SCU protecting against myocardial injury induced by ischemia reperfusion (IR) are not well known. This study examined whether SCU protects against myocardial IR injury is mediated by the Janus kinase and signal transducer and activator of transcription (JAK/STAT) pathway.

Methods: Three models were used: a rat model of myocardial IR, an isolated thoracic artery (TA) hypoxia reoxygenation (HR) model, and a human cardiac microvascular endothelial cell (HCMEC) HR model. Protein and mRNA expression of JAK2/STAT3 and phosphophorylated products were assessed by Western blot, immunohistochemistry and RT-PCR method.

Results: In the rat myocardial IR model, SCU (45 and 90 mg/kg, iv) significantly reduced ischemic size, while immunohistochemical results showed that SCU significantly decreased histological phosphorylation JAK2 (P-JAK2) and STAT3 (P-STAT3) expression. In isolated TA rings, pre-incubation with SCU (100, 500 mmol/ L) significantly inhibited JAK2/STAT3 expression after HR. Western blot and RT-PCR showed that SCU (0.1, 1.0, 10 mmol/L) incubations significantly inhibited the phosphorylation of JAK2 and its downstream molecule STAT3 in and contrast, HR up-regulated them.

Conclusions: SCU attenuates myocardial IR injury, at least in part, by inhibiting injury-induced activation of JAK2/STAT3 signaling pathway.

GW25-00744
Suppression of PKC-e-mediated mitochondrial connexin 43 phosphorylation at serine 368 is involved in mitochondrial dysfunction in a rat model of dilated cardiomyopathy
Shan Hu, Zhang Ming, Lin Lin, Yan Rui, Zhang Rong, Zhu Yanhe, Wei Jin
Department of Cardiology, The Second Affiliated Hospital, Xi’an Jiaotong University

Objectives: Mitochondrial connexin 43 (Cx43) plays an essential role in ischemic preconditioning cardioprotection, however, it remains unclear whether mitochondrial Cx43 is involved in mitochondrial dysfunction in the pathogenesis of dilated cardiomyopathy (DCM). The present study was performed in order to investigate the change of the expression of mitochondrial Cx43 in a rat model of DCM and to determine whether the altered mitochondrial Cx43 phosphorylation state was involved in mitochondrial dysfunction.

Methods: The rat model of DCM was generated by daily oral administration of fura-adiolone (FZD) for 30 weeks and was identified by echocardiographic studies. The expression and phosphorylation state of mitochondrial Cx43 were examined by western blot. The expression and activity of protein kinase C (PKC) were also analyzed by western blot to reveal the underlying mechanism of Cx43 dephosphorylation at serine 368. And then, the mitochondrial membrane potential level was analyzed by western blot. The expression and activity of protein kinase C (PKC) and Cx43 accompanied with lower level of serine 368-phosphorylated Cx43 immunoreactive bands. Immunofluorescence measurement. The activities of cytochrome c oxidase and succinate dehydrogenase were determined by quantitative colorimetric assay kit. The primary cultured neonatal rat cardiomyocytes were sparsely plated without cell to cell contact and incubated with 100 mmol/L phorbol-12-myristate-13-acetate (PMA, a specific PKC activator) for 60 min after 48 h FZD treatment to assess the effects of PKC activation on the FZD-induced mitochondrial Cx43 dephosphorylation and mitochondrial dysfunction. Pretreatment with 18-β-glycerethinic acid (GA, a connexin channels inhibitor) for 4 h was performed to determine the involvement of mitochondrial Cx43 phosphorylation in FZD-activated mitochondrial protection in the FZD-treated cardiomyocytes.

Results: Real-time PCR and western blot revealed the decreased expression of overall Cx43 accompanied with lower level of serine 368-phosphorylated Cx43 immunoreactive bands. The mitochondrial Cx43 dephosphorylation, mitochondrial membrane potential level and the activities of cytochrome c oxidase, succinate dehydrogenase and PKC were all reduced. PMA partially reversed the FZD-induced mitochondrial Cx43 dephosphorylation and serine 368 and the mitochondrial dysfunction in the cardiomyocytes. However, pretreatment with GA abolished the mitochondrial protective effect of PMA in the cardiomyocytes sparsely plated without cell to cell contact.

Conclusions: Our results suggest that mitochondrial Cx43 dephosphorylation at serine 368 due to the suppression of PKC-e activity may be a novel mechanism for mitochondrial dysfunction in the pathogenesis of DCM.

GW25-00826
Investigation on Apoptosis of Vascular Endothelial Cells induced by Human Cytomegalovirus via the Fas/FasL Pathway
Yue Yingying, Li Peng, Li Zhihui, Song Nannan, Li Bingqing, Meng Hong
Chongqing Institute of Cardiology, Chongqing, P.R. China

Objectives: Human cytomegalovirus (HCMV) infection is associated with cardiovascular diseases, especially atherosclerosis. The detailed mechanisms were not fully understood yet. Vascular endothelial cell injury has been suggested playing a key role in the initiation and progression of atherosclerosis. This study is aiming to determine whether HCMV infection can induce apoptosis in human umbilical vein endothelial cells (HUVEC) via the Fas/FasL pathway, and lead to endothelial cell injury in vitro. Methods: HUVEC cells were seeded and cultured in vitro. DAPI staining method was used to investigate the morphology of apoptotic HUVEC cells, and flow cytometry (FCM) to quantitatively detect the apoptotic rate. An antagonist anti-Fas antibody was applied to block apoptosis. The transcription of Fas mRNA in the HUVEC cells incubated with strain AD169 and corresponding cells were detected with RT-PCR method. The expression of Fas was detected by FCM using FITC-conjugated monoclonal antibody.

