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Abstract

Film restoration aims to remove or reduce various types of film and video defects in order to provide visual enhancements of
image sequences. The automatic treatment of these defects is a challenge. Restoration is still performed by hand even if by using
numerical techniques for retouching. This is a very intensive activity and great improvements, both in quality and in speed, can be
obtained by using automatic or semiautomatic software.

This paper surveys the overall computational steps needed for the development of effective software tools to be actually used
in a concrete application. In particular, here we focus on recovery and reconstruction of a particular local random defect of old
black-and-white films, commonly referred to as “blotch”. We start from the characterization of the degradation model both for
detecting and for restoring the defect and deal with such inverse and ill-posed problem through edge preserving regularization. We
employ a spatio-temporal interpolation for blotch removal where the initial approximation is given by interpolating along the motion
trajectory data belonging to adjacent frames. Finally, we describe the numerical algorithm and some experimental results.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Motion pictures represent an artistic and historic treasure. Unfortunately they are very fragile: the aging effects, bad
maintenance, wear and tear are often cause of their deterioration. Movie restoration is still a very difficult problem,
mainly because of the numerous types of degradation. Then, the first step is to try and classify them.

Table 1, introduced by the “Commission Supérieure Technique de l’image et du son” [9], characterizes the classic
defects in terms of the amount of human interaction needed to detect and correct them.

Interactive detection Automatic detection

Interactive correction Defect that can be confused with element of image Emulsion tearing off or spots of any kind, non-stationary and wide

Automatic correction Static defects of small areas, static spots. Color
instability or sharpness differences

Defects that cannot be confused with image elements: non-stationary
spots, flickering
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Table 1
TreeD—comparison between the original blotch mask and the computed results

K Number of detected pixels DETECT (%)

Original mask 3009 100
10 4267 65
50 3273 89
100 2701 71
150 2035 79

Fig. 1. Appearance of defects: blotches can have very different appearances.

Another type of classification can be made by means of spatio-temporal defect properties [16]. Usually, motion
pictures suffer from four classes of defects, namely global defects (that appear on the entire image), local defects
(restricted to a small part or a connected region of the image), stationary defects (which are static and do not depend
on the time) and random defects (which are different from a frame to another).

The automatic treatment of these defects is a very difficult problem. Film restoration is actually performed by hand
even using numerical techniques for retouching. Of course this is a very intensive and expensive activity and great
improvements both in quality and in speed can be obtained by using automatic or semiautomatic software. This could
reduce the costs and the efforts [8].

This paper aims to address computational difficulties arising in the production of numerical software for digital film
restoration starting from the precise formulation of the degradation model, to the development of the algorithm, until
to its implementation and testing with a quality assurance and quantitative validation of the final result. Thus, the main
contribution is to describe and actually perform all steps needed towards the management of the application software,
collecting and exploiting both numerical and mathematical tools, which have been sometimes already used separately
in different contexts (machine vision, computer vision, etc.).

Here we focus on recovery and reconstruction of a particular local random defect of old black-and-white films,
commonly referred to as “blotch”.

When a foreign particle covers the film or the handling and aging causes loss of emulsion covering the film, bright or
dark spots appear on the frame: these are the blotches. Blotches are the most common artefacts in old film sequences.
They are caused by dirt or dust, holes, abrasions, water marks, hairs, spots. Moreover, it could happen that spots are
present in only one frame ( 1

25 s), therefore they may appear and disappear rapidly (Fig. 1).
Many computational approaches for restoring missing data have been exploited for treating film blotches [6,12,14,18].

Difficulties related to blotch removal are due to the intrinsic ill-posedness which characterizes most image restoration
problems. This means that knowledge of the degradation model is not enough to determine the desired solution.
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Starting from [19] classical regularization functionals have been used imposing some a priori assumptions on the
expected solution.

In our approach the underlying idea for detecting and removing such kind of defects is to use information given by
the movement in the sequence, which can be perceived through the displacements of brightness patterns over time. We
employ a spatio-temporal interpolation for blotch removal where the initial approximation is given interpolating along
the motion trajectory data belonging to adjacent frames.

