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Abstract This paper presents an integrated missile guidance and control law based on adaptive

fuzzy sliding mode control. The integrated model is formulated as a block-strict-feedback nonlinear

system, in which modeling errors, unmodeled nonlinearities, target maneuvers, etc. are viewed as

unknown uncertainties. The adaptive nonlinear control law is designed based on backstepping

and sliding mode control techniques. An adaptive fuzzy system is adopted to approximate the

coupling nonlinear functions of the system, and for the uncertainties, we utilize an online-adaptive

control law to estimate the unknown parameters. The stability analysis of the closed-loop system is

also conducted. Simulation results show that, with the application of the adaptive fuzzy sliding

mode control, small miss distances and smooth missile trajectories are achieved, and the system

is robust against system uncertainties and external disturbances.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.
1. Introduction

Missile guidance and control systems are usually designed sep-

arately due to the assumption that there is a spectral separa-
tion between the guidance loop and the control loop. Based
on this paradigm, a number of past missile systems which
guarantee outstanding performance have been designed. How-

ever, it can be argued that this design paradigm cannot fully
exploit synergistic relationships between the two subsystems
or strictly maintain the stability of the overall system.1 On
the other hand, the spectral separation assumption may be
invalid, especially at the end-game phase of the interception.2

Integrated guidance and control (IGC) design was first put for-

ward in Ref.3, and has received much attention in recent
years.4–8 It was shown that IGC designs have the potential
to enhance missile performance by viewing the two subsystems

as an integrated system and accounting for the coupling
between guidance and control dynamics.

Various control methods have been adopted in IGC

designs. A small-gain theorem based IGC law was designed
in Ref.1 for missiles steered by both canard and tail controls,
and the stability of the overall system could be guaranteed
without the assumption that the angle between line-of-sight

(LOS) and missile velocity was almost invariable. An IGC
law based on adaptive output feedback and backstepping tech-
niques was designed in Ref.7 for formation flight, which was

translated into better transient and steady-state range tracking
performance. An IGC law based on the state-dependent
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Fig. 1 Planar engagement geometry.
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Riccati equation approach for a moving-mass-actuated missile
was designed in Ref.8, and miss distances which were much less
than the diameter of the missile were achieved. The nonlinear

optimal control technique, the h–D method, was employed in
Ref.9 to design an IGC law, and the controller did not require
online computation of the state-dependent Riccati equation.

Sliding mode control (SMC) is another typical method in

IGC designs. SMC is known to be an efficient control tech-

nique applicable to a wide class of nonlinear systems, due to

its insensitivity to model uncertainties and external distur-

bances after reaching the sliding phase. SMC has been

addressed in some previous studies for IGC designs.2,10–14

Koren et al.2 chose the zero-effort miss distance as the sliding

variable. A robust SMC controller was then designed to deal

with both system uncertainties and the difference between non-

linear and linear design methods. Shima et al.10 defined the

same sliding surface as that in Ref.2. Based on their approach,

small distances could be achieved even in stringent interception

scenarios. Hou and Duan11 proposed an IGC scheme for hom-

ing missiles against ground fixed targets, and an SMC-based

adaptive nonlinear control law was designed to guarantee a

missile hit a target accurately with a desired impact attitude

angle. Based on the assumption that each of the three channels

of an IGC model can be independently designed, Yamasaki

et al.12 introduced an IGC design approach for a path-

following uninhabited aerial vehicle. Dong et al.13 developed

a robust higher-order sliding mode (HOSM) based IGC law,

in which the IGC design problem was considered to be equal

to the stabilization of a third integral chain system. Zhao

et al.14 proposed a SMC-based nonlinear IGC strategy which

took the higher-order dynamics of the system into account.

Although SMC has been widely applied to IGC designs,

some problems still exist. Nearly all existing approaches are
based on the assumption that the nonlinear functions in an
IGC model could be accurately obtained. In practice, such

an assumption may not be always guaranteed. In this paper,
an IGC law based on adaptive fuzzy sliding mode control is
firstly presented. The developed approach, when compared
with the existing results, is novel in that the IGC law can

guarantee high performance without the assumption that the
coupling nonlinear functions in the integrated model can be
accurately obtained.

