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Abstract Electrospinnng is one of the most conventional methods for producing nano fibers in different
forms, such as core-shell hollow and porous nanofibers. These forms open new windows on innovative
applications for nanofibers like ultra filtration, fuel cells, membranes, tissue engineering, catalysis and
drug delivery or release and nanofluidics and hydrogen storage. In the presented paper, developments
in the electrospinning method toward fabrication of core-shell, and hollow and porous nanofibers are
presented. Different spinnerets like coaxial and side by side are considered. Furthermore, experienced
methods for producing these novel fibers, such as Nonsolvent-Induced Phase Separation (NIPS) and
phase separation, are described. It is concluded that there is rapid development and achievement in the
improvement of nanofibers for new applications, and electrospinning has become a forerunner in this
field.

© 2012 Sharif University of Technology. Production and hosting by Elsevier B.V.
Open access under CC BY-NC-ND license.
1. Introduction

Several desirable characteristics, such as high surface area to
volume ratio, flexibility in surface functionalities and superior
mechanical properties, can be achieved, when the diameter
of the polymer fiber is reduced to nanoscale [1]. So far,
many different techniques of fabricating polymer nanofibers,
such as electrospinning, melt blowing, phase separation, self
assembly and template synthesis, have been introduced for this
purpose [2–7].

Electrospinning provides a straightforward electrohydrody-
namical mechanism [7–10] to produce fibres with diameters
less than 100 nm [11], even up to 5 nm [12]. Under the influ-
ence of an electric field, a pendant droplet of the polymer solu-
tion at the spinneret is deformed into a conical shape [13,14].
In other words, the electrospinning process can considered the
ability to fabricate nanofibers by an electrically charged jet of
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polymer solution or polymer melts [15–22]. The earliest set up
of electrospinning used auxiliary electrodes to direct the elec-
trospinning jet onto rotating collectors. Later, some researchers
used different collection devices [23–29] andmanipulated elec-
tric fields [7]. For example, Dalton et al. deposited electrospun
polymer melts in an innovative way to form a layered tissue
structure [30].

The electrospinnability of a polymer solution is limited
by the viscosity, conductivity, and applied solvents, as well
as the conformation and molecular weight of the polymer.
Some polymers are not spinnable because of limited solubility
in a proper solvent for electrospinning, having proper polar
characteristics. To overcome this problem, an unspinnable
polymer can be fabricated as nanofibers by co-spinning with a
spinnable polymer solution [9,31].

Different structures of nanofiber, such as coreshell, bi-
component, hollow and porous structures, could be pro-
duced by using special designs of spinnerets. Functionalizing
nanofibers with super active surface properties can be pro-
duced by controlling nanofiber body size, mass and content.
Special nanofiber morphologies and textures can be utilized
in advanced applications, such as nanofluidics, catalysis, drug
delivery and release, nano supports, energy storage and gas sen-
sors [32,33]. In this paper these types of nanofiber structure,
with an emphasis on their formationmechanisms and function-
ality, are reviewed.
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Figure 1: Schematic illustration of the electrospinning setup with two coaxial
capillaries for spinning core-shell nanofibres.

2. Coreshell nanofibers

To impart functional properties onto the surface of the
nanofibers (Shell), while keeping the intrinsics properties of the
nanofibers (Core), coreshell nanofibers are introduced. In these
kinds of nanofiber, the exterior layer may include active agents
for imparting functional properties, such as shells holding
immobilized/migratable specific enzymes [34].

Different methods, including multistep template synthesis
[34,35], surface initiated atom transfer radical polymerization
‘ATRP’ [36] and coaxial electrospinning [37–45], are introduced
for fabricating core-shell nanofibers. Among them, coaxial
electrospinning is generally counted as one of themost versatile
methods for fabricating these kinds of nanofiber [46].