The paper is organized as follows: Section 2 introduces the blotch degradation model, definitions of motion field
and motion trajectory. In Section 3, we describe the computation of the blotch domain, while in Section 4 the edge-
preserving regularization we use for blotch removal and for the motion estimate is reviewed. In Section 5, numerical
approach and its related algorithm are described. Finally, in Section 6, validation of the experimental results in terms of
the reliability of the solution together with the automatic stopping criterion is presented, while in Section 7, conclusions
and remarks about the achieved results are discussed.

2. The degradation model

Following [12], one of the properties which characterize blotches is that: “the intensity inside a blotch is significantly
different from its neighboring uncorrupted intensities”. This degradation is not limited to a single pixel but can occur
as variable size regions highly contrasted with the surrounding pixels (Fig. 2).

Such assumption allows to formally characterize both the blotch domain and the intensity inside the blotch region.
To this aim, let us first recall some basic definitions used in the following, and introduce the degradation model that
we are going to use.

Definition 1. Let J ⊂ R be the time interval, and let the brightness of a sequence image be I : t ∈ J −→ P(t) ∈
� −→ I (P (t), t) ∈ R, where � = �x × �y ⊂ R2 is the image plane. Given t ∈ J , we denote by Ĩ (P (t), t) a noisy
sequence, where [13]

Ĩ (P (t), t) = [1 − b(P (t))] · I (P (t), t) + b(P (t)) · IB(P (t), t) (1)

and

• b is the blotch characteristic function, which defines the blotch domain B ⊂ �:

b : P(t) ∈ � −→ b(P (t)) =
{

1 if P(t) ∈ B,

0 if P(t) ∈ �\B,

• IB refers to the brightness level at B.

The blotch degradation model (1) leads to the following inverse and ill-posed problem:

Fig. 2. On the left, only one simple blotch: a spot. On the right, a more complex case: many different small blotches.
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Definition 2. Given I (P (t), t), ∀t ∈ J , ∀P(t) ∈ �\B, determine the characteristic function b (blotch detection), and
then compute the missing data on B (blotch removal).

It is worth noting that, according to the digital film restoration process where each defect is treated separately from
the others, the blotch degradation model (1) assumes that the function I (P (t), t), P (t) ∈ �\B is noise free. Moreover,
we assume that the intensity inside the blotch is completely unknown, this is why we deal with missing data inside the
degraded region.

3. Blotch detection

Definition 3. At each point P(t) ∈ �, the motion trajectory (Fig. 3) is the line or arc L, defined by successive positions
of P(t), as t ∈ J . The equation for L is

L :
{

�x(P (t)) = �tvx(P (t)),

�y(P (t)) = �tvy(P (t)).

Let t − �t, t, t + �t ∈ J . The positive and the negative directions of the motion trajectory are defined by

L+ :
{

�x+ = �t+ · v+
x (P (t − �t)),

�y+ = �t+ · v+
y (P (t − �t)),

L− :
{

�x− = �t− · v−
x (P (t + �t)),

�y− = �t− · v−
y (P (t + �t)),

where

v+(P (t − �t)) = (v+
x (P (t − �t)), v+

y (P (t − �t))),

v−(P (t + �t)) = (v−
x (P (t + �t)), v−

y (P (t + �t)))

are, respectively, the motion field, at each point P(t − �t) ∈ �, from t − �t to t; and the motion field, at each point
P(t + �t) ∈ �, from t + �t to t.

Definition 4. The directional derivatives of I along the positive direction and negative direction of the motion trajectory
are

�I

�L+ = lim
�t+→0

I (x(t − �t) + �x+, y(t − �t) + �y+, t − �t) − I (x(t), y(t), t)

�t+
,

�I

�L− = lim
�t−→0

I (x(t + �t) − �x−, y(t + �t) − �y−, t + �t) − I (x(t), y(t), t)

�t−
.

Fig. 3. The arc of line L, which defines the motion trajectory.
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In order to numerically compute the blotch domain B we rely on the relationship between the motion field of a given
sequence and the brightness level of each image of the sequence [2,7]. More precisely, we use the assumption that
“sequence brightness level is constant along the motion trajectory” [11].