2. Model derivation

2.1. Engagement kinematics

The planar engagement geometry is depicted in Fig. 1, where

OXY is a Cartesian inertial reference frame, and M and T
represent the missile and the target, respectively. The corre-
sponding equations of motion between the missile and the

target are as follows:1

_R ¼ VT cosðq� hTÞ � VM cosðq� hMÞ ð1aÞ
R _q ¼ �VT sinðq� hTÞ þ VM sinðq� hMÞ ð1bÞ

where R is the relative range, q is the LOS angle, hM and hT are

the missile and target flight path angles, respectively, and VM

and VT are the missile and target velocities, respectively.
Differentiating Eq. (1b) followed by the substitution of
Eq. (1a), we get
R€qþ 2 _R _q ¼ � _VT sinðq� hTÞ þ _VM sinðq� hMÞ þ VT
_hT

� cosðq� hTÞ � VM
_hM cosðq� hMÞ ð2Þ

Assume that _VM ¼ _VT ¼ 0, and define Vq ¼ R _q; aT ¼ VT
_hT,

and aM ¼ VM
_hM. Eq. (2) can be rewritten as

_Vq ¼ �
_R

R
Vq þ aT cosðq� hTÞ � aM cosðq� hMÞ ð3Þ

where aM and aT are the missile and target accelerations,

respectively.

2.2. Missile dynamics

The planar missile dynamics are given by15

_a ¼ 1

mVM

ð�TM sin a� Lþmg cos hMÞ þ xz ð4Þ

Jz _xz ¼M0 þMdzdz ð5Þ
_# ¼ xz ð6Þ
a ¼ #� hM ð7Þ

where a is the angle of attack, m is the missile mass, TM is

the thrust of the missile, L is the lift force, xz is the pitch
rate, Jz is the moment of inertia about z-axis, dz is the
deflection angle for pitch control, # is the pitch angle, Mdz is

the control contribution to the angular acceleration, and
M0 = M0(a, Ma, h, VM, xz) represents the angular accelera-
tion contributions from all other sources such as the angle of

attack a, the Mach number Ma, the height h, and so on. M0

is often approximated as follows:16

M0 ¼MaaþMxz
xz ð8Þ

where Ma and Mxz
are the angular acceleration contributions

from the angle of attack and pitch rate, respectively.
The lift force (L) and relative parameters (Ma;Mxz

;MdzÞ
are as follows:

L ¼ 57:3Qs ca
yaþ cdz

y dz

� �
Ma ¼ 57:3Qslma

za

Mxz
¼ Qsl2mxz

z

VM

Mdz ¼ 57:3Qslmdz
z

8>>>>>>><
>>>>>>>:

ð9Þ

where Q is the dynamic pressure, s is the aerodynamic refer-

ence area, l is the reference length, ca
y and cdz

y are the lift force
derivatives with respect to a and dz, respectively, and ma

z ;m
xz
z ,

and mdz
z are the pitch moment derivatives with respect to a, xz,

and dz, respectively.
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2.3. Integrated model

According to the above analysis and with the assumption that
during the end-game the missile has no thrust and the drag
force is negligible, the integrated model can be written as

_Vq ¼ �
_R

R
Vq þ

�57:3Qsca
y

m
aþ g cos hM þ dVq

_a ¼ �
57:3Qsca

y

mVM

aþ g cos hM

VM

þ xz þ da

_xz ¼
57:3Qslma

z

Jz
aþ 57:3Qsl2mxz

z

JzVM

xz

þ 57:3Qslmdz
z

Jz
dz þ dxz

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð10Þ

where dVq
, da, and dxz

are the unknown bounded uncertainties
(modeling errors caused by the assumptions, unmodeled non-

linearities, target maneuvers, etc.).