A coaxial jet is formed by a coaxial spinneret when two
different liquids flow through outer and inner capillaries
simultaneously. Both capillaries are connected to a high
voltage power supply and nanofibers are consolidated during
solvent evaporation and stretching. The feeding ratio of two
components affects the uniformity and stability of the jet flow
Core. The shell thickness of the nanofibre can also be controlled
by flow rates of liquids in the inner and outer capillaries during
coaxial electrospinning (Figure 1). Other parameters, such as
size of core-shell capillaries, applied electric field, volume feed
rate, immiscibility of core-shell liquids, and their viscosity
and conductivity, also play a crucial role in determining the
uniform formation of core-shell jets and the morphology of the
produced nanofibres in this electrospinning method [47].

Recently, both miscible and immiscible polymer blends
have been electrospun into nanofibers by the phase separation
phenomena [48]. The complex internal structure of nanofibers
is formed via spontaneous phase separation during the
electrospinning process.

Achieving continuous and uniform core-shell nanofibres can
be ascertained by proper stretching of the droplet (Cone Taylor).
Core deformation or its breakage into droplets may occur due
to viscous force caused by the shell transforming itself into
droplets (due to weakness of electric fields) [46], or its quick
stretching, thus, exerting strong viscous stress tangential to the
core [37,41].

Many studies have utilized a coaxial jet and produced spe-
cial nanofibers through it. Generally, the polymer with lower
surface tension is pumped to the outer capillary. For example,
in the case of polystyrene (PS) and polyaniline (PANI), PS lay
on PANI due to lower surface tension [49]. In another experi-
ment, poly (ethylene oxide) PEO and chitosan (CS) were stud-
ied and fabricated nanofibers were proposed for biomedical
fields likewound care and tissue engineering. Itwas proved that
blending ratio, molecular weight of chitosan, and processing
temperature were important factors in fabricating the final
structure [50]. Pyridine (Py)-co-urethane as shell, and caprolac-
tone (CL)-co-urethane as core, were coaxially electrospun for
fabricating shape memory nanofibers. In this study, the ratio
of core polymer and shell were modified for best shape recov-
ery. The fabricated fibers exhibited high dimension stability and
good shape recovery under thermal-induced tests [51]. Colla-
gen as the shell, and poly-ε-caprolactone (PCL) as the core,were
used for forming a nonwoven mat. According to cell culture
results, collagen-coated PCL nanofibrous mat were compatible
with fibroblast cell migration and proliferation in comparison
with other controls (pure PCL fibers and single collagen and
PCL nanofibrous or theirmixtures) [52]. There also other studies
into the use of electrospinning in the fabrication of polymeric,
ceramic, and composite nanofibers, with core-sheath, hollow,
or porous structures, as well as efforts made to improve their
morphological homogeneity, functionality, and device perfor-
mance [53,54].

Other efforts are also presented for fabricating core-
shell nanofibers besides utilizing a coaxial spinneret. Zander
et al. prepared poly methyl methacrylate (PMMA) — poly
acrylonitril (PAN) fibers by using a conventional single-nozzle
electrospinning technique. In this study, PMMA and PAN were
used as core and shell, respectively [55]. The same technique
was also used for poly (ethylene oxide) (PEO) and chitosan
(CS). In this study, the fraction effect of each component
in the solution was investigated. They found that the core-
shell structure transformation is caused by different phase
separation mechanisms with a continuous decrease of PEO
fraction [56].

Side by side nanofibers are another kind of bicomponent
fiber showing fascinating properties. Despite the coaxial
spinneret, the capillaries for this purpose are placed side
by side and two polymer solutions just come into physical
contact at the end of the spinneret tip. The fabricated fibers
benefit from both intrinsic properties of the two polymers,
simultaneously. For instance, one of the sides is able to
absorb chemicals, while the other side is capable of electrical
conducting. Here, nanofibers, due to their excellent fineness,
can act as nanosensors for highly sensitivities applications. They
would be swollen when in contact with or in the absorption of
chemical agents. As the other part’s physical properties are not
affected by the other side’s absorption, the nanofibers would
sag. This bending may then be used to switch an electrical
circuit (like a siren circuit in the case of chemicals leakages)
[32,33,57].

3. Hollow nanofibers

Hollow nanofibres are applicable for innovative and very
specific usages, such as nanofluidics and hydrogen storage [58].
Usually, two different methods, including the Chemical Vapor
Deposition (CVD) method [34,59] and direct co-axial spinning
method [30], are employed for producing these kinds of
nanofiber.