This means that directional derivatives of I computed along positive direction L+ and negative direction L− of the
motion trajectory are zero, i.e. for each P(t) ∈ L

�

�L+ I (P (t), t) = 0,
�

�L− I (P (t), t) = 0. (2)

Then at each t ∈ J , the blotch domain and its characteristic function can be determined by

B =
{

P(t) ∈ � : min

{∣∣∣∣∣ �Ĩ

�L+

∣∣∣∣∣ ,
∣∣∣∣∣ �Ĩ

�L−

∣∣∣∣∣
}

�= 0

}
and

b(P (t)) = 0 ⇒ Ĩ (P (t), t) = I (P (t), t), P (t) ∈ �\B,

b(P (t)) = 1 ⇒ Ĩ (P (t), t) = IB(P (t), t), P (t) ∈ B ⊂ �.

Once the function b has been computed, the recovery of the unknown intensity on B concerns the computation of IB

at spatial locations belonging to B. The next section describes the regularization approach that we are going to use.

4. Blotch removal

From now on we assume that I ∈ L2(�). The starting point of a blotch removal algorithm is to compute I solving a
least square problem

min ‖I 0 − I‖,

where I 0 ∈ L2(�) is some given initial data, and ‖ ·‖ is the standard norm in L2. As already said, additional constraints
are needed to handle the ill-posedness of this inverse problem.

In order to preserve discontinuities of I we consider the regularized problem:

min
I∈W 1,2(�)

E(I ) = min
I∈W 1,2(�)

{‖I 0 − I‖L2 + �‖�(‖∇I‖L2)‖L1}, (3)

where the function � smooths at locations where the variation of intensity is small (low gradients) and preserves
discontinuities in neighborhood of high gradients.

Consider the dual functional [10]

Ed(I, b) =
∫
�

|I − I 0|2 dx + �
∫
�
(b‖∇I‖2

L2 + �(b)) dx, x = (x, y), (4)

which is quadratic with respect to I, once b is fixed and, by the same way it is quadratic with respect to b, once I is
fixed. The function � must be chosen according to the � function, in agreement with the half-quadratic regularization
[5]. Let⎧⎨⎩

b̂ = arg min
b∈L2(�)

Ed(·, b),

Ib̂ = arg min
I∈W 1,2(�)

Ed(I, ·),

where Ed(·, b) means that the first argument I has been fixed and Ed(I, ·) means that the second argument b has been
fixed.

By means of alternate minimization over b and Ib, the best fits b̂ and IB

b̂
can be approximated using the alternate

fixed point scheme where the initial data are I 0 and b0 = �′(∇I 0)/2‖∇I 0‖.
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At each step n = 0, 1, 2, . . . the iterates bn+1 can be expressed as

bn+1 = �′(∇In)

2‖∇In‖ , (5)

and similarly, at each step n = 0, 1, 2, . . . the iterates In+1 satisfy the Euler–Lagrange equation

In+1 = G � In − � div(bn+1∇In), (6)

where the iterates In, n = 0, 1, 2, . . . , have been convolved with a gaussian function G [17].
The underlying idea of the spatio-temporal interpolation that we are going to use is the following assumption which

characterizes the presence of blotches in a video sequence: “the blotches are independent with respect to the time
interval then they hardly ever occur at the same spatial location in successive frames” [13].

This means that the degraded brightness can be recovered by using information on the neighboring frames and
interpolating along motion trajectory.

Following the point P(t −�t) along the positive motion trajectory, we compute its position at time t using the motion
displacements �x+ and �y+:{

x(t) = x(t − �t) + �x+,

y(t) = y(t − �t) + �y+,

then let

IC
t−�t

(x(t), y(t), t) = I (x(t − �t) + �x+, y(t − �t) + �y+, t − �t). (7)

In the same way, following the point P(t + �t) along the negative motion trajectory, we compute its position at time
t, using the motion displacements �x− and �y−:{

x(t) = x(t + �t) − �x−,

y(t) = y(t + �t) − �y−,

then let

IC
t+�t

(x(t), y(t), t) = I (x(t + �t) − �x−, y(t + �t) − �y−, t + �t). (8)

We assume as reference data in the regularization functional (3) and (4), the following:

I 0(x(t), y(t), t) = IC
t−�t

(x(t), y(t), t) + IC
t+�t

(x(t), y(t), t)

2
. (9)

Blotch removal algorithm

for (x, y) ∈ B do
let be I 0 as in (9)
for n = 1, 2, . . . repeat

bn+1 = �′(∇In)

2‖∇In‖
In+1 = G � In − � div(bn+1∇In)

until (convergence)
endfor

Iterations are terminated as soon as the stopping criterion, based on the mean square error (MSE)