Define x1 ¼
Vq

�57:3Qsca
y=m

; x2 ¼ a; x3 ¼ xz; u ¼ dz, and

b ¼ 57:3Qslmdz
z

Jz
. The integrated model can be rewritten into

_x1 ¼ f1ðx1Þ þ x2 þ d1

_x2 ¼ f2ðx2Þ þ x3 þ d2

_x3 ¼ f3ðx2; x3Þ þ buþ d3

8><
>: ð11Þ

where

f1ðx1Þ ¼ �
_R

R
x1 þ

g cos hM cosðq� hMÞ
�57:3Qsca

y=m

f2ðx2Þ ¼
�57:3Qsca

y

mVM

x2 þ
g cos hM

VM

f3ðx2; x3Þ ¼
57:3Qslma

z

Jz
x2 þ

Qsl2mxz
z

JzVM

x3

d1 ¼
dVq

�57:3Qsca
y=m

; d2 ¼ da

d3 ¼ dxz
; jdij 6 di;max ði ¼ 1; 2; 3Þ

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

With simplicity consideration, the IGC model (11) is in a
strict-feedback form,17 and the backstepping technique is suit-

able for dealing with such cascade systems. Moreover, SMC is
known to be an efficient control technique to overcome model
uncertainties. The main observation, in this paper, is to

combine these two techniques to design a high-performance
IGC law.

3. IGC law design

The task of the IGC law design is to find a suitable control u to
make sure the missile hit the target, and during the process the
missile attitude is stable. The IGC law design procedure in this

paper is divided into three steps.
Step 1. Based on the intuition that zeroing _q will lead to

interception, we choose the first sliding surface as

s1 ¼ x1 ð12Þ

The time derivative of s1 is

_s1 ¼ _x1 ¼ f1ðx1Þ þ x2 þ d1 ð13Þ

In the control system, we cannot measure the exact value of
the nonlinear function f1(x1), so it will be replaced by its
estimated value f̂1ðx1Þ. Due to the universal approximation
ability of an adaptive fuzzy system, it will be used here to
approximate the uncertain nonlinear function f1(x1). For a

continuous function f(x) defined in a close set U and any
precision e, there must exist a fuzzy logic system F(x) that
satisfies18,19

sup
x2U
jFðxÞ � fðxÞj < e ð14Þ

where F(x) is composed of product inference, singleton fuzzifi-
cation, center-average defuzzification, and Gauss membership
functions.

(1) Product inference

ll
fð�ylÞ ¼ lfl

1
ðx1Þlfl

2
ðx2Þ � � � lfln

ðxnÞ ð15Þ

where x = [x1,x2, . . . ,xn]
T and �yl are the fuzzy logic system’s

input and output, respectively. Fuzzy sets f and

fliði ¼ 1; 2; . . . ; nÞ are associated with the fuzzy membership

functions ll
fð�ylÞ and lfl

i
ðxiÞ ði ¼ 1; 2; . . . ; nÞ, respectively.

(2) Singleton fuzzification

The rules to map a crisp point x= [x1,x2, . . . ,xn]

T 2 U into a

fuzzy set Ax in U are: Ax is a fuzzy singleton with support x,
i.e., lA (x0) = 1 for x0 = x and lA(x) = 0 for all other x0 2 U
with x0 „ x.
(3) Center-average defuzzification

y ¼
Pr

l¼1�yl � ll
fð�ylÞPr

l¼1l
l
fð�ylÞ

ð16Þ

(4) Gauss membership function

lfl
i
ðxiÞ ¼ exp � xi � �xl

i

rl
i

� �2
" #

ð17Þ

where �xl
i is the center of the Gauss curve and rl

i is the width of
the Gauss curve.

By defining the fuzzy base function as

PjðxÞ ¼
Qn

i¼1lf
j
i
ðxiÞPm

j¼1
Qn

i¼1lf
j
i
ðxiÞ

� � ðj ¼ 1; 2; . . . ;mÞ ð18Þ

the fuzzy system can be written into the following equivalent
form:

fðxÞ ¼
Pm

j¼1�yj
Qn

i¼1lf
j
i
ðxiÞ

� �
Pm

j¼1
Qn

i¼1lf
j
i
ðxiÞ

� � ¼ hTPðxÞ ð19Þ

where h ¼ ½�y1; �y2; . . . ; �ym�T;PðxÞ ¼ ½P1ðxÞ;P2ðxÞ; . . . ;PmðxÞ�T.
Details about this kind of adaptive fuzzy systems can be

found in Refs.18,19. In this paper, we only need to construct

the approximate Gauss membership functions of the system
states. In practice, the membership functions will be deter-
mined by an iterative procedure according to the computa-

tional results.
Assuming an adaptive fuzzy system

fðxÞ ¼ hT
f PfðxÞ ð20Þ

where hf is an unknown weight vector that needs online regu-
lation and Pf(x) is a Gauss function as well as a fuzzy base
function.
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During the approximation process, we can get the optimum
value

f�ðxÞ ¼ h�Tf PfðxÞ ð21Þ

where h�f is the optimum weight vector defined as

h�f ¼ argmin sup
x2U
jf̂ðxÞ � fðxÞj

� �
ð22Þ

where f̂ is the estimate of f. Note that we will use the corre-
sponding hat ‘‘�’’ to denote the estimate value henceforth.

