Essential elements in connected k-polymatroids

Dennis Hall

Mathematics Department, Louisiana State University, Baton Rouge, LA, United States

A R T I C L E I N F O

Article history:
Received 2 July 2012
Accepted 15 July 2012
Available online 15 October 2012

MSC:
05B35

Keywords:
Matroids
Polymatroids
Generalized parallel connection
Truncation

A B S T R A C T

It is a well-known result of Tutte that, for every element x of a connected matroid M, at least one of the deletion and contraction of x from M is connected. This paper shows that, in a connected k-polymatroid, only two such elements are guaranteed. We show that this bound is sharp and characterize those 2-polymatroids that achieve this minimum. To this end, we define and make use of a generalized parallel connection for k-polymatroids that allows connecting across elements of different ranks. This study of essential elements gives results crucial to finding the unavoidable minors of connected 2-polymatroids, which will appear elsewhere.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A classical result of Tutte is that, for every element x of a connected matroid M, either $M\setminus x$ or M/x is connected. This property of being able to either delete or contract any element while maintaining connectivity, however, does not hold for k-polymatroids. We call an element x of a connected k-polymatroid essential if both its deletion and contraction from the k-polymatroid destroy connectivity. In this paper, we show that every k-polymatroid has at least two elements that are non-essential, show that this bound is sharp for each integer k exceeding one, and characterize all 2-polymatroids with exactly two non-essential elements.

Additional motivation for this paper comes from the desire to find the unavoidable minors for connected 2-polymatroids, which is done in [2]. This study of essential elements turns out to be a crucial step in that endeavor. In fact, one may divide the class of unavoidable minors for connected 2-polymatroids into two categories: those that resemble circuits and cocircuits in matroids, and those that have exactly two non-essential elements.

E-mail address: dhall15@math.lsu.edu.
The main results, Theorems 4.3 and 4.9, are stated and proved in Section 4. The concepts of 2-sum and parallel connection for k-polymatroids, ideas that play an important role in the proofs of the main results, are studied in Section 3. Polymatroid-theoretic preliminaries are given in Section 2.

2. Polymatroids

Let M be a matroid with ground set E and rank function r. The pair (E, r) is an example of a 1-polymatroid. In fact, the class of 1-polymatroids is exactly the class of matroids. For an arbitrary positive integer k, we now define a k-polymatroid noting that it is very much like a matroid but allows individual elements to have ranks up to k.

Much of the polymatroid-theoretic language in this paper follows [7]. Let E be a finite set and f be a function from the power set of E into the integers. We say that f is normalized if $f(\emptyset) = 0$; f is submodular if $f(X) + f(Y) \geq f(X \cup Y) + f(X \cap Y)$ for all $X, Y \subseteq E$; and f is increasing if $f(X) \leq f(Y)$ whenever $X \subseteq Y \subseteq E$. We call the pair (E, f) a polymatroid Q if f is normalized, submodular, and increasing. The set E is called the ground set of Q while f is the rank function. For a positive integer k, a polymatroid (E, f) is a k-polymatroid if $f(z) \leq k$ for all $z \in E$. For ease of notation, a rank-1 element of a k-polymatroid is called a point; a rank-0 element of a k-polymatroid is called a loop. If a and b are elements of a k-polymatroid such that $f((a, b)) = f(a) = f(b)$, then we say that a and b are parallel.

Examples

An important way to obtain a k-polymatroid from a matroid is as follows. Given a matroid M with ground set S and rank function r, we obtain a k-polymatroid $Q = (E, f)$ by taking E to be some subset of the set of flats of M of rank at most k and letting $f(X) = r(\bigcup_{x \in X} x)$ for all subsets X of E. Indeed, every k-polymatroid can be obtained in this way (see, for example, [3, 5]). This fundamental fact allows us, in particular, to think of 2-polymatroids as an arrangement of loops, points, and lines of a matroid.

Another natural class of 2-polymatroids arises from graphs. To see this, let G be a graph and set $E = E(G)$. For a subset X of E, define a function f by $f(X) = |V(X)|$ where $V(X)$ is the set of vertices of G that meet some edge of X. Then (E, f) is a 2-polymatroid. We will call the 2-polymatroids that can be represented in this way Boolean and note that there is a one-to-one correspondence between the class of Boolean 2-polymatroids and the class of graphs without isolated vertices [8].

Finally, we consider k-polymatroids that are derived from other polymatroids. Let $Q_1 = (E, f_1)$ and $Q_2 = (E, f_2)$ be k-polymatroids on the same ground set. It is not difficult to check, then, that (E, f) is a 2k-polymatroid where $f(Z) = f_1(Z) + f_2(Z)$ for all $Z \subseteq E$. We denote (E, f) by $Q_1 + Q_2$ or, when $Q_1 = Q_2$, by $2Q_1$. We are not limited, however, to a sum of only 2 polymatroids. In particular, the sum of k copies of the matroid $U_{n-1,n}$, denoted $kU_{n-1,n}$, is a k-polymatroid consisting of n rank-k elements placed freely in rank $kn - k$.

Duality and minors

One attractive feature of k-polymatroids is that there are notions of duality, deletion, and contraction that mimic many of the nice properties of the same notions in matroids. Let $Q = (E, f)$ be a k-polymatroid. For all subsets X of E, let

$$f^*(X) = k|X| + f(E - X) - f(E).$$

Then (E, f^*) is a k-polymatroid Q^*, which, following [7], we call the k-dual of Q.

