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Consider a collection of disjoint paths in graph G such that every vertex is on one of these 
paths. The size of the smallest such collection is denoted i(G). A procedure for forming such 
collections is established. Restricting attention to trees, the range of values for the sizes of the 
collections obtained is examined, and a constructive characterization of trees If for which one 
always obtains a collection of size i(T) is presented. 

InbOdUCtiOll 

Consider a finite, simple graph G (i.e., an undirected graph without loops and 
without multiple edges) whose vertex set and edge set will be denoted by V(G) 
and E(G), respectively. If 1 V(G)l, the cardinality of V(G), is p, then one can 
consider G as a spanning subgraph of the complete graph on p vertices, denoted 
K,,. Consider any Hamiltonian cycle C in &. Either C is a Hamiltonian cycle of G 
or one has the %!lawing. If C contains n edges of Kp - G, then C contains exactly 
n disjoint paths in G (some of which may be trivial), and these paths contain 
every vertex of G. 

Define the Hamiltonian completion number of G, denoted hc (G), $0 be the 
minimum number of edges which must be added to G in order to obtairi a 
Hamiltonian cycle. Define the path-coz;en’ng number of G, denoted i(G), to be 
the minimum number of vertex-disjoint paths which contain V(G). With the 
above comments in mind, it is straightforward to obtain the first result. 

Proposition 1. Either hc (G) =0 and i(G) = 1, or else hc (G) = i(G). 

In Ore’s work [9] on degree conditions for Hamiltonian paths he introduced 
vertex disjoint path coverings of V(G) such that the paths contain a maximum 
number of edges. While this is equivalent to the definition of i(G), he used it to 
derive a theorem only for the case i(G) = 1. 

* This work was supported by the U.S. Energy Research and Development Administration (ERDA) 
under Contract No. AT (29-I)-789. 
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Boesch, Chen and McHugh [1] studied the path-covering ntunber, and at the 
same time Goodman and Hedetniemi [S] introduced the problem in the form of a 
Hamiltonian completion. Work on the path-covering number includes that of 
Skupieii [lo] who (independent of Boesch, Chen and McHugh) examined suffi- 
cient conditions for a graph G to have i(G) s n, and Noorvash [8] who examined 
g(p, n; which is the minimuni integer so that every graph G with p vertices and at 
least g(p, n) edges has i(G) 6 ~1. The Hamiltonian completion problem has been 
studied by Goodman, Hedetniemi and Slater in [6,7,11], where each path dn a 
col!ection of disjoint paths covering V(G) is called an “island” (and hence we use 
the notation i(G)). 

raph is randomly path-Mamiltonian from vertex o iff a Hamiltonian path 
always results upon starting at the vertex 21 and successively proceeding to any 
adjacent vertex not yet encountered. A graph G is randomly circuit=HamiZtonian 
from uertex u iff G is randomly path-Hamiltonian from u and every Hamilton 
path starting at u is contained in a Hamiltonian circuit. Chartrand and Kronk [2] 
characterized the graphs which are randomly path=Hamiltonian (rrT :domly circuit- 
Hamiltonian) from every vertex, and, along with Lick in [4] obtained correspond- 
ing results for directed graphs. The graphs which are randomly circuit Hamiho- 
nian from some vertex are characterized in [3], and Thomassen [ 133 characterizes 
the graphs which are randomly path-Hamiltonian from some vertex. 

In [ 141, Thomassen character&s the graphs G in which the following proce- 
dure always results in a Hamiltonian path. As he notes, this is possible iff every 
path of G is contained in some Hamiltonian path of G. 

Procedure P. Select first any vertex u. E V(G), then select any vertex u1 adjacent 
to q, (if any exist), then (if possible) a vertex v2 E V(G) - (u,, tr,} which is adjacent 
to U’I, etc. If this stops with Us, then select (if possible) a vertex u_~ E 
V(G)+,,, 01,. . . t vkk) which is adjacent to uo, then (if possible) a vertex U_~E 
V(G)-{v_,, I’~,. . . , tlk} which is adjacent to u+ and so on. 

If u E V(G), then the neighborhood of v, denoted N(v), is the set of vertices 
adjacent to v. Suppose P = v,, u2, . . . , u, is a path in graph G, and hence 
*//nr 
* 1. I :& 02, . . . , vk}- call P a blocked path in G iff N(q) iE V(P) and N(vk) c_ 

V(P1. Thus Procedure P is simply to construct a blocked path in G. Note that in 
deter,mining when a graph is randomly path-Hsmiltonian from v, a path P = 
v, 0 I) . . . f vk is considered to be “blocked from v” iff N(vk) E V(P), and N(u) 
may, or may not, be contained in V(P). 

