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For an abelian topological group G , let Ĝ denote the dual group of all continuous characters
endowed with the compact open topology. Given a closed subset X of an infinite compact
abelian group G such that w(X) < w(G), and an open neighborhood U of 0 in T, we show
that |{χ ∈ Ĝ: χ(X) ⊆ U }| = |Ĝ|. (Here, w(G) denotes the weight of G .) A subgroup D of G
determines G if the map r : Ĝ → D̂ defined by r(χ) = χ �D for χ ∈ Ĝ , is an isomorphism
between Ĝ and D̂ . We prove that

w(G) = min{|D|: D is a subgroup of G that determines G}
for every infinite compact abelian group G . In particular, an infinite compact abelian group
determined by a countable subgroup is metrizable. This gives a negative answer to a
question of Comfort, Raczkowski and Trigos-Arrieta (repeated by Hernández, Macario and
Trigos-Arrieta). As an application, we furnish a short elementary proof of the result from
[S. Hernández, S. Macario, F.J. Trigos-Arrieta, Uncountable products of determined groups
need not be determined, J. Math. Anal. Appl. 348 (2008) 834–842] that a compact abelian
group G is metrizable provided that every dense subgroup of G determines G .

© 2009 Elsevier Inc. All rights reserved.

All topological groups are assumed to be Hausdorff, and all topological spaces are assumed to be Tychonoff. As usual,
R denotes the group of real numbers (with the usual topology), Z denotes the group of integer numbers, T = R/Z denotes
the circle group (with the usual topology), N denotes the set of natural numbers, ω denotes the first infinite cardinal, and
w(X) denotes the weight of a space X . If A is a subset of a space X , then A denotes the closure of A in X .

1. Introduction

For spaces X and Y , we denote by C(X, Y ) the space of all continuous functions from X to Y endowed with the compact
open topology, that is, the topology generated by the family{[K , U ]: K is a compact subset of X and U is an open subset of Y

}
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as a subbase, where

[K , U ] = {
g ∈ C(X, Y ): g(K ) ⊆ U

}
. (1)

For an abelian topological group G , we denote by Ĝ the Pontryagin–van Kampen dual of G , namely the group of all
continuous characters χ : G → T endowed with the compact open topology. Clearly, Ĝ is a closed subgroup of C(G,T). In
particular, a base of neighborhoods of 0 in Ĝ is given by the sets

W (K , U ) = {
χ ∈ Ĝ: χ(K ) ⊆ U

} = [K , U ] ∩ Ĝ,

where K is a compact subset of G and U is an open neighborhood of 0 in T.
We identify T = R/Z with the real interval (−1/2,1/2] in the obvious way, and write

T+ = {x ∈ T: −1/4 � x � 1/4}.

Definition 1.1. Let G be an abelian topological group.

(i) For E ⊆ G and A ⊆ Ĝ , define the polars

E� = {
χ ∈ Ĝ

∣∣ χ(E) ⊆ T+
}

and A� = {
x ∈ G

∣∣ χ(x) ∈ T+ for all χ ∈ A
}
.

(ii) A set E ⊆ G is said to be quasi-convex if E = E�� .
(iii) The quasi-convex hull Q G(E) of E ⊆ G is the smallest quasi-convex subset of G containing E .
(iv) Following [7,8], we will say that E ⊆ G is qc-dense (an abbreviation for quasi-convexly dense) provided that Q G(E) = G ,

or equivalently, if E� = {0}.

Obviously, E ⊆ E�� . Therefore, a set E ⊆ G is quasi-convex if and only if for every x ∈ G \ E there exists χ ∈ E� such that
χ(x) /∈ T+ .

The notion of quasi-convexity was introduced by Vilenkin [17] as a natural counterpart for topological groups of the
fundamental notion of convexity from the theory of topological vector spaces (we refer the reader to [1,2] for additional
information).

The proof of the following fact is straightforward.

Fact 1.2. Let f : G → H be a continuous homomorphism of topological abelian groups such that f (G) be dense in H . If a
subset X of G is qc-dense in G , then f (X) is qc-dense in H .

Definition 1.3. Following [5,6], we say that a subgroup D of an abelian topological group G determines G if the restriction
homomorphism r : Ĝ → D̂ (defined by r(χ) = χ �D for χ ∈ Ĝ) is an isomorphism between the topological groups Ĝ and D̂ .