To produce hollow nanofibers by the CVD method, the first
precursor polymer is transformed to nanofiber or a ‘‘template’’
by a conventional electrospinningmethod. Then, theywould be
coated with proper polymers or metals. Finally, hollow fibers
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Figure 2: SEM image of TiO2/PVP poly hollow nanofiber.
Source: Reprinted with permission from Ref. [37].
© 2004, American Chemical Society.

are fabricated by dissolving the template material and drying
them with centrifugal rotation dryers or by calcining in fur-
naces [60–65]. It is reported that, like conventional electrospun
nanofibers, the quality of such resultant hollow nanofibres can
also be controlled by electrospinning parameters [65].

The second mentioned method, i.e. co-axial spinning, is
more regarded by researchers for fabricating hollownanofibers.
In the co-axial spinningmethod, nanofibers are produced by the
same as procedure as that for fabricating core-shell nanofibers.
But, the corematerial is dissolvedwith a selective solvent at the
end of the process [65–67]. TiO2/PVP poly (vinyl pyrrolidone)
hollow nanofibers are formed (Figure 2) in this way by
removing the oil phase as core [37]. In another study, poly(vinyl
pyrrolidone) (PVP) and tetra butyl titanate (Ti (OC4H9)4) were
prepared as outer or shell solutions and paraffin oil was used as
the inner or core material. Hallowmicrosized TiO2 fibers with a
hollow structure were obtained, when the organics and inner
materials were removed. The photocatalytic activity of such
microsized TiO2 fibers is enhanced for degrading acetaldehyde
gaseous by adding interior hollow channel numbers, proved by
the Brunauer–Emmett–Teller (BET) analysis [68]. It was found
that electrospinning parameters such as feed ratio can have
an effect on the size and wall thickness of these nanofibres.
Successful hollow nanofibre synthesis is possible by choosing
the right solvent and controlling the heating rate [69].

Hollow nanofibers can also be filled with different sub-
stances for expanding their applications [53,70]. Poly-ε-
caprolactone PCL nanofibrous was fabricated for controlled
release of bovine serum albumin (BSA) or lysozyme. They used
poly (ethylene glycol) (PEG) as core materials and proved that
the releasing rate could be controlled by adding PEG, water sol-
uble macromolecules in the sheath material [71]. Hydrophilic
hollow nanofibers with periodic bumps were fabricated by
Loscertales et al. They manipulated inorganic and hybrid (inor-
ganic/organic) fibers and sol–gel chemistry for fabricating such
fibers [72].

Yu et al. fabricated hollow carbon nanofibers (HCNFs) by
coaxial electrospinning of poly (styrene-co-acrylonitrile) (SAN)
and poly (acrylonitrile) (PAN) solutions. PAN was used as shell
and SAN was found to be a very suitable material for the
core. Considering the intrinsic properties of SAN, it showed a
good thermal sustainability that prevented the PAN shell from
shrinking during the stabilization and carbonization process.
They found that solution concentration and flow rate were
effective in controlling the outer diameters and wall thickness
of HCNFs [73].

Highly porous polymeric hollow nanofibers were prepared
by the coaxial electrospinning method [56]. They used silicon
oil as the core material and a mixture of two polymers (PMMA,
PC) as the shell. It is found that solvents and concentrations
have major effects on the diameter and wall thickness of
the produced hollow fibers. High dielectric constants of the
solvent reduced the diameter of the hollow fibers. The wall
thickness and average pore size were increased with increasing
the polymer molecular weight of the polymer, but the specific
surface area slightly decreased. Highly porous polymeric hollow
fibers are used for catalysis, optoelectronics, nanofluidics, drug
delivery and biosensor systems [56].