Consider the following procedure for obtaining a disjoint path cover of V(G). 

Proce&ztre Q. Select P, to be any blocked path in. G. Having chosen P,, . . . , pk+ 

if V(G) - U:Z: V(P,) f 8, then let Pk be any blocked path in G - Uf:; Pj = Gk. 
It sT.ould be emphasized that Procedure Q produces a finite sequence of disjoint 

paihs, yay S=(P,, P2,. . ., Pk). If (P,, P2,. . ., P,J is a disjoint path cover of V(G), 
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then S=(PJ&., Pk) is called sequentially Mocked, or a blocked sequence, iff 
sequence S can be obtained from G via Procedure Q (that is, iff path Pi is 
blocked in G,). Calling k the length of S, one sees that Thomassen has charac- 
terized those graphs G for which every blocked sequence of G has length one. 

Let i’(G) denote the minimum possible value for the length of a blocked 
sequence of G, and let Z(G) denote the corresponding maximum possible value. 
This paper is an introductory study of the range of values that can be obtained for 
the lengths of blocked sequences of a graph G. Restricting my attention to trees, 
an interpolation theorem is presented (the result for arbitrary graphs remaining as 
a conjecture at this point), and a constructive characterization of trees T for which 
i’(T) = Z(T) is made. 

First, i’(G) and i(G) will be related. 
If S={P,,P* ,..., Pa} is a collection of disjoint islands (paths) which cover 

V(T), call S a blocked set iff for each pair vi and vi of vertices such that Vi is an 
endpoint of Pi and vi is an endpoint of Pj with if j one has ViVj & E(G). NOW i(G) 
is clearly the minimum number of islands in a blocked set of G, Since any blocked 
sequence of length k clearly gives us a blocked set with k islands, one has 
i(G) s i’(G). Note, however, that not every blocked set leads directly to a blocked 
sequence. 

Theorem 2. For any graph G, i’(G) = i(G). 

Proof. Suppose S = {P,, P2, . . . , Pn} is a blocked set with n = i(G) islands. Let 
v(j, iz and v(j, 2) be the endpoints of Pi, where v(j, 1) = v(i, 2) iff Pj is a singleton. 
Let PJ = Pi for 1 si s n, and let G; = G - Ur:,’ Pi. Let t be the smallest value for 
which Pi is not blocked in G:. 

Assuming v( t, 1) is adjacent to some vertex w in G:+l, one can assume the 
islands are labelled so that w E P:+l. Since n = i(G), w is not v(t+ 1,l) or 
v( t + 1,2). Let x be the vertex adjacent to w on the subpath of P:+ 1 from w to 
v(t+ 1,2). Change P: to be the path from v(t+ 1,l) to w, and th$ edge w v(t, l), 
and the old path P: from v(t, 1) to v(t, 2). Change Pf+1 to be its subpath from x to 
v (t + 1,2). The new collection {PI,, . . . , Pi} is also a disjoint path cover of G with 
i(G) elements, and hence it must also be a blocked set. 

Since a finite number of iterations of this procedure will make P: blocked in G:, 
one eventually has P[ blocked in GJ for 1 s i 6 n. Now (Pi, . . . , Pk) is sequentially 
blocked, and so i’(G) = n = i(G). 

2. An interpolation theorem for trees 

First, some terminology (introduced in [12]) will be developed for trees. If v is a 
vertex of tree T, then a branch of T at v is defined to be a maximal subtree 
containing v as an endpoint. That is, a branch of T at v is the subgraph induced 
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by tl and one of the components of T- o. If u has degree d, written deg (u) = d, 
then u has d different branches. A branch B of T at o which is a path will be 
called a branch path at o iff deg (u) 2 3. Vertex 21 will be called the stem of the 
branch path at v. If 2, is the stem of at least one branch path, then the subgraph of 
T consisting of o and all its branch paths will be called a Zeuf with stem U. Thus a 
leaf with k branch paths is homeomorphic to &. Note that distinct leaves of T 
must be disjoint. A leaf whose stem 21 has deg (u) or deg (u) - 1 bra nch paths will 
be called an end leaf. 

Letting D denote the number of vertices in T of degree at leiast three, the 
straightforward proof of the next lemma is omitted. 

Lemma 3. Suppose tree T is not u path. If D = I, then there is exactly one (end) 
&/‘. If D a2, then there ure at least zwo end leaves whose stems, ul and v2, have 
deg dz+ ) - 1 and deg (v2) - 1 branch paths, respectively. 