For a subset X of E, define $f_{Q\setminus X}$ and $f_{Q/X}$, for all subsets A of $E - X$, by $f_{Q\setminus X}(A) = f(A)$ and $f_{Q/X}(A) = f(A \cup X) - f(A)$. Let $Q\setminus X = (E - X, f_{Q\setminus X})$ and $Q/X = (E - X, f_{Q/X})$. It is common to write $f\setminus X$ instead of $f_{Q\setminus X}$ and f/X instead of $f_{Q/X}$. It is easy to verify that both of $Q\setminus X$ and Q/X are k-polymatroids, and that $Q^\setminus X = (Q/X)^*$. We call $Q\setminus X$ and Q/X the deletion and contraction of X from Q. We note that the k-dual is the unique involutary operation on the class of k-polymatroids that interchanges deletion and contraction (see [10]).
Connectivity

Following Matúš [4], we say that a \(k \)-polymatroid \(Q = (E, f) \) is connected or 2-connected if \(f(X) + f(E - X) > f(E) \) for all nonempty proper subsets \(X \) of \(E \); otherwise, \(Q \) is disconnected. If \(f(X) + f(E - X) = f(E) \), then \(X \) is a separator; it is nontrivial if \(X \notin \{\emptyset, E\} \). When \(X \) is a nontrivial separator, \((X, E - X)\) is called a 1-separation of \(Q \). It is a quick exercise to see that \(Q \) is connected if and only if \(Q^* \) is connected (see [6]). We introduce the concept of 3-connectedness for \(k \)-polymatroids in the next section.

3. Parallel connection and 2-sum

Here, we expand upon the notion of parallel connection for polymatroids that is given in [4]. This operation for polymatroids is a generalization of that for matroids in that it consists of sticking together two polymatroids as freely as possible across a designated element of each. Below, we give a formal definition that mimics the language of parallel connection for matroids.

Suppose \(Q_1 = (E_1, f_1) \) and \(Q_2 = (E_2, f_2) \) are \(k \)-polymatroids on disjoint ground sets. Let \(Q_1 \oplus Q_2 = (E_1 \cup E_2, f) \) where \(f(Z) = f_1(Z \cap E_1) + f_2(Z \cap E_2) \) for all \(Z \subseteq E_1 \cup E_2 \). It is well known and easily checked that \(Q_1 \oplus Q_2 \) is a \(k \)-polymatroid. Following [1], we call it the direct sum of \(Q_1 \) and \(Q_2 \). Evidently, a \(k \)-polymatroid is 2-connected if and only if it cannot be written as a direct sum of two \(k \)-polymatroids with nonempty ground sets.

Next, suppose \(Q_1 = (E_1, f_1) \) and \(Q_2 = (E_2, f_2) \) are \(k \)-polymatroids with \(E_1 \cap E_2 = \{p\} \) and \(f_1(p) = f_2(p) \). Let \(P(Q_1, Q_2) = (E_1 \cup E_2, f) \) where, for all \(A \subseteq E \), if \(A_1 = A \cap E_1 \) and \(A_2 = A \cap E_2 \), then

\[
f(A) = \min\{f_1(A_1) + f_2(A_2), f_1(A_1 \cup A_2) + f_2(A_2 \cup p) - f_1(p)\}.
\]

A routine check shows that \(P(Q_1, Q_2) \) is a \(k \)-polymatroid. We call this \(k \)-polymatroid the parallel connection of \(Q_1 \) and \(Q_2 \) with respect to the basepoint \(p \). When \(Q_1 \) and \(Q_2 \) are matroids, this definition of parallel connection coincides with that for matroids. A limitation of our definition of \(P(Q_1, Q_2) \) is that it requires the basepoints to have the same rank. To rectify this, we extend the matroid operation of principal truncation (see, for example, [5, Section 7.3]).

Intuitively, the principal truncation of an element \(p \) is achieved by adding a point on \(p \) as freely as possible and then contracting the added point. To define this operation formally, let \(Q = (E, f) \) be a polymatroid with \(p \in E \) and let \(f_p \) be the function defined, for all subsets \(A \subseteq E \), by

\[
f_p(X) = \begin{cases} f(X) - 1, & \text{if } f(X \cup p) = f(X); \\ f(X), & \text{otherwise.} \end{cases}
\]

It is not difficult to check that \((E, f_p)\) is a polymatroid. We denote it by \(T_p(Q) \) and say that it is obtained from \(Q \) by truncating \(p \). This operation can be repeated. For a positive integer \(n \), we define \(T^n_p(Q) = T_p(T_p^{n-1}(Q)) \) where \(T_0^p(Q) = Q \). It is an easy exercise to verify that \(T^n_p(Q) \) has rank function \(f^n_p \) defined, for all \(X \subseteq E \), by

\[
f^n_p(X) = \begin{cases} \max\{f(X \cup p) - n, 0\}, & \text{if } f(X \cup p) - f(X) \leq n; \\ f(X), & \text{otherwise.} \end{cases}
\]

Suppose \(Q_1 = (E_1, f_1) \) and \(Q_2 = (E_2, f_2) \) are polymatroids with \(E_1 \cap E_2 = \{p\} \). Let \(n = f_2(p) - f_1(p) \). We expand the notion of parallel connection to this case by setting \(P(Q_1, Q_2) \) to be \(P(Q_1, T^n_p(Q_2)) \). When \(Q_1 \) and \(Q_2 \) are matroids such that \(p \) is a loop of \(Q_1 \) and a non-loop of \(Q_2 \), this definition coincides with that for matroids.