4. Porous nanofibers

The ranges of application for porous nanofibers are more
extended and general in comparison with hallow nanofibers.
Due to their high surface area, they are used for filtration,
fuel cell [74,75], membrane [76], tissue engineering [77,78],
catalysis and drug delivery and release [46,79]. Porous nano-
fibers can be generated with special topology by selecting
particular solvents or solvent mixtures, or polymer mixtures
under controlled environmental mediums. In one approach,
immiscible components in a common solvent are electrospun
and then one of the polymers is dissolved from the spun
material to obtain porous nanofibers. This system is based
on phase separation caused by different evaporation rates.
Some other methods are also introduced for producing
porous nanofibers, including Vapour-Induced Phase Separation
(VIPS), Nonsolvent-Induced Phase Separation (NIPS) [80] and
Thermally Induced Phase Separation (TIPS) [80–82], selective
dissolution [79], rapid phase separation [13,83] and selective
pyrolyzate composite formation [79,84].

Wendorff et al. produced PLA/PVP porous nanofibres by a
vapour-induced phase separation method. They controlled the
density of porosity by changing the amount and ratio of two
polymers [59]. Gupta et al. produced porous nylon-6 fibers
from the Lewis acid base complication of gallium trichloride
(GaCl3) and nylon-6 using electrospinning, followed by GaCl3
removal [85]. Xia et al. produced highly porous nanofibres
by a poly (styrene) (PS) solution in a mixture of DMF/THF as
the core liquid and PVP/TiO2 solution in ethanol as the shell
liquid [37]. Two polymers of PS and PVP/TiO2 matrix were
separated and the PS phase was removed by calcining fibers
to form highly porous nanofibres. In another method, porous
structures are obtained by phase separation of the polymer and
the solvent in a bath of liquid (such as nitrogen), and, thus,
porous nanofibres are formed by removing the solvent under
vacuum [86]. Kim et al. reported electrospun polymer (poly (L-
lactide) (PLLA), Polystyrene (PS) andpoly (vinyl acetate) (PVAc))
nonwovenmatswithporous surfacemorphologyby varying the
collector temperature. They found that the surfacemorphology,
porous structure, and properties, such as pore size, depth,
shape and distribution of nonwoven mats, were influenced
by the collector temperature [87]. Nayani et al. manipulated
a nonsolvent-induced phase separation (NIPS) method for
producing highly porous and hollow poly(acrylonitrile) (PAN)
fibers [80]. In NIPS, the phase separation is induced by
solvent/nonsolvent exchange. A highly porous structure is
obtained when the polymer is immersed in a nonsolvent bath
(water). They found that the specific surface area of porous PAN
fibers (Figure 3) increased in comparisonwith the conventional



2032 R. Khajavi, M. Abbasipour / Scientia Iranica, Transactions F: Nanotechnology 19 (2012) 2029–2034
Figure 3: (a) SEM images of porous hollow fibers collected in ethanol/acetone. (b) Image of hollow PAN fiber collected with methyl ethyl ketone as a collecting bath.
(c) Image of cross of a porous PAN fiber.
Source: Reprinted with permission from Ref. [80].
© 2012, American Chemical Society.
electrospinning technique. In another study, PAN porous fibers
were fabricated in one step by electrospinning a ternary system
of PAN/DMF/water. The porous structure was formed when the
spinodal decomposition phase separation occurred. In addition,
the diameter of fibers increased by increasing the surface
tension and viscosity of PAN solutions. It was observed that
the BET surface area of porous PAN nanofibers with water was
higher than the nonporous PAN nanofiber without water under
the same conditions [88].

5. Conclusion

Nanofibers show highlighted properties due to their in-
creased specific surface area, and electrospinning is one of the
promising methods for producing such fibers. There are many
developments for increasing their performance abilities, and so
nanofibers in different forms, like coreshell, hollow, and porous,
are presented. One important event in this field is introducing
the coaxial spinneret (side by side and core sheath). Nanofibers
produced by thismethod can be applied to tissue repair, wound
healing and drug delivery systems.

Finally, these high potent fibers, i.e. nanofibers, constantly
find their way into new fields, and coreshell, hollow and porous
nanofibers are the result of such developments. Nevertheless,
certain essential studies are still required and some challenges
remain to be faced. Converting these advanced nanofibers to
yarn is an important issue should which should be considered.
Therefore, resultant nanofibers must have desirable properties.
Mechanical behavior, such as tensile strength, plays a key role
in determining the ability of yarn production. There are yet
some unknown and uncontrollable parameters which need
further attention, and studies should be undertaken into such
influencing factors on the roughness of nanofibers.
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