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Abstract F0F1-ATP synthase couples ATP synthesis/hydrolysis
with transmembrane proton transport. The catalytic mechanism
involves rotation of the cec�10-subunits complex relative to the
rest of the enzyme.
In the absence of protonmotive force the enzyme is inactivated

by the tight binding of MgADP. Subunit e also modulates the
activity: its conformation can change from a contracted to ex-
tended form with C-terminus stretched towards F1. The latter
form ihnibits ATP hydrolysis (but not synthesis).
We propose that the directionality of the coiled-coil subunit c

rotation determines whether subunit e is in contracted or ex-
tended form. Block of rotation by MgADP presumably induces
the extended conformation of subunit e. This conformation might
serve as a safety lock, stabilizing the ADP-inhibited state upon
de-energization and preventing spontaneous re-activation and
wasteful ATP hydrolysis. The hypothesis merges the known reg-
ulatory effects of ADP, protonmotive force and conformational
changes of subunit e into a consistent picture.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

F0F1-ATP synthase interconverts two major ‘‘energy curren-

cies’’ of a living cell: the transmembrane electrochemical po-

tential difference of protons (or Na+ in some organisms) and

ATP. The enzyme is composed of two portions: membrane-

embedded F0-portion (in the simplest bacterial enzyme a com-

plex of three types of subunits in stoichiometry a1b2c�10) and

hydrophilic catalytic F1-portion (in bacteria a complex of five

types of subunits in stoichiometry a3b3c1d1e1; see Fig. 1 for a

cartoon representation of the enzyme). A unique feature of

the enzyme is its rotary catalytic mechanism [1–3]. Proton

transport through F0 driven by protonmotive force (pmf) in-

duces rotation of the ring-shaped c-subunits oligomer relative

to the peripherally located a1b2. Subunits c and e are bound to

the c-ring and therefore rotate relative to the a3b3d1 complex
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that is attached to the elongated b-subunit dimer. Rotation

of subunit c inside the a3b3-hexamer induces conformational

transitions that result in ATP synthesis.

When pmf drops below the thermodynamic threshold of

ATP synthesis, the reaction is reversed and the enzyme oper-

ates as an H+-pumping ATPase (see [4–7] for reviews on the

catalytic mechanism).

A common regulatory mechanism found in ATP synthases

from bacteria, chloroplasts and mitochondria is so-called

‘‘ADP inhibition’’. WhenMgADP without phosphate is bound

at the high affinity catalytic site, the enzyme is inactivated in

terms ofATPhydrolysis [8–13]. As demonstrated for the chloro-

plast and bacterial enzymes, upon membrane energization the

tightly bound ADP is released from F1 [14–16]. This might be

the reason for the marked increase in the ATPase activity after

energization (so-called pmf-activation) [17–21]. In bacterial

ATP synthase subsequent slow deactivation of ATP hydrolysis

occurs after pmfdissipation; it is accelerated byADPand slowed

downbyphosphate, indicating that the enzyme shifts back to the

‘‘ADP-inhibited’’ state [18,21]. It is demonstrated on the single

molecule level in bacterial enzyme that such inhibition results

in long (�30 s) pauses in the ATP driven rotation of subunit c
[22]. Further experiments indicate that the re-activation can be

achieved by forced rotation of subunit c from the ‘‘ADP-inhib-

ited’’ position by 40� in the hydrolysis direction; preliminary

data indicate that rotation by 160� in the synthesis direction

has the same effect [23]. Without forced rotation the spontane-

ous re-activation from the ‘‘ADP-inhibited’’ state might be in-

duced by thermal rotational fluctuations of subunit c, and is

completely blocked if the angular position of subunit c is fixed

by external force [23].

It should be noted that free phosphate is playing and impor-

tant role in counteracting the ADP inhibition. Under de-ener-

gized conditions the concentrations of phosphate required to

relieve the ADP inhibition are rather high (5 mM for the mito-

chondrial [11] and 20 mM for the bacterial enzyme [24]). How-

ever, the affinity of ATP synthase for phosphate dramatically

increases in the presence of pmf [25–27]. This increase is con-

sidered to be one of the main energy-requiring steps in ATP

synthesis. It is proposed that such high affinity to phosphate

might be necessary to prevent the competitive inhibition by

ATP during ATP synthesis (see [5,28] and the references there-

in). The increase in the affinity for phosphate is expected to

diminish ADP inhibition when sufficiently high pmf is present.