This notion is relevant to extending the Pontryagin–van Kampen duality to non-locally compact groups [1,3]. Indeed, if
G is locally compact and abelian, then every subgroup D that determines G must be dense in G; in particular, no proper
locally compact subgroup of G can determine G . (We note that the original definition in [5,6] assumed upfront that D is
dense in G .) When D is dense in G , the restriction homomorphism r : Ĝ → D̂ is always a continuous isomorphism.

The ultimate connection between the notions of determined subgroup and qc-density is established in the next fact. This
fact is a particular case of a more general fact stated without proof (and in equivalent terms) in [6, Remark 1.2(a)] and
[12, Corollary 2.2].

Fact 1.4. For a subgroup D of a compact abelian group G the following conditions are equivalent:

(i) D determines G;
(ii) There exists a compact subset of D which is qc-dense in G .

Definition 1.5. According to [5,6], an abelian topological group G is said to be determined if every dense subgroup of G
determines G .

Chasco [3, Theorem 2] and Außenhofer [1, Theorem 4.3] proved that all metrizable abelian groups are determined. Com-
fort, Raczkowski and Trigos-Arrieta established the following amazing inverse of this theorem for compact groups: Under the
Continuum Hypothesis CH, every determined compact abelian group is metrizable ([5, Corollary 4.9] and [6, Corollary 4.17]).
Quite recently, Hernández, Macario and Trigos-Arrieta removed the assumption of CH from their result [12, Corollary 5.11].
We note that this theorem becomes an immediate consequence of our main result, see Corollary 2.6.

Fact 1.6. (See [6, Corollary 3.15].) If f : G → H is a continuous surjective homomorphism of compact abelian groups and G
is determined, then H is determined as well.
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The following question remained the last principal unsolved problem in the theory of compact determined groups:

Question 1.7. (See [5, Question 7.1], [6, Question 7.1], [12, Question 5.12].)

(a) Is there a compact group G with a countable dense subgroup D such that w(G) > ω and D determines G?
(b) What if G = Tκ ?

We completely resolve this question in Corollary 2.5. In fact, we even solve the most general version of this question
with ω replaced by an arbitrary cardinal, see Corollary 2.4.

2. Main results

Definition 2.1. If X is a subset of a compact abelian group G , then rG
X : Ĝ → C(X,T) denotes the “restriction map” defined

by rG
X (χ) = χ �X for χ ∈ Ĝ .

Observe that C(X,T) is a topological group and rG
X is a continuous group homomorphism.

Theorem 2.2. Let X be a closed subset of an infinite compact abelian group G such that w(X) < w(G). Then for every open neighbor-
hood U of 0 in T one has |W (X, U )| = |Ĝ|.

The proof of Theorem 2.2 is postponed until Section 3.

Corollary 2.3. If a closed subspace X of an infinite compact abelian group G is qc-dense in G, then w(X) = w(G).

Proof. Let U be an open neighborhood of 0 in T such that U ⊆ T+ . Since X is qc-dense in G , we have W (X, U ) ⊆ X� = {0}.
Now Theorem 2.2 yields w(X) � w(G). The reverse inequality w(X) � w(G) is trivial. �

Our next corollary constitutes a major breakthrough in the theory of compact determined groups.

Corollary 2.4. If a subgroup D of an infinite compact abelian group G determines G, then |D| � w(G).

Proof. According to Fact 1.4, D contains a compact subset X that is qc-dense in G , so |D| � |X | � w(X) (see, for example,
[10, Theorem 3.1.21]). Finally, w(X) = w(G) by Corollary 2.3. �

Even the particular case of Corollary 2.4 provides a complete answer to Question 1.7:

Corollary 2.5. A compact abelian group determined by a countable subgroup is metrizable.

Corollary 2.6. (See [12, Corollary 5.11].) Every determined compact abelian group is metrizable.