As shown in Eq. (14), there exists an approximation error ef
that satisfies

fðxÞ ¼ f�ðxÞ þ ef ð23Þ

where jefj 6 g�f , in which g�f is the upper boundary of the

approximation error. However, the optimum parameter h�f is
also substituted with the estimated value

f̂ðxÞ ¼ ĥT
f PfðxÞ ð24Þ

From the above analysis, we have

fðxÞ ¼ f�ðxÞ þ ef ¼ f̂ðxÞ þ ~fðxÞ þ ef ¼ ĥT
f PfðxÞ þ ~hT

f PfðxÞ þ ef

ð25Þ

where ~fðxÞ ¼ f�ðxÞ � f̂ðxÞ and ~hf ¼ h�f � ĥf are the approxima-

tion error and the weight-value approximation error,
respectively.

Therefore, with the result in Eq. (25), Eq. (13) can be

rewritten as

_s1 ¼ f̂1ðx1Þ þ ~f1ðx1Þ þ e1 þ x2 þ d1

¼ ĥT
1P1ðx1Þ þ ~hT

1P1ðx1Þ þ e1 þ x2 þ d1 ð26Þ

We treat x2 as the virtual command, which can be designed

as

x2c ¼ �k1s1 � ĥT
1P1ðx1Þ � ê1sgnðs1Þ � d̂1;maxsgnðs1Þ ð27Þ

For the uncertain system parameters ĥ1; ê1, and d̂1;max are
unknown, the following online-adaptive control law is

proposed:

_̂
h1 ¼ g1

1s1P1ðx1Þ
_̂e1 ¼ g1

2js1j
_̂
d1;max ¼ g1

3js1j

8>>><
>>>:

ð28Þ

where g1
i > 0 ði ¼ 1; 2; 3Þ.

Step 2. The second sliding surface is given as

s2 ¼ x2 � x2c ð29Þ

The time derivative of s2 is

_s2 ¼ _x2 � _x2c ¼ f2ðx2Þ þ x3 þ d2 � _x2c ð30Þ

In this step, we choose x3 as the virtual command, and the
derivation steps are quite similar to those in Step 1. For the
sake of brevity, we give x3c directly:

x3c ¼ �s1 � k2s2 � ĥT
2P2ðx2; x3Þ � ê2sgnðs2Þ

� d̂2;maxsgnðs2Þ þ _x2c ð31Þ
where

_̂
h2 ¼ g2

1s2P2ðx2Þ
_̂e2 ¼ g2

2js2j
_̂
d2;max ¼ g2

3js2j

8>><
>>: ð32Þ

with g2
i > 0 ði ¼ 1; 2; 3Þ.

In Eq. (31), _x2c can be obtained from a first-order low-band

filter. With the filter, the ‘‘computation explosion’’ problem in
traditional backstepping designs can be avoided.20

Step 3. The third sliding surface is given as

s3 ¼ x3 � x3c ð33Þ

The time derivative of s3 is

_s3 ¼ _x3 � _x3c ¼ f3ðx2; x3Þ þ buþ d3 � _x3c ð34Þ

In this step, we obtain the actual control signal

u ¼ �b̂�1ðs2 þ k3s3 þ ĥT
3P3ðx2; x3Þ þ ê3sgnðs3Þ

þ d̂3;maxsgnðs3Þ � _x3cÞ ð35Þ

where

_̂
h3 ¼ g3

1s3P3ðx2; x3Þ
_̂e3 ¼ g3

2js3j
_̂
d3;max ¼ g3

3js3j
_̂
b�1 ¼ g3

4s3b̂u

8>>>>><
>>>>>:

ð36Þ

with g3
i > 0 ði ¼ 1; 2; 3; 4Þ.