It is fairly easy to see that if v is the stem of a leaf in tree T and has branch 
paths B; and B2, then there is a path covering of V(T) with i(T) elements in 
which one of the islands is the path B, U B2. Using this one proves the following 
lemma. 

-4. LetTbeatree.ZfD=O,theni(T)=l.IfD=l,Zetubethevertexof 
degree at least three, then i(T) = deg (vi - 1, and one island consists of two 
[arbitrary) branches from o. If D 2 2, let L be an end leaf with stem o. Suppose 
degW=k+l (and sou has k branch paths). Then i(T)=i(T-L)+k-1, and one 
island can be taken to be two of the branch paths from v. 

This lemma leads to an algorithm for determining i(T) for any tree T. This 
algorithm is a slight modification of the algorithm presented in [l] and in [SJ. The 
difference is that here we select 21 to be the stem of an end leaf L rather than the 
stem of an arbitrary leaf containing two or more branch paths. In this way, after 
we cover L (with k - 1 disjoint paths) T- L is also a tree. That is, T-L is also 
connected. 

If L is any end leaf of T and the stem of L has degree k + 1 in T, then it is easy 
to see that Z(T) 2 I( T-L) + k - 1. Since every trsee has an end leaf we get by 
Lemma 4: 

Lermaa 5. Let T be a tree with at least two vertices of degree 3. Then there is a 
sequence of trees T,,, T,, . . . , T, such that T, = T, To is a homeomorph of I& and 
T + 1 is obtained from Ti by adding a leaf and letting its stem be adjacent to some 
vertex qf Tie For any such sequence T,, . . . , T, we have 
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Fig. 1. Tree q with i(T)=j and 1(?)=2j-1. 

For the tree q of Fig. 1, let Pk be the path containing vertex k and the two 
endpoints adjacent to this vertex. NOW S1 = (PI, . . . , Pi} is a path covering of Tj 
with i(Tj) = i islands. For n 2 2, let S,, contain the paths PL = a,, 1, . . . , n, u,,, and 
P n+l, . . . , Pi, and the remaining singleton vertices. Now S,, is a blocked sequence 
with l+(i-n)+(2n-2)=n+j- 1 islands for 1 s n sj. In particular, Sj has 
I( ?;:) = 2j - 1 islands. 

The next result shows that the above example is a demonstration of an 
interpolation theorem for trees (an ITT result). That is, if we present two blocked 
sequences of tree 7’ with il and i2 members, then if iI s h s iz then we are 
guaranteed the existence of a blocked sequence with h members. 

Theorem 6 (ITT). If i(T) s h G I(T), then there exists a blocked sequence S,, for T 
of length h. 

Proof. To prove the theorem, induction on p = 1 V( T)I will be used. If D = 0 or 1, 
then i(T) =1(T), and we are done. Thus we can assume that the number of 
vertices of degree at least three is two or more. Clearly it su%ces to show that if 
S=(Pt,..., Pi+ 1) is a blocked sequence for T of length i + 1 a i(T) + 2, then we 
can construct a blocked sequence S’ = (Pi, . . s , Pi) of length i. 

Let L be an end leaf with stem vertex U, and let &, . . . , Bk be all the branch 
paths from v. Thus deg (v) = k + 1, and we let the vertex in T - L which is 
adjacent in T to v be labelled w. Let Pt be the path in S which contains v. 

First, assume that w$ P,, and one can assume P, contains B1 and B2. Reorder S 
to form S* = (Py, D. . , PT,,) where 

PF=P,, P:=B,--v ,..., P~_l=.B~-~v, 

and the remaining paths for S* are the remaining paths in S arranged in the same 
order. Clearly S* is a blocked sequence since S is. Now i(T- L) = i(T)- k + 1, 
and (Pt, . . . , Py+,) is a blocked sequence for T- L of length i + 1 - k + 13 
i(T)+2- k + 1 = i(T- L)+ 2. By induction we have a blocked sequence S” for 
T-L of length i + 1 - k. Juxtaposing (PT, . . . , Pz_*) and S”, we have a blocked 
sequence of length (k-l)+(j+l-k)=j for T. 

Second, assume w E P, and there is a vertex x E N(w) such that x is an endpoint 
of P, with s # t. (Necessarily, s > t.) Let A and B be the components of T- L - wx 
containing w and X, respectively. Create S’ as follows. First list k - 1 paths which 
cover L. Within the next groups described, paths appear in the same order as in S. 
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List the paths of S in A which appeared before Pf ; list the paths of S in B which 
appeared before 9, ; let the next path be P, and edge xw and the part of Pt in 
T - L; list the remaining paths of S. Now S’ is a blocked sequence since S is, and 
the length of S is j. 