Results: Chromatin condensation and marginalization were found in HUVEC cells infected with HCMV at 48 h and kinetic data was presented starting in some cells, which became more remarkable at 96 h. The apoptosis rates of HUVEC cells were 21.37% and 55.83% at 48 h and 96 h, respectively, which were decreased to 8.26% and 17.65% after the cells were pretreated with the anti-Fas antibody. The transcriptional level of Fas mRNA in HUVEC cells infected with HCMV AD169 strain showed a strong up trend over time compared with corresponding cells. Fas expression rates of HUVEC cells rose up to 69.47% and 81.59%, respectively, with that of with 10.35% and 13.67% in control groups at 48 h and 96 h.

Conclusions: HCMV AD169 strain can up-regulate Fas expression levels of HUVEC cells and induce apoptosis of cells via Fas/FasL pathway. These results suggest that Fas/FasL pathway may play a role in vascular endothelial cell injury and ultimately lead to atherosclerosis.

GW25-00875
Role of GRK4 in the Regulation of Arterial AT1 Receptor in Hypertension
Chen Ken,1,2 Zeng Chanye,1,2
1Department of Cardiology, Daping Hospital, The Third Military Medical University, 2Chongqing Institute of Cardiology, Chongqing, P.R. China

Objectives: G protein-coupled receptor kinase 4 (GRK4) gene variants, via impairment of renal dopamine receptor and enhancement of renin-angiotensin system functions, cause sodium retention and increase blood pressure. Whether or not GRK4 and the angiotensin type 1 receptor (AT1R) interact in the aorta is not known.

Methods: GRK4 expression in vascular smooth muscle cells (VSMCs) of the aorta was analyzed by confocal microscopy of double-stained, RT-PCR and immunoblotting. AT1R protein expression and function in GRK4 variant 142V transfected A10 cells and WT cells was quantified by immunoblotting and AT1R-mediated intracellular calcium concentration. AT1R phosphorylation level was determined by immunoprecipitation. The interaction between GRK4 and AT1R was determined by immunoprecipitation and confocal microscopy of double-stained. NF-kB activity was analyzed by electrophoretic mobility shift assay (EMSA). Angiotensin II-mediated vasconstriction of the aorta from 142V-transgenic mice and WT mice was analyzed by tension measurement of the artery rings.

Results: We report that GRK4 is expressed in vascular smooth muscle cells (VSMCs) of rat carotid artery. Heterologous expression of the GRK4 gene variant 142V in A10 cells increased AT1R protein expression and AT1R-mediated increase in intracellular calcium concentration. The increase in AT1R expression was related to an increase in AT1R mRNA expression via the NF-kB pathway. As compared with control, cells expressing GRK4 142V had greater NF-kB activity with more NF-kB bound to the AT1R promoter. The increased AT1R expression in cells expressing GRK4 142V was also associated with decreased AT1R degradation, which may be ascribed to lower AT1R phosphorylation. There was a direct interaction between GRK4 wild-type (WT) and AT1R that was decreased by GRK4 142V. The regulation of AT1R expression by GRK4 142V in A10 cells was confirmed in GRK4 142V transgenic mice; AT1R expression was higher in the aorta of GRK4 142V transgenic mice than control GRK4 wild-type (WT) mice. Angiotensin II-mediated vasconstriction of the aorta was also higher in GRK4 142V than WT transgenic mice.

Conclusions: This study provides evidence that GRK4, via regulation of arterial AT1R expression and function, participates in the pathogenesis of conduit vessel abnormalities in hypertension.

GW25-01108
Cardiac deacetylase SIRT3: A mitochondrial target for ischemia reperfusion arrhythmia suppression
Gu ChunHua,1 Chen Li,2 Tianian Jiang1, Qianguang Zhong,1 Ma Heng,3
1Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 2Department of Physiology, Fourth Military Medical University, 3Department of Cardiology, Tangua Hospital, Fourth Military Medical University

Objectives: Ischemia reperfusion induces a high percentage of lethal arrhythmias. Sirtuin 3 (SIRT3), a key nutrient sensor regulates glucose-metabolism homeostasis, was also reported to protect heart from reactive oxygen species (ROS) assaults, but whether it is involved in ischemia reperfusion arrhythmias (IRA) and the mechanism underlying remains unknown.

Methods: Sirt3 knockout (SIRT3 KO) mice and littermate wild-type (WT) mice were assigned into sham group, ischemia reperfusion group (I/R) and I/R with NAD treated group (7 days, 1 mg/kg/day) (NAD+I/R). Electrocardiography (ECG) was recorded during I/R for arrhythmia score assessment, and cardiac reactive oxygen species (ROS) production, SIRT3 and MnSOD levels were measured and analyzed.

Results: The results revealed that arrhythmia could be detected in sham SIRT3 KO mice, and more serious arrhythmia was triggered by I/R in SIRT3 KO mice than WT mice (P<0.05). Moreover, SIRT3 KO mice showed increased ROS production after I/R compared with WT I/R mice (P<0.05), which was in accordance with decreased manganese superoxide dismutase (MnSOD) and catalase (Cat) expression. NAD+ treatment significantly increased cardiac SIRT3 and MnSOD activity, inhibited ROS production, and consequently suppressed IRA in WT mice, but failed in SIRT3 KO mice.

Conclusions: These findings indicated that impairment of SIRT3 expression with subsequent ROS production played an important role in IRA. Therefore, preserving SIRT3 activity could be a potential approach to prevent IRA.