MSE(n + 1) = 1

NB × MB

NB∑
x=1

MB∑
y=1

[In+1(x, y) − In(x, y)]2,

where NB × MB is the cardinality of B, is satisfied.
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Finally, observe that we considered the classical approach for solving inverse and ill-posed problems through mini-
mization of regularization functional. An equivalent approach is to perform anisotropic diffusion to obtain an enhanced
image dealing directly with the PDE equation which describes the diffusion filter [1,4,13,15]. These two approaches
sometimes can be related. Indeed, relation (6) can be seen as a forward explicit scheme arising from a suitable diffusion
filter whose coefficient depends on the edge preserving function (see [20] for details).

In order to compute �x± and �y± in (7) and (8) we need to estimate the motion field. The next section describes
approximation of motion field through the computation of the optical flow.

4.1. Motion field

As soon as we consider a sequence there is the idea of motion. Unfortunately, we are not able to measure the motion
field (the projection on the image plane of the 3D velocity), but what we are able to perceive is just an apparent motion,
also called optical flow. This apparent motion is observable through intensity variations.

Different methods have been proposed to compute the optical flow. These can be essentially classified as matching
techniques, which compare two given images pixel by pixel in terms of the brightness in order to determine the motion
vectors; and variational methods (also called regularization techniques) [2].

The starting point of variational methods is the optical flow constraint equation:

d

dt
I (P (t), t) = d

dt
I (x(t), y(t), t) = 0 ⇐⇒ −→v × ∇I + It = 0,

where

∇I =
(

�I

�x
,
�I

�y

)
, It = �I

�t
, −→v = (vx, vy) =

(
d

dt
x(t),

d

dt
y(t)

)
.

This equation refers to the assumption that “the intensity of a point keeps constant along its trajectory” [11].
The optical flow equation is again an ill-posed problem and additional constraints are required. Starting from the

seminal work of Horn and Schunck [11], which proposed a quadratic constraint that cannot take into account the
discontinuities of the flow field, different regularizations have been proposed [1,2,11]. Usually, the additional term
formalizes the assumption that “near points have the same velocity vector”. Thus, the flow field varies smoothly in the
space and the spatial gradients should be close to zero.

Following [1], we employ the regularization functional

min−→v =(vx ,vy)∈W 1,2(�)

E(vx, vy)

= min−→v ∈W 1,2(�)

{‖∇I × −→v + It‖L2 + �r�(‖∇vx‖L2) + �(‖∇vy‖L2)}, (10)

where � is such that at locations where the variations of vx and vy are small smoothing is encouraged, and in neigh-
borhood of edges discontinuity of the gradient must be preserved.

We again consider the dual functional and the corresponding dual function � [10]:

Ed(−→v , a, bx, by) =
∫
�

(a|−→v × ∇I + It |2) dx

+
∫
�
[(bx‖∇vx‖2 + �(bx)) + (by‖∇vy‖2 + �(by))] dx

that we first minimize with respect to (·, ·, bx, by), then with respect to (·, a, ·, ·) and then with respect to (−→v , ·, ·, ·),
by using again the fixed point scheme.

Let −→v 0 = (v0
x, v

0
y) = (0, 0):⎧⎪⎪⎪⎨⎪⎪⎪⎩

(bn+1
x , bn+1

y ) = arg min
(bx ,by)

Ed(vn
x , vn

y , an, bx, by),

an+1 = arg min
a

Ed(vn
x , vn

y , a, bn+1
x bn+1

y ),

(vn+1
x , vn+1

y ) = arg min−→v =(vx ,vy)

Ed(vx, vy, a
n+1, bn+1

x , bn+1
y ).
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For each n = 0, 1, 2, . . . , the minimum with respect to parameters (bx, by) is reached at

bn+1
x = �′(‖∇vn

x‖)
2‖∇vn

x‖ , bn+1
y = �′(‖∇vn

y‖)
2‖∇vn

y‖ , (11)

where ‖ · ‖ denotes the standard euclidean norm inR2. Similarly, the minimum with respect to parameter an+1, at step
n + 1, is reached at

an+1 = 1

2|−→v n × ∇I + It | , (12)