The following familiar properties of parallel connection hold for \(k \)-polymatroids.

Proposition 3.1. Let \(Q_1 = (E_1, f_1) \) and \(Q_2 = (E_2, f_2) \) be polymatroids such that \(E_1 \cap E_2 = \{p\} \). Then

(i) \(P(Q_1, Q_2) = Q_1/p \oplus Q_2/p \); and
(ii) for all \(e \in E_1 - p \),
\[
P(Q_1, Q_2)/e = P(Q_1/e, Q_2) \quad \text{and} \quad P(Q_1, Q_2)\setminus e = P(Q_1\setminus e, Q_2).
\]

Proof. The proof of this proposition is not significantly different from the proof of the corresponding result for matroids (see, for example, [5]) and is omitted. \(\square \)

The following result of Oxley and Whittle (see [6, Theorem 3.1]) is used throughout the paper.

Lemma 3.2. Let \(Q = (E, f) \) be a connected \(k \)-polymatroid where \(|E| \geq 2 \) and let \(A \) be a nonempty proper subset of \(E \). If
\[
f(A) + f(E - A) - f(E) < \min\{ f(X) + f(E - X) - f(E) : \emptyset \neq X \subseteq E \},
\]
then at least one of \(Q/A \) and \(Q \setminus A \) is connected. \(\square \)

From this lemma, we obtain the following result on non-essential elements. Recall that an element \(e \) of a connected \(k \)-polymatroid \(Q \) is non-essential if either \(Q \setminus e \) or \(Q/e \) is connected.

Proposition 3.3. If \(Q = (E, f) \) is a connected \(k \)-polymatroid and \(e \in E \) such that \(f(e) = 1 \), then \(e \) is non-essential.

Proof. This is an immediate consequence of Lemma 3.2. \(\square \)

Theorem 3.4. Suppose \(Q_1 = (E_1, f_1) \) and \(Q_2 = (E_2, f_2) \) are \(k \)-polymatroids such that \(E_1 \cap E_2 = \{p\} \) where \(f_1(p) = f_2(p) \). Then both \(Q_1 \) and \(Q_2 \) are connected if and only if \(P(Q_1, Q_2) \) is connected. Further, if \(P(Q_1, Q_2)\setminus p \) is connected, then \(P(Q_1, Q_2) \) is connected.

Proof. If \((X, Y \cup p)\) is a 1-separation of \(Q_1 \), then it is not difficult to check that \((X, E_2 \cup Y)\) is a 1-separation of \(P(Q_1, Q_2) \) and that \((X, (E_2 - p) \cup Y)\) is a 1-separation of \(P(Q_1, Q_2)\setminus p \). On the other hand, suppose \((X, Y \cup p)\) is a 1-separation of \(P(Q_1, Q_2) \), and \(f_3 \) is the rank function for \(P(Q_1, Q_2) \). Let \(X_i = X \cap E_i \) and \(Y_i = Y \cap E_i \) for each \(i \in \{1, 2\} \), and observe that
\[
f_3(X) = \min\{ f_1(X_1) + f_2(X_2), f_1(X_1 \cup p) + f_2(X_2 \cup p) - f_1(p) \};
\]
\[
f_3(Y \cup p) = f_1(Y_1 \cup p) + f_2(Y_2 \cup p) - f_1(p); \quad \text{and}
\]
\[
f_3(E_1 \cup E_2) = f_1(E_1) + f_2(E_2) - f_1(p).
\]
If \(f_1(X_1) + f_2(X_2) \leq f_1(X_1 \cup p) + f_2(X_2 \cup p) - f_1(p) \), then since \(f_3(X) + f_3(Y \cup p) = f_3(E_1 \cup E_2) \), we have
\[
f_1(X_1) + f_2(X_2) + f_1(Y_1 \cup p) + f_2(Y_2 \cup p) = f_1(E_1) + f_2(E_2).
\]
As \(f_1(X_1) + f_1(Y_1 \cup p) \geq f_1(E_1) \) for each \(i \in \{1, 2\} \), it follows that \((X_i, Y_i \cup p)\) is a 1-separation for each \(i \in \{1, 2\} \). On the other hand, if \(f_1(X_1) + f_2(X_2) > f_1(X_1 \cup p) + f_2(X_2 \cup p) - f_1(p) \), then, as \(f_3(X) + f_3(Y \cup p) = f_3(E_1 \cup E_2) \), we have
\[
f_1(X_1 \cup p) + f_2(X_2 \cup p) + f_1(Y_1 \cup p) + f_2(Y_2 \cup p) - f_1(p) = f_1(E_1) + f_2(E_2).
\]
From submodularity again, it follows that \(f_2(p) = f_1(p) = 0 \), and thus \(Q_1 \) and \(Q_2 \) are disconnected. \(\square \)
In addition to parallel connection, we make use of the 2-sum operation. Let \(Q_1 \) and \(Q_2 \) be \(k \)-polymatroids on ground sets \(E_1 \) and \(E_2 \), respectively, with \(E_1 \cap E_2 = \{ p \} \). If \(f_1(p) = f_2(p) = 1 \) and \(p \) is not a separator for either \(Q_1 \) or \(Q_2 \), then the 2-sum of \(Q_1 \) and \(Q_2 \) is defined to be \(P(Q_1, Q_2) \setminus p \) and denoted \(Q_1 \oplus_2 Q_2 \). The following shows some fundamental connectivity properties of this 2-sum operation.