Proof. Assume that G is a non-metrizable determined compact abelian group. Then w(G) � ω1, and so we can find a
continuous surjective group homomorphism h : G → K = Hω1 , where H is either T or Z(p) for some prime number p (see,
for example, [6, Theorem 5.15 and Discussion 4.14]). As a continuous homomorphic image of the determined group G , the
group K is determined by Fact 1.6. Since K is separable (see, for example, [10, Theorem 2.3.15]), there exists a countable
dense subgroup D of K . Since K is determined, we conclude that D must determine K . Therefore, K must be metrizable by
Corollary 2.5, a contradiction. �

Useful properties of determined groups can be found in [4].
A super-sequence is a non-empty compact Hausdorff space X with at most one non-isolated point x∗ [9]. When X is

infinite, we will call x∗ the limit of X and say that X converges to x∗ . Observe that a convergent sequence is a countably
infinite super-sequence.

Being an immediate consequence of [1, Theorem 4.3 or Corollary 4.4], the following result is essentially due to Außen-
hofer:

Fact 2.7. (See [1].) Every dense subgroup D of an infinite compact metric abelian group G contains a sequence converging
to 0 that is qc-dense in G .

In particular, every infinite compact metric abelian group has a qc-dense sequence converging to 0. Our next theorem
extends this result to all compact abelian groups by replacing converging sequences with super-sequences.



D. Dikranjan, D. Shakhmatov / J. Math. Anal. Appl. 363 (2010) 42–48 45
Theorem 2.8. Every infinite compact abelian group contains a qc-dense super-sequence converging to 0.

The proof of Theorem 2.8 is postponed until Section 5.

Corollary 2.9. Every infinite compact abelian group G has a (dense) subgroup D which determines G such that |D| � w(G).

Proof. Apply Theorem 2.8 to find a super-sequence X that is qc-dense in G . Let D be the subgroup of G generated by X .
Clearly, |X | = w(X) � w(G). Since G is infinite, w(G) must be infinite, and therefore |D| � ω + |X | � w(G). Finally, D de-
termines G by Fact 1.4. �

Our next corollary provides another major advance in the theory of compact determined groups:

Corollary 2.10. If G is an infinite compact abelian group, then

w(G) = min
{|D|: D is a subgroup of G that determines G

}
.

Proof. Combine Corollaries 2.4 and 2.9. �
We have been kindly informed by Chasco that our next corollary was independently proved by Bruguera and Tkachenko:

Corollary 2.11. Every infinite compact abelian group G contains a proper (dense) subgroup D which determines G.

Proof. Let D be a subgroup of G as in the conclusion of Corollary 2.9. Since G is an infinite compact group, we have
|D| � w(G) < 2w(G) = |G|. Therefore, D must be a proper subgroup of G . �
Remark 2.12. A common strengthening of Fact 2.7 and Theorem 2.8 is impossible. Indeed, every non-metrizable compact
abelian group G contains a dense subgroup D such that no super-sequence S ⊆ D is qc-dense in G . To see this, apply Corollary 2.6
to get a dense subgroup D of G that does not determine G , and then notice that any super-sequence S ⊆ D (being compact)
cannot be qc-dense in G by Fact 1.4.

3. Proof of Theorem 2.2

Fact 3.1. (See [10, Proposition 3.4.16].) If X is a compact space and Y is a space, then w(C(X, Y )) � w(X) + w(Y ) + ω.

Proof of Theorem 2.2. Consider first the case when w(X) < ω. Then X must be finite. Note that the set W (X, U ) is an
open neighborhood of 0 in the initial topology T of Ĝ with respect to the family {ηx: x ∈ X} of evaluation characters
ηx : Ĝ → T defined by ηx(π) = π(x) for every π ∈ Ĝ . Since topologies generated by characters are totally bounded, finitely
many translates of W (X, U ) cover the whole group Ĝ . Since Ĝ is infinite, this yields |W (X, U )| = |Ĝ|.

From now on we will assume that w(X) � ω. The inequality |W (X, U )| � |Ĝ| being trivial, it suffices to check that
|Ĝ| � |W (X, U )|.

