i\})) = \chi(\bigcup_{i \in T} [w_{2i+1}] \times \{i\}) = \phi(\{w_0, w_1, \ldots, w_{2n-1}\}) = \phi(\{z_0, z_1, \ldots, z_{2n-1}\}) = \chi(\bigcup_{i \in T} [z_{2i}, z_{2i+1}] \times \{i\}) = \chi(\bigcup_{i \in T} [y_{3i}, y_{3i+1}] \times \{i\}) = \zeta(T) = j$.

ACKNOWLEDGMENT

We thank the referee for a nice write up of this note.

REFERENCES