Corollary 3.5. Suppose \(Q_1 = (E_1, f_1) \) and \(Q_2 = (E_2, f_2) \) are \(k \)-polymatroids such that \(E_1 \cap E_2 = \{ p \} \) where \(f_1(p) = f_2(p) = 1 \). Then the following are equivalent.

(i) \(Q_1 \) and \(Q_2 \) are both connected;
(ii) \(Q_1 \oplus_2 Q_2 \) is connected;
(iii) \(P(Q_1, Q_2) \) is connected.

Proof. Using Theorem 3.4, we have only to show that (iii) implies (ii). From Proposition 3.1, we observe that \(P(Q_1, Q_2) \setminus p \) is disconnected. Since \(f_1(p) = f_2(p) = 1 \), we use Proposition 3.3 to see that \(p \) is non-essential and therefore that \(P(Q_1, Q_2) \setminus p = Q_1 \oplus_2 Q_2 \) is connected. \(\Box \)

We say that a \(k \)-polymatroid \(Q \) is 3-connected if and only if it cannot be written as a 2-sum of a pair of \(k \)-polymatroids each with fewer elements than \(Q \). The following proposition allows us to give an alternative definition.

Proposition 3.6. Suppose \(Q = (E, f) \) is a \(k \)-polymatroid for which there exists a partition \((X_1, X_2) \) of \(E \) such that \(f(X_1) + f(X_2) = f(E) + 1 \) and \(\min(|X_1|, |X_2|) \geq 2 \). Then there are polymatroids \(Q_1 \) and \(Q_2 \) on ground sets \(X_1 \cup p \) and \(X_2 \cup p \), respectively, where \(p \) is a new point not in \(E \), such that \(Q = Q_1 \oplus_2 Q_2 \).

Proof. For \((i, j) \in \{(1, 2), (2, 1)\} \), let \(Q_i = (X_i \cup p, f_i) \) where \(f_i \) is defined, for all \(A \subseteq X_i \cup p \), by

\[
 f_i(A) = \begin{cases}
 f((A - p) \cup X_j) - f(X_j) + 1 & \text{if } p \in A; \\
 f(A) & \text{if } p \notin A.
 \end{cases}
\]

It is routine to check that \(f_i \) is a \(k \)-polymatroid. Let \(f_3 \) be the rank function of \(P(Q_1, Q_2) \). Since \(Q_1 \oplus_2 Q_2 = P(Q_1, Q_2) \setminus p \), it suffices to show that \(f_3(A) = f(A) \) for all subsets \(A \) of \(E \). Choose such a subset \(A \), let \(A_i = A \cap X_i \) for \(i \in \{1, 2\} \), and note that

\[
 f_3(A) = \min\{f_1(A_1) + f_2(A_2), f_1(A_1 \cup p) + f_2(A_2 \cup p) - f_1(p)\}
 = \min\{f(A_1) + f(A_2), f(A_1 \cup X_2) + f(A_2 \cup X_1) - f(E)\}.
\]

Observe that if \(U \) and \(V \) are disjoint subsets of \(E \) with \(S \subseteq U \) and \(T \subseteq V \), then

\[
 f(U) + f(V) + f(S \cup T) \geq f(U) + f(S \cup V) + f(T)
 \geq f(U \cup V) + f(S) + f(T).
\]

Rearranging this inequality provides that

\[
 f(U) + f(V) - f(U \cup V) \geq f(S) + f(T) - f(S \cup T).
\]

Since \(f(X_1) + f(X_2) = f(E) + 1 \), we have from (3.1) that

\[
 f(A_1 \cup X_2) \in \{f(A_1) + f(X_2), f(A_1) + f(X_2) - 1\};
\]
with $f(A_2 \cup X_1)$ behaving similarly. If $f(A_1 \cup X_2) = f(A_1) + f(X_2)$, then another application of (3.1) shows that

$$f(A_1) + f(A_2) = f(A_1 \cup A_2).$$

From submodularity, we have that $f(A_1 \cup X_2) + f(A_2 \cup X_1) - f(E) \geq f(A_1 \cup A_2)$, and it follows that $f_3(A) = f(A_1) + f(A_2) = f(A)$, as desired. By symmetry, then, we have only to consider when $f(A_1 \cup X_2) = f(A_1) + f(X_2) - 1$ and $f(A_2 \cup X_1) = f(A_2) + f(X_1) - 1$. In this case, we observe that

$$f(A_1) + f(A_2) = f(A_1 \cup X_2) + f(X_1 \cup A_2) - f(X_1) - f(X_2) + 2$$

$$= f(A_1 \cup X_2) + f(X_1 \cup A_2) - f(E) + 1$$

$$\geq f(E) + f(A) - f(E) + 1$$

$$= f(A) + 1.$$

From this, it follows that

$$f_3(A) = f(A_1 \cup X_2) + f(X_1 \cup A_2) - f(E) = f(A_1) + f(A_2) - 1,$$

and with an application of (3.1), that

$$f(A_1) + f(A_2) = f(A) + 1.$$

Combining these equations yields that $f_3(A) = f(A)$ and the conclusion holds. \qed

Corollary 3.7. A k-polymatroid $Q = (E, f)$ is 3-connected if and only if for any partition (X, Y) of E with $f(X) + f(Y) = f(E) + 1$, either $|X| = 1$ or $|Y| = 1$.