Let rG
X be the map from Definition 2.1, and let H = rG

X (Ĝ). Note that ker rG
X ⊆ W (X, U ), so |ker rG

X | � |W (X, U )|. If
|ker rG

X | = |Ĝ|, we are done. Assume now that |ker rG
X | < |Ĝ|. Since Ĝ is infinite, we obtain

|Ĝ| = ∣∣Ĝ/ker rG
X

∣∣ = ∣∣rG
X (Ĝ)

∣∣ = |H|. (2)

Let N be the subgroup of H generated by the open subset [X, U ] ∩ H of H . Then N is a clopen subgroup of H , so the
index of N in H cannot exceed w(H), which gives

|H| = |N| + |H/N| � |N| + w(H) �
∣∣[X, U ] ∩ H

∣∣ + ω + w(H). (3)

Since w(H) � w(C(X,T)) � w(X) + ω by Fact 3.1, and w(X) + ω = w(X) by our assumption, we obtain from (3) that

|H| � ∣∣[X, U ] ∩ H
∣∣ + w(X). (4)

As w(X) < w(G) = |Ĝ| = |H| by (2), and |H| = |Ĝ| � ω, from (4) it follows that∣∣[X, U ] ∩ H
∣∣ = |H|. (5)

Finally, note that [X, U ] ∩ H = rG
X (W (X, U )), which yields that∣∣[X, U ] ∩ H

∣∣ = ∣∣rG
X

(
W (X, U )

)∣∣ �
∣∣W (X, U )

∣∣. (6)

Combining (2), (5) and (6), we obtain the inequality |Ĝ| � |W (X, U )|. �
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4. Characterization of qc-dense subsets and determining subgroups of compact abelian groups in terms of C(X,TTT)

Lemma 4.1. Suppose that U is an open neighborhood of 0 in T and X is a compact subset of a compact abelian group G such that
W (X, U ) = {0}. Then:

(i) There exists n ∈ N such that the sum

Kn = (
X ∪ {0}) + (

X ∪ {0}) + · · · + (
X ∪ {0})

of n many copies of the set X ∪ {0} is qc-dense in G;
(ii) The subgroup of G generated by X must be dense in G.

Proof. (i) There exists n ∈ N such that

Vn = {x ∈ T: kx ∈ T+ for all k = 1,2, . . . ,n} ⊆ U . (7)

Let χ ∈ K �
n . Fix x ∈ X . Let k = 1,2, . . . ,n be arbitrary. Since 0 ∈ X ∪ {0}, one has kx ∈ Kn , and so kχ(x) = χ(kx) ∈ T+ . This

yields χ(x) ∈ Vn ⊆ U by (7). Since x ∈ X was chosen arbitrarily, it follows that χ ∈ W (X, U ). Since W (X, U ) = {0}, this gives
χ = 0. Therefore, K �

n = {0}, and so Kn is qc-dense in G .
(ii) Suppose that the smallest subgroup N of G containing X is not dense in G . Then we can choose χ ∈ Ĝ such that

χ(N) = {0} and χ(y) 
= 0 for some y ∈ G \ N . So χ ∈ W (X, U ) and yet χ 
= 0, in contradiction with our assumption. �
We refer the reader to Definition 2.1 for the notation used in item (ii) of our next theorem.

Theorem 4.2. For a closed subset X of a compact abelian group G the following conditions are equivalent:

(i) W (X, U ) = {0} for some open neighborhood U of 0 in T;
(ii) rG

X is an isomorphism between the topological groups Ĝ and H = rG
X (Ĝ).

Proof. (i) → (ii) Let U be as in (i). Since ker rG
X ⊆ W (X, U ) = {0}, we conclude that rG

X is an injection. Since X is compact,{
rG

X (0)
} = rG

X

({0}) = rG
X

(
W (X, U )

) = H ∩ {
g ∈ C(X,T): g(X) ⊆ U

}
is an open subset of H . Since H is a subgroup of C(X,T), we conclude that H is discrete. Therefore, rG

X is an open map
onto its image.

(ii) → (i) The assumption from item (ii) implies that H is a discrete subgroup of C(X,T). Since X is compact, we can
find an open neighborhood U of 0 in T such that H ∩ [X, U ] = {rG

X (0)}. This yields W (X, U ) = {0}. �
Corollary 4.3. If a closed subset X of a compact abelian group G is qc-dense in G, then rG

X is an isomorphism between the topological
groups Ĝ and rG

X (Ĝ).