Finally, we state the complete control law as follows:

s1 ¼ x1

x2c ¼ �k1s1 � ĥT
1P1ðx1Þ � ê1sgnðs1Þ � d̂1;maxsgnðs1Þ

s2 ¼ x2 � x2c

x3c ¼ �s1 � k2s2 � ĥT
2P2ðx2; x3Þ � ê2sgnðs2Þ

�d̂2;maxsgnðs2Þ þ _x2c

s3 ¼ x3 � x3c

u ¼ �b̂�1ðs2 þ k3s3 þ ĥT
3P3ðx2; x3Þ þ ê3sgnðs3Þ

þd̂3;maxsgnðs3Þ � _x3cÞ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð37Þ

The online-adaptive laws of the unknown parameters are
defined in Eqs. (28), (32), and (36).

4. Stability analysis

Define ~hi ¼ hi � ĥi;~ei ¼ ei � êi; ~di;max ¼ di;max � d̂i;max ði¼ 1;2;3Þ,
and ~b�1 ¼ b�1 � b̂�1. Substitute Eqs. (27) and (29) into
Eq. (13), and get

_s1 ¼ f1ðx1Þ � k1s1 � ĥT
1P1ðx1Þ � ê1sgnðs1Þ � d̂1;maxsgnðs1Þ þ d1

þ s2 ¼ ~hT
1P1ðx1Þ þ e1 � k1s1 � ê1sgnðs1Þ

� d̂1;maxsgnðs1Þ þ d1 þ s2 ð38Þ

Substitute Eqs. (31) and (33) into Eq. (30), and get

_s2 ¼ f2ðx2Þ � s1 � k2s2 � ĥT
2P2ðx2Þ � ê2sgnðs2Þ � d̂2;maxsgnðs2Þ

þ _x2c þ d2 � _x2c þ s3 ¼ ~hT
2P2ðx2Þ þ e2 � s1 � k2s2

� ê2sgnðs2Þ � d̂2;maxsgnðs2Þ þ d2 þ s3 ð39Þ
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Substitute Eq. (35) into Eq. (34), and get

_s3¼ f3ðx2;x3Þ�bb̂�1ðs2þk3s3þ ĥT
3P3ðx2;x3Þþ ê3sgnðs3Þ

þ d̂3;maxsgnðs3Þ� _x3cÞþd3� _x3c¼ f3ðx2;x3Þ
�ðs2þk3s3þ ĥT

3P3ðx2;x3Þþ ê3sgnðs3Þþ d̂3;maxsgnðs3Þ� _x3cÞ
þb~b�1ðs2þk3s3þ ĥT

3P3ðx2;x3Þþ ê3sgnðs3Þþ d̂3;maxsgnðs3Þ� _x3cÞ
þd3� _x3c¼ e3þ~hT

3P3ðx2;x3Þ� s2�k3s3� ê3sgnðs3Þ
� d̂3;maxsgnðs3Þþb~b�1ðs2þk3s3þ ĥT

3P3ðx2;x3Þþ ê3sgnðs3Þ
þ d̂3;maxsgnðs3Þ� _x3cÞþd3¼ e3þ~hT

3P3ðx2;x3Þ� s2

�k3s3� ê3sgnðs3Þ� d̂3;maxsgnðs3Þ�b~b�1b̂uþd3 ð40Þ
Theorem 1. Considering the nonlinear system Eq. (11) with
bounded uncertainties, if adaptive fuzzy systems are utilized to
approximate the uncertain functions f1(x1), f2(x2), and f3(x2, x3),

and in the SMC control law Eq. (37), the adaptive parameters
are adjusted by the system online adaptive control laws shown in
Eqs. (28), (32), and (36), then the system sliding modes are

asymptotically accessible and the closed-loop system is asymp-
totically stable.

Before the proof, we need the following lemma.

Lemma 1. [Babalat’s Lemma] If f(t) is a uniformly continuous
function and limt!1

R t
0 fðsÞds exists, then f(t) converges to zero

asymptotically.