where | · | denotes the absolute value of a real number. Finally, the minimum with respect vx, vy , at step n+ 1, satisfies
the Euler–Lagrange equations{

an+1(−→v n × ∇I + It )Ix + �r div(bn
x∇vn

x ) + c(x)[vn+1
x − vn

x ] = 0,

an+1(−→v n × ∇I + It )Iy + �r div(bn
y∇vn

y ) + c(x)[vn+1
y − vn

y ] = 0,
(13)

where �r and �h are positive constants and function c is defined as follows:

c(x) =
{

0 if
‖∇I‖

max(‖∇I‖) �Sg and
|It |

max(|It |) �St ,

1 otherwise,

Sg and St being thresholds related to the spatial and temporal derivatives, respectively. Relations (11)–(13) give rise to
the explicit scheme for optical flow computation.

Optical f low algorithm

for (x, y) ∈ � do
v0
x = 0 v0

y = 0
for n = 1, 2, . . . repeat

an+1 = 1

2|−→v n × ∇I + It |b
n+1
x = �′

2(‖∇vn
x‖)

2‖∇vn
x‖ , bn+1

y = �′
2(‖∇vn

y‖)
2‖∇vn

y‖
�hc(x)vn+1

x = c(x)vn
x + an+1(−→v n × ∇I + It )Ix + �rdiv(bn+1

x ∇vn
x )

�hc(x)vn+1
y = c(x)vn

x + an+1(−→v n × ∇I + It )Iy + �rdiv(bn+1
y ∇vn

y )

until (convergence)
endfor

Iterations are terminated as soon as the stopping criterion, based on the mean square error (MSE):

MSE(n + 1) = 1

N × M

M∑
x=1

N∑
y=1

[|−→v n+1
(x, y)| − |−→v n

(x, y)|]2,

where N × M is the size of �, and |−→v (x, y)| =
√

v2
x(x, y) + v2

y(x, y) is satisfied.

5. Numerical approximation

Let (v0
x, v

0
y) = (0, 0) and, following [1], we consider �(s) = 2

√
1 + s2 − 2 with the corresponding �(s) = s + 1/s.

Here we describe the discretization schemes we considered both for the optical flow computation and for the blotch
removal algorithms.
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For spatial discretizations of �yI (x, y, t) and �yI (x, y, t) we use central finite differences on ghost points (x +
�x/2, y + �y/2):

�

�x
I (x, y, t) ≈ �xI (x, y, t) = I

(
x + �x

2
, y, t

)
− I (x, y, t),

�

�y
I (x, y, t) ≈ �yI (x, y, t) = I

(
x, y + �y

2
, t

)
− I (x, y, t)

and

�

�x
vn
x (x, y, t) ≈ �xvn

x = vn
x

(
x + �x

2
, y, t

)
− vn

x (x, y, t),

�

�y
vn
x (x, y, t) ≈ �yvn

x = vn
x

(
x, y + �y

2
, t

)
− vn

x (x, y, t),

�

�x
vn
y (x, y, t) ≈ �xvn

y = vn
y

(
x + �x

2
, y, t

)
− vn

y (x, y, t),

�

�y
vn
y (x, y, t) ≈ �yvn

y = vn
y

(
x, y + �y

2
, t

)
− vn

y (x, y, t).

Let us consider the terms

• div(bn+1 · ∇In) in (6),
• div(bn+1

x · ∇vn
x ), div(bn+1

y · ∇vn
y ) in (13).

If we indicate by dn+1 the bn+1
x , bn+1

y , and bn+1, while an stands for ∇In it is

div(dn+1 · ∇an) = �

�x

(
dn+1 · �

�x
an

)
+ �

�y

(
dn+1 · �

�y
an

)
≈ �x(dn+1 · �xan) + �y(dn+1 · �yan).