Another mechanism of ATP synthase regulation (demon-

strated in bacteria and chloroplasts) is associated with subunit
blished by Elsevier B.V. All rights reserved.
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Fig. 1. A tentative scheme of the regulatory conformational transi-
tions in ATP synthase. (A) Active state, ATP synthesis. The two C-
terminal a-helices of subunit e (striped) are in the extended or fully
extended state (fully extended state is drawn in the cartoon) (B) Active
state, ATP hydrolysis coupled to proton pumping. Subunit e is in the
contracted state. (C) Hypothetical transition state; rotation of subunit
c is blocked due to the binding of ADP without phosphate at the high
affinity catalytic site, but the transition of subunit e C-terminus into the
extended or fully extended state has not yet occurred. (D) ‘‘ADP-
inhibited’’ state; rotation of subunit c is blocked by the tight binding of
ADP and by interactions of subunit e C-terminus with b DELSEED
fragment.
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e. 1 The inhibitory effect of this subunit on the ATPase activity

is well established [29–34]. It should be noted that inhibition by

subunit e is clearly distinct from the MgADP inhibition de-

scribed above, because the latter is also observed on the

a3b3c complex without e [22,23,35,36].

It is well known that membrane energization, ATP, ADP,

and phosphate induce conformational changes in the e subunit
of chloroplast and bacterial ATP synthase [37–41]. The hint on

the molecular details of these conformational transitions have

come from two crystal structures: the ce-complex from Esche-

richia coli [42] and the bovine mitochondrial F1-portion [43]. In

the former structure the two C-terminal a-helices of subunit e
are apart and are extended towards F1 (extended conforma-

tion), while the latter structure indicates that these two C-ter-

minal a-helices form a hairpin structure close to F0 (contracted

conformation).

The cross-linking experiments on ATP synthase from E. coli

revealed that the extended conformation of subunit e inhibits
1 To our knowledge, no experimental evidence is reported so far on the
regulatory role of mitochondrial ATP synthase subunit d, which is
homologous to bacterial/chloroplasts e-subunit.
ATPase activity but not ATP synthesis. In the contracted con-

formation the enzyme performs well both in synthesis and

hydrolysis [44]. It is also demonstrated that in bacterial enzyme

the inhibitory effect is due to the electrostatic interactions of

the basic C-terminal amino acid residues of subunit e with

the acidic DELSEED fragment of b-subunit [45]. These find-

ings are further supported by the elimination of the inhibitory

effect upon the deletion of subunit e C-terminal a-helices ob-
served both in bacterial [46] and in chloroplast enzyme [47].

Subsequent studies on thermophilic Bacillus PS3 have re-

vealed that the two C-terminal a-helices of subunit e can ex-

tend even further, penetrating into the a3b3-hexamer to the

very N-terminus of c-subunit. Like the extended conforma-

tion, this ‘‘fully extended’’ conformation suppressed ATP

hydrolysis without significant effect on ATP synthesis [48]. Re-

cent experimental data on the chloroplast ATP synthase dem-

onstrate that the truncation of 8–20 N-terminal amino acid

residues of subunit c markedly diminishes inhibition of ATP-

ase activity by the e-subunit [49], indicating that interaction

of e C-terminus and c N-terminus in the fully extended might

also be important for the inhibition.

It is also confirmed that in bacterial ATP synthase subunit e
adopts the contracted conformation in the presence of ATP,

while ADP induced the fully extended conformation [48]. Sur-

prisingly, pmf also induces the fully extended conformation

that is inactive in terms of ATP hydrolysis [48]. The latter find-

ing is in a seeming contradiction with the experimental evi-

dence on the activation of ATP hydrolysis by pmf [17–21].

The hypothesis presented below provides a solution for this

controversy and suggests how the two regulatory mechanisms

described above might be interconnected.
2. Hypothesis

The hypothetical scheme of subunit e regulatory conforma-

tional transitions is presented in Fig. 1. Panel A illustrates the

enzyme in the ‘‘normal’’ ATP synthesis mode in the presence

of high pmf. Most probably in this mode the C-terminus of

subunit e is in the extended or fully extended state (this

assumption is based on the experimental data confirming that

pmf induces the latter conformation [48]). When pmf decreases

below the thermodynamic threshold for ATP synthesis, ATP-

driven proton pumping occurs, and the direction of subunit c
rotation reverses. We postulate that the rotation of subunit c
in ATP hydrolysis direction is inducing the conformational

transition of subunit e from the extended or fully extended

to the contracted state. The energy input for this transition

comes from ATP-driven rotation; we suggest that this rotation

is critically important to maintain the contracted conformation

of e. With subunit e in the contracted state, ATP synthase gen-

erates pmf at the expense of ATP hydrolysis (Fig. 1B). When

the membrane is re-energized, the enzyme switches back to

synthesis mode; the rotation of subunit c is reversed and the

C-terminus of subunit e moves back towards F1 (Fig. 1A).