Proof. Choose an open neighborhood U of 0 with U ⊆ T+ . Since X is qc-dense in G , we have W (X, U ) ⊆ X� = {0}, and so
we can apply Theorem 4.2. �
Corollary 4.4. Let X be a closed subset of a compact abelian group G such that rG

X is an isomorphism between the topological groups Ĝ
and rG

X (Ĝ). Then there exists n ∈ N such that the sum

Kn = (
X ∪ {0}) + (

X ∪ {0}) + · · · + (
X ∪ {0})

of n many copies of the set X ∪ {0} is (compact and) qc-dense in G.

Proof. Apply Theorem 4.2 to find an open neighborhood U of 0 in T such that W (X, U ) = {0}. Then apply Lemma 4.1(i) to
obtain the required n ∈ N. �
Corollary 4.5. For a subgroup D of a compact abelian group G the following conditions are equivalent:

(i) D determines G;
(ii) There exists a compact set X ⊆ D such that rG

X is an isomorphism between the topological groups Ĝ and rG
X (Ĝ).

Proof. (i) → (ii) Since D determines G , there exists a compact set X ⊆ D which is qc-dense in G (Fact 1.4). Then rG
X is an

isomorphism between the topological groups Ĝ and rG
X (Ĝ) (Corollary 4.3).

(ii) → (i) Let X be as in item (ii). Apply Corollary 4.4 to get n ∈ N and Kn as in the conclusion of this corollary. Clearly,
Kn is a compact subset of D . Since Kn is qc-dense in G , D determines G by Fact 1.4. �
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5. Proof of Theorem 2.8

The following definition is an adaptation to the abelian case of [9, Definition 4.5]:

Definition 5.1. Let {Gi: i ∈ I} be a family of abelian topological groups. For every i ∈ I , let Xi be a subset of Gi . Identifying
each Gi with a subgroup of the direct product G = ∏

i∈I Gi in the obvious way, define X = ⋃
i∈I Xi ∪{0}, where 0 is the zero

element of G . We will call X the fan of the family {Xi: i ∈ I} and will denote it by fani∈I (Xi, Gi).

The proof of the following lemma is straightforward.

Lemma 5.2. Let {Gi: i ∈ I} be a family of abelian topological groups. For every i ∈ I , let Xi be a sequence converging to 0 in Gi . Then
fani∈I (Xi, Gi) is a super-sequence in G = ∏

i∈I Gi converging to 0.

Lemma 5.3. Let {Gi: i ∈ I} be a family of abelian topological groups. For each i ∈ I let Xi be a qc-dense subset of Gi . Then X =
fani∈I (Xi, Gi) is qc-dense in G = ∏

i∈I Gi .

Proof. Let χ : G → T be a non-trivial continuous character. There exist a non-empty finite subset J of I and a family
{χ j ∈ Ĝ j: j ∈ J } such that χ(g) = ∑

j∈ J χ j(g( j)) for g ∈ G . Since J 
= ∅, we can fix j0 ∈ J . Since X j0 is qc-dense in G j0 ,
there exists x ∈ X j0 ⊆ X such that χ j0 (x) /∈ T+ . Finally, note that

χ(x) =
∑
j∈ J

χ j
(
x( j)

) = χ j0

(
x( j0)

) +
∑

j∈ J\{ j0}
χ j

(
x( j)

) = χ j0(x) +
∑

j∈ J\{ j0}
χ j(0) = χ j0(x) /∈ T+.

Therefore, χ /∈ X� . This gives X� = {0}, and so X is qc-dense in G . �
P denotes the set of prime numbers, and for p ∈ P, the symbol Zp denotes the group of p-adic integers. We denote

by Q the group of the rational numbers equipped with the discrete topology. The next lemma is probably known, but we
include its proof for the reader’s convenience.

Lemma 5.4. Every infinite compact abelian group of weight κ is isomorphic to a quotient group of the group Q̂κ × ∏
p∈P

Zκ
p .