Moreover, consider at (x, y) the matrices P and D:

P =

⎡⎢⎢⎢⎢⎢⎣
0 dn+1

(
x − �x

2
, y

)
0

dn+1
(

x, y − �y

2

)
−SP dn+1

(
x, y + �y

2

)
0 dn+1

(
x + �x

2
, y

)
0

⎤⎥⎥⎥⎥⎥⎦ ,
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Fig. 4. V-cycle multigrid.

where

SP = dn+1
(

x − �x

2
, y

)
+ dn+1

(
x + �x

2
, y

)
+ dn+1

(
x, y − �y

2

)
+ dn+1

(
x, y + �y

2

)
and

D =

⎡⎢⎢⎢⎣
dn+1

(
x − �x

2
, y − 1

2

)
0 dn+1

(
x − �x

2
, y − �y

2

)
0 −SD 0

dn+1
(

x + �x

2
, y + �y

2

)
0 dn+1

(
x + �x

2
, y + �y

2

)
⎤⎥⎥⎥⎦ ,

where

SD = dn+1
(

x − �x

2
, y − �y

2

)
+ dn+1

(
x − �x

2
, y + �y

2

)
dn+1

+ dn+1
(

x + �x

2
, y − �y

2

)
+ dn+1

(
x + �x

2
, y + �y

2

)
.

Then it is

div(dn+1∇an)(x, y) = �P P � an(x, y) + �DD � an(x, y),

where �P , �D are such that �P + 2�D = 1. Two choices have been considered [1]:

• (�P , �D) are fixed (for instance equal to ( 1
2 , 1

4 )), which means that a preference to main direction is given;
• (�P , �D) are chosen according to the orientation of the gradient of a.

Observe that the intensity displacements computed by 2-stencil forward finite differences depend on h, that is, the grid
mesh size. In order to take into account both small and large displacements and then to improve the accuracy of the
computed optical flow a multigrid approach is usually employed [3].

Multigrid methods for optical flow computation have been exploited in the last years because these allow to compute
accurate results much faster than not hierarchical solvers [21]. Here we use the simplest V-cycle cascading multigrid
(Fig. 4). Observe that in case of digital film sequences, at least 25 frames per second are recorded, then multiresolution
actually improves the computed result if v > 25 h where v indicates the motion field measured in seconds.

The multigrid approach is essentially based on a hierarchical approximation made of two main steps: decomposition
and multigrid correction.

We first construct the multiresolution pyramid moving from the given image mesh that represents the finest grid
towards the coarsest resolution level (fine-to-coarse decomposition). Then, starting from the coarsest level we compute
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the optical flow moving towards the finest, upgrading the computed solution (coarse-to-fine correction), as detailed in
the following:

Fine-to-coarse decomposition: In the first step the given image is reproduced on a set of different levels of resolution,
which correspond to the approximation subspaces. Starting from the given image I, whose domain � is made of N ×M

pixels, where N = 22n and M = 22m and stepsize h, we construct the multiresolution pyramid using orthonormal
gaussian wavelets:

�(x, y) = 1

4
·
[1 2 1

2 4 2
1 2 1

]
.

The multiresolution pyramid is made of a sequence of images: {�i : �0 ≡ �}0� i � level where, at each level
i, 1� i� level:

• �i is obtained from the previous one �i−1, doubling the step size hi = 2hi−1;
• the brightness Ii , at each point (x, y, t) ∈ �i × J , is computed by

Ii(x, y, t) = Ii−1(x, y, t) � �(x, y),

where � is the convolution operator.
The parameter level depends on the image size: at each step i, if N/2i � min N and M/2i � min M (where min N

and min M are two given thresholds), then the decomposition is performed.
Coarse-to-fine correction: In the second step, the problem is solved on each subspace proceeding from the coarsest

towards the finest levels, according to a multigrid correction with a projection and a smoother at each step; the smoothing
operator is the solution of the Euler–Lagrange equation on each level, while projection is made by duplication.

The vector field is computed at each level starting from the coarsest and moving towards the next finer grid. More
precisely, the optical flow is first computed at level i, then it is projected onto the next finer level i − 1 where it is added
to the local approximation.

Multigrid optical f low computation

for (x, y, t) ∈ � × J do
for (i = level, 0, step-1) do

%% extension by duplication:
if (i = level) then

�−→v i(x, y, t) := 0
else

�−→v i(x, y, t) := −→v i+1

(x

2
,
y

2
, t

)
endif
%% computation of −→v i by using the
%% optical flow algorithm (see page 12)
%% update−→v i(x, y, t) = −→v i(x, y, t) + �−→v i(x, y, t)

endfor
endfor

Now, we describe the algorithm for the blotch detection and removal. Starting from the following quantities:

IC
t−�t

(x(t), y(t), t) = I (x(t − �t) + �x+, y(t − �t) + �y+, t − �t),

IC
t+�t

(x(t), y(t), t) = I (x(t + �t) − �x−, y(t + �t) − �y−, t + �t),

once t has been fixed, we consider

Wt−�t (x, y) = |IC
t−�t

(x, y, t) − I (x, y, t)|, Wt+�t (x, y) = |IC
t+�t

(x, y, t) − I (x, y, t)|,
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which are used to compute the blotch mask, which gives the characteristic function b:

B(x, y) =
{

1 if min{Wt−�t (x, y), Wt+�t (x, y)}�K,

0 otherwise,

where K is a given tolerance. This mask is the reference binary image B(x, y) at time t, where the pixels corresponding
to the blotch domain appear.

Blotch removal algorithm

for (x, y) ∈ B do

I 0 = IC
t−�t

+ IC
t+�t

2
, b0 = �′(∇I 0)

2‖∇I 0‖
for n = 1, 2, . . . repeat

bn+1 = �′(∇In)

2‖∇In‖
In+1 = G � In − � div(bn+1∇In)

until (convergence)
endfor

It is �(s) = 2
√

1 + s2 − 2, then bn+1 = �′(‖∇In‖)/2‖∇In‖ = 1/
√

1 + ‖∇In‖2.
Moreover, regarding the gradient ∇In = ((�/�x)In, (�/�y)In), it is

�

�x
In(x, y, t) ≈ �xIn(x, y, t) = In

(
x + 1

2
, y, t

)
− In(x, y, t),

�

�y
In(x, y, t) ≈ �yIn(x, y, t) = In

(
x, y + 1

2
, t

)
− In(x, y, t).

Therefore, at step n + 1 the function In+1 is computed as follows:

In(x, y, t) =
[

1∑
h=−1

1∑
k=−1

G(h, k)In(x + h, y + k, t)

]
+ �[div(bn+1 · ∇In)],

where G(x, y) is the discrete approximation of the two-dimensional gaussian function, and 	=1.0, while the divergence
term is discretized using the finite difference scheme given previously.

6. Results and observations

We carried out some experiments aimed to verify both the accuracy of the computed results and the robustness of the
algorithm. To this aim we consider real and synthetic sequences. Here we show only two tests: the first one concerns a
simulated sequence that we denote by TreeD, where the motion is due to a zoom of the camera; the second one refers
to a sequence extracted from an old movie about Naples.

All the experiments have been performed using the of IBM RISC 6000.
In order to validate the computed results we use the following quality measures:

• MSE: Measure of the average relative error on the computed solution.
• DETECT: Percentage of detected pixels in the right position computed by the detection algorithm.
• Cross-section profile: The bidimensional function that describes the gray level intensity versus the x-axis at a

given y, of the original image and of the restored one. The cross-section profile allows to exactly compare pixel
by pixel the restored brightness intensity with the true one.
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• The average angular error:

averageerr =
(∑

�E(x, y)/np
)

,

where

�E(x, y) = arcosen(vc(x, y) × ve(x, y)),

vc(x, y) is the computed vector field, ve(x, y) is the exact vector field, np is the number of pixels. The symbol ×
denotes the scalar product operator.

Fig. 5. Sequence TreeD, image size: 150 × 150 pixels.

Fig. 6. The original optical flow (left) and the computed (right) optical flow. Sg = 0.1, St = 0.1. Cpu: 6.67 s.

Fig. 7. Sequence TreeD. On the left the computed blotch mask. On the right the restored frame. Cpu: 1.645 s. K = 50.
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• The standard deviation:

StDev = √ (∣∣∣∣(∑
�E(x, y)

)2 − np × average2
err

)/
(np − 1).

Both the average angular error and the standard deviation are used for measuring the accuracy of the computed
vector field.

Regarding the first test, i.e. the sequence that we denote by Sequence TreeD, three frames are shown in Fig. 5.
Observe the two large black blotches corresponding to the degraded regions.

Results are shown in Figs. 6 and 7. Note that the true motion field, on the left, clearly appears to be directed
towards the center of the image indicating the zoom of the camera. On the right, the computed optical flow field
is shown, which is more evident along the contours of the objects, as expected, because it measures the brightness
variations.