Proof of Theorem 1. Choose the quasi Lyapunov function as

V ¼ 1

2

X3
i¼1

s2i þ
1

2

X3
i¼1

1

gi
1

~hT
i
~hi þ

1

2

X3
i¼1

1

gi
2

~e2i

þ 1

2

X3
i¼1

1

gi
3

~d2i;max þ
jbj
2g4

ð~b�1Þ2 ð41Þ

Differentiate V along the track of the system (11), and obtain

_V ¼
X3
i¼1

si _si þ
X3
i¼1

1

gi
1

~hT
i

_~hi þ
X3
i¼1

1

gi
2

~ei _~ei

þ
X3
i¼1

1

gi
3

~di;max
_~di;max �

b

g4

~b�1
_~b�1 ð42Þ

Substitute Eqs. (38)–(40) into Eq. (42), and get

_V¼ s1ð~hT
1P1ðx1Þþ e1�k1s1� ê1sgnðs1Þ� d̂1;maxsgnðs1Þþd1þ s2Þ

þ s2

�
~hT
2P2ðx2;x3Þþ e2� s1�k2s2� ê2sgnðs2Þ

�d̂2;maxsgnðs2Þþd2þ s3

�
þ s3

�
~hT
3P3ðx2;x3Þþ e3� s2�k3s3� ê3sgnðs3Þ

�d̂3;maxsgnðs3Þþb~b�1b̂uþd3

�

�
X3
i¼1

1

gi
1

~hT
i

_̂
hi�

X3
i¼1

1

gi
2

~ei _̂ei�
X3
i¼1

1

gi
3

~di;max
_̂
di;maxþ

b

g4

~b�1
_̂
b�16

�k1s
2
1þ s1~h

T
1P1ðx1Þþ e1js1j� ê1js1jþd1;maxjs1j� d̂1;maxjs1j

�k2s
2
2þ s2~h

T
2P2ðx2;x3Þþ e2js2j� ê2js2jþd2;maxjs2j� d̂2;maxjs2j

�k3s
2
3þ s3~h

T
3P3ðx2;x3Þþ e3js3j� ê3js3jþd3;maxjs3j� d̂3;maxjs3j

� s3b~b�1b̂u�
X3
i¼1

1

gi
1

~hT
i

_̂
hi�

X3
i¼1

1

gi
2

~ei _̂ei�
X3
i¼1

1

gi
3

~di;max
_̂
di;max

þ b

g4

~b�1
_̂
b�1¼�

X3
i¼1

kis
2
i þ
X3
i¼1

~eijsijþ
X3
i¼1

~di;maxjsijþ s1~h
T
1P1ðx1Þ
þs2~hT
2P2ðx2;x3Þþ s3~h

T
3P3ðx2;x3Þ� s3b~b�1b̂u�

X3
i¼1

1

gi
1

~hT
i

_̂
hi

�
X3
i¼1

1

gi
2

~ei _̂ei�
X3
i¼1

1

gi
3

~di;max
_̂
di;maxþ

b

g4

~b�1
_̂
b�1¼�

X3
i¼1

kis
2
i

þ
X3
i¼1

~hT
i siPi�

1

gi
1

_̂
hi

� �
þ
X3
i¼1

~ei jsij�
1

gi
2

_̂ei

� �

þ
X3
i¼1

di;max jsij�
1

gi
3

_̂
di;max

� �
�b~b�1 s3b̂u�

1

g4

_̂
b�1

� �
ð43Þ

Associating with Eqs. (28), (32), and (36), we have

_V 6 �
X3
i¼1

kis
2
i 6 0 ð44Þ

Thus si; ~hi;~ei; di;max ði ¼ 1; 2; 3Þ, and ~b�1 are all bounded.

Define k= min{k1,k2,k3} and s= [s1,s2, s3]
T. Eq. (44) can

be rewritten as

_V 6 �kksk22 ð45Þ

Integration of Eq. (40) from t= 0 to t fi1 reveals that

Z 1

0

kksðsÞk22ds 6 �
Z 1

0

_VðsÞds ¼ Vð0Þ � Vð1Þ < þ1 ð46Þ

Applying Lemma 1 to Eq. (43), we get that, while t fi 0,
ksk22 ! 0, i.e., si fi 0 (i= 1,2,3).

Therefore, it can be concluded that the system sliding
modes are asymptotically accessible and the closed-loop
system is asymptotically stable, and this completes the

proof. h
5. Simulation results

This section presents simulation results of the proposed IGC

law on a numerical example introduced in Ref.21. In this
simulation study, the constant missile speed is assumed to be
VM = 3.5Ma. The initial missile attitude and control fins
are a (0) = 0� and dz(0) = 0�. The initial missile flight path

angle is hM(0) = 0�. The constant target speed is assumed to
be VT=900 m/s. The initial target flight path angle is
hT(0) = 10�. The initial missile position coordinate is (0,16) km.