Third, assume w E Pz and x E N(w) n T-L implies that x is not z;i endpoint of 
a path in S except possibly P,. As in the first case, S* is formed with 

PT=B,U&, P~=B~-21,...,P~-1=%k-U, 

and the remaining paths for S* are the remaining paths in S after replacing Pt by 
Pl n (T - L) = Pi. In the order in which they appear in S, one lists all paths in the 
components of T - L - w which do not intersect P,. Then list all the remaining 
paths (with P, replaced by Pi) in the order in which they appear in S. Now S* is a 
blocked sequence of length i + 1. Following the same argument as the first case, 
we obtain a block:.4 sequence of length i for T. 

From the proof of’ the previous theorem one can derive the inequalitlV I(T) s 
f(T - L) + k where k is the number of branch paths at stem v of end leaf L. Since 
i(T) = i(T- L)+ k - 1, and since i(T) = 1 implies I(T) = 1, one obtains by induc- 
tion: 

I(T)s2i(T)-1 

for any tree T. Fig. 1 shows that this is the best possible. 

Con@tore. Zf i(G) s h s I(G), then there exists a blocked sequence S,, for graph G 
of length h. 

3. Randomly island decomposable trees 

As a consequence of the ITI’ result one has that an application of Procedure Q 
can result in a blocked sequence whose length differs from i(T) by any value from 
0 to ,I( T) - i(T). In this section a constructive characterization will be presented 
3 tleec T with the property that any application of Procedure Q produces an 
i(T) island decomposition. 

Call graph G a randomly island decompoxble graph ifI i(G) = I(G). For short, 
15 will be called an RID graph. Let 3 denote the class of RID trees. As indicated 
in the proof of Theorem 6, we will have to consicer vertices which are not in an 
t=nd leaf, but which are adjacent to the stem (or stems) of an end leaf (end leaves). 

First, two methods of extending a tree T’ E $32 to a larger tree T E 9? will be 
described. 

Operation 1. Given a tree T’, select a vertex v E T” such that deg (v) = 1 or 0, and 
let T bd: the tree obtained from T’ by adding R leaf L1 whose stem s1 is made 
adjzJar:t. to v. (See Fig. 2, (a) and (b).) 
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Fig. 2. Examples of leaf addition. 

Operation 2. Given a tree T’, select a vertex 21 E T’ such that deg (v) = 1. Let w be 
adjacent to u in T’, and assume that w is also adjacent to two other vertices, say 
3c1 and x2, of degree at most two. Let L1, . . . , Lk (k 2 2) be leaves with stems 

S19 . . . , sk. Let 7’ be the tree obtained from T’ by adding leaves L1, . . . , Lk and 
edges usl,. . . , US&. (See Fig. 2, (c) and (d).) 

It is required only that si have degree at least two in I+, and then its degree in T 
will be at least three. For leaves L1, &, . . . , I+ it is assumed that Li has ti + 1 
endpoints, two of which are Qil and Ui2. Let c = CFC1 tia 

Proposition 7. If tree T is obtainable from subtree T’ by Operation 1, then T E 9 ifi 
T’ER 

Proof. Assume T is RID. Since one can let P1 be the path from a, 1 to u12, and 

p29 . . . , Pt, be the remaining paths in L1, and any extension of (PI, . . . , P,,) to a 
blocked sequence for T must have length i(T), then any blocked sequence for 
T- L1 must have i(T)- tl paths. Hence T’ is also RID. 

Assume T’ is RID, and let (PI, . . . , P,) be a blocked sequence for T. If s1 and t.~ 
are on different paths, then one can assume f1 is the a,, to al2 path and 

p1, . . . , Pt, cover L1. Now T’ is RID implies that n = tl + i(T’) = i(T). If s1 and 21 
are on the same path, then one must have, for example, a,, on this path and tl 

other paths in L1. Remove these tl paths and reduce the path containing ZJ and s1 
to its vertices in T’. Since v is an endpoint of T’, one has a blocked sequence for 
T’ of length n - tl = i( T’), and hence n = tl + i(T’) = i(T). Thus T is als2 RID. 
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Next assume deg (x2) 2 3 and let P2, . . . , Pd and Pi, . . . , PL be as described. Let 
P be a path from u through w and x1 to an endpoint e of 7’. Let Py be as 
described, and let Fq be the path from w to e. Now (P2,. . . , Pd, Pi,. . . , PL, F) 

and (I$, . . . , I$, P’(, F$) have extensions to blocked sequences for 7’ of different 
lengths. This contradiction implies that deg (x,) s I;!, and the proof is complete. 
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