In Fig. 15 the MSE plots (in logarithmic scale) are shown. We set the tolerance equals to Tol = 10−3 both for
the optical flow computation stopping criterion and for the blotch removal. This means that the iterative algorithms
proceed until MSE(n)�Tol. The required accuracy on the computed optical flow after about 15 iterations is within
three decimal digits. In the same way, the computed solution after about 10 iterations inside the blotch region is within
3 decimal digits, according to the numerical representation of the brightness intensity in [0, 255].

In Table 1 we report the number of pixels belonging to the original blotch and, for each choice of K ∈ [0, 255], the
parameter DETECT. and 9

Observe that if K is too small (i.e. K < 50) the number of detected pixels grows, but these may not belong all to the
blotch domain. Instead, increasing K beyond 100 the number of detected pixels decreases, sometimes together with the
corrected locations. We find that the optimal value of K is about 50–60, because it gives the right trade off with respect
to true and false positions.

Figs. 8 and 9 show the computed intensity function in terms of the cross-section profile. Inside the blotch domain,
the box line (zero value) in the center of the blotch clearly appears, while the other two lines that are quite near refer
to the original (circle line) and to the restored brightness (star line). In Fig. 10 the MSE plots of the optical flow and of
the blotch removal alogorithms are shown.

Finally, Table 2 summarizes the average error and the standard deviation corresponding to the optical flow field of
the sequence TreeD. Results are compared with the most common regularization functionals reported in [2].

Fig. 8. Sequence TreeD—cross-section profile (neighbor of upper right blotch). The box line refers to the noisy data inside the blotch region, the star
line refers to the restored brightness and the circle line indicates the original data.
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Fig. 9. Sequence TreeD—cross-section profile (neighbor of lower left blotch). The box line refers to the noisy data inside the blotch region, the star
line refers to the restored brightness and the circle line indicates the original data.

Fig. 10. Sequence TreeD—(sx) optical flow, (dx) blotch removal. MSE versus the iteration numbers.

Table 2
Angular error and standard deviation of the optical flow field—comparison with the most common regularization functionals as reported in [2]

Technique Average error (in deg) Std Dev (in deg)

Horn–Schunck 2.50 3.89
Lucas–Kanade 1.65 1.48
Uras 3.83 2.19
Nagel 3.21 3.43
Anandan 7.64 4.96
Singh 7.09 6.59
Feature matching 0.34 0.71
Our method 0.22 0.61
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Fig. 11. Sequence Naples, size: 720 × 576 pixels.

Fig. 12. Sequence Naples—optical flow. Cpu: 6.67 s. Options: level = 0, Sg = 0.5, St = 0.5.

Fig. 13. Sequence Naples—on the left, the blotch mask. Options: K = 60. On the right the blotch mask overlapped to the corrupted frame.

The second test refers to the Sequence Naples; three frames of the real movie are shown in Fig. 11.
The sequence image is hardly noised, there are many small blotches as shown by the blotch mask in Fig. 14. The

computed motion field, shown in Fig. 12, is nearly always translational. Restoration is shown in Figs. 13 and 14 (see
also Fig. 15 for MSE). In this case we can just perform a qualitative evaluation of the restored image. However, the
behavior of the numerical software on synthetic tests allows to extrapolate its performance in such cases giving a quality
assurance also in real applications.
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Fig. 14. Sequence Naples—(left) the original frame; (right) the restored frame. Cpu: 28.278 s.

Fig. 15. Sequence Naples—(left) optical flow; (right) blotch removal. MSE versus iteration numbers.

7. Conclusion and future work

A key issue in developing application codes is to deal with the overall software complexity. This is even more true
for imaging applications.

This work is the first step towards the development of a software tool to be actually used in digital film restoration.
We describe computational efforts aimed at developing effective tools able to detect and remove a particular type of
local random defect of old black-and-white films, commonly referred to as blotch.

To this aim we need to detect the blotch domain in an automatic way, to compute the optical flow, to recover the
brightness inside the blotch domain. The numerical approach consists of an accurate motion estimation, based on a
multigrid approach, and a two step algorithm: we first detect blotch locations by using motion-compensated and the
temporal discontinuities that characterize the motion field in a corrupted sequence; then we remove the blotches, using
information from the neighboring frames, and interpolating along motion trajectories.

Experimental results, equipped with several quality measures, illustrate the reliability and the robustness of the
algorithm tested on both synthetic and real sequences.
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