The initial target position coordinate is (1,16.4) km. The mis-
sile model parameters are as follows:

57:3Qsca
y

mVM

¼ 0:3487;
57:3Qscdz

y

mVM

¼ 0:068

57:3QSlma
z

Jz
¼ �17:801; Qsl2mxz

z

JzVM

¼ �0:2741

57:3Qslmdz
z

Jz
¼ �31:267

The actuator dynamic is approximated as a first-order time
delay system with a time constant of 0.01s, and the control sur-

face deflection limit is jdzj 6 30�.
The controller parameters are given as k1 ¼ 0:8; k2 ¼ 1:0;

k3 ¼ 1:0; b̂�1ð0Þ ¼ �0:1; ĥið0Þ ¼ ½0; 0; 0�T; êið0Þ ¼ 0, and

d̂i;maxð0Þ ¼ 0 ði ¼ 1; 2; 3Þ. Assuming that jx1j 6 2p; jx2j 6
p
2
,

and jx3j 6 p, we choose the fuzzy base functions as follows:



Fig. 2 Simulation results of the proposed IGC law in Case 1.
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Fig. 3 Simulation results of the proposed IGC law in Case 2.
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P1ðx1Þ ¼
l11P3
i¼1l1i

; l12P3

i¼1
l1i
; l13P3

i¼1
l1i

� �T

P2ðx2Þ ¼
l21P3
i¼1l2i

; l22P3

i¼1
l2i
; l23P3

i¼1
l2i

� �T

P3ðx2; x3Þ ¼
l21l31P3
i¼1l2il3i

; l22l32P3

i¼1
l2il3i

; l23l33P3

i¼1
l2il3i

� �T
where

l11 ¼ exp � x1 þ 2p
p

� �2
 !

; l12 ¼ exp � x1 � 2p
p

� �2
 !

l13 ¼ exp � x1

p

� �2� �
; l21 ¼ exp � x2 þ p=2

p=4

� �2
 !

l22 ¼ exp � x2 � p=2
p=4

� �2
 !

; l23 ¼ exp � x2

p=4

� �2
 !

l31 ¼ exp � x3 þ p
p=2

� �2
 !

; l32 ¼ exp � x3 � p
p=2

� �2
 !

l33 ¼ exp � x3

p=2

� �2
 !

We evaluate the proposed IGC law in the following two
cases:

Case 1: Suppose di = 0 (i= 1,2,3), which means the target
does not maneuver and there are no external
disturbances.

Case 2: Assume that the target escapes with an acceleration
of aT = 3gsin(pt/3), the missile aerodynamics coeffi-
cients vary +25%, and external disturbances

d2 = 0.1sin t and d3 = 0.2sin t.

Simulation results of Case 1 and Case 2 are depicted in

Figs. 2 and 3, respectively. From Figs. 2(a)–(c) and
Figs. 3(a)–(c), we can see that the missile flight trajectories
are smooth, the miss distances we get are quite small

(0.0749 m and 0.1334 m in Case 1 and Case 2, respectively),
and Vq rapidly converges to a small neighborhood of zero.
Figs. 2(d)–(e) and Figs. 3(d)–(e) depict the responses of missile
dynamics. Figs. 2(f) and 3(f) show the histories of the control

deflection. It is observed that the maximum control effort is less
than 20�. Finally, histories of the sliding surfaces are shown in
Figs. 2(g)–(h) and Figs. 3(g)–(h). The sliding surfaces converge

to nearly zero rapidly, which guarantees the interception.

6. Conclusions

(1) With some rational assumptions, the IGC model can be

built in a strict-feedback form, and by adopting the
backstepping technique, the stability of the entire system
states is guaranteed.

(2) The adaptive fuzzy system is effective to approximate
the coupling nonlinear functions and the online-adaptive
control law is suitable to estimate the unknown param-

eters in the integrated system.
(3) Simulation results confirm the effectiveness of the proposed

method on dealing with missile aerodynamics coefficients
varying, target maneuver, and external disturbances.
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