Proof. Let H be an infinite compact abelian group such that w(H) = κ . Clearly, κ is infinite and X = Ĥ is a discrete abelian
group of size κ [13, Theorem (24.15)]. Let Y = X ⊕ ⊕

κ (Q ⊕ Q/Z). By [11, Theorem 24.2] there exists a divisible abelian
group D containing Y such that no proper subgroup of D containing Y is divisible. According to the text immediately
following [11, Theorem 24.2], r0(D) = r0(Y ) and rp(D) = rp(Y ) for every prime p, where r0(N) and rp(N) denote the free-
rank and the p-rank of an abelian group N , respectively (see, for example, [11, §16]). Since r0(Y ) = κ and rp(Y ) = κ for
every prime p, we conclude that

D ∼=
⊕
κ

(Q ⊕ Q/Z) ∼=
(⊕

κ

Q

)
⊕

⊕
p∈P

(⊕
κ

Z
(

p∞))
(8)

by the structure theorem for divisible abelian groups (see [11, Theorem 23.1]). Consider the compact group G = D̂ . By (8),
G ∼= Q̂κ × ∏

p∈P
Zκ

p . According to [13, Theorem (24.5)], H ∼= X̂ ∼= G/X⊥ , where X⊥ = {χ ∈ D̂: χ(X) = {0}}. Therefore, H is

isomorphic to a quotient group of Q̂κ × ∏
p∈P

Zκ
p

∼= G . �
Proof of Theorem 2.8. Let H be an infinite compact abelian group. Define κ = w(H) and G = Q̂κ ×∏

p∈P
Zκ

p . By Lemma 5.4

there exists a surjective continuous homomorphism f : G → H . Clearly, G = ∏
i∈I Gi , where |I| = κ and each Gi is either Q̂

or Zp for a suitable p ∈ P. By Fact 2.7, for every i ∈ I there exists a sequence Xi converging to 0 which is qc-dense in Gi .
Applying Lemmas 5.2 and 5.3, we conclude that X = fani∈I (Xi, Gi) is a super-sequence in G converging to 0 such that X is
qc-dense in G . Since f : G → H is a surjection, S = f (X) is qc-dense in H by Fact 1.2. Being the image of a super-sequence X
in G converging to 0, S is super-sequence in H converging to 0 [9, Fact 4.3]. Finally, |S| � |X | � ω · |I| = κ . �
6. Final remarks

A subspace X of a topological group G topologically generates G if G is the smallest closed subgroup of G that contains X .
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Remark 6.1.

(i) Item (ii) of Lemma 4.1 can be restated as follows: A qc-dense subset of a compact abelian group G topologically generates G.
Therefore, for a subset X of a compact abelian group G , one has the following implications:

X is dense in G −→ X is qc-dense in G −→ X topologically generates G. (9)

(ii) The first arrow in (9) cannot be reversed. Let S be any qc-dense sequence S in T (for example, the sequence S =
{ 1

2n : n ∈ N} is qc-dense in T; other examples can be found in [8]). Clearly, S is not dense in T.
(iii) The last arrow in (9) cannot be reversed either. Indeed, it follows from the results in [9] that Tc contains a converg-

ing sequence (i.e., countably infinite super-sequence) topologically generating Tc . This sequence, however, cannot be
qc-dense in Tc by Corollary 2.3.

Let G be a topological group with the identity e. If a discrete subset X of G topologically generates G and X ∪ {e} is
closed in G , then X is called a suitable set for G [14]. Hofmann and Morris proved the following fundamental theorem.

Fact 6.2. (See [14,15].) Every locally compact group G has a suitable set.

See also [16] for a “purely topological” proof of this result based on Michael’s selection theorem.

Remark 6.3.

(i) Clearly, if S is a super-sequence in a topological group G that converges to e and topologically generates G , then S \ {e}
is a suitable set for G .

(ii) Let G be a compact abelian group. If G is finite, then G \ {0} is obviously a suitable set for G . When G is infinite,
Theorem 2.8 guarantees the existence of a qc-dense super-sequence S in G converging to 0. By the emphasized text
in Remark 6.1(i), S topologically generates G . Applying item (i), we conclude that S \ {0} is a suitable set for G . This
argument shows that Theorem 2.8 implies the particular case of Fact 6.2 for compact abelian groups G .

(iii) A (super-)sequence S topologically generating a compact abelian group G need not be qc-dense in G; see Re-
mark 6.1(iii). Since X = S \ {0} is a suitable set for G by item (i), it follows that a suitable set X for a compact abelian
group G need not be qc-dense in G . Therefore, Fact 6.2 does not imply Theorem 2.8.
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