From this, it is clear that a k-polymatroid Q is 3-connected if and only if Q^* is 3-connected. Our final result shows that 2-summing commutes for k-polymatroids. We omit the proof since it involves a routine, but tedious, exhaustive case-check.

Proposition 3.8. For $i \in \{1, 2, 3\}$, let $Q_i = (E_i, f_i)$ be a k-polymatroid for which $E_1 \cap E_2 = \{p_1\}$ and $E_2 \cap E_3 = \{p_2\}$ with $f_1(p_1) = f_2(p_1) = f_2(p_2) = f_3(p_2) = 1$. Then $Q_1 \oplus_2 (Q_2 \oplus_2 Q_3) = (Q_1 \oplus_2 Q_2) \oplus_2 Q_3$.

4. **Non-essential elements**

Recall that an element e of a connected k-polymatroid Q is non-essential if either $Q \setminus e$ or Q/e is connected. Tutte showed in [9] that every element of a connected matroid is non-essential. We expand this result to k-polymatroids by determining the number of non-essential elements that are guaranteed to exist in any k-polymatroid. To do so, we make extensive use of the truncation operation defined in the previous section.

Lemma 4.1. Let $Q = (E, f)$ be a connected k-polymatroid with $e \in E$. Then $T_e(Q)$ is connected if and only if Q is connected with $f(e) > 1$.

Proof. Let (A, B) be a partition of E with $e \in A$ and B nonempty. Suppose $T_e(Q)$ is connected. Then certainly $f(e) > 1$ or else e would be a loop in $T_e(Q)$. To show that Q is connected, observe that
\[f(A) + f(B) = f_e(A) + f(B) + 1 \]
\[\geq f_e(A) + f_e(B) + 1 \]
\[> f_e(E) + 1 \]
\[= f(E). \]

We now assume that \(Q \) is connected with \(f(e) > 1 \). Then
\[f_e(A) + f_e(B) \geq f(A) + f(B) - 2 \geq f(E) - 1 = f_e(E), \]
and it thus suffices to consider the case when both \(f_e(B) = f(B) - 1 \) and \(f(A) + f(B) = f(E) + 1 \).

From the first of these equations, we have \(f(B \cup e) = f(B) \) and so, from the second equation, get \(f(A) + f(B \cup e) = f(E) + 1 \). It follows from submodularity that
\[f(E) + f(e) \leq f(A) + f(B \cup e) = f(E) + 1, \]
and therefore \(f(e) \leq 1 \). \(\square \)

Lemma 4.2. Let \(Q = (E, f) \) be a \(k \)-polymatroid with \(e \in E \) and disjoint sets \(C, D \subseteq E - e \) such that \(f(C \cup e) > f(C) \). Then \(T_e(Q) \setminus D/C = T_e(Q) \setminus D/C \).

Proof. Let \(X \subseteq E - (C \cup D) \). It is straightforward to show that \(f_e \setminus D/C(X) = (f \setminus D/C)e(X) \). \(\square \)

Theorem 4.3. Every connected \(k \)-polymatroid having at least two elements has at least two non-essential elements.

Proof. Let \(Q = (E, f) \) be a connected \(k \)-polymatroid with \(|E| \geq 2 \). We proceed by induction on the rank of \(Q \). If \(f(E) = 0 \), then \(Q \) is not connected and we are done. Thus we assume the theorem holds for polymatroids of rank less than that of \(Q \). If possible, choose \(e \in E \) such that \(f(E - e) < f(E) \). If each \(e \in E \) satisfies \(f(E - e) = f(E) \), then choose \(e \in E \) such that \(f(e) = \max\{f(x) : x \in E\} \). If \(f(e) = 1 \), then \(Q \) consists entirely of rank-1 elements and so consists entirely of non-essential elements by Proposition 3.3. Otherwise, we use Lemma 4.1 to see that \(T_e(Q) \) is a connected \(k \)-polymatroid with at least two elements and rank one less than the rank of \(Q \). By induction, then, we may pick two elements \(a, b \in E \) that are non-essential in \(T_e(Q) \). By combining Lemmas 4.1 and 4.2, we note that if an element of \(E - e \) is non-essential in \(T_e(Q) \), then it is non-essential in \(Q \). Therefore we need only show that either \(e \) is non-essential in \(Q \), or there are two elements \(x, y \in E - e \) that are non-essential in \(T_e(Q) \). Clearly, if \(a, b \in E - e \), then we are done. Thus assume that \(e \) is non-essential in \(T_e(Q) \). If \(f(E - e) < f(E) \), then it is not difficult to show that \(e \) is essential in \(Q \). Hence assume that \(f(E - x) = f(E) \) for all \(x \in E \). If \(T_e(Q)/e \) is connected, then, as \(T_e(Q)/e = Q/e \), the theorem holds. Hence we may assume that \(T_e(Q) \setminus e \) is connected. If \(|E| = 2 \), then the result is obvious and so \(T_e(Q) \setminus e \) is a connected \(k \)-polymatroid with at least two elements. Let \(x \) and \(y \) be non-essential in \(T_e(Q) \).