If the rate of pmf dissipation exceeds the rate of ATP-driven

proton pumping, the membrane is de-energized, and the affin-

ity for phosphate decreases. This favours the ‘‘ADP-inhibited’’

state of the enzyme: as soon as MgADP binds to (or fails to

dissociate from) one of the catalytic sites, the rotation of sub-

unit c stops [22] (Fig. 1C). As postulated above, the contracted

conformation of subunit e is maintained only when subunit c
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rotates in the hydrolysis direction, so the transition to ex-

tended/fully extended state occurs (Fig. 1D).

The rationale behind this postulate is that the extended state

of subunit e might be thermodynamically favourable due to

the electrostatic interactions between the C-terminus of sub-

unit e and the b DELSEED segment [45]. It is probable that

these electrostatic interactions significantly impede the stochas-

tic rotational fluctuations of subunit c, stabilizing the ‘‘ADP-

inhibited’’ state and preventing ADP release and spontaneous

re-activation of ATP hydrolysis. We suggest that subunit e
functions as a ‘‘safety switch’’ that fixes the ADP-inhibited

state under de-energized conditions, but is readily relieved

upon energization. In the latter case the pmf-driven rotation

of ce-complex distorts the interaction of subunit e C-terminus

and the b DELSEED fragment, as well as expels the tightly

bound inhibitory MgADP from F1.

Indirect evidence for this hypothesis is provided by the

experiments in E. coli on cMet23Lys mutant, where an extra

salt bridge between the cLys23 and bGlu381 (the first gluta-

mate in the b DELSEED fragment) is formed [50]. It is note-

worthy that the F1-portion of the mutant enzyme has lost

the ability to relieve the subunit e inhibition upon binding to

F0 [51], behaving as if subunit e was permanently in the ex-

tended/fully extended conformation. It is most probable that

the additional bond between c and b in cMet23Lys mutant

plays the same role as the interactions of b DELSEED with

basic residues at the C-terminus of subunit e, hindering subunit
c rotation and stabilizing the ‘‘ADP-inhibited’’ state.

It is unclear how exactly the direction of subunit c rotation

may induce the transitions of subunit e. However, it is tempt-

ing to suggest that the chiral coiled-coil region of subunit c
might act as a ‘‘molecular Archimedes screw’’ squeezing the

elongated mobile C-terminus of subunit e out of the a3b3-hex-
amer upon rotation in one direction and letting it slide back

upon the reversal or block of rotation.

It should be noted that for the sake of simplicity and to

avoid excessive speculation, the hypothesis ignores several

other ATP synthase regulatory features, such as relieve of

ADP inhibition upon binding of ATP to the non-catalytic sites

[52–55] or direct interactions of subunit e with ATP [56].

It should also be noted that the regulatory mechanism

involving the ‘‘up-down’’ conformational transitions of sub-

unit e in the bacterial and chloroplast ATP synthase might

be absent in the mitochondrial enzyme. According to the struc-

ture of bovine mitochondrial F1-portion [43], an additional

small protein might prevent the conformational transitions,

fixing the active contracted state of the mitochondrial homo-

logue of bacterial e 2 [44]. Further experiments are necessary

to clarify this issue.
3. The probable physiological role of the e-subunit transitions

In a bacterial cell the maintenance of the transmembrane

electrochemical proton potential is as important as the mainte-

nance of the high intracellular ATP level. Pmf is necessary for

ion transport, motility, protein export and other physiological

functions. Reversibility of the ATP synthase provide a power-
2 Unfortunately, historically the homologue of bacterial e is called
subunit d in the mitochondrial enzyme, while the additional small
protein (absent in bacterial ATP synthase) is called subunit e.
ful tool to maintain pmf at physiological level using ATP pro-

duced, e.g., by fermentation or similar processes. However,

distinguishing between a temporary decrease in pmf due to

low respiratory substrate concentration (or low light intensity

in case of photosynthetic bacteria), and complete de-energiza-

tion (e.g., due to a damaged coupling membrane) could be crit-

ical, because in the latter case the active enzyme would just

waste the whole ATP pool of the cell. The hypothesis proposed

here provides an efficient regulatory scheme to distinguish be-

tween these two cases. In case of mild de-energization subunit e
is adopting the contracted conformation and ATP synthase

maintains pmf by proton pumping at the expense of ATP

hydrolysis. In case of severe de-energization the enzyme adopts

‘‘ADP-inhibited’’ conformation and ceases to hydrolyse ATP.

Subsequent transition of subunit e to the extended/fully ex-

tended provides a ‘‘safety lock’’ that stabilizes the ‘‘ADP-

inhibited’’ state of the enzyme. Such stabilization might also

be important for prompt inhibition of ATP hydrolysis upon

accidental removal of the F1-portion from F0.
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