If \(T_e(Q) \setminus \{e, x\} \) is connected, then \(T_e(Q) \setminus \{x\} \) is connected unless
\[f_e(e) + f_e(E - \{e, x\}) = f_e(E - x) = f_e(E). \] (4.1)

In this case, suppose \((A \cup x, B) \) partitions \(E - e \) nontrivially such that
\[f/e(A \cup x) + f/e(B) = f/e(E - e). \]

Then
\[f(A \cup \{e, x\}) + f(B \cup e) = f(E) + f(e). \] (4.2)
Observe, however, that (4.1) implies that \(f(e) + f(E - \{e, x\}) = f(E) \) and thus, since \(B \subseteq E - \{e, x\} \), that \(f(e) + f(B) = f(B \cup e) \). Applying this to (4.2) shows that \((A \cup \{e, x\}, B)\) is a 1-separation of \(Q \), a contradiction. It remains to consider the case when \(T_e(Q) \setminus e/x \) is connected. By a similar argument to the above, we have that \((e, E - x)\) is the only possible 1-separation of \(T_e(Q)/x \). If \(Q/x \) is connected, we are done. Thus assume that \((A \cup e, B)\) is a 1-separation of \(Q/x \). Since \((f/x)_e(A \cup e) = f/x(A \cup e) - 1\) and \((f/x)_e(E - x) = f/x(E - x) - 1\), it follows that

\[
(f/x)_e(A \cup e) + f/x(B) = (f/x)_e(E - x). \tag{4.3}
\]

Now, either \(f/x(B) = (f/x)_e(\{e\}) \) or \(f/x(B) = (f/x)_e(B) + 1 \). Observe that if \(f((x, e)) = f(x) \), then \(Q \setminus e \) is connected and we are done. Thus \(f((x, e)) > f(x) \) and we have, from Lemma 4.2, that \(T_e(Q)/x = T_e(Q)/x \). Thus if \(f/x(B) = (f/x)_e(B) + 1 \), then (4.3) becomes

\[
f_e/x(A \cup e) + f_e/x(B) = f_e/x(E - x) - 1,
\]

contradicting the submodularity of \(T_e(Q)/x \). On the other hand, if \(f/x(B) = f_e/x(B) \), then

\[
f_e/x(A \cup e) + f_e/x(B) = f_e/x(E - x).
\]

As \((e, E - x)\) is the only possible 1-separation of \(T_e(Q)/x \), it follows that \(A = \emptyset \). Then, since \((A \cup e, B)\) is a 1-separation of \(Q/x \),

\[
f/x(e) + f/x(E - \{e, x\}) = f/x(E - x).
\]

Since \(f/x(E - \{e, x\}) = f/x(E - x) \), it follows that \(f((x, e)) = f(e) \) and thus \(Q \setminus x \) is connected. \(\square \)

We now know that every connected \(k \)-polymatroid has at least two non-essential elements. The next example shows that this bound is sharp.

Example 4.4. Choose integers \(k \geq 1 \) and \(n \geq 1 \). Let \(E \) be a set with \(|E| = k\) and choose distinct elements \(a, b \notin E \). Take \(M = (E \cup \{a, b\}, r) \) to be a matroid isomorphic to \(U_{1,k+1} \oplus U_{0,1} \) where \(b \) is the loop and \(Q = (E \cup \{a, b\}, f) \) to be an \(n \)-polymatroid isomorphic to \(nU_{k,k+1} \oplus U_{0,1} \) where \(a \) is the loop. Then the \((n + 1)\)-polymatroid \(M + Q \) has \(a \) and \(b \) as its only non-essential elements. If \(n = 1 \), then we denote \(M + Q \) by \(S_k \) for each \(k \). The 2-polymatroid \(S_k \) is shown geometrically in Fig. 1 for \(k \in \{1, 2, 3\} \).

Lemma 4.5. If \(Q = (E, f) \) is a connected 2-polymatroid and, for some \(e \in E \), both \(f \setminus e \) and \(f / e \) are not connected, then \(f(E) = f(E - e), f(e) = 2, \) and \(f(X) + f(E - X) - f(E) = 1 \) for some set \(X \subseteq E \).

Proof. This is an immediate consequence of Lemma 3.2. \(\square \)

If \(Q = (E, f) \) is a 2-polymatroid and \(x \in E \) such that \(f(E - x) = f(E) - 1 \), then \(f^*(e) = 1 \) and we say that \(e \) is a **copoint**. In the following theorem, we show that the polymatroids given in Example 4.4
when \(n = 1 \) are the only 3-connected 2-polytopes with exactly 2 non-essential elements and no copoints. After obtaining this result, it is not difficult to remove the no-copoints requirement, which is done in Corollary 4.7.

Theorem 4.6. If \(Q \) is a 3-connected 2-polytope with at least three elements, no copoints, and exactly two non-essential elements, then \(Q \) is isomorphic to \(S_k \) for some \(k \).

Proof. Let \(Q = (E, f) \) be a 3-connected 2-polytope with an essential element \(a \). Choose a nontrivial partition \((X, Y)\) of \(E - a \) with \(|X| \) maximal such that \(f(X \cup a) + f(Y \cup a) = f(E) + 2 \). A partition of this type is a 1-separation of \(Q/a \) and thus exists. Similarly, choose a partition \((A, B)\) of \(E - a \) with \(|A| \) maximal such that \(f(A) + f(B) = f(E) \). Then

\[
2f(E) + 2 = f(A) + f(B) + f(X \cup a) + f(Y \cup a)
\geq f(A \cup X \cup a) + f(B \cup Y) + f(B \cup Y \cup a) + f(A \cap X) \tag{4.4}
\]

and

\[
2f(E) + 2 = f(A) + f(B) + f(X \cup a) + f(Y \cup a)
\geq f(A \cup Y \cup a) + f(B \cup X) + f(B \cup X \cup a) + f(A \cap Y). \tag{4.5}
\]

Since \(Q \) is 3-connected, we get from (4.4) that at least one of \(|A \cap X| \) and \(|B \cap Y| \) is less than 2. In fact, for some \(k \geq 1 \),

\[
(|A \cap X|, |B \cap Y|) \in \{(0, k), (0, 0), (1, 1), (k, 0)\}.
\]

If \(|A \cap X| = 0 \) and \(|B \cap Y| \) is nonzero, then (4.5) tells us that, since neither \(A \cap Y \) nor \(B \cap X \) may be empty, both must be singletons. Thus \(A = (X \cap a) \cup (Y \cap a) = A \cap Y \) and \(A \) is a singleton. However, \(B \) then contains at least two elements, contradicting the maximality of \(A \).

Next, we assume both \(A \cap X \) and \(B \cap Y \) are empty. Again, from (4.5), we get that \(|A \cap Y| = |B \cap X| = 1 \). Let \(x \in B \cap X \) and \(y \in A \cap Y \). Since \(f(A \cup Y \cup a) + f(B \cap X) = f(E) + 1 \), we have that \(f((a, y)) + f(x) = f(E) + 1 \). As \(Q \) has no copoints, it follows that \(f(x) = 1 \) and similarly that \(f(y) = 1 \). It follows, since \(f(A) + f(B) = f(E) \), that \(f(E) = 2 \), so \(f((a, y)) = f((a, x)) = 2 \). If \(f((x, y)) = 1 \), then \(f((x, y)) + f(a) = f(E) + 1 \), which is impossible since \(f(a) = 2 \). Therefore, \(Q \cong S_1 \).

Now, we assume \(|A \cap X| = |B \cap Y| = 1 \) and let \(A \cap X = \{x\}; B \cap Y = \{y\} \). From (4.5) and the maximality of \(A \) and \(X \), we have \(|A \cap Y| = |B \cap X| \leq 1 \). If \(|A \cap Y| = |B \cap X| = 0 \), then, similarly to the previous case, we have that \(Q \cong S_1 \). We thus assume \(|A \cap Y| = |B \cap X| = 1 \) and let \(\{w\} = B \cap X \) and \(\{z\} = A \cap Y \). From this, we may use (4.4) and (4.5) to get \(f(w) = f(z) = f(x) = f(y) = 1 \). As rank-1 elements are always non-essential, this contradicts that \(Q \) has exactly two non-essential elements.

Finally, we consider the case when \(|B \cap Y| = 0 \) and \(A \cap X \) is nonempty. Arguing as above, we find that each of \(B \cap X \) and \(A \cap Y \) consists of a single rank-one element, which we call \(x \) and \(y \), respectively. Using (4.4), (4.5), and the 3-connectedness of \(Q \), we are able to find that \(f((a, y)) = 2 \), \(f((a, x, y)) = 3 \), \(f(E - (a, x, y)) = f(E) - 1 \), \(f(E - (a, x, y)) = f(E), f(E - (a, x, y)) = f(E) - 1 \), and \(f((a, x)) = 3 \). Indeed, as \(x \) and \(y \) are points, they are the sole non-essential elements of \(Q \). Thus we may choose \(b \in E - \{a, x, y\} \) and note that \(b \) must be essential. If we repeat the previous steps of this proof using \(b \) instead of \(a \), we come to the conclusion that \(b \) satisfies \(f((b, y)) = 2 \), \(f((b, x, y)) = 3 \), \(f(E - (b, x)) = f(E) - 1 \), \(f(E - (b, y)) = f(E), f(E - (b, x, y)) = f(E) - 1 \), and \(f((b, x)) = 3 \). As \(b \) was chosen arbitrarily, we have that these equations are satisfied for all \(p \in E - \{x, y\} \).

Since, for each \(p \in E - \{x, y\} \), we have that \(f((p, y)) = 2 \), it follows that \(f(E - x) \leq |E| - 1 \). It follows that \(f(E) \leq |E| - 1 \). If possible, choose a minimal set \(P \subseteq E - \{x, y\} \) for which \(f(P) \leq |P| \) and let \(b \in P \). By the minimality of \(P \), we have \(f(P - b) \geq |P - b| + 1 = |P| \geq f(P) \) and thus \(f(P - b) = f(P) \). Recall, however, that \(f((x, f(E - (b, x)) = f(E)) \). Since \(P - b \subseteq E - \{b, x\} \), it follows that \(f(E - x) = f(E) \).
Corollary 4.7. Every 3-connected 2-polymatroid on at least three elements with exactly two non-essential elements can be obtained from some S_n by performing a sequence of element expansions.

Proof. Suppose $Q = (E, f)$ is such a 2-polymatroid having $\{x_1, x_2, \ldots, x_n\}$ as its set of copoints. Let $R = T_{x_1}(T_{x_2}(\cdots T_{x_n}(Q))\cdots)$. It is not difficult to check that R is 3-connected and we can use Lemmas 4.1 and 4.2 to see that R has exactly two non-essential elements. From Theorem 4.6, we have that R is isomorphic to S_n for some n. The conclusion follows. □

We conclude by characterizing all those 2-polymatroids with exactly two non-essential elements. The following proposition will be helpful to this end.

Proposition 4.8. Let $Q_1 = (E_1, f_1)$ and $Q_2 = (E_2, f_2)$ be connected k-polymatroids such that $E_1 \cap E_2 = \{p\}$ and $f_1(p) = f_2(p) = 1$. An element x in $(E_1 \cup E_2) - p$ is non-essential in either Q_1 or Q_2 if and only if x is non-essential in $Q_1 \oplus Q_2$.

Proof. From Proposition 3.1,

$$(Q_1 \oplus Q_2) \backslash x = P(Q_1, Q_2) \backslash \{x, p\} = P(Q_1 \backslash x, Q_2) \backslash p = (Q_1 \backslash x) \oplus Q_2.$$

Similarly, $(Q_1 \oplus Q_2) / x = (Q_1 / x) \oplus Q_2$. By combining these equations with Corollary 3.5, we obtain the proposition. □

The connected 2-polymatroids with exactly two non-essential elements consist of the members of $\{S_1, S_2, \ldots\}$ along with paths of 2-sums of such 2-polymatroids where the basepoints of the 2-sums are non-essential in both summands.

Theorem 4.9. Let Q be a connected 2-polymatroid with at least three elements. Then Q has exactly two non-essential elements if and only if, for some $n \geq 1$, there is a sequence Q_1, Q_2, \ldots, Q_n of 2-polymatroids such that

(i) each Q_i is isomorphic to some member of $\{U_{1,2} + U_{1,1}, S_1, S_2, \ldots\}$;
(ii) if either $n = 1$ or $2 \leq i \leq n - 1$, then Q_i is isomorphic to some member of $\{S_1, S_2, \ldots\}$;
(iii) the ground sets of Q_1, Q_2, \ldots, Q_n are disjoint except that, for each i in $\{1, 2, \ldots, n - 1\}$, the sets $E(Q_i)$ and $E(Q_{i+1})$ meet in a single rank-1 element; and
(iv) $Q \cong Q_1 \oplus Q_2 \oplus \cdots \oplus Q_n$.

Proof. If we have a sequence satisfying the four conditions, Proposition 4.8 implies that Q has exactly two non-essential elements. For the converse, we proceed by induction on the rank of E. If $f(E) = 1$, then, since $|E| > 2$ and Q is connected, it follows that Q consists of $|E|$ points, each of which must be non-essential, a contradiction. Thus assume $f(E) > 1$ and that the conclusion holds for 2-polymatroids of rank less than $f(E)$. If Q is 3-connected, then, from Corollary 4.7, there are three possibilities:
n = 1 with \(Q_1 \) isomorphic to some member of \(\{ S_1, S_2, \ldots \} \); n = 2 with \(Q_1 \) isomorphic to \(U_{1,2} + U_{1,1} \) and \(Q_2 \) isomorphic to some member of \(\{ S_1, S_2, \ldots \} \); or n = 3 with both \(Q_1 \) and \(Q_3 \) isomorphic to \(U_{1,2} + U_{1,1} \) and \(Q_2 \) isomorphic to some member of \(\{ S_1, S_2, \ldots \} \). We thus assume that \(Q \) is not 3-connected. Choose a nontrivial partition \((X, Y)\) of \(E \) such that \(f(X) + f(Y) = f(E) + 1 \) and \(2 \leq |X| \leq |Y| \). If \(f(X) = 1 \), then each member of \(X \) is a point and is thus non-essential. As \(Q \) has exactly two non-essential elements, \(X \) consists of two points which are necessarily parallel. However, \(Q \setminus x \), where \(x \in X \), is connected with two non-essential elements. Clearly these two non-essential elements are also non-essential in \(Q \), a contradiction. Therefore \(f(X) > 1 \) and thus \(f(Y) < f(E) \). Similarly, \(f(X) < f(E) \). We now use Proposition 3.6 to choose 2-polymatroids \(Q_1 \) and \(Q_2 \) on ground sets \(X \cup p \) and \(Y \cup p \), respectively, where \(p \) is a point not in \(E \) and \(Q = Q_1 \oplus Q_2 \). Moreover, the ranks of \(Q_1 \) and \(Q_2 \) are each less than that of \(Q \). If \(x \) is a non-essential element of \(Q_1 \) that meets \(E \), then, by using Proposition 4.8, \(x \) is a non-essential element of \(Q_2 \). Thus each of \(Q_1 \) and \(Q_2 \) has \(p \) as a non-essential element and has exactly one other non-essential element. By induction, \(Q_1 \) and \(Q_2 \) satisfy the four conditions in the theorem. It follows immediately that the 2-sum of \(Q_1 \) and \(Q_2 \), that is \(Q \), satisfies the four conditions. \(\square \)

Acknowledgment

The author thanks James Oxley for suggesting the study of 2-polymatroids and for his valuable advice in the preparation